Module rtlgen_proof



Correctness proof for RTL generation.

Require Import Coqlib Maps AST Linking.
Require Import Integers Values Memory Events Smallstep Globalenvs.
Require Import Switch Registers Cminor Op CminorSel RTL.
Require Import RTLgen RTLgenspec.

Require Import CUAST Footprint Blockset LDSimDefs_local LDSim_local.
Require Import InteractionSemantics IS_local val_casted InjRels
        MemOpFP Op_fp helpers CminorSel_local RTL_local rtlgen.

Local Notation empfp:=FP.emp.
Local Notation footprint:=FP.t.

Correspondence between Cminor environments and RTL register sets


A compilation environment (mapping) is well-formed if the following properties hold:

Record map_wf (m: mapping) : Prop :=
  mk_map_wf {
    map_wf_inj:
      (forall id1 id2 r,
         m.(map_vars)!id1 = Some r -> m.(map_vars)!id2 = Some r -> id1 = id2);
     map_wf_disj:
      (forall id r,
         m.(map_vars)!id = Some r -> In r m.(map_letvars) -> False)
  }.

Lemma init_mapping_wf:
  map_wf init_mapping.
Proof.

Lemma add_var_wf:
  forall s1 s2 map name r map' i,
  add_var map name s1 = OK (r,map') s2 i ->
  map_wf map -> map_valid map s1 -> map_wf map'.
Proof.

Lemma add_vars_wf:
  forall names s1 s2 map map' rl i,
  add_vars map names s1 = OK (rl,map') s2 i ->
  map_wf map -> map_valid map s1 -> map_wf map'.
Proof.

Lemma add_letvar_wf:
  forall map r,
  map_wf map -> ~reg_in_map map r -> map_wf (add_letvar map r).
Proof.

An RTL register environment matches a CminorSel local environment and let-environment if the value of every local or let-bound variable in the CminorSel environments is identical to the value of the corresponding pseudo-register in the RTL register environment.

Record match_env
      (map: mapping) (e: env) (le: letenv) (rs: regset) : Prop :=
  mk_match_env {
    me_vars:
      (forall id v,
         e!id = Some v -> exists r, map.(map_vars)!id = Some r /\ Val.lessdef v rs#r);
    me_letvars:
      Val.lessdef_list le rs##(map.(map_letvars))
  }.

Lemma match_env_find_var:
  forall map e le rs id v r,
  match_env map e le rs ->
  e!id = Some v ->
  map.(map_vars)!id = Some r ->
  Val.lessdef v rs#r.
Proof.

Lemma match_env_find_letvar:
  forall map e le rs idx v r,
  match_env map e le rs ->
  List.nth_error le idx = Some v ->
  List.nth_error map.(map_letvars) idx = Some r ->
  Val.lessdef v rs#r.
Proof.

Lemma match_env_invariant:
  forall map e le rs rs',
  match_env map e le rs ->
  (forall r, (reg_in_map map r) -> rs'#r = rs#r) ->
  match_env map e le rs'.
Proof.

Matching between environments is preserved when an unmapped register (not corresponding to any Cminor variable) is assigned in the RTL execution.

Lemma match_env_update_temp:
  forall map e le rs r v,
  match_env map e le rs ->
  ~(reg_in_map map r) ->
  match_env map e le (rs#r <- v).
Proof.
Hint Resolve match_env_update_temp: rtlg.

Matching between environments is preserved by simultaneous assignment to a Cminor local variable (in the Cminor environments) and to the corresponding RTL pseudo-register (in the RTL register environment).

Lemma match_env_update_var:
  forall map e le rs id r v tv,
  Val.lessdef v tv ->
  map_wf map ->
  map.(map_vars)!id = Some r ->
  match_env map e le rs ->
  match_env map (PTree.set id v e) le (rs#r <- tv).
Proof.

A variant of match_env_update_var where a variable is optionally assigned to, depending on the dst parameter.

Lemma match_env_update_dest:
  forall map e le rs dst r v tv,
  Val.lessdef v tv ->
  map_wf map ->
  reg_map_ok map r dst ->
  match_env map e le rs ->
  match_env map (set_optvar dst v e) le (rs#r <- tv).
Proof.
Hint Resolve match_env_update_dest: rtlg.

A variant of match_env_update_var corresponding to the assignment of the result of a builtin.

Lemma match_env_update_res:
  forall map res v e le tres tv rs,
  Val.lessdef v tv ->
  map_wf map ->
  tr_builtin_res map res tres ->
  match_env map e le rs ->
  match_env map (set_builtin_res res v e) le (regmap_setres tres tv rs).
Proof.

Matching and let-bound variables.

Lemma match_env_bind_letvar:
  forall map e le rs r v,
  match_env map e le rs ->
  Val.lessdef v rs#r ->
  match_env (add_letvar map r) e (v :: le) rs.
Proof.

Lemma match_env_unbind_letvar:
  forall map e le rs r v,
  match_env (add_letvar map r) e (v :: le) rs ->
  match_env map e le rs.
Proof.

Matching between initial environments.

Lemma match_env_empty:
  forall map,
  map.(map_letvars) = nil ->
  match_env map (PTree.empty val) nil (Regmap.init Vundef).
Proof.

The assignment of function arguments to local variables (on the Cminor side) and pseudo-registers (on the RTL side) preserves matching between environments.

Lemma match_set_params_init_regs:
  forall il rl s1 map2 s2 vl tvl i,
  add_vars init_mapping il s1 = OK (rl, map2) s2 i ->
  Val.lessdef_list vl tvl ->
  match_env map2 (set_params vl il) nil (init_regs tvl rl)
  /\ (forall r, reg_fresh r s2 -> (init_regs tvl rl)#r = Vundef).
Proof.

Lemma match_set_locals:
  forall map1 s1,
  map_wf map1 ->
  forall il rl map2 s2 e le rs i,
  match_env map1 e le rs ->
  (forall r, reg_fresh r s1 -> rs#r = Vundef) ->
  add_vars map1 il s1 = OK (rl, map2) s2 i ->
  match_env map2 (set_locals il e) le rs.
Proof.

Lemma match_init_env_init_reg:
  forall params s0 rparams map1 s1 i1 vars rvars map2 s2 i2 vparams tvparams,
  add_vars init_mapping params s0 = OK (rparams, map1) s1 i1 ->
  add_vars map1 vars s1 = OK (rvars, map2) s2 i2 ->
  Val.lessdef_list vparams tvparams ->
  match_env map2 (set_locals vars (set_params vparams params))
            nil (init_regs tvparams rparams).
Proof.

The simulation argument


Require Import Errors.

Definition match_cu (scu: cminorsel_comp_unit) (tcu: RTL_comp_unit) :=
  match_comp_unit_gen (fun f tf => transl_fundef f = Errors.OK tf) eq scu tcu.

Lemma transf_program_match:
  forall scu tcu, transf_program scu = OK tcu -> match_cu scu tcu.
Proof.


Section CORRECTNESS.

Variable scu: cminorsel_comp_unit.
Variable tcu: RTL_comp_unit.
Hypothesis TRANSL: match_cu scu tcu.

Variable sge sG: CminorSel.genv.
Variable tge tG: RTL.genv.

Hypothesis GE_INIT: CminorSel_IS.(init_genv_local) scu sge sG.
Hypothesis TGE_INIT: RTL_IS.(init_genv_local) tcu tge tG.
Hypothesis S_EQ: sge.(Genv.genv_next) = tge.(Genv.genv_next).


Lemma ge_match: ge_match_strict sge tge.
Proof.

Lemma genv_match: Genv.match_genvs (match_globdef (fun f tf => transl_fundef f = Errors.OK tf) eq) sge tge.
Proof.

Lemma symbols_preserved:
  forall (s: ident), Genv.find_symbol tge s = Genv.find_symbol sge s.
Proof.

Lemma function_ptr_translated:
  forall (b: block) (f: CminorSel.fundef),
  Genv.find_funct_ptr sge b = Some f ->
  exists tf,
  Genv.find_funct_ptr tge b = Some tf /\ transl_fundef f = OK tf.
Proof.

Lemma functions_translated:
  forall v f,
  Genv.find_funct sge v = Some f ->
  exists tf,
  Genv.find_funct tge v = Some tf /\ transl_fundef f = OK tf.
Proof.

Lemma sig_transl_function:
  forall (f: CminorSel.fundef) (tf: RTL.fundef),
  transl_fundef f = OK tf ->
  RTL.funsig tf = CminorSel.funsig f.
Proof.

Lemma senv_preserved:
  Senv.equiv sge tge.
Proof.

Correctness of the code generated by add_move.

Lemma tr_move_correct:
  forall r1 ns r2 nd cs f sp rs m,
  tr_move f.(fn_code) ns r1 nd r2 ->
  exists rs',
    star (step tge) (Core_State cs f sp ns rs) m empfp (Core_State cs f sp nd rs') m /\
    rs'#r2 = rs#r1 /\
    (forall r, r <> r2 -> rs'#r = rs#r).
Proof.

Semantic preservation for the translation of expressions


Section CORRECTNESS_EXPR.

Variable sp: val.
Variable e: env.
Variable m: mem.

The proof of semantic preservation for the translation of expressions is a simulation argument based on diagrams of the following form:
                    I /\ P
    e, le, m, a ------------- State cs code sp ns rs tm
         ||                      |
         ||                      |*
         ||                      |
         \/                      v
    e, le, m, v ------------ State cs code sp nd rs' tm'
                    I /\ Q
where tr_expr code map pr a ns nd rd is assumed to hold. The left vertical arrow represents an evaluation of the expression a. The right vertical arrow represents the execution of zero, one or several instructions in the generated RTL flow graph code. The invariant I is the agreement between Cminor environments and RTL register environment, as captured by match_envs. The precondition P includes the well-formedness of the compilation environment mut. The postconditions Q state that in the final register environment rs', register rd contains value v, and the registers in the set of preserved registers pr are unchanged, as are the registers in the codomain of map. We formalize this simulation property by the following predicate parameterized by the CminorSel evaluation (left arrow).


Modification: add constraints on footprints

Definition transl_expr_fp_prop
           (le: letenv) (a: expr) (v: val) (fp: footprint): Prop :=
  forall tm cs f map pr ns nd rd rs dst
    (MWF: map_wf map)
    (TE: tr_expr f.(fn_code) map pr a ns nd rd dst)
    (ME: match_env map e le rs)
    (EXT: Mem.extends m tm),
  exists rs', exists fp',
      star (step tge) (Core_State cs f sp ns rs) tm fp' (Core_State cs f sp nd rs') tm
      /\ match_env map (set_optvar dst v e) le rs'
      /\ Val.lessdef v rs'#rd
      /\ (forall r, In r pr -> rs'#r = rs#r)
      /\ FP.subset fp' fp.

Definition transl_exprlist_fp_prop
     (le: letenv) (al: exprlist) (vl: list val) (fp: footprint): Prop :=
  forall tm cs f map pr ns nd rl rs
    (MWF: map_wf map)
    (TE: tr_exprlist f.(fn_code) map pr al ns nd rl)
    (ME: match_env map e le rs)
    (EXT: Mem.extends m tm),
  exists rs', exists fp',
     star (step tge) (Core_State cs f sp ns rs) tm fp' (Core_State cs f sp nd rs') tm
  /\ match_env map e le rs'
  /\ Val.lessdef_list vl rs'##rl
  /\ (forall r, In r pr -> rs'#r = rs#r)
  /\ FP.subset fp' fp.

Definition transl_condexpr_fp_prop
     (le: letenv) (a: condexpr) (v: bool) (fp: footprint): Prop :=
  forall tm cs f map pr ns ntrue nfalse rs
    (MWF: map_wf map)
    (TE: tr_condition f.(fn_code) map pr a ns ntrue nfalse)
    (ME: match_env map e le rs)
    (EXT: Mem.extends m tm),
  exists rs', exists fp',
     plus (step tge) (Core_State cs f sp ns rs) tm fp' (Core_State cs f sp (if v then ntrue else nfalse) rs') tm
  /\ match_env map e le rs'
  /\ (forall r, In r pr -> rs'#r = rs#r)
  /\ FP.subset fp' fp.

The correctness of the translation is a huge induction over the CminorSel evaluation derivation for the source program. To keep the proof manageable, we put each case of the proof in a separate lemma. There is one lemma for each CminorSel evaluation rule. It takes as hypotheses the premises of the CminorSel evaluation rule, plus the induction hypotheses, that is, the transl_expr_prop, etc, corresponding to the evaluations of sub-expressions or sub-statements.

Lemma transl_expr_fp_Evar_correct:
  forall (le : letenv) (id : positive) (v: val),
  e ! id = Some v ->
  transl_expr_fp_prop le (Evar id) v empfp.
Proof.

Lemma transl_expr_fp_Eop_correct:
  forall (le : letenv) (op : operation) (args : exprlist)
         (vargs : list val) fp1 (v : val) fp2,
  eval_exprlist sge sp e m le args vargs ->
  eval_exprlist_fp sge sp e m le args fp1 ->
  transl_exprlist_fp_prop le args vargs fp1 ->
  eval_operation sge sp op vargs m = Some v ->
  eval_operation_fp sge sp op vargs m = Some fp2 ->
  transl_expr_fp_prop le (Eop op args) v (FP.union fp1 fp2).
Proof.

Lemma transl_expr_fp_Eload_correct:
  forall (le : letenv) (chunk : memory_chunk) (addr : Op.addressing)
         (args : exprlist) fp1 (vargs : list val) (vaddr v : val),
  eval_exprlist sge sp e m le args vargs ->
  eval_exprlist_fp sge sp e m le args fp1 ->
  transl_exprlist_fp_prop le args vargs fp1 ->
  Op.eval_addressing sge sp addr vargs = Some vaddr ->
  Mem.loadv chunk m vaddr = Some v ->
  transl_expr_fp_prop le (Eload chunk addr args) v (FP.union fp1 (loadv_fp chunk vaddr)).
Proof.

Lemma transl_expr_fp_Econdition_correct:
  forall (le : letenv) (a: condexpr) (ifso ifnot : expr)
         (va : bool) fp1 (v : val) fp2,
  eval_condexpr sge sp e m le a va ->
  eval_condexpr_fp sge sp e m le a fp1 ->
  transl_condexpr_fp_prop le a va fp1 ->
  eval_expr sge sp e m le (if va then ifso else ifnot) v ->
  eval_expr_fp sge sp e m le (if va then ifso else ifnot) fp2 ->
  transl_expr_fp_prop le (if va then ifso else ifnot) v fp2 ->
  transl_expr_fp_prop le (Econdition a ifso ifnot) v (FP.union fp1 fp2).
Proof.

Lemma transl_expr_fp_Elet_correct:
  forall (le : letenv) (a1 a2 : expr) (v1 v2 : val) fp1 fp2,
  eval_expr sge sp e m le a1 v1 ->
  eval_expr_fp sge sp e m le a1 fp1 ->
  transl_expr_fp_prop le a1 v1 fp1 ->
  eval_expr sge sp e m (v1 :: le) a2 v2 ->
  eval_expr_fp sge sp e m (v1 :: le) a2 fp2 ->
  transl_expr_fp_prop (v1 :: le) a2 v2 fp2 ->
  transl_expr_fp_prop le (Elet a1 a2) v2 (FP.union fp1 fp2).
Proof.

Lemma transl_expr_fp_Eletvar_correct:
  forall (le : list val) (n : nat) (v : val),
  nth_error le n = Some v ->
  transl_expr_fp_prop le (Eletvar n) v empfp.
Proof.

Remark eval_builtin_args_trivial:
  forall (ge: RTL.genv) (rs: regset) sp m rl,
  eval_builtin_args ge (fun r => rs#r) sp m (List.map (@BA reg) rl) rs##rl.
Proof.

Remark eval_builtin_args_fp_trivial:
  forall (ge: RTL.genv) (rs: regset) sp rl,
    eval_builtin_args_fp ge (fun r => rs#r) sp (List.map (@BA reg) rl) empfp.
Proof.

Lemma transl_expr_fp_Ebuiltin_correct:
  forall le ef al vl fp v,
    eval_exprlist sge sp e m le al vl ->
    eval_exprlist_fp sge sp e m le al fp ->
    transl_exprlist_fp_prop le al vl fp ->
    i64ext ef ->
    external_call ef sge vl m E0 v m ->
    transl_expr_fp_prop le (Ebuiltin ef al) v fp.
Proof.

Lemma transl_expr_fp_Eexternal_correct:
  forall le id sg al b ef vl fp v,
  Genv.find_symbol sge id = Some b ->
  Genv.find_funct_ptr sge b = Some (External ef) ->
  ef_sig ef = sg ->
  eval_exprlist sge sp e m le al vl ->
  eval_exprlist_fp sge sp e m le al fp ->
  transl_exprlist_fp_prop le al vl fp ->
  i64ext ef ->
  external_call ef sge vl m E0 v m ->
  transl_expr_fp_prop le (Eexternal id sg al) v fp.
Proof.

Lemma transl_exprlist_fp_Enil_correct:
  forall (le : letenv),
  transl_exprlist_fp_prop le Enil nil empfp.
Proof.

Lemma transl_exprlist_fp_Econs_correct:
  forall (le : letenv) (a1 : expr) (al : exprlist) (v1 : val) fp1
         (vl : list val) fp2,
  eval_expr sge sp e m le a1 v1 ->
  eval_expr_fp sge sp e m le a1 fp1 ->
  transl_expr_fp_prop le a1 v1 fp1 ->
  eval_exprlist sge sp e m le al vl ->
  eval_exprlist_fp sge sp e m le al fp2 ->
  transl_exprlist_fp_prop le al vl fp2 ->
  transl_exprlist_fp_prop le (Econs a1 al) (v1 :: vl) (FP.union fp1 fp2).
Proof.

Lemma transl_condexpr_fp_CEcond_correct:
  forall le cond al vl fp1 vb fp2,
  eval_exprlist sge sp e m le al vl ->
  eval_exprlist_fp sge sp e m le al fp1 ->
  transl_exprlist_fp_prop le al vl fp1 ->
  eval_condition cond vl m = Some vb ->
  eval_condition_fp cond vl m = Some fp2 ->
  transl_condexpr_fp_prop le (CEcond cond al) vb (FP.union fp1 fp2).
Proof.

Lemma transl_condexpr_fp_CEcondition_correct:
  forall le a b c va fp1 v fp2,
  eval_condexpr sge sp e m le a va ->
  eval_condexpr_fp sge sp e m le a fp1 ->
  transl_condexpr_fp_prop le a va fp1 ->
  eval_condexpr sge sp e m le (if va then b else c) v ->
  eval_condexpr_fp sge sp e m le (if va then b else c) fp2 ->
  transl_condexpr_fp_prop le (if va then b else c) v fp2 ->
  transl_condexpr_fp_prop le (CEcondition a b c) v (FP.union fp1 fp2).
Proof.

Lemma transl_condexpr_fp_CElet_correct:
  forall le a b v1 fp1 v2 fp2,
  eval_expr sge sp e m le a v1 ->
  eval_expr_fp sge sp e m le a fp1 ->
  transl_expr_fp_prop le a v1 fp1 ->
  eval_condexpr sge sp e m (v1 :: le) b v2 ->
  eval_condexpr_fp sge sp e m (v1 :: le) b fp2 ->
  transl_condexpr_fp_prop (v1 :: le) b v2 fp2 ->
  transl_condexpr_fp_prop le (CElet a b) v2 (FP.union fp1 fp2).
Proof.


  
Theorem transl_expr_fp_correct:
  forall le a fp,
    eval_expr_fp sge sp e m le a fp ->
    forall v, eval_expr sge sp e m le a v ->
         transl_expr_fp_prop le a v fp.
Proof.

Theorem transl_exprlist_fp_correct:
  forall le a fp,
    eval_exprlist_fp sge sp e m le a fp ->
    forall v, eval_exprlist sge sp e m le a v ->
         transl_exprlist_fp_prop le a v fp.
Proof.

Theorem transl_condexpr_fp_correct:
  forall le a fp,
    eval_condexpr_fp sge sp e m le a fp ->
    forall v, eval_condexpr sge sp e m le a v -> transl_condexpr_fp_prop le a v fp.
Proof.


Exit expressions.

Definition transl_exitexpr_fp_prop
     (le: letenv) (a: exitexpr) (x: nat) (fp: footprint) : Prop :=
  forall tm cs f map ns nexits rs
    (MWF: map_wf map)
    (TE: tr_exitexpr f.(fn_code) map a ns nexits)
    (ME: match_env map e le rs)
    (EXT: Mem.extends m tm),
  exists nd, exists rs', exists fp',
     star (step tge) (Core_State cs f sp ns rs) tm fp' (Core_State cs f sp nd rs') tm
  /\ nth_error nexits x = Some nd
  /\ match_env map e le rs'
  /\ FP.subset fp' fp.

Theorem transl_exitexpr_fp_correct:
  forall le a fp x,
    eval_exitexpr_fp sge sp e m le a fp ->
    eval_exitexpr sge sp e m le a x ->
    transl_exitexpr_fp_prop le a x fp.
Proof.

Builtin arguments.

Lemma eval_exprlist_append:
  forall le al1 vl1 al2 vl2,
  eval_exprlist sge sp e m le (exprlist_of_expr_list al1) vl1 ->
  eval_exprlist sge sp e m le (exprlist_of_expr_list al2) vl2 ->
  eval_exprlist sge sp e m le (exprlist_of_expr_list (al1 ++ al2)) (vl1 ++ vl2).
Proof.

End CORRECTNESS_EXPR.

Measure over CminorSel states


Local Open Scope nat_scope.

Fixpoint size_stmt (s: stmt) : nat :=
  match s with
  | Sskip => 0
  | Sseq s1 s2 => (size_stmt s1 + size_stmt s2 + 1)
  | Sifthenelse c s1 s2 => (size_stmt s1 + size_stmt s2 + 1)
  | Sloop s1 => (size_stmt s1 + 1)
  | Sblock s1 => (size_stmt s1 + 1)
  | Sexit n => 0
  | Slabel lbl s1 => (size_stmt s1 + 1)
  | _ => 1
  end.

Fixpoint size_cont (k: cont) : nat :=
  match k with
  | Kseq s k1 => (size_stmt s + size_cont k1 + 1)
  | Kblock k1 => (size_cont k1 + 1)
  | _ => 0%nat
  end.



Definition index_gen (s: stmt) (k: cont) : nat * nat :=
  (size_stmt s + size_cont k, size_stmt s).

Definition index_order : nat * nat -> nat * nat -> Prop := lex_ord lt lt.

Lemma lt_index_intro:
  forall a1 a2 b1 b2,
    a1 + a2 < b1 + b2
    \/ (a1 + a2 = b1 + b2 /\ a1 < b1) ->
    index_order (a1 + a2, a1) (b1 + b2, b1).
Proof.

Ltac Ex_index :=
  match goal with
  | |- context[CminorSel_local.Core_State _ ?s ?k _ _] => exists (index_gen s k)
  | |- context[CminorSel_local.Core_Callstate] => exists (0,0)
  | |- context[CminorSel_local.Core_Returnstate] => exists (0,0)
  end.

Ltac Lt_index :=
  apply lt_index_intro; simpl; try omega.


Require Import Wellfounded.

Semantic preservation for the translation of statements


The simulation diagram for the translation of statements and functions is a "star" diagram of the form:
           I                         I
     S1 ------- R1             S1 ------- R1
     |          |              |          |
   t |        + | t      or  t |        * | t    and |S2| < |S1|
     v          v              v          |
     S2 ------- R2             S2 ------- R2
           I                         I
where I is the match_states predicate defined below. It includes:

Inductive tr_fun (tf: function) (map: mapping) (f: CminorSel.function)
                     (ngoto: labelmap) (nret: node) (rret: option reg) : Prop :=
  | tr_fun_intro: forall nentry r,
      rret = ret_reg f.(CminorSel.fn_sig) r ->
      tr_stmt tf.(fn_code) map f.(fn_body) nentry nret nil ngoto nret rret ->
      tf.(fn_stacksize) = f.(fn_stackspace) ->
      tr_fun tf map f ngoto nret rret.

Inductive tr_cont: RTL.code -> mapping ->
                   CminorSel.cont -> node -> list node -> labelmap -> node -> option reg ->
                   list RTL.stackframe -> Prop :=
  | tr_Kseq: forall c map s k nd nexits ngoto nret rret cs n,
      tr_stmt c map s nd n nexits ngoto nret rret ->
      tr_cont c map k n nexits ngoto nret rret cs ->
      tr_cont c map (Kseq s k) nd nexits ngoto nret rret cs
  | tr_Kblock: forall c map k nd nexits ngoto nret rret cs,
      tr_cont c map k nd nexits ngoto nret rret cs ->
      tr_cont c map (Kblock k) nd (nd :: nexits) ngoto nret rret cs
  | tr_Kstop: forall c map ngoto nret rret cs,
      c!nret = Some(Ireturn rret) ->
      match_stacks Kstop cs ->
      tr_cont c map Kstop nret nil ngoto nret rret cs
  | tr_Kcall: forall c map optid f sp e k ngoto nret rret cs,
      c!nret = Some(Ireturn rret) ->
      match_stacks (Kcall optid f sp e k) cs ->
      tr_cont c map (Kcall optid f sp e k) nret nil ngoto nret rret cs

with match_stacks: CminorSel.cont -> list RTL.stackframe -> Prop :=
  | match_stacks_stop:
      match_stacks Kstop nil
  | match_stacks_call: forall optid f sp e k r tf n rs cs map nexits ngoto nret rret,
      map_wf map ->
      tr_fun tf map f ngoto nret rret ->
      match_env map e nil rs ->
      reg_map_ok map r optid ->
      tr_cont tf.(fn_code) map k n nexits ngoto nret rret cs ->
      match_stacks (Kcall optid f sp e k) (Stackframe r tf sp n rs :: cs).

Lemma match_stacks_call_cont:
  forall c map k ncont nexits ngoto nret rret cs,
  tr_cont c map k ncont nexits ngoto nret rret cs ->
  match_stacks (call_cont k) cs /\ c!nret = Some(Ireturn rret).
Proof.

Lemma tr_cont_call_cont:
  forall c map k ncont nexits ngoto nret rret cs,
  tr_cont c map k ncont nexits ngoto nret rret cs ->
  tr_cont c map (call_cont k) nret nil ngoto nret rret cs.
Proof.

Lemma tr_find_label:
  forall c map lbl n (ngoto: labelmap) nret rret s' k' cs,
  ngoto!lbl = Some n ->
  forall s k ns1 nd1 nexits1,
  find_label lbl s k = Some (s', k') ->
  tr_stmt c map s ns1 nd1 nexits1 ngoto nret rret ->
  tr_cont c map k nd1 nexits1 ngoto nret rret cs ->
  exists ns2, exists nd2, exists nexits2,
     c!n = Some(Inop ns2)
  /\ tr_stmt c map s' ns2 nd2 nexits2 ngoto nret rret
  /\ tr_cont c map k' nd2 nexits2 ngoto nret rret cs.
Proof.

Inductive MATCH_STATE:
  bool -> (nat * nat) -> Injections.Mu -> FP.t -> FP.t ->
  CminorSel_local.core * mem -> RTL_local.core * mem -> Prop :=
| match_state:
    forall mu f s k sp e m tm cs tf ns rs map ncont nexits ngoto nret rret fp fp'
      (MWF: map_wf map)
      (TS: tr_stmt tf.(fn_code) map s ns ncont nexits ngoto nret rret)
      (TF: tr_fun tf map f ngoto nret rret)
      (TK: tr_cont tf.(fn_code) map k ncont nexits ngoto nret rret cs)
      (ME: match_env map e nil rs)
      (MEXT: Mem.extends m tm)
NEW
      (SVALID: forall b, Bset.belongsto (Injections.SharedSrc mu) b -> Mem.valid_block m b)
      (TVALID: forall b, Bset.belongsto (Injections.SharedTgt mu) b -> Mem.valid_block tm b)
      (AGMU: proper_mu sge tge inject_id mu)
      (RCPRESV: MemClosures_local.unmapped_closed mu m tm)
      (FPMATCH: Injections.FPMatch' mu fp fp'),
      MATCH_STATE true (index_gen s k) mu fp fp'
                  (CminorSel_local.Core_State f s k sp e, m)
                  (RTL_local.Core_State cs tf sp ns rs, tm)
| match_callstate:
    forall mu b f args targs k m tm cs tf fp fp'
      (TF: transl_fundef f = OK tf)
      (MS: match_stacks k cs)
      (LD: Val.lessdef_list args targs)
      (MEXT: Mem.extends m tm)
NEW
      (SVALID: forall b, Bset.belongsto (Injections.SharedSrc mu) b -> Mem.valid_block m b)
      (TVALID: forall b, Bset.belongsto (Injections.SharedTgt mu) b -> Mem.valid_block tm b)
      (AGMU: proper_mu sge tge inject_id mu)
      (RCPRESV: MemClosures_local.unmapped_closed mu m tm)
      (FPMATCH: Injections.FPMatch' mu fp fp'),
      MATCH_STATE b (0,0) mu fp fp'
                  (CminorSel_local.Core_Callstate f args k, m)
                  (RTL_local.Core_Callstate cs tf targs, tm)
| match_returnstate:
    forall mu v tv k m tm cs fp fp'
      (MS: match_stacks k cs)
      (LD: Val.lessdef v tv)
      (MEXT: Mem.extends m tm)
NEW
      (SVALID: forall b, Bset.belongsto (Injections.SharedSrc mu) b -> Mem.valid_block m b)
      (TVALID: forall b, Bset.belongsto (Injections.SharedTgt mu) b -> Mem.valid_block tm b)
      (AGMU: proper_mu sge tge inject_id mu)
      (RCPRESV: MemClosures_local.unmapped_closed mu m tm)
      (FPMATCH: Injections.FPMatch' mu fp fp'),
      MATCH_STATE true (0,0) mu fp fp'
                  (CminorSel_local.Core_Returnstate v k, m)
                  (RTL_local.Core_Returnstate cs tv, tm).


Ltac resolvfp:=
  match goal with
  | |- context[FP.union _ empfp] => rewrite FP.fp_union_emp; resolvfp
  | |- context[FP.union empfp _] => rewrite FP.emp_union_fp; resolvfp
  | H: Some _ = Some _ |- _ => inv H; resolvfp
  | H: Injections.FPMatch' ?mu ?fp1 ?fp1' |- Injections.FPMatch' ?mu (FP.union ?fp1 _) (FP.union ?fp1' _) =>
    eapply Injections.fp_match_union'; [exact H| resolvfp]
  | |- Injections.FPMatch' _ _ empfp => apply Injections.fp_match_emp'
  | H: FP.subset ?fp1 ?fp2 |- Injections.FPMatch' _ ?fp2 ?fp1 =>
    apply Injections.fp_match_subset_T' with fp2; try exact H; resolvfp
  | H: Injections.FPMatch' _ ?fp1 ?fp2 |- Injections.FPMatch' _ (FP.union ?fp1 _) ?fp2 =>
    apply Injections.fp_match_union_S'; auto
  | H: proper_mu _ _ _ _ |- Injections.FPMatch' _ ?fp ?fp => inv H; eapply fp_match_id; eauto
  | _ => idtac
  end.

Ltac eresolvfp:= resolvfp; eauto.

Ltac resvalid:=
  match goal with
valid blocks
  | H: (forall x, Bset.belongsto ?S x -> Mem.valid_block ?m1 x), H': Mem.free ?m1 _ _ _ = Some ?m2
    |- (forall x, Bset.belongsto ?S x -> Mem.valid_block ?m2 x)
    => let X := fresh in
      intros ? X; apply H in X; eapply Mem.valid_block_free_1; eauto
  | H: (forall x, Bset.belongsto ?S x -> Mem.valid_block ?m1 x), H': Mem.alloc ?m1 _ _ = (?m2,_)
    |- (forall x, Bset.belongsto ?S x -> Mem.valid_block ?m2 x)
    => let X := fresh in
      intros ? X; apply H in X; eapply Mem.valid_block_alloc; eauto
  | H: (forall x, Bset.belongsto ?S x -> Mem.valid_block ?m1 x), H': Mem.store _ ?m1 _ _ _ = Some ?m2
    |- (forall x, Bset.belongsto ?S x -> Mem.valid_block ?m2 x)
    => let X := fresh in
      intros ? X; apply H in X; eapply Mem.store_valid_block_1; eauto
Mem inv
  | H1: Mem.store _ ?m1 _ _ _ = Some ?m2,
        H2: Mem.store _ ?m1' _ _ _ = Some ?m2',
            H3: proper_mu _ _ _ _
    |- MemClosures_local.unmapped_closed _ ?m2 ?m2'
    => inv H3; eapply MemClosures_local.store_val_inject_unmapped_closed_preserved;
      try (rewrite Z.add_0_r); try eassumption;
      try (compute; eauto; fail); try omega
  | H1: Mem.free ?m1 _ _ _ = Some ?m2,
        H2: Mem.free ?m1' _ _ _ = Some ?m2',
            H3: proper_mu _ _ _ _
    |- MemClosures_local.unmapped_closed _ ?m2 ?m2'
    => inv H3; eapply MemClosures_local.free_inject_unmapped_closed_preserved; eauto;
      try (rewrite Z.add_0_r); try eassumption;
      try (compute; eauto; fail); try omega
  | _ => idtac
  end.

Ltac Right := right; Ex_index; do 3 eexists; split; [|resolvfp].
Ltac FP:= match goal with |- ?P /\ _ => assert P; eresolvfp end.
Ltac Left := left; Ex_index; split; [Lt_index|eresolvfp].

Theorem TRANSF_local_ldsim:
  @local_ldsim CminorSel_IS RTL_IS sG tG sge tge.
Proof.

End CORRECTNESS.

Theorem transf_local_ldsim:
  forall scu tcu,
    rtlgen.transf_program scu = OK tcu ->
    forall sge sG tge tG,
      init_genv_local CminorSel_IS scu sge sG ->
      init_genv_local RTL_IS tcu tge tG ->
      Genv.genv_next sge = Genv.genv_next tge ->
      local_ldsim sG tG sge tge.
Proof.