Require Import Coqlib Errors Maps String.
Require Import Integers Floats Values AST Events Globalenvs Smallstep Ctypes Cop Clight.
Require Import Memory Footprint IS_local MemOpFP Cop_fp_local.
Require Import val_casted.
Require ClightLang GAST.
Local Notation locset :=
Locs.t.
Local Notation empls :=
Locs.emp.
Local Notation footprint :=
FP.t.
Local Notation empfp :=
FP.emp.
Local Notation FP :=
FP.Build_t.
Some definitions ported from CompCert Clight
Clight Syntax
The Clight Syntax stays unchanged
Local Notation clight_comp_unit :=
ClightLang.clight_comp_unit.
Local Notation cu_defs :=
ClightLang.cu_defs.
Local Notation cu_public :=
ClightLang.cu_public.
Local Notation cu_types :=
ClightLang.cu_types.
Local Notation cu_comp_env :=
ClightLang.cu_comp_env.
Local Notation cu_comp_env_eq :=
ClightLang.cu_comp_env_eq.
Local Notation core :=
ClightLang.core.
Local Notation Core_State :=
ClightLang.Core_State.
Local Notation Core_Callstate :=
ClightLang.Core_Callstate.
Local Notation Core_Returnstate :=
ClightLang.Core_Returnstate.
Auxilliary function to get a core state from original Clight state
Local Notation get_core :=
ClightLang.get_core.
The function table built from clight_comp_unit
Local Notation is_function :=
ClightLang.is_function.
Local Notation internal_fn :=
ClightLang.internal_fn.
Operational Semantics
Since we use a different memory model, these functions need to be redefined,
but syntactically the same.
- deref_loc, assign_loc
- alloc_variables, bind_parameters
- eval_expr, eval_lvalue, eval_exprlist
- function entries
deref_loc
Inductive deref_loc_fp ty b ofs :
footprint ->
Prop :=
|
deref_loc_value_fp :
forall chunk fp,
access_mode ty =
By_value chunk ->
loadv_fp chunk (
Vptr b ofs) =
fp ->
deref_loc_fp ty b ofs fp
|
deref_loc_reference_fp :
access_mode ty =
By_reference ->
deref_loc_fp ty b ofs empfp
|
deref_loc_copy_fp :
access_mode ty =
By_copy ->
deref_loc_fp ty b ofs empfp.
Lemma deref_loc_fp_exists:
forall ty m b ofs v,
deref_loc ty m b ofs v ->
exists fp,
deref_loc_fp ty b ofs fp.
Proof.
induction 1; eexists; econstructor; eauto; fail.
Qed.
assign_loc
Inductive assign_loc_fp (
ce:
composite_env)
ty b ofs :
val ->
footprint ->
Prop :=
|
assign_loc_value_fp:
forall v chunk fp,
access_mode ty =
By_value chunk ->
storev_fp chunk (
Vptr b ofs) =
fp ->
assign_loc_fp ce ty b ofs v fp.
Lemma assign_loc_fp_exists:
forall ce ty m b ofs v m',
assign_loc ce ty m b ofs v m' ->
exists fp,
assign_loc_fp ce ty b ofs v fp.
Proof.
induction 1.
eexists. econstructor; eauto; fail.
eexists. econstructor; eauto; fail.*)Qed.
Section SEMANTICS.
Variable ge:
genv.
alloc_variables
Local Notation alloc_variables := (
alloc_variables ge).
Local Notation alloc_variables_nil := (
alloc_variables_nil ge).
Local Notation alloc_variables_cons := (
alloc_variables_cons ge).
Inductive alloc_variables_fp:
mem ->
list (
ident *
type) ->
footprint ->
Prop :=
|
alloc_variables_fp_nil:
forall m,
alloc_variables_fp m nil empfp
|
alloc_variables_fp_cons:
forall m id ty fp vars m1 b1 fp',
Mem.alloc m 0 (
sizeof ge ty) = (
m1,
b1) ->
alloc_fp m 0 (
sizeof ge ty) =
fp ->
alloc_variables_fp m1 vars fp' ->
alloc_variables_fp m ((
id,
ty) ::
vars) (
FP.union fp fp').
Lemma alloc_variables_fp_exists:
forall e m vars e'
m',
alloc_variables e m vars e'
m' ->
exists fp,
alloc_variables_fp m vars fp.
Proof.
intros until vars.
generalize e m; clear.
induction vars; intros.
eexists. econstructor.
inversion H. subst.
eapply IHvars in H7. destruct H7.
eexists. econstructor; eauto.
Qed.
bind_parameters
Local Notation bind_parameters := (
bind_parameters ge).
Local Notation bind_parameters_nil := (
bind_parameters_nil ge).
Local Notation bind_parameters_cons := (
bind_parameters_cons ge).
Inductive bind_parameters_fp (
e:
env) :
list (
ident *
type) ->
list val ->
footprint ->
Prop :=
|
bind_parameters_fp_nil:
bind_parameters_fp e nil nil empfp
|
bind_parameters_fp_cons:
forall id ty params v1 vl b fp fp',
PTree.get id e =
Some (
b,
ty) ->
assign_loc_fp ge ty b Ptrofs.zero v1 fp ->
bind_parameters_fp e params vl fp' ->
bind_parameters_fp e ((
id,
ty) ::
params) (
v1 ::
vl) (
FP.union fp fp').
Lemma bind_parameters_fp_exists:
forall e m params vl m',
bind_parameters e m params vl m' ->
exists fp,
bind_parameters_fp e params vl fp.
Proof.
induction 1.
-
eexists;
econstructor.
-
apply assign_loc_fp_exists in H0.
destruct H0.
destruct IHbind_parameters.
eexists;
econstructor;
eauto.
Qed.
Section EXPR.
Variable e:
env.
Variable le:
temp_env.
Variable m:
mem.
reuse Clight eval_expr, eval_exprlist
Local Notation eval_expr := (
Clight.eval_expr ge e le m).
Local Notation eval_lvalue := (
Clight.eval_lvalue ge e le m).
Inductive eval_expr_fp:
expr ->
footprint ->
Prop :=
|
eval_Econst_int_fp:
forall i ty,
eval_expr_fp (
Econst_int i ty)
empfp
|
eval_Econst_float_fp:
forall f ty,
eval_expr_fp (
Econst_float f ty)
empfp
|
eval_Econst_single_fp:
forall f ty,
eval_expr_fp (
Econst_single f ty)
empfp
|
eval_Econst_long_fp:
forall i ty,
eval_expr_fp (
Econst_long i ty)
empfp
|
eval_Etempvar_fp:
forall id ty,
eval_expr_fp (
Etempvar id ty)
empfp
|
eval_Eaddrof_fp:
forall a ty fp,
eval_lvalue_fp a fp ->
eval_expr_fp (
Eaddrof a ty)
fp
|
eval_Eunop_fp:
forall op a ty v1 fp1 v1'
fp2 fp,
eval_expr a v1 ->
eval_expr_fp a fp1 ->
sem_unary_operation op v1 (
typeof a)
m =
Some v1' ->
sem_unary_operation_fp op v1 (
typeof a)
m =
Some fp2 ->
FP.union fp1 fp2 =
fp ->
eval_expr_fp (
Eunop op a ty)
fp
|
eval_Ebinop_fp:
forall op a1 a2 ty v1 v2 fp1 fp2 v'
fp3 fp,
eval_expr a1 v1 ->
eval_expr_fp a1 fp1 ->
eval_expr a2 v2 ->
eval_expr_fp a2 fp2 ->
sem_binary_operation ge.(
genv_cenv)
op v1 (
typeof a1)
v2 (
typeof a2)
m =
Some v' ->
sem_binary_operation_fp ge.(
genv_cenv)
op v1 (
typeof a1)
v2 (
typeof a2)
m =
Some fp3 ->
FP.union (
FP.union fp1 fp2)
fp3 =
fp ->
eval_expr_fp (
Ebinop op a1 a2 ty)
fp
|
eval_Ecast_fp:
forall a ty v1 fp1 v1'
fp2 fp,
eval_expr a v1 ->
eval_expr_fp a fp1 ->
sem_cast v1 (
typeof a)
ty m =
Some v1' ->
sem_cast_fp v1 (
typeof a)
ty m =
Some fp2 ->
FP.union fp1 fp2 =
fp ->
eval_expr_fp (
Ecast a ty)
fp
|
eval_Esizeof_fp:
forall ty1 ty,
eval_expr_fp (
Esizeof ty1 ty)
empfp
|
eval_Ealignof_fp:
forall ty1 ty,
eval_expr_fp (
Ealignof ty1 ty)
empfp
|
eval_Elvalue_fp:
forall a loc ofs fp1 v fp2 fp,
eval_lvalue a loc ofs ->
eval_lvalue_fp a fp1 ->
deref_loc (
typeof a)
m loc ofs v ->
deref_loc_fp (
typeof a)
loc ofs fp2 ->
FP.union fp1 fp2 =
fp ->
eval_expr_fp a fp
with eval_lvalue_fp:
expr ->
footprint ->
Prop :=
|
eval_Evar_fp:
forall id ty,
eval_lvalue_fp (
Evar id ty)
empfp
|
eval_Ederef_fp:
forall a v ty fp,
eval_expr a v ->
eval_expr_fp a fp ->
eval_lvalue_fp (
Ederef a ty)
fp
|
eval_Efield_composite_fp:
forall a v i ty fp,
eval_expr a v ->
eval_expr_fp a fp ->
eval_lvalue_fp (
Efield a i ty)
fp.
Scheme eval_expr_fp_ind2 :=
Minimality for eval_expr_fp Sort Prop
with eval_lvalue_fp_ind2 :=
Minimality for eval_lvalue_fp Sort Prop.
Combined Scheme eval_expr_lvalue_fp_ind from eval_expr_fp_ind2,
eval_lvalue_fp_ind2.
Lemma eval_expr_lvalue_fp_exists:
(
forall a v,
eval_expr a v ->
exists fp,
eval_expr_fp a fp)
/\ (
forall a l ofs,
eval_lvalue a l ofs ->
exists fp,
eval_lvalue_fp a fp).
Proof.
Lemma eval_expr_fp_exists:
forall a v,
eval_expr a v ->
exists fp,
eval_expr_fp a fp.
Proof proj1 eval_expr_lvalue_fp_exists.
Lemma eval_lvalue_fp_exists:
forall a l ofs,
eval_lvalue a l ofs ->
exists fp,
eval_lvalue_fp a fp.
Proof proj2 eval_expr_lvalue_fp_exists.
eval_exprlist ge e m al tyl vl evaluates a list of r-value
expressions al, cast their values to the types given in tyl,
and produces the list of cast values vl. It is used to
evaluate the arguments of function calls.
Local Notation eval_exprlist := (
Clight.eval_exprlist ge e le m).
Inductive eval_exprlist_fp :
list expr ->
typelist ->
footprint ->
Prop :=
|
eval_fp_Enil:
eval_exprlist_fp nil Tnil empfp
|
eval_fp_Econs:
forall a bl ty tyl v1 fp1 v2 fp2 fp3 fp,
eval_expr a v1 ->
eval_expr_fp a fp1 ->
sem_cast v1 (
typeof a)
ty m =
Some v2 ->
sem_cast_fp v1 (
typeof a)
ty m =
Some fp2 ->
eval_exprlist_fp bl tyl fp3 ->
FP.union (
FP.union fp1 fp2)
fp3 =
fp ->
eval_exprlist_fp (
a ::
bl) (
Tcons ty tyl)
fp.
Lemma eval_exprlist_fp_exists:
forall bl tyl vl,
eval_exprlist bl tyl vl ->
exists fp,
eval_exprlist_fp bl tyl fp.
Proof.
induction 1.
eexists.
econstructor;
eauto.
destruct IHeval_exprlist.
exploit eval_expr_fp_exists;
eauto;
intros [? ?].
exploit sem_cast_sem_cast_fp;
eauto;
intros [? ?].
eexists;
econstructor;
eauto.
Qed.
End EXPR.
Transition relation w.r.t. FMemory
We excluded rules for external functions and builtins
Fstep relation is instrumented with footprint
Variable function_entry:
function ->
list val ->
mem ->
env ->
temp_env ->
mem ->
Prop.
Variable function_entry_fp:
function ->
list val ->
mem ->
env ->
footprint ->
Prop.
Local Notation eval_expr := (
Clight.eval_expr ge).
Local Notation eval_lvalue := (
Clight.eval_lvalue ge).
Local Notation eval_exprlist := (
Clight.eval_exprlist ge).
Inductive step:
core ->
mem ->
footprint ->
core ->
mem ->
Prop :=
|
step_assign:
forall f a1 a2 k e le m loc ofs v2 v m'
fp1 fp2 fp3 fp4 fp,
eval_lvalue e le m a1 loc ofs ->
eval_expr e le m a2 v2 ->
sem_cast v2 (
typeof a2) (
typeof a1)
m =
Some v ->
assign_loc ge (
typeof a1)
m loc ofs v m' ->
eval_lvalue_fp e le m a1 fp1 ->
eval_expr_fp e le m a2 fp2 ->
sem_cast_fp v2 (
typeof a2) (
typeof a1)
m =
Some fp3 ->
assign_loc_fp ge (
typeof a1)
loc ofs v fp4 ->
FP.union (
FP.union (
FP.union fp1 fp2)
fp3)
fp4 =
fp ->
step (
Core_State f (
Sassign a1 a2)
k e le)
m fp
(
Core_State f Sskip k e le)
m'
|
step_set:
forall f id a k e le m v fp,
eval_expr e le m a v ->
eval_expr_fp e le m a fp ->
step (
Core_State f (
Sset id a)
k e le)
m fp
(
Core_State f Sskip k e (
PTree.set id v le))
m
|
step_call:
forall f optid a al k e le m tyargs tyres cconv vf vargs fd fp1 fp2 fp,
classify_fun (
typeof a) =
fun_case_f tyargs tyres cconv ->
eval_expr e le m a vf ->
eval_exprlist e le m al tyargs vargs ->
Genv.find_funct ge vf =
Some fd ->
type_of_fundef fd =
Tfunction tyargs tyres cconv ->
eval_expr_fp e le m a fp1 ->
eval_exprlist_fp e le m al tyargs fp2 ->
FP.union fp1 fp2 =
fp ->
step (
Core_State f (
Scall optid a al)
k e le)
m fp
(
Core_Callstate fd vargs (
Kcall optid f e le k))
m
|
step_seq:
forall f s1 s2 k e le m,
step (
Core_State f (
Ssequence s1 s2)
k e le)
m empfp
(
Core_State f s1 (
Kseq s2 k)
e le)
m
|
step_skip_seq:
forall f s k e le m,
step (
Core_State f Sskip (
Kseq s k)
e le)
m empfp
(
Core_State f s k e le)
m
|
step_continue_seq:
forall f s k e le m,
step (
Core_State f Scontinue (
Kseq s k)
e le)
m empfp
(
Core_State f Scontinue k e le)
m
|
step_break_seq:
forall f s k e le m,
step (
Core_State f Sbreak (
Kseq s k)
e le)
m empfp
(
Core_State f Sbreak k e le)
m
|
step_ifthenelse:
forall f a s1 s2 k e le m v1 b fp1 fp2 fp,
eval_expr e le m a v1 ->
bool_val v1 (
typeof a)
m =
Some b ->
eval_expr_fp e le m a fp1 ->
bool_val_fp v1 (
typeof a)
m =
Some fp2 ->
FP.union fp1 fp2 =
fp ->
step (
Core_State f (
Sifthenelse a s1 s2)
k e le)
m fp
(
Core_State f (
if b then s1 else s2)
k e le)
m
|
step_loop:
forall f s1 s2 k e le m,
step (
Core_State f (
Sloop s1 s2)
k e le)
m empfp
(
Core_State f s1 (
Kloop1 s1 s2 k)
e le)
m
|
step_skip_or_continue_loop1:
forall f s1 s2 k e le m x,
x =
Sskip \/
x =
Scontinue ->
step (
Core_State f x (
Kloop1 s1 s2 k)
e le)
m empfp
(
Core_State f s2 (
Kloop2 s1 s2 k)
e le)
m
|
step_break_loop1:
forall f s1 s2 k e le m,
step (
Core_State f Sbreak (
Kloop1 s1 s2 k)
e le)
m empfp
(
Core_State f Sskip k e le)
m
|
step_skip_loop2:
forall f s1 s2 k e le m,
step (
Core_State f Sskip (
Kloop2 s1 s2 k)
e le)
m empfp
(
Core_State f (
Sloop s1 s2)
k e le)
m
|
step_break_loop2:
forall f s1 s2 k e le m,
step (
Core_State f Sbreak (
Kloop2 s1 s2 k)
e le)
m empfp
(
Core_State f Sskip k e le)
m
|
step_return_0:
forall f k e le m m'
fp,
Mem.free_list m (
blocks_of_env ge e) =
Some m' ->
free_list_fp (
blocks_of_env ge e) =
fp ->
step (
Core_State f (
Sreturn None)
k e le)
m fp
(
Core_Returnstate Vundef (
call_cont k))
m'
|
step_return_1:
forall f a k e le m v v'
m'
fp1 fp2 fp3 fp,
eval_expr e le m a v ->
sem_cast v (
typeof a)
f.(
fn_return)
m =
Some v' ->
Mem.free_list m (
blocks_of_env ge e) =
Some m' ->
eval_expr_fp e le m a fp1 ->
sem_cast_fp v (
typeof a)
f.(
fn_return)
m =
Some fp2 ->
free_list_fp (
blocks_of_env ge e) =
fp3 ->
FP.union (
FP.union fp1 fp2)
fp3 =
fp->
step (
Core_State f (
Sreturn (
Some a))
k e le)
m fp
(
Core_Returnstate v' (
call_cont k))
m'
|
step_skip_call:
forall f k e le m m'
fp,
is_call_cont k ->
Mem.free_list m (
blocks_of_env ge e) =
Some m' ->
free_list_fp (
blocks_of_env ge e) =
fp ->
step (
Core_State f Sskip k e le)
m fp
(
Core_Returnstate Vundef k)
m'
|
step_switch:
forall f a sl k e le m v fp n,
eval_expr e le m a v ->
eval_expr_fp e le m a fp ->
sem_switch_arg v (
typeof a) =
Some n ->
step (
Core_State f (
Sswitch a sl)
k e le)
m fp
(
Core_State f (
seq_of_labeled_statement (
select_switch n sl)) (
Kswitch k)
e le)
m
|
step_skip_break_switch:
forall f x k e le m,
x =
Sskip \/
x =
Sbreak ->
step (
Core_State f x (
Kswitch k)
e le)
m empfp
(
Core_State f Sskip k e le)
m
|
step_continue_switch:
forall f k e le m,
step (
Core_State f Scontinue (
Kswitch k)
e le)
m empfp
(
Core_State f Scontinue k e le)
m
|
step_label:
forall f lbl s k e le m,
step (
Core_State f (
Slabel lbl s)
k e le)
m empfp
(
Core_State f s k e le)
m
|
step_goto:
forall f lbl k e le m s'
k',
find_label lbl f.(
fn_body) (
call_cont k) =
Some (
s',
k') ->
step (
Core_State f (
Sgoto lbl)
k e le)
m empfp
(
Core_State f s'
k'
e le)
m
|
step_internal_function:
forall f vargs k m e le m1 fp,
function_entry f vargs m e le m1 ->
function_entry_fp f vargs m e fp ->
step (
Core_Callstate (
Internal f)
vargs k)
m fp
(
Core_State f f.(
fn_body)
k e le)
m1
|
step_returnstate:
forall v optid f e le k m,
step (
Core_Returnstate v (
Kcall optid f e le k))
m empfp
(
Core_State f Sskip k e (
set_opttemp optid v le))
m.
End SEMANTICS.
function_entry
The two semantics for function parameters. First, parameters as local variables.
Inductive function_entry1 (
ge:
genv) (
f:
function) (
vargs:
list val) (
m:
mem) (
e:
env) (
le:
temp_env) (
m':
mem) :
Prop :=
|
function_entry1_intro:
forall m1,
list_norepet (
var_names f.(
fn_params) ++
var_names f.(
fn_vars)) ->
alloc_variables ge empty_env m (
f.(
fn_params) ++
f.(
fn_vars))
e m1 ->
bind_parameters ge e m1 f.(
fn_params)
vargs m' ->
le =
create_undef_temps f.(
fn_temps) ->
function_entry1 ge f vargs m e le m'.
Inductive function_entry1_fp ge f vargs m e :
footprint ->
Prop :=
|
function_entry1_fp_intro:
forall fp1 fp2 fp,
alloc_variables_fp ge m (
f.(
fn_params) ++
f.(
fn_vars))
fp1 ->
bind_parameters_fp ge e f.(
fn_params)
vargs fp2 ->
FP.union fp1 fp2 =
fp ->
function_entry1_fp ge f vargs m e fp.
Definition step1 (
ge:
genv) :=
step ge (
function_entry1 ge) (
function_entry1_fp ge).
Second, parameters as temporaries.
Inductive function_entry2 (
ge:
genv) (
f:
function) (
vargs:
list val) (
m:
mem) (
e:
env) (
le:
temp_env) (
m':
mem) :
Prop :=
|
function_entry2_intro:
list_norepet (
var_names f.(
fn_vars)) ->
list_norepet (
var_names f.(
fn_params)) ->
list_disjoint (
var_names f.(
fn_params)) (
var_names f.(
fn_temps)) ->
alloc_variables ge empty_env m f.(
fn_vars)
e m' ->
bind_parameter_temps f.(
fn_params)
vargs (
create_undef_temps f.(
fn_temps)) =
Some le ->
function_entry2 ge f vargs m e le m'.
Inductive function_entry2_fp ge f (
vargs:
list val)
m (
e:
env) :
footprint ->
Prop :=
|
function_entry2_fp_intro:
forall fp,
alloc_variables_fp ge m f.(
fn_vars)
fp ->
function_entry2_fp ge f vargs m e fp.
Definition step2 (
ge:
genv) :=
step ge (
function_entry2 ge) (
function_entry2_fp ge).
Building Interactionsemantics from Clight
The initial global environment.
Definition init_genv(
cu:
clight_comp_unit) (
ge:
Genv.t fundef type)(
G:
genv):
Prop:=
G =
Build_genv ge (
cu_comp_env cu) /\
CUAST.globalenv_generic (
CUAST.Build_comp_unit_generic _ _ cu.(
cu_defs)
cu.(
cu_public))
ge.
The initial memory w.r.t. initial ge
Definition init_mem:
Genv.t fundef type ->
mem ->
Prop:=
CUAST.init_mem_generic.
The init_core interface
Definition init_core (
ge :
Genv.t fundef type) (
fnid:
ident) (
args:
list val):
option core :=
match Genv.find_symbol ge fnid with
|
Some b =>
match Genv.find_funct_ptr ge b with
|
Some cfd =>
match cfd with
|
Internal fd =>
match type_of_fundef cfd with
|
Tfunction targs tres cc =>
if val_casted_list_func args targs
&&
tys_nonvoid targs
&&
vals_defined args
&&
zlt (4*(2*(
Zlength args)))
Int.max_unsigned
then Some (
Core_Callstate cfd args Kstop)
else None
|
_ =>
None
end
|
External _ _ _ _ =>
None
end
|
_ =>
None
end
|
None =>
None
end.
A helper function to get the ident from a EF_function name
should be moved to another file
Definition invert_symbol_from_string :=
ClightLang.invert_symbol_from_string.
Definition trans_c_fundef_ast (
f:
Clight.fundef): (
AST.fundef Clight.function):=
match f with
Ctypes.Internal x =>
AST.Internal x
|
Ctypes.External x _ _ _ =>
AST.External x
end.
Definition trans_fun_name (
gd:
globdef Clight.fundef Ctypes.type):=
match gd with
|
Gfun x =>
Gfun (
trans_c_fundef_ast x)
|
Gvar x =>
Gvar x
end.
Lemma gd_ef_fun_name_eq:
forall gd ,
ClightLang.gd_ef_fun_name gd =
CUAST.gd_ef_fun_name (
trans_fun_name gd).
Proof.
destruct gd;auto;destruct f;auto.
Qed.
Definition trans_genv_defs (
defs:
PTree.t (
globdef Clight.fundef Ctypes.type)):
PTree.t (
globdef (
AST.fundef Clight.function)
type):=
PTree.map (
fun i=>
trans_fun_name)
defs.
Lemma genv_trans_defs_range:
forall ge b g,
(
trans_genv_defs (
Genv.genv_defs ge)) !
b =
Some g->
Plt b (
Genv.genv_next ge).
Proof.
Definition trans_ge ge:=
let GENV:=
genv_genv ge in
{|
Genv.genv_public:=
GENV.(
Genv.genv_public);
Genv.genv_symb:=
GENV.(
Genv.genv_symb);
Genv.genv_defs:=
trans_genv_defs GENV.(
Genv.genv_defs);
Genv.genv_next:=
GENV.(
Genv.genv_next);
Genv.genv_symb_range:=
GENV.(
Genv.genv_symb_range);
Genv.genv_defs_range:=
genv_trans_defs_range GENV;
Genv.genv_vars_inj:=
GENV.(
Genv.genv_vars_inj);|}.
Lemma fold_elements {
A B C:
Type}{
dec:
forall x y:
A,{
x=
y}+{
x<>
y}}:
forall (
f1:
B ->
option A)(
f2:
C->
option A)
g t t'
n default
(
MATCH:
forall id,
option_rel (
fun a b=>
g a =
b)
t!
id t'!
id)
(
REL:
forall a b,
g a =
b ->
f1 a =
f2 b),
PTree.fold (
fun a b c=>
match f1 c with
|
Some x =>
if dec n x then Some b else a
|
None =>
a
end)
t default =
PTree.fold (
fun a b c=>
match f2 c with
|
Some x =>
if dec n x then Some b else a
|
None =>
a
end)
t'
default.
Proof.
intros.
do 2
rewrite PTree.fold_spec.
apply Maps.PTree.elements_canonical_order'
in MATCH.
revert MATCH.
generalize (
Maps.PTree.elements t) (
Maps.PTree.elements t')
default.
clear t t'.
induction l;
intro l';
intros.
inv MATCH.
auto.
inv MATCH.
destruct a as [
id1 gd1];
destruct b1 as [
id2 gd2].
destruct H1.
simpl in H,
H0.
subst id2.
simpl.
apply REL in H0.
rewrite H0.
apply IHl.
auto.
Qed.
Lemma invert_symbol_trans_preserved:
forall ge name,
let ge_trans :=
trans_ge ge in
invert_symbol_from_string ge name =
CUAST.invert_symbol_from_string ge_trans name.
Proof.
Definition at_external (
ge:
genv) (
c:
core) :
option (
ident *
signature *
list val) :=
match c with
|
Core_Callstate fd args k =>
match fd with
|
External (
EF_external name sig)
targs tres cc =>
if vals_defined args
then
match invert_symbol_from_string ge name with
|
Some fnid =>
if peq fnid GAST.ent_atom ||
peq fnid GAST.ext_atom
then None
else Some (
fnid,
sig,
args)
|
None =>
None
end
else None
|
_ =>
None
end
|
_ =>
None
end.
Definition after_external (
c:
core) (
rv:
option val) :
option core :=
match c with
Core_Callstate fd vargs k =>
match fd with
|
External (
EF_external name sig)
tps tp cc =>
match rv,
sig_res sig with
Some v,
Some ty =>
if val_has_type_func v ty then Some(
Core_Returnstate v k)
else None
|
None,
None =>
Some(
Core_Returnstate Vundef k)
|
_,
_ =>
None
end
|
_ =>
None
end
|
_ =>
None
end.
Definition halted (
q :
core):
option val :=
match q with
Core_Returnstate v Kstop =>
if vals_defined (
v::
nil)
then Some v
else None
|
_ =>
None
end.
Definition Clight_IS_local:
sem_local
:= (
Build_sem_local
fundef type genv clight_comp_unit core
init_genv init_mem init_core halted step1 at_external after_external).
Definition Clight_IS_2_local:
sem_local
:= (
Build_sem_local
fundef type genv clight_comp_unit core
init_genv init_mem init_core halted step2 at_external after_external).