Require Import Coqlib Maps Errors Values Globalenvs.
Require Import List Streams.
Require Import Blockset GMemory Footprint MemAux
InteractionSemantics Injections MemClosures.
Footprint Matching and Rely/Guarantee Conditions in Local Simulations
This file defines the footprint matching relations and
rely/guarantee conditions used in module local simulations.
(Draft Fig. 11)
fpG: footprint subset of shared memory blocks union local freelist
Definition fpG (
fl:
freelist) (
Shared:
Bset.t) (
fp:
FP.t) :
Prop :=
(
forall b,
Bset.belongsto (
FP.blocks fp)
b ->
Bset.belongsto Shared b \/
exists n,
Str_nth n fl =
b).
LfpG: target footprint fpG and footprints matched by FPMatch
Inductive LfpG' (
fl:
freelist) (
mu:
Mu) (
fpSrc fpTgt:
FP.t) :
Prop :=
LFPG':
FPMatch'
mu fpSrc fpTgt ->
fpG fl (
SharedTgt mu)
fpTgt ->
LfpG'
fl mu fpSrc fpTgt.
HfpG: source footprint fpG
Inductive HfpG (
fl:
freelist) (
mu:
Mu) (
fpSrc :
FP.t) :
Prop :=
HFPG:
fpG fl (
SharedSrc mu)
fpSrc ->
HfpG fl mu fpSrc.
The guarantee condition : footprint subset of shared memory blocks and resulting memory is reach-closed
Inductive Guarantee (
fl:
freelist) (
Shared:
Bset.t) (
fp:
FP.t) (
gm':
gmem) :
Prop :=
GUARANTEE:
fpG fl Shared fp ->
reach_closed gm'
Shared ->
Guarantee fl Shared fp gm'.
The Inv in paper Fig. 8 is instantiated as memory injection of CompCert
Definition Inv mu sgm tgm :
Prop :=
GMem.inject (
Bset.inj_to_meminj (
inj mu))
sgm tgm.
HG in paper Fig. 8, source memory action satisfies Guarantee
Inductive HG fl mu fpSrc sgm' :
Prop :=
HGuarantee:
Guarantee fl (
SharedSrc mu)
fpSrc sgm' ->
HG fl mu fpSrc sgm'.
LG in paper Fig. 8, target memory action satisfies Guarantee,
and footprint are matched by mu,
and resulting memory states are related by Inv.
Inductive LG'
fl mu fpSrc sgm'
fpTgt tgm' :
Prop :=
LGuarantee':
Guarantee fl (
SharedTgt mu)
fpTgt tgm' ->
FPMatch'
mu fpSrc fpTgt ->
Inv mu sgm'
tgm' ->
LG'
fl mu fpSrc sgm'
fpTgt tgm'.
constraints on argument:
arguments of external calls cannot be Vundef or
pointers of memory location outside of shared memory
Definition G_arg (
S:
Bset.t) (
arg:
val) :
Prop :=
match arg with
|
Vundef =>
False
|
Vptr b _ =>
Bset.belongsto S b
|
_ =>
True
end.
Definition G_oarg (
S:
Bset.t) (
oarg:
option val) :
Prop :=
match oarg with
|
Some arg =>
G_arg S arg
|
Noen =>
True
end.
Definition G_args (
S:
Bset.t) (
args:
list val) :
Prop:=
Forall (
G_arg S)
args.
source and target arguments and return values
should be related by value-injection of CompCert
Definition arg_rel (
phi:
Bset.inj) :
list val ->
list val ->
Prop :=
Val.inject_list (
Bset.inj_to_meminj phi).
Definition res_rel (
phi:
Bset.inj) :
val ->
val ->
Prop :=
Val.inject (
Bset.inj_to_meminj phi).
Definition ores_rel (
phi:
Bset.inj) :
option val ->
option val ->
Prop :=
fun or1 or2 =>
match or1,
or2 with
|
Some res1,
Some res2 =>
res_rel phi res1 res2
|
None,
None =>
True
|
_,
_ =>
False
end.
The R condition in paper Fig. 8
The enviconment step should make sure:
- memory domain is enlarged
- module local freelist is not changed
- the resulting memory state is still reach-closed
Inductive Rely fl Shared gm gm' :
Prop :=
RELY:
GMem.forward gm gm' ->
unchg_freelist fl gm gm' ->
reach_closed gm'
Shared ->
Rely fl Shared gm gm'.
The Rely condition in paper Fig. 8
The HLRely requires source and target environment steps
satisfying Rely condition, and the resulting memory states satisfies Inv
Inductive HLRely flSrc flTgt mu sgm sgm'
tgm tgm' :
Prop :=
HLR:
Rely flSrc (
SharedSrc mu)
sgm sgm' ->
Rely flTgt (
SharedTgt mu)
tgm tgm' ->
Inv mu sgm'
tgm' ->
HLRely flSrc flTgt mu sgm sgm'
tgm tgm'.
obsoleted definitions
Inductive LfpG (
fl:
freelist) (
mu:
Mu) (
fpSrc fpTgt:
FP.t) :
Prop :=
LFPG:
FPMatch mu fpSrc fpTgt ->
fpG fl (
SharedTgt mu)
fpTgt ->
LfpG fl mu fpSrc fpTgt.
Inductive LG fl mu fpSrc sgm'
fpTgt tgm' :
Prop :=
LGuarantee:
Guarantee fl (
SharedTgt mu)
fpTgt tgm' ->
FPMatch mu fpSrc fpTgt ->
Inv mu sgm'
tgm' ->
LG fl mu fpSrc sgm'
fpTgt tgm'.
Lemma fpG_eq:
forall fl S fp fp',
fpG fl S fp ->
FP.eq fp fp' ->
fpG fl S fp'.
Proof.
Lemma fpG_emp:
forall fl S,
fpG fl S FP.emp.
Proof.
unfold fpG;
intros.
exfalso.
destruct H.
eauto with locs.
Qed.
Lemma fpG_union:
forall fl S fp1 fp2,
fpG fl S fp1 ->
fpG fl S fp2 ->
fpG fl S (
FP.union fp1 fp2).
Proof.
Lemma fpG_subset:
forall fl S fp1 fp2,
fpG fl S fp1 ->
FP.subset fp2 fp1 ->
fpG fl S fp2.
Proof.
Lemma LfpG'
_union_S:
forall fl mu fpS fpT fpS',
LfpG'
fl mu fpS fpT ->
LfpG'
fl mu (
FP.union fpS fpS')
fpT.
Proof.
intros. inversion H.
constructor; auto.
eapply fp_match_union_S'; eauto.
Qed.
Lemma LfpG'
_union_T:
forall fl mu fpS fpT fpT',
LfpG'
fl mu fpS fpT ->
LfpG'
fl mu fpS fpT' ->
LfpG'
fl mu fpS (
FP.union fpT fpT').
Proof.
intros.
inversion H;
inversion H0.
constructor.
apply fp_match_union_T';
auto.
apply fpG_union;
auto.
Qed.
Lemma LfpG'
_union:
forall fl mu fpS fpT fpS'
fpT',
LfpG'
fl mu fpS fpT ->
LfpG'
fl mu fpS'
fpT' ->
LfpG'
fl mu (
FP.union fpS fpS') (
FP.union fpT fpT').
Proof.
intros.
inversion H;
inversion H0.
constructor;
auto.
apply fp_match_union';
eauto.
apply fpG_union;
auto.
Qed.
Lemma LfpG'
_subset_S:
forall fl mu fpS fpT fpS',
LfpG'
fl mu fpS fpT ->
FP.subset fpS fpS' ->
LfpG'
fl mu fpS'
fpT.
Proof.
intros. inversion H. constructor; auto.
eapply fp_match_subset_S'; eauto.
Qed.
Lemma LfpG'
_subset_T:
forall fl mu fpS fpT fpT',
LfpG'
fl mu fpS fpT ->
FP.subset fpT'
fpT ->
LfpG'
fl mu fpS fpT'.
Proof.
intros.
inversion H.
constructor;
auto.
eapply fp_match_subset_T';
eauto.
eapply fpG_subset;
eauto.
Qed.
In order to deal with arguments in external calls
(like no stack pointer leakage etc.),
we need a stricted version of value injection,
i.e. Vundef could not be inject to a stack pointer.
For convenience here I further restrict Vundef only able to
inject to Vundef
Lemma Rely_trans:
forall fl Shared gm1 gm2 gm3,
Rely fl Shared gm1 gm2 ->
Rely fl Shared gm2 gm3 ->
Rely fl Shared gm1 gm3.
Proof.
Lemma HLRely_trans:
forall flSrc flTgt mu sgm1 sgm2 sgm3 tgm1 tgm2 tgm3,
HLRely flSrc flTgt mu sgm1 sgm2 tgm1 tgm2 ->
HLRely flSrc flTgt mu sgm2 sgm3 tgm2 tgm3 ->
HLRely flSrc flTgt mu sgm1 sgm3 tgm1 tgm3.
Proof.
intros.
inversion H;
inversion H0.
constructor;
auto.
eapply Rely_trans;
eauto.
eapply Rely_trans;
eauto.
Qed.
Lemma fp_match_ge_cmps_match:
forall mu fpS fpT,
FPMatch'
mu fpS fpT ->
LocMatch mu (
FP.ge_cmps fpS) (
FP.ge_cmps fpT).
Proof.
Lemma fp_match_ge_reads_match:
forall mu fpS fpT,
FPMatch'
mu fpS fpT ->
LocMatch mu (
FP.ge_reads fpS) (
FP.ge_reads fpT).
Proof.
Lemma fp_match_ge_writes_match:
forall mu fpS fpT,
FPMatch'
mu fpS fpT ->
LocMatch mu (
FP.ge_writes fpS) (
FP.ge_writes fpT).
Proof.
Lemma fp_match_ge_frees_match:
forall mu fpS fpT,
FPMatch'
mu fpS fpT ->
LocMatch mu (
FP.ge_frees fpS) (
FP.ge_frees fpT).
Proof.
Lemma locs_smile_preservation_via_locmatch:
forall mu ls1 ls2 lt1 lt2,
Bset.inj_inject (
inj mu) ->
LocMatch mu ls1 lt1 ->
LocMatch mu ls2 lt2 ->
Locs.smile ls1 ls2 ->
Bset.subset (
Locs.blocks (
Locs.intersect lt1 lt2)) (
SharedTgt mu) ->
Locs.smile lt1 lt2.
Proof.
intros.
destruct H0,
H1.
unfold Bset.inject_block,
Bset.belongsto,
Bset.subset,
Locs.blocks in *.
Locs.unfolds.
intros.
destruct (
lt1 b ofs)
eqn:
Hlt1, (
lt2 b ofs)
eqn:
Hlt2;
auto.
assert (
SharedTgt mu b).
{
apply H3.
exists ofs.
rewrite Hlt1,
Hlt2.
auto. }
specialize (
H0 b ofs H4 Hlt1).
specialize (
H1 b ofs H4 Hlt2).
clear H3 H4 Hlt1 Hlt2.
destruct H0 as (
b1 &
INJ1 &
Hls1),
H1 as (
b2 &
INJ2 &
Hls2).
specialize (
H _ _ _ INJ1 INJ2).
subst.
specialize (
H2 b2 ofs).
rewrite Hls1,
Hls2 in *.
inversion H2.
Qed.
Lemma fpG_disj_fl_intersect:
forall fp1 fp2 S fl1 fl2,
disj fl1 fl2 ->
fpG fl1 S fp1 ->
fpG fl2 S fp2 ->
Bset.subset (
Locs.blocks (
Locs.intersect (
FP.locs fp1) (
FP.locs fp2)))
S.
Proof.
unfold fpG,
Bset.belongsto,
Bset.subset,
FP.blocks,
FP.locs,
Locs.blocks in *.
Locs.unfolds.
intros.
destruct H2 as [
ofs H2].
exploit (
H0 b).
exists ofs.
red_boolean_true.
clear H0.
exploit (
H1 b).
exists ofs.
red_boolean_true.
clear H1 H2.
intros.
destruct H0; [
auto|
destruct H1];
auto.
destruct H0,
H1.
destruct H.
specialize (
H x0 x).
rewrite <-
H0 in H1.
congruence.
Qed.
Theorem smile_preserv_via_LfpG:
forall fpS1 fpS2,
FP.smile'
fpS1 fpS2 ->
forall mu fl1 fpT1 fl2 fpT2,
Bset.inj_inject (
inj mu) ->
disj fl1 fl2 ->
LfpG'
fl1 mu fpS1 fpT1 ->
LfpG'
fl2 mu fpS2 fpT2 ->
FP.smile'
fpT1 fpT2.
Proof.
Lemma bset_eq_G_arg:
forall bs1 bs2 arg,
(
forall b,
bs1 b <->
bs2 b) ->
G_arg bs1 arg <->
G_arg bs2 arg.
Proof.
intros;
unfold G_arg.
destruct arg;
auto;
tauto.
Qed.
Lemma bset_eq_G_args:
forall bs1 bs2 args,
(
forall b,
bs1 b <->
bs2 b) ->
G_args bs1 args <->
G_args bs2 args.
Proof.
clear.
intros.
unfold G_args.
induction args.
split;
auto.
split;
intro.
inversion H0.
subst.
constructor.
destruct a;
auto.
unfold G_arg in *.
rewrite <-
H.
auto.
rewrite <-
IHargs.
auto.
inversion H0.
subst.
constructor.
destruct a;
auto.
unfold G_arg in *.
rewrite H.
auto.
rewrite IHargs.
auto.
Qed.
Lemma bset_eq_fpG:
forall fl fp bs1 bs2,
(
forall b,
bs1 b <->
bs2 b) ->
fpG fl bs1 fp <->
fpG fl bs2 fp.
Proof.
clear;
intros.
unfold fpG,
Bset.belongsto in *.
split;
intros; [
rewrite <-
H |
rewrite H];
auto.
Qed.
Relating ges
every ident in target prog corresponds to the same ident in source prog,
and the datas (fun/globdef) bounded are related
Inductive gvar_match {
V1 V2:
Type}:
AST.globvar V1 ->
AST.globvar V2 ->
Prop :=
|
gvar_match_intro:
forall v1 v2 initdata fro fvo,
gvar_match (
AST.mkglobvar v1 initdata fro fvo) (
AST.mkglobvar v2 initdata fro fvo).
Lemma gvar_match_trans:
forall V1 V2 V3 gv1 gv2 gv3,
@
gvar_match V1 V2 gv1 gv2 ->
@
gvar_match V2 V3 gv2 gv3 ->
gvar_match gv1 gv3.
Proof.
intros. inv H; inv H0. constructor.
Qed.
Inductive globdef_match {
F1 V1 F2 V2:
Type}:
AST.globdef F1 V1 ->
AST.globdef F2 V2 ->
Prop :=
|
Gfun_match:
forall f1 f2,
globdef_match (
AST.Gfun f1) (
AST.Gfun f2)
|
Gvar_match:
forall gv1 gv2,
gvar_match gv1 gv2 ->
globdef_match (
AST.Gvar gv1) (
AST.Gvar gv2).
Lemma globdef_match_trans:
forall F1 V1 F2 V2 F3 V3 gd1 gd2 gd3,
@
globdef_match F1 V1 F2 V2 gd1 gd2 ->
@
globdef_match F2 V2 F3 V3 gd2 gd3 ->
globdef_match gd1 gd3.
Proof.
Record ge_match {
F1 V1 F2 V2:
Type}
(
sge:
Genv.t F1 V1)
(
tge:
Genv.t F2 V2) :
Prop :=
{
genv_public_eq:
forall id,
In id (
Genv.genv_public sge) <->
In id (
Genv.genv_public tge);
genv_symb_eq_dom:
forall id,
PTree.get id (
Genv.genv_symb sge) =
None <->
PTree.get id (
Genv.genv_symb tge) =
None;
genv_defs_match:
forall id b b',
PTree.get id (
Genv.genv_symb sge) =
Some b ->
PTree.get id (
Genv.genv_symb tge) =
Some b' ->
option_rel (
globdef_match)
(
PTree.get b (
Genv.genv_defs sge))
(
PTree.get b' (
Genv.genv_defs tge));
genv_next_eq:
Genv.genv_next sge =
Genv.genv_next tge;
}.
Lemma ge_match_trans:
forall F1 V1 F2 V2 F3 V3
(
ge1:
Genv.t F1 V1)
(
ge2:
Genv.t F2 V2)
(
ge3:
Genv.t F3 V3),
ge_match ge1 ge2 ->
ge_match ge2 ge3 ->
ge_match ge1 ge3.
Proof.
Relating mu and ges
should be moved to another file, or find corresponding definition in CompCert?
Inductive inj_oblock :
Bset.inj ->
option block ->
option block ->
Prop :=
|
Inj_block:
forall bj b b',
bj b =
Some b' ->
inj_oblock bj (
Some b) (
Some b')
|
Inj_none:
forall bj,
inj_oblock bj None None.
Record ge_init_inj {
F1 V1 F2 V2:
Type}
(
mu:
Mu)
(
sge:
Genv.t F1 V1)
(
tge:
Genv.t F2 V2) :
Prop :=
{
mu_shared_src:
SharedSrc mu =
fun b =>
Plt b (
Genv.genv_next sge);
mu_shared_tgt:
SharedTgt mu =
fun b =>
Plt b (
Genv.genv_next tge);
mu_inject:
Bset.inject (
inj mu) (
SharedSrc mu) (
SharedTgt mu);
senv_injected:
forall id,
inj_oblock (
inj mu) (
Senv.find_symbol sge id) (
Senv.find_symbol tge id)
}.
Lemma ge_init_inj_SharedSrc:
forall F1 V1 F2 V2 mu sge tge,
@
ge_init_inj F1 V1 F2 V2 mu sge tge ->
(
SharedSrc mu) =
fun b =>
Plt b (
Genv.genv_next sge).
Proof.
inversion 1; auto. Qed.
Lemma ge_init_inj_SharedTgt:
forall F1 V1 F2 V2 mu sge tge,
@
ge_init_inj F1 V1 F2 V2 mu sge tge ->
(
SharedTgt mu) =
fun b =>
Plt b (
Genv.genv_next tge).
Proof.
inversion 1; auto. Qed.
Lemma inj_id_arg_eq:
forall mu argSrc argTgt,
inject_incr (
Bset.inj_to_meminj (
inj mu))
inject_id ->
G_args (
SharedSrc mu)
argSrc ->
arg_rel (
inj mu)
argSrc argTgt ->
argSrc =
argTgt.
Proof.
intros until 1.
revert argSrc argTgt.
induction argSrc;
intros;
inv H1;
inv H0;
auto.
f_equal.
inv H4;
auto.
apply H in H0.
inv H0.
rewrite Integers.Ptrofs.add_zero.
auto.
inv H3.
apply IHargSrc;
auto.
Qed.