Module Ctypes


Type expressions for the Compcert C and Clight languages

Require Import Axioms Coqlib Maps Errors.
Require Import AST Linking.
Require Archi.

Syntax of types


Compcert C types are similar to those of C. They include numeric types, pointers, arrays, function types, and composite types (struct and union). Numeric types (integers and floats) fully specify the bit size of the type. An integer type is a pair of a signed/unsigned flag and a bit size: 8, 16, or 32 bits, or the special IBool size standing for the C99 _Bool type. 64-bit integers are treated separately.

Inductive signedness : Type :=
  | Signed: signedness
  | Unsigned: signedness.

Inductive intsize : Type :=
  | I8: intsize
  | I16: intsize
  | I32: intsize
  | IBool: intsize.

Float types come in two sizes: 32 bits (single precision) and 64-bit (double precision).

Inductive floatsize : Type :=
  | F32: floatsize
  | F64: floatsize.

Every type carries a set of attributes. Currently, only two attributes are modeled: volatile and _Alignas(n) (from ISO C 2011).

Record attr : Type := mk_attr {
  attr_volatile: bool;
  attr_alignas: option N (* log2 of required alignment *)
}.

Definition noattr := {| attr_volatile := false; attr_alignas := None |}.

The syntax of type expressions. Some points to note:

Inductive type : Type :=
  | Tvoid: type (* the void type *)
  | Tint: intsize -> signedness -> attr -> type (* integer types *)
  | Tlong: signedness -> attr -> type (* 64-bit integer types *)
  | Tfloat: floatsize -> attr -> type (* floating-point types *)
  | Tpointer: type -> attr -> type (* pointer types (*ty) *)
  | Tarray: type -> Z -> attr -> type (* array types (ty[len]) *)
  | Tfunction: typelist -> type -> calling_convention -> type (* function types *)
  | Tstruct: ident -> attr -> type (* struct types *)
  | Tunion: ident -> attr -> type (* union types *)
with typelist : Type :=
  | Tnil: typelist
  | Tcons: type -> typelist -> typelist.

Lemma intsize_eq: forall (s1 s2: intsize), {s1=s2} + {s1<>s2}.
Proof.
  decide equality.
Defined.

Lemma type_eq: forall (ty1 ty2: type), {ty1=ty2} + {ty1<>ty2}
with typelist_eq: forall (tyl1 tyl2: typelist), {tyl1=tyl2} + {tyl1<>tyl2}.
Proof.
  assert (forall (x y: signedness), {x=y} + {x<>y}) by decide equality.
  assert (forall (x y: floatsize), {x=y} + {x<>y}) by decide equality.
  assert (forall (x y: attr), {x=y} + {x<>y}).
  { decide equality. decide equality. apply N.eq_dec. apply bool_dec. }
  generalize ident_eq zeq bool_dec ident_eq intsize_eq; intros.
  decide equality.
  decide equality.
  decide equality.
Defined.

Opaque type_eq typelist_eq.

Extract the attributes of a type.

Definition attr_of_type (ty: type) :=
  match ty with
  | Tvoid => noattr
  | Tint sz si a => a
  | Tlong si a => a
  | Tfloat sz a => a
  | Tpointer elt a => a
  | Tarray elt sz a => a
  | Tfunction args res cc => noattr
  | Tstruct id a => a
  | Tunion id a => a
  end.

Change the top-level attributes of a type

Definition change_attributes (f: attr -> attr) (ty: type) : type :=
  match ty with
  | Tvoid => ty
  | Tint sz si a => Tint sz si (f a)
  | Tlong si a => Tlong si (f a)
  | Tfloat sz a => Tfloat sz (f a)
  | Tpointer elt a => Tpointer elt (f a)
  | Tarray elt sz a => Tarray elt sz (f a)
  | Tfunction args res cc => ty
  | Tstruct id a => Tstruct id (f a)
  | Tunion id a => Tunion id (f a)
  end.

Erase the top-level attributes of a type

Definition remove_attributes (ty: type) : type :=
  change_attributes (fun _ => noattr) ty.

Add extra attributes to the top-level attributes of a type

Definition attr_union (a1 a2: attr) : attr :=
  {| attr_volatile := a1.(attr_volatile) || a2.(attr_volatile);
     attr_alignas :=
       match a1.(attr_alignas), a2.(attr_alignas) with
       | None, al => al
       | al, None => al
       | Some n1, Some n2 => Some (N.max n1 n2)
       end
  |}.

Definition merge_attributes (ty: type) (a: attr) : type :=
  change_attributes (attr_union a) ty.

Syntax for struct and union definitions. struct and union are collectively called "composites". Each compilation unit comes with a list of top-level definitions of composites.

Inductive struct_or_union : Type := Struct | Union.

Definition members : Type := list (ident * type).

Inductive composite_definition : Type :=
  Composite (id: ident) (su: struct_or_union) (m: members) (a: attr).

Definition name_composite_def (c: composite_definition) : ident :=
  match c with Composite id su m a => id end.

Definition composite_def_eq (x y: composite_definition): {x=y} + {x<>y}.
Proof.
  decide equality.
- decide equality. decide equality. apply N.eq_dec. apply bool_dec.
- apply list_eq_dec. decide equality. apply type_eq. apply ident_eq.
- decide equality.
- apply ident_eq.
Defined.

Global Opaque composite_def_eq.

For type-checking, compilation and semantics purposes, the composite definitions are collected in the following composite_env environment. The composite record contains additional information compared with the composite_definition, such as size and alignment information.

Record composite : Type := {
  co_su: struct_or_union;
  co_members: members;
  co_attr: attr;
  co_sizeof: Z;
  co_alignof: Z;
  co_rank: nat;
  co_sizeof_pos: co_sizeof >= 0;
  co_alignof_two_p: exists n, co_alignof = two_power_nat n;
  co_sizeof_alignof: (co_alignof | co_sizeof)
}.

Definition composite_env : Type := PTree.t composite.

Operations over types


Conversions


Definition type_int32s := Tint I32 Signed noattr.
Definition type_bool := Tint IBool Signed noattr.

The usual unary conversion. Promotes small integer types to signed int32 and degrades array types and function types to pointer types. Attributes are erased.

Definition typeconv (ty: type) : type :=
  match ty with
  | Tint (I8 | I16 | IBool) _ _ => Tint I32 Signed noattr
  | Tarray t sz a => Tpointer t noattr
  | Tfunction _ _ _ => Tpointer ty noattr
  | _ => remove_attributes ty
  end.

Default conversion for arguments to an unprototyped or variadic function. Like typeconv but also converts single floats to double floats.

Definition default_argument_conversion (ty: type) : type :=
  match ty with
  | Tint (I8 | I16 | IBool) _ _ => Tint I32 Signed noattr
  | Tfloat _ _ => Tfloat F64 noattr
  | Tarray t sz a => Tpointer t noattr
  | Tfunction _ _ _ => Tpointer ty noattr
  | _ => remove_attributes ty
  end.

Complete types


A type is complete if it fully describes an object. All struct and union names appearing in the type must be defined, unless they occur under a pointer or function type. void and function types are incomplete types.

Fixpoint complete_type (env: composite_env) (t: type) : bool :=
  match t with
  | Tvoid => false
  | Tint _ _ _ => true
  | Tlong _ _ => true
  | Tfloat _ _ => true
  | Tpointer _ _ => true
  | Tarray t' _ _ => complete_type env t'
  | Tfunction _ _ _ => false
  | Tstruct id _ | Tunion id _ =>
      match env!id with Some co => true | None => false end
  end.

Definition complete_or_function_type (env: composite_env) (t: type) : bool :=
  match t with
  | Tfunction _ _ _ => true
  | _ => complete_type env t
  end.

Alignment of a type


Adjust the natural alignment al based on the attributes a attached to the type. If an "alignas" attribute is given, use it as alignment in preference to al.

Definition align_attr (a: attr) (al: Z) : Z :=
  match attr_alignas a with
  | Some l => two_p (Z.of_N l)
  | None => al
  end.

In the ISO C standard, alignment is defined only for complete types. However, it is convenient that alignof is a total function. For incomplete types, it returns 1.

Fixpoint alignof (env: composite_env) (t: type) : Z :=
  align_attr (attr_of_type t)
   (match t with
      | Tvoid => 1
      | Tint I8 _ _ => 1
      | Tint I16 _ _ => 2
      | Tint I32 _ _ => 4
      | Tint IBool _ _ => 1
      | Tlong _ _ => Archi.align_int64
      | Tfloat F32 _ => 4
      | Tfloat F64 _ => Archi.align_float64
      | Tpointer _ _ => if Archi.ptr64 then 8 else 4
      | Tarray t' _ _ => alignof env t'
      | Tfunction _ _ _ => 1
      | Tstruct id _ | Tunion id _ =>
          match env!id with Some co => co_alignof co | None => 1 end
    end).

Remark align_attr_two_p:
  forall al a,
  (exists n, al = two_power_nat n) ->
  (exists n, align_attr a al = two_power_nat n).
Proof.
  intros. unfold align_attr. destruct (attr_alignas a).
  exists (N.to_nat n). rewrite two_power_nat_two_p. rewrite N_nat_Z. auto.
  auto.
Qed.

Lemma alignof_two_p:
  forall env t, exists n, alignof env t = two_power_nat n.
Proof.
  induction t; apply align_attr_two_p; simpl.
  exists 0%nat; auto.
  destruct i.
    exists 0%nat; auto.
    exists 1%nat; auto.
    exists 2%nat; auto.
    exists 0%nat; auto.
    unfold Archi.align_int64. destruct Archi.ptr64; ((exists 2%nat; reflexivity) || (exists 3%nat; reflexivity)).
  destruct f.
    exists 2%nat; auto.
    unfold Archi.align_float64. destruct Archi.ptr64; ((exists 2%nat; reflexivity) || (exists 3%nat; reflexivity)).
  exists (if Archi.ptr64 then 3%nat else 2%nat); destruct Archi.ptr64; auto.
  apply IHt.
  exists 0%nat; auto.
  destruct (env!i). apply co_alignof_two_p. exists 0%nat; auto.
  destruct (env!i). apply co_alignof_two_p. exists 0%nat; auto.
Qed.

Lemma alignof_pos:
  forall env t, alignof env t > 0.
Proof.
  intros. destruct (alignof_two_p env t) as [n EQ]. rewrite EQ. apply two_power_nat_pos.
Qed.

Size of a type


In the ISO C standard, size is defined only for complete types. However, it is convenient that sizeof is a total function. For void and function types, we follow GCC and define their size to be 1. For undefined structures and unions, the size is arbitrarily taken to be 0.

Fixpoint sizeof (env: composite_env) (t: type) : Z :=
  match t with
  | Tvoid => 1
  | Tint I8 _ _ => 1
  | Tint I16 _ _ => 2
  | Tint I32 _ _ => 4
  | Tint IBool _ _ => 1
  | Tlong _ _ => 8
  | Tfloat F32 _ => 4
  | Tfloat F64 _ => 8
  | Tpointer _ _ => if Archi.ptr64 then 8 else 4
  | Tarray t' n _ => sizeof env t' * Z.max 0 n
  | Tfunction _ _ _ => 1
  | Tstruct id _ | Tunion id _ =>
      match env!id with Some co => co_sizeof co | None => 0 end
  end.

Lemma sizeof_pos:
  forall env t, sizeof env t >= 0.
Proof.
  induction t; simpl; try omega.
  destruct i; omega.
  destruct f; omega.
  destruct Archi.ptr64; omega.
  change 0 with (0 * Z.max 0 z) at 2. apply Zmult_ge_compat_r. auto. xomega.
  destruct (env!i). apply co_sizeof_pos. omega.
  destruct (env!i). apply co_sizeof_pos. omega.
Qed.

The size of a type is an integral multiple of its alignment, unless the alignment was artificially increased with the __Alignas attribute.

Fixpoint naturally_aligned (t: type) : Prop :=
  attr_alignas (attr_of_type t) = None /\
  match t with
  | Tarray t' _ _ => naturally_aligned t'
  | _ => True
  end.

Lemma sizeof_alignof_compat:
  forall env t, naturally_aligned t -> (alignof env t | sizeof env t).
Proof.
  induction t; intros [A B]; unfold alignof, align_attr; rewrite A; simpl.
- apply Zdivide_refl.
- destruct i; apply Zdivide_refl.
- exists (8 / Archi.align_int64). unfold Archi.align_int64; destruct Archi.ptr64; reflexivity.
- destruct f. apply Zdivide_refl. exists (8 / Archi.align_float64). unfold Archi.align_float64; destruct Archi.ptr64; reflexivity.
- apply Zdivide_refl.
- apply Z.divide_mul_l; auto.
- apply Zdivide_refl.
- destruct (env!i). apply co_sizeof_alignof. apply Zdivide_0.
- destruct (env!i). apply co_sizeof_alignof. apply Zdivide_0.
Qed.

Size and alignment for composite definitions


The alignment for a structure or union is the max of the alignment of its members.

Fixpoint alignof_composite (env: composite_env) (m: members) : Z :=
  match m with
  | nil => 1
  | (id, t) :: m' => Z.max (alignof env t) (alignof_composite env m')
  end.

The size of a structure corresponds to its layout: fields are laid out consecutively, and padding is inserted to align each field to the alignment for its type.

Fixpoint sizeof_struct (env: composite_env) (cur: Z) (m: members) : Z :=
  match m with
  | nil => cur
  | (id, t) :: m' => sizeof_struct env (align cur (alignof env t) + sizeof env t) m'
  end.

The size of an union is the max of the sizes of its members.

Fixpoint sizeof_union (env: composite_env) (m: members) : Z :=
  match m with
  | nil => 0
  | (id, t) :: m' => Z.max (sizeof env t) (sizeof_union env m')
  end.

Lemma alignof_composite_two_p:
  forall env m, exists n, alignof_composite env m = two_power_nat n.
Proof.
  induction m as [|[id t]]; simpl.
- exists 0%nat; auto.
- apply Z.max_case; auto. apply alignof_two_p.
Qed.

Lemma alignof_composite_pos:
  forall env m a, align_attr a (alignof_composite env m) > 0.
Proof.
  intros.
  exploit align_attr_two_p. apply (alignof_composite_two_p env m).
  instantiate (1 := a). intros [n EQ].
  rewrite EQ; apply two_power_nat_pos.
Qed.

Lemma sizeof_struct_incr:
  forall env m cur, cur <= sizeof_struct env cur m.
Proof.
  induction m as [|[id t]]; simpl; intros.
- omega.
- apply Zle_trans with (align cur (alignof env t)).
  apply align_le. apply alignof_pos.
  apply Zle_trans with (align cur (alignof env t) + sizeof env t).
  generalize (sizeof_pos env t); omega.
  apply IHm.
Qed.

Lemma sizeof_union_pos:
  forall env m, 0 <= sizeof_union env m.
Proof.
  induction m as [|[id t]]; simpl; xomega.
Qed.

Byte offset for a field of a structure


field_offset env id fld returns the byte offset for field id in a structure whose members are fld. Fields are laid out consecutively, and padding is inserted to align each field to the alignment for its type.

Fixpoint field_offset_rec (env: composite_env) (id: ident) (fld: members) (pos: Z)
                          {struct fld} : res Z :=
  match fld with
  | nil => Error (MSG "Unknown field " :: CTX id :: nil)
  | (id', t) :: fld' =>
      if ident_eq id id'
      then OK (align pos (alignof env t))
      else field_offset_rec env id fld' (align pos (alignof env t) + sizeof env t)
  end.

Definition field_offset (env: composite_env) (id: ident) (fld: members) : res Z :=
  field_offset_rec env id fld 0.

Fixpoint field_type (id: ident) (fld: members) {struct fld} : res type :=
  match fld with
  | nil => Error (MSG "Unknown field " :: CTX id :: nil)
  | (id', t) :: fld' => if ident_eq id id' then OK t else field_type id fld'
  end.

Some sanity checks about field offsets. First, field offsets are within the range of acceptable offsets.

Remark field_offset_rec_in_range:
  forall env id ofs ty fld pos,
  field_offset_rec env id fld pos = OK ofs -> field_type id fld = OK ty ->
  pos <= ofs /\ ofs + sizeof env ty <= sizeof_struct env pos fld.
Proof.
  intros until ty. induction fld as [|[i t]]; simpl; intros.
- discriminate.
- destruct (ident_eq id i); intros.
  inv H. inv H0. split.
  apply align_le. apply alignof_pos. apply sizeof_struct_incr.
  exploit IHfld; eauto. intros [A B]. split; auto.
  eapply Zle_trans; eauto. apply Zle_trans with (align pos (alignof env t)).
  apply align_le. apply alignof_pos. generalize (sizeof_pos env t). omega.
Qed.

Lemma field_offset_in_range:
  forall env fld id ofs ty,
  field_offset env id fld = OK ofs -> field_type id fld = OK ty ->
  0 <= ofs /\ ofs + sizeof env ty <= sizeof_struct env 0 fld.
Proof.
  intros. eapply field_offset_rec_in_range; eauto.
Qed.

Second, two distinct fields do not overlap

Lemma field_offset_no_overlap:
  forall env id1 ofs1 ty1 id2 ofs2 ty2 fld,
  field_offset env id1 fld = OK ofs1 -> field_type id1 fld = OK ty1 ->
  field_offset env id2 fld = OK ofs2 -> field_type id2 fld = OK ty2 ->
  id1 <> id2 ->
  ofs1 + sizeof env ty1 <= ofs2 \/ ofs2 + sizeof env ty2 <= ofs1.
Proof.
  intros until fld. unfold field_offset. generalize 0 as pos.
  induction fld as [|[i t]]; simpl; intros.
- discriminate.
- destruct (ident_eq id1 i); destruct (ident_eq id2 i).
+ congruence.
+ subst i. inv H; inv H0.
  exploit field_offset_rec_in_range. eexact H1. eauto. tauto.
+ subst i. inv H1; inv H2.
  exploit field_offset_rec_in_range. eexact H. eauto. tauto.
+ eapply IHfld; eauto.
Qed.

Third, if a struct is a prefix of another, the offsets of common fields are the same.

Lemma field_offset_prefix:
  forall env id ofs fld2 fld1,
  field_offset env id fld1 = OK ofs ->
  field_offset env id (fld1 ++ fld2) = OK ofs.
Proof.
  intros until fld1. unfold field_offset. generalize 0 as pos.
  induction fld1 as [|[i t]]; simpl; intros.
- discriminate.
- destruct (ident_eq id i); auto.
Qed.

Fourth, the position of each field respects its alignment.

Lemma field_offset_aligned:
  forall env id fld ofs ty,
  field_offset env id fld = OK ofs -> field_type id fld = OK ty ->
  (alignof env ty | ofs).
Proof.
  intros until ty. unfold field_offset. generalize 0 as pos. revert fld.
  induction fld as [|[i t]]; simpl; intros.
- discriminate.
- destruct (ident_eq id i).
+ inv H; inv H0. apply align_divides. apply alignof_pos.
+ eauto.
Qed.

Access modes


The access_mode function describes how a l-value of the given type must be accessed:

Inductive mode: Type :=
  | By_value: memory_chunk -> mode
  | By_reference: mode
  | By_copy: mode
  | By_nothing: mode.

Definition access_mode (ty: type) : mode :=
  match ty with
  | Tint I8 Signed _ => By_value Mint8signed
  | Tint I8 Unsigned _ => By_value Mint8unsigned
  | Tint I16 Signed _ => By_value Mint16signed
  | Tint I16 Unsigned _ => By_value Mint16unsigned
  | Tint I32 _ _ => By_value Mint32
  | Tint IBool _ _ => By_value Mint8unsigned
  | Tlong _ _ => By_value Mint64
  | Tfloat F32 _ => By_value Mfloat32
  | Tfloat F64 _ => By_value Mfloat64
  | Tvoid => By_nothing
  | Tpointer _ _ => By_value Mptr
  | Tarray _ _ _ => By_reference
  | Tfunction _ _ _ => By_reference
  | Tstruct _ _ => By_copy
  | Tunion _ _ => By_copy
end.

For the purposes of the semantics and the compiler, a type denotes a volatile access if it carries the volatile attribute and it is accessed by value.

Definition type_is_volatile (ty: type) : bool :=
  match access_mode ty with
  | By_value _ => attr_volatile (attr_of_type ty)
  | _ => false
  end.

Alignment for block copy operations


A variant of alignof for use in block copy operations. Block copy operations do not support alignments greater than 8, and require the size to be an integral multiple of the alignment.

Fixpoint alignof_blockcopy (env: composite_env) (t: type) : Z :=
  match t with
  | Tvoid => 1
  | Tint I8 _ _ => 1
  | Tint I16 _ _ => 2
  | Tint I32 _ _ => 4
  | Tint IBool _ _ => 1
  | Tlong _ _ => 8
  | Tfloat F32 _ => 4
  | Tfloat F64 _ => 8
  | Tpointer _ _ => if Archi.ptr64 then 8 else 4
  | Tarray t' _ _ => alignof_blockcopy env t'
  | Tfunction _ _ _ => 1
  | Tstruct id _ | Tunion id _ =>
      match env!id with
      | Some co => Z.min 8 (co_alignof co)
      | None => 1
      end
  end.

Lemma alignof_blockcopy_1248:
  forall env ty, let a := alignof_blockcopy env ty in a = 1 \/ a = 2 \/ a = 4 \/ a = 8.
Proof.
  assert (X: forall co, let a := Zmin 8 (co_alignof co) in
             a = 1 \/ a = 2 \/ a = 4 \/ a = 8).
  {
    intros. destruct (co_alignof_two_p co) as [n EQ]. unfold a; rewrite EQ.
    destruct n; auto.
    destruct n; auto.
    destruct n; auto.
    right; right; right. apply Z.min_l.
    rewrite two_power_nat_two_p. rewrite ! inj_S.
    change 8 with (two_p 3). apply two_p_monotone. omega.
  }
  induction ty; simpl.
  auto.
  destruct i; auto.
  auto.
  destruct f; auto.
  destruct Archi.ptr64; auto.
  apply IHty.
  auto.
  destruct (env!i); auto.
  destruct (env!i); auto.
Qed.

Lemma alignof_blockcopy_pos:
  forall env ty, alignof_blockcopy env ty > 0.
Proof.
  intros. generalize (alignof_blockcopy_1248 env ty). simpl. intuition omega.
Qed.

Lemma sizeof_alignof_blockcopy_compat:
  forall env ty, (alignof_blockcopy env ty | sizeof env ty).
Proof.
  assert (X: forall co, (Z.min 8 (co_alignof co) | co_sizeof co)).
  {
    intros. apply Zdivide_trans with (co_alignof co). 2: apply co_sizeof_alignof.
    destruct (co_alignof_two_p co) as [n EQ]. rewrite EQ.
    destruct n. apply Zdivide_refl.
    destruct n. apply Zdivide_refl.
    destruct n. apply Zdivide_refl.
    apply Z.min_case.
    exists (two_p (Z.of_nat n)).
    change 8 with (two_p 3).
    rewrite <- two_p_is_exp by omega.
    rewrite two_power_nat_two_p. rewrite !inj_S. f_equal. omega.
    apply Zdivide_refl.
  }
  induction ty; simpl.
  apply Zdivide_refl.
  apply Zdivide_refl.
  apply Zdivide_refl.
  apply Zdivide_refl.
  apply Zdivide_refl.
  apply Z.divide_mul_l. auto.
  apply Zdivide_refl.
  destruct (env!i). apply X. apply Zdivide_0.
  destruct (env!i). apply X. apply Zdivide_0.
Qed.

Type ranks

The rank of a type is a nonnegative integer that measures the direct nesting of arrays, struct and union types. It does not take into account indirect nesting such as a struct type that appears under a pointer or function type. Type ranks ensure that type expressions (ignoring pointer and function types) have an inductive structure.

Fixpoint rank_type (ce: composite_env) (t: type) : nat :=
  match t with
  | Tarray t' _ _ => S (rank_type ce t')
  | Tstruct id _ | Tunion id _ =>
      match ce!id with
      | None => O
      | Some co => S (co_rank co)
      end
  | _ => O
  end.

Fixpoint rank_members (ce: composite_env) (m: members) : nat :=
  match m with
  | nil => 0%nat
  | (id, t) :: m => Peano.max (rank_type ce t) (rank_members ce m)
  end.

C types and back-end types


Extracting a type list from a function parameter declaration.

Fixpoint type_of_params (params: list (ident * type)) : typelist :=
  match params with
  | nil => Tnil
  | (id, ty) :: rem => Tcons ty (type_of_params rem)
  end.

Translating C types to Cminor types and function signatures.

Definition typ_of_type (t: type) : AST.typ :=
  match t with
  | Tvoid => AST.Tint
  | Tint _ _ _ => AST.Tint
  | Tlong _ _ => AST.Tlong
  | Tfloat F32 _ => AST.Tsingle
  | Tfloat F64 _ => AST.Tfloat
  | Tpointer _ _ | Tarray _ _ _ | Tfunction _ _ _ | Tstruct _ _ | Tunion _ _ => AST.Tptr
  end.

Definition opttyp_of_type (t: type) : option AST.typ :=
  if type_eq t Tvoid then None else Some (typ_of_type t).

Fixpoint typlist_of_typelist (tl: typelist) : list AST.typ :=
  match tl with
  | Tnil => nil
  | Tcons hd tl => typ_of_type hd :: typlist_of_typelist tl
  end.

Definition signature_of_type (args: typelist) (res: type) (cc: calling_convention): signature :=
  mksignature (typlist_of_typelist args) (opttyp_of_type res) cc.

Construction of the composite environment


Definition sizeof_composite (env: composite_env) (su: struct_or_union) (m: members) : Z :=
  match su with
  | Struct => sizeof_struct env 0 m
  | Union => sizeof_union env m
  end.

Lemma sizeof_composite_pos:
  forall env su m, 0 <= sizeof_composite env su m.
Proof.
  intros. destruct su; simpl.
  apply sizeof_struct_incr.
  apply sizeof_union_pos.
Qed.

Fixpoint complete_members (env: composite_env) (m: members) : bool :=
  match m with
  | nil => true
  | (id, t) :: m' => complete_type env t && complete_members env m'
  end.

Lemma complete_member:
  forall env id t m,
  In (id, t) m -> complete_members env m = true -> complete_type env t = true.
Proof.
  induction m as [|[id1 t1] m]; simpl; intuition auto.
  InvBooleans; inv H1; auto.
  InvBooleans; eauto.
Qed.

Convert a composite definition to its internal representation. The size and alignment of the composite are determined at this time. The alignment takes into account the __Alignas attributes associated with the definition. The size is rounded up to a multiple of the alignment. The conversion fails if a type of a member is not complete. This rules out incorrect recursive definitions such as
    struct s { int x; struct s next; }
Here, when we process the definition of struct s, the identifier s is not bound yet in the composite environment, hence field next has an incomplete type. However, recursions that go through a pointer type are correctly handled:
    struct s { int x; struct s * next; }
Here, next has a pointer type, which is always complete, even though s is not yet bound to a composite.

Program Definition composite_of_def
     (env: composite_env) (id: ident) (su: struct_or_union) (m: members) (a: attr)
     : res composite :=
  match env!id, complete_members env m return _ with
  | Some _, _ =>
      Error (MSG "Multiple definitions of struct or union " :: CTX id :: nil)
  | None, false =>
      Error (MSG "Incomplete struct or union " :: CTX id :: nil)
  | None, true =>
      let al := align_attr a (alignof_composite env m) in
      OK {| co_su := su;
            co_members := m;
            co_attr := a;
            co_sizeof := align (sizeof_composite env su m) al;
            co_alignof := al;
            co_rank := rank_members env m;
            co_sizeof_pos := _;
            co_alignof_two_p := _;
            co_sizeof_alignof := _ |}
  end.
Next Obligation.
  apply Zle_ge. eapply Zle_trans. eapply sizeof_composite_pos.
  apply align_le; apply alignof_composite_pos.
Defined.
Next Obligation.
  apply align_attr_two_p. apply alignof_composite_two_p.
Defined.
Next Obligation.
  apply align_divides. apply alignof_composite_pos.
Defined.

The composite environment for a program is obtained by entering its composite definitions in sequence. The definitions are assumed to be listed in dependency order: the definition of a composite must precede all uses of this composite, unless the use is under a pointer or function type.

Local Open Scope error_monad_scope.

Fixpoint add_composite_definitions (env: composite_env) (defs: list composite_definition) : res composite_env :=
  match defs with
  | nil => OK env
  | Composite id su m a :: defs =>
      do co <- composite_of_def env id su m a;
      add_composite_definitions (PTree.set id co env) defs
  end.

Definition build_composite_env (defs: list composite_definition) :=
  add_composite_definitions (PTree.empty _) defs.

Stability properties for alignments, sizes, and ranks. If the type is complete in a composite environment env, its size, alignment, and rank are unchanged if we add more definitions to env.

Section STABILITY.

Variables env env': composite_env.
Hypothesis extends: forall id co, env!id = Some co -> env'!id = Some co.

Lemma alignof_stable:
  forall t, complete_type env t = true -> alignof env' t = alignof env t.
Proof.
  induction t; simpl; intros; f_equal; auto.
  destruct (env!i) as [co|] eqn:E; try discriminate.
  erewrite extends by eauto. auto.
  destruct (env!i) as [co|] eqn:E; try discriminate.
  erewrite extends by eauto. auto.
Qed.

Lemma sizeof_stable:
  forall t, complete_type env t = true -> sizeof env' t = sizeof env t.
Proof.
  induction t; simpl; intros; auto.
  rewrite IHt by auto. auto.
  destruct (env!i) as [co|] eqn:E; try discriminate.
  erewrite extends by eauto. auto.
  destruct (env!i) as [co|] eqn:E; try discriminate.
  erewrite extends by eauto. auto.
Qed.

Lemma complete_type_stable:
  forall t, complete_type env t = true -> complete_type env' t = true.
Proof.
  induction t; simpl; intros; auto.
  destruct (env!i) as [co|] eqn:E; try discriminate.
  erewrite extends by eauto. auto.
  destruct (env!i) as [co|] eqn:E; try discriminate.
  erewrite extends by eauto. auto.
Qed.

Lemma rank_type_stable:
  forall t, complete_type env t = true -> rank_type env' t = rank_type env t.
Proof.
  induction t; simpl; intros; auto.
  destruct (env!i) as [co|] eqn:E; try discriminate.
  erewrite extends by eauto. auto.
  destruct (env!i) as [co|] eqn:E; try discriminate.
  erewrite extends by eauto. auto.
Qed.

Lemma alignof_composite_stable:
  forall m, complete_members env m = true -> alignof_composite env' m = alignof_composite env m.
Proof.
  induction m as [|[id t]]; simpl; intros.
  auto.
  InvBooleans. rewrite alignof_stable by auto. rewrite IHm by auto. auto.
Qed.

Lemma sizeof_struct_stable:
  forall m pos, complete_members env m = true -> sizeof_struct env' pos m = sizeof_struct env pos m.
Proof.
  induction m as [|[id t]]; simpl; intros.
  auto.
  InvBooleans. rewrite alignof_stable by auto. rewrite sizeof_stable by auto.
  rewrite IHm by auto. auto.
Qed.

Lemma sizeof_union_stable:
  forall m, complete_members env m = true -> sizeof_union env' m = sizeof_union env m.
Proof.
  induction m as [|[id t]]; simpl; intros.
  auto.
  InvBooleans. rewrite sizeof_stable by auto. rewrite IHm by auto. auto.
Qed.

Lemma sizeof_composite_stable:
  forall su m, complete_members env m = true -> sizeof_composite env' su m = sizeof_composite env su m.
Proof.
  intros. destruct su; simpl.
  apply sizeof_struct_stable; auto.
  apply sizeof_union_stable; auto.
Qed.

Lemma complete_members_stable:
  forall m, complete_members env m = true -> complete_members env' m = true.
Proof.
  induction m as [|[id t]]; simpl; intros.
  auto.
  InvBooleans. rewrite complete_type_stable by auto. rewrite IHm by auto. auto.
Qed.

Lemma rank_members_stable:
  forall m, complete_members env m = true -> rank_members env' m = rank_members env m.
Proof.
  induction m as [|[id t]]; simpl; intros.
  auto.
  InvBooleans. f_equal; auto. apply rank_type_stable; auto.
Qed.

End STABILITY.

Lemma add_composite_definitions_incr:
  forall id co defs env1 env2,
  add_composite_definitions env1 defs = OK env2 ->
  env1!id = Some co -> env2!id = Some co.
Proof.
  induction defs; simpl; intros.
- inv H; auto.
- destruct a; monadInv H.
  eapply IHdefs; eauto. rewrite PTree.gso; auto.
  red; intros; subst id0. unfold composite_of_def in EQ. rewrite H0 in EQ; discriminate.
Qed.

It follows that the sizes and alignments contained in the composite environment produced by build_composite_env are consistent with the sizes and alignments of the members of the composite types.

Record composite_consistent (env: composite_env) (co: composite) : Prop := {
  co_consistent_complete:
     complete_members env (co_members co) = true;
  co_consistent_alignof:
     co_alignof co = align_attr (co_attr co) (alignof_composite env (co_members co));
  co_consistent_sizeof:
     co_sizeof co = align (sizeof_composite env (co_su co) (co_members co)) (co_alignof co);
  co_consistent_rank:
     co_rank co = rank_members env (co_members co)
}.

Definition composite_env_consistent (env: composite_env) : Prop :=
  forall id co, env!id = Some co -> composite_consistent env co.

Lemma composite_consistent_stable:
  forall (env env': composite_env)
         (EXTENDS: forall id co, env!id = Some co -> env'!id = Some co)
         co,
  composite_consistent env co -> composite_consistent env' co.
Proof.
  intros. destruct H as [A B C D]. constructor.
  eapply complete_members_stable; eauto.
  symmetry; rewrite B. f_equal. apply alignof_composite_stable; auto.
  symmetry; rewrite C. f_equal. apply sizeof_composite_stable; auto.
  symmetry; rewrite D. apply rank_members_stable; auto.
Qed.

Lemma composite_of_def_consistent:
  forall env id su m a co,
  composite_of_def env id su m a = OK co ->
  composite_consistent env co.
Proof.
  unfold composite_of_def; intros.
  destruct (env!id); try discriminate. destruct (complete_members env m) eqn:C; inv H.
  constructor; auto.
Qed.

Theorem build_composite_env_consistent:
  forall defs env, build_composite_env defs = OK env -> composite_env_consistent env.
Proof.
  cut (forall defs env0 env,
       add_composite_definitions env0 defs = OK env ->
       composite_env_consistent env0 ->
       composite_env_consistent env).
  intros. eapply H; eauto. red; intros. rewrite PTree.gempty in H1; discriminate.
  induction defs as [|d1 defs]; simpl; intros.
- inv H; auto.
- destruct d1; monadInv H.
  eapply IHdefs; eauto.
  set (env1 := PTree.set id x env0) in *.
  assert (env0!id = None).
  { unfold composite_of_def in EQ. destruct (env0!id). discriminate. auto. }
  assert (forall id1 co1, env0!id1 = Some co1 -> env1!id1 = Some co1).
  { intros. unfold env1. rewrite PTree.gso; auto. congruence. }
  red; intros. apply composite_consistent_stable with env0; auto.
  unfold env1 in H2; rewrite PTree.gsspec in H2; destruct (peq id0 id).
+ subst id0. inversion H2; clear H2. subst co.
  eapply composite_of_def_consistent; eauto.
+ eapply H0; eauto.
Qed.

Moreover, every composite definition is reflected in the composite environment.

Theorem build_composite_env_charact:
  forall id su m a defs env,
  build_composite_env defs = OK env ->
  In (Composite id su m a) defs ->
  exists co, env!id = Some co /\ co_members co = m /\ co_attr co = a /\ co_su co = su.
Proof.
  intros until defs. unfold build_composite_env. generalize (PTree.empty composite) as env0.
  revert defs. induction defs as [|d1 defs]; simpl; intros.
- contradiction.
- destruct d1; monadInv H.
  destruct H0; [idtac|eapply IHdefs;eauto]. inv H.
  unfold composite_of_def in EQ.
  destruct (env0!id) eqn:E; try discriminate.
  destruct (complete_members env0 m) eqn:C; simplify_eq EQ. clear EQ; intros EQ.
  exists x.
  split. eapply add_composite_definitions_incr; eauto. apply PTree.gss.
  subst x; auto.
Qed.

Theorem build_composite_env_domain:
  forall env defs id co,
  build_composite_env defs = OK env ->
  env!id = Some co ->
  In (Composite id (co_su co) (co_members co) (co_attr co)) defs.
Proof.
  intros env0 defs0 id co.
  assert (REC: forall l env env',
    add_composite_definitions env l = OK env' ->
    env'!id = Some co ->
    env!id = Some co \/ In (Composite id (co_su co) (co_members co) (co_attr co)) l).
  { induction l; simpl; intros.
  - inv H; auto.
  - destruct a; monadInv H. exploit IHl; eauto.
    unfold composite_of_def in EQ. destruct (env!id0) eqn:E; try discriminate.
    destruct (complete_members env m) eqn:C; simplify_eq EQ. clear EQ; intros EQ.
    rewrite PTree.gsspec. intros [A|A]; auto.
    destruct (peq id id0); auto.
    inv A. rewrite <- H0; auto.
  }
  intros. exploit REC; eauto. rewrite PTree.gempty. intuition congruence.
Qed.

As a corollay, in a consistent environment, the rank of a composite type is strictly greater than the ranks of its member types.

Remark rank_type_members:
  forall ce id t m, In (id, t) m -> (rank_type ce t <= rank_members ce m)%nat.
Proof.
  induction m; simpl; intros; intuition auto.
  subst a. xomega.
  xomega.
Qed.

Lemma rank_struct_member:
  forall ce id a co id1 t1,
  composite_env_consistent ce ->
  ce!id = Some co ->
  In (id1, t1) (co_members co) ->
  (rank_type ce t1 < rank_type ce (Tstruct id a))%nat.
Proof.
  intros; simpl. rewrite H0.
  erewrite co_consistent_rank by eauto.
  exploit (rank_type_members ce); eauto.
  omega.
Qed.

Lemma rank_union_member:
  forall ce id a co id1 t1,
  composite_env_consistent ce ->
  ce!id = Some co ->
  In (id1, t1) (co_members co) ->
  (rank_type ce t1 < rank_type ce (Tunion id a))%nat.
Proof.
  intros; simpl. rewrite H0.
  erewrite co_consistent_rank by eauto.
  exploit (rank_type_members ce); eauto.
  omega.
Qed.

Programs and compilation units


The definitions in this section are parameterized over a type F of internal function definitions, so that they apply both to CompCert C and to Clight.

Set Implicit Arguments.

Section PROGRAMS.

Variable F: Type.

Functions can either be defined (Internal) or declared as external functions (External).

Inductive fundef : Type :=
  | Internal: F -> fundef
  | External: external_function -> typelist -> type -> calling_convention -> fundef.

A program, or compilation unit, is composed of:

Record program : Type := {
  prog_defs: list (ident * globdef fundef type);
  prog_public: list ident;
  prog_main: ident;
  prog_types: list composite_definition;
  prog_comp_env: composite_env;
  prog_comp_env_eq: build_composite_env prog_types = OK prog_comp_env
}.

Definition program_of_program (p: program) : AST.program fundef type :=
  {| AST.prog_defs := p.(prog_defs);
     AST.prog_public := p.(prog_public);
     AST.prog_main := p.(prog_main) |}.

Coercion program_of_program: program >-> AST.program.

Program Definition make_program (types: list composite_definition)
                                (defs: list (ident * globdef fundef type))
                                (public: list ident)
                                (main: ident) : res program :=
  match build_composite_env types with
  | Error e => Error e
  | OK ce =>
      OK {| prog_defs := defs;
            prog_public := public;
            prog_main := main;
            prog_types := types;
            prog_comp_env := ce;
            prog_comp_env_eq := _ |}
  end.

End PROGRAMS.

Arguments External {F} _ _ _ _.

Unset Implicit Arguments.

Separate compilation and linking


Linking types


Instance Linker_types : Linker type := {
  link := fun t1 t2 => if type_eq t1 t2 then Some t1 else None;
  linkorder := fun t1 t2 => t1 = t2
}.
Proof.
  auto.
  intros; congruence.
  intros. destruct (type_eq x y); inv H. auto.
Defined.

Global Opaque Linker_types.

Linking composite definitions


Definition check_compat_composite (l: list composite_definition) (cd: composite_definition) : bool :=
  List.forallb
    (fun cd' =>
      if ident_eq (name_composite_def cd') (name_composite_def cd) then composite_def_eq cd cd' else true)
    l.

Definition filter_redefs (l1 l2: list composite_definition) :=
  let names1 := map name_composite_def l1 in
  List.filter (fun cd => negb (In_dec ident_eq (name_composite_def cd) names1)) l2.

Definition link_composite_defs (l1 l2: list composite_definition): option (list composite_definition) :=
  if List.forallb (check_compat_composite l2) l1
  then Some (l1 ++ filter_redefs l1 l2)
  else None.

Lemma link_composite_def_inv:
  forall l1 l2 l,
  link_composite_defs l1 l2 = Some l ->
     (forall cd1 cd2, In cd1 l1 -> In cd2 l2 -> name_composite_def cd2 = name_composite_def cd1 -> cd2 = cd1)
  /\ l = l1 ++ filter_redefs l1 l2
  /\ (forall x, In x l <-> In x l1 \/ In x l2).
Proof.
  unfold link_composite_defs; intros.
  destruct (forallb (check_compat_composite l2) l1) eqn:C; inv H.
  assert (A:
    forall cd1 cd2, In cd1 l1 -> In cd2 l2 -> name_composite_def cd2 = name_composite_def cd1 -> cd2 = cd1).
  { rewrite forallb_forall in C. intros.
    apply C in H. unfold check_compat_composite in H. rewrite forallb_forall in H.
    apply H in H0. rewrite H1, dec_eq_true in H0. symmetry; eapply proj_sumbool_true; eauto. }
  split. auto. split. auto.
  unfold filter_redefs; intros.
  rewrite in_app_iff. rewrite filter_In. intuition auto.
  destruct (in_dec ident_eq (name_composite_def x) (map name_composite_def l1)); simpl; auto.
  exploit list_in_map_inv; eauto. intros (y & P & Q).
  assert (x = y) by eauto. subst y. auto.
Qed.

Instance Linker_composite_defs : Linker (list composite_definition) := {
  link := link_composite_defs;
  linkorder := @List.incl composite_definition
}.
Proof.
- intros; apply incl_refl.
- intros; red; intros; eauto.
- intros. apply link_composite_def_inv in H; destruct H as (A & B & C).
  split; red; intros; apply C; auto.
Defined.

Connections with build_composite_env.

Lemma add_composite_definitions_append:
  forall l1 l2 env env'',
  add_composite_definitions env (l1 ++ l2) = OK env'' <->
  exists env', add_composite_definitions env l1 = OK env' /\ add_composite_definitions env' l2 = OK env''.
Proof.
  induction l1; simpl; intros.
- split; intros. exists env; auto. destruct H as (env' & A & B). congruence.
- destruct a; simpl. destruct (composite_of_def env id su m a); simpl.
  apply IHl1.
  split; intros. discriminate. destruct H as (env' & A & B); discriminate.
Qed.

Lemma composite_eq:
  forall su1 m1 a1 sz1 al1 r1 pos1 al2p1 szal1
         su2 m2 a2 sz2 al2 r2 pos2 al2p2 szal2,
  su1 = su2 -> m1 = m2 -> a1 = a2 -> sz1 = sz2 -> al1 = al2 -> r1 = r2 ->
  Build_composite su1 m1 a1 sz1 al1 r1 pos1 al2p1 szal1 = Build_composite su2 m2 a2 sz2 al2 r2 pos2 al2p2 szal2.
Proof.
  intros. subst.
  assert (pos1 = pos2) by apply proof_irr.
  assert (al2p1 = al2p2) by apply proof_irr.
  assert (szal1 = szal2) by apply proof_irr.
  subst. reflexivity.
Qed.

Lemma composite_of_def_eq:
  forall env id co,
  composite_consistent env co ->
  env!id = None ->
  composite_of_def env id (co_su co) (co_members co) (co_attr co) = OK co.
Proof.
  intros. destruct H as [A B C D]. unfold composite_of_def. rewrite H0, A.
  destruct co; simpl in *. f_equal. apply composite_eq; auto. rewrite C, B; auto.
Qed.

Lemma composite_consistent_unique:
  forall env co1 co2,
  composite_consistent env co1 ->
  composite_consistent env co2 ->
  co_su co1 = co_su co2 ->
  co_members co1 = co_members co2 ->
  co_attr co1 = co_attr co2 ->
  co1 = co2.
Proof.
  intros. destruct H, H0. destruct co1, co2; simpl in *. apply composite_eq; congruence.
Qed.

Lemma composite_of_def_stable:
  forall (env env': composite_env)
         (EXTENDS: forall id co, env!id = Some co -> env'!id = Some co)
         id su m a co,
  env'!id = None ->
  composite_of_def env id su m a = OK co ->
  composite_of_def env' id su m a = OK co.
Proof.
  intros.
  unfold composite_of_def in H0.
  destruct (env!id) eqn:E; try discriminate.
  destruct (complete_members env m) eqn:CM; try discriminate.
  transitivity (composite_of_def env' id (co_su co) (co_members co) (co_attr co)).
  inv H0; auto.
  apply composite_of_def_eq; auto.
  apply composite_consistent_stable with env; auto.
  inv H0; constructor; auto.
Qed.

Lemma link_add_composite_definitions:
  forall l0 env0,
  build_composite_env l0 = OK env0 ->
  forall l env1 env1' env2,
  add_composite_definitions env1 l = OK env1' ->
  (forall id co, env1!id = Some co -> env2!id = Some co) ->
  (forall id co, env0!id = Some co -> env2!id = Some co) ->
  (forall id, env2!id = if In_dec ident_eq id (map name_composite_def l0) then env0!id else env1!id) ->
  ((forall cd1 cd2, In cd1 l0 -> In cd2 l -> name_composite_def cd2 = name_composite_def cd1 -> cd2 = cd1)) ->
  { env2' |
      add_composite_definitions env2 (filter_redefs l0 l) = OK env2'
  /\ (forall id co, env1'!id = Some co -> env2'!id = Some co)
  /\ (forall id co, env0!id = Some co -> env2'!id = Some co) }.
Proof.
  induction l; simpl; intros until env2; intros ACD AGREE1 AGREE0 AGREE2 UNIQUE.
- inv ACD. exists env2; auto.
- destruct a. destruct (composite_of_def env1 id su m a) as [x|e] eqn:EQ; try discriminate.
  simpl in ACD.
  generalize EQ. unfold composite_of_def at 1.
  destruct (env1!id) eqn:E1; try congruence.
  destruct (complete_members env1 m) eqn:CM1; try congruence.
  intros EQ1.
  simpl. destruct (in_dec ident_eq id (map name_composite_def l0)); simpl.
+ eapply IHl; eauto.
* intros. rewrite PTree.gsspec in H0. destruct (peq id0 id); auto.
  inv H0.
  exploit list_in_map_inv; eauto. intros ([id' su' m' a'] & P & Q).
  assert (X: Composite id su m a = Composite id' su' m' a').
  { eapply UNIQUE. auto. auto. rewrite <- P; auto. }
  inv X.
  exploit build_composite_env_charact; eauto. intros (co' & U & V & W & X).
  assert (co' = co).
  { apply composite_consistent_unique with env2.
    apply composite_consistent_stable with env0; auto.
    eapply build_composite_env_consistent; eauto.
    apply composite_consistent_stable with env1; auto.
    inversion EQ1; constructor; auto.
    inversion EQ1; auto.
    inversion EQ1; auto.
    inversion EQ1; auto. }
  subst co'. apply AGREE0; auto.
* intros. rewrite AGREE2. destruct (in_dec ident_eq id0 (map name_composite_def l0)); auto.
  rewrite PTree.gsspec. destruct (peq id0 id); auto. subst id0. contradiction.
+ assert (E2: env2!id = None).
  { rewrite AGREE2. rewrite pred_dec_false by auto. auto. }
  assert (E3: composite_of_def env2 id su m a = OK x).
  { eapply composite_of_def_stable. eexact AGREE1. eauto. eauto. }
  rewrite E3. simpl. eapply IHl; eauto.
* intros until co; rewrite ! PTree.gsspec. destruct (peq id0 id); auto.
* intros until co; rewrite ! PTree.gsspec. intros. destruct (peq id0 id); auto.
  subst id0. apply AGREE0 in H0. congruence.
* intros. rewrite ! PTree.gsspec. destruct (peq id0 id); auto. subst id0.
  rewrite pred_dec_false by auto. auto.
Qed.

Theorem link_build_composite_env:
  forall l1 l2 l env1 env2,
  build_composite_env l1 = OK env1 ->
  build_composite_env l2 = OK env2 ->
  link l1 l2 = Some l ->
  { env |
     build_composite_env l = OK env
  /\ (forall id co, env1!id = Some co -> env!id = Some co)
  /\ (forall id co, env2!id = Some co -> env!id = Some co) }.
Proof.
  intros. edestruct link_composite_def_inv as (A & B & C); eauto.
  edestruct link_add_composite_definitions as (env & P & Q & R).
  eexact H.
  eexact H0.
  instantiate (1 := env1). intros. rewrite PTree.gempty in H2; discriminate.
  auto.
  intros. destruct (in_dec ident_eq id (map name_composite_def l1)); auto.
  rewrite PTree.gempty. destruct (env1!id) eqn:E1; auto.
  exploit build_composite_env_domain. eexact H. eauto.
  intros. apply (in_map name_composite_def) in H2. elim n; auto.
  auto.
  exists env; split; auto. subst l. apply add_composite_definitions_append. exists env1; auto.
Qed.

Linking function definitions


Definition link_fundef {F: Type} (fd1 fd2: fundef F) :=
  match fd1, fd2 with
  | Internal _, Internal _ => None
  | External ef1 targs1 tres1 cc1, External ef2 targs2 tres2 cc2 =>
      if external_function_eq ef1 ef2
      && typelist_eq targs1 targs2
      && type_eq tres1 tres2
      && calling_convention_eq cc1 cc2
      then Some (External ef1 targs1 tres1 cc1)
      else None
  | Internal f, External ef targs tres cc =>
      match ef with EF_external id sg => Some (Internal f) | _ => None end
  | External ef targs tres cc, Internal f =>
      match ef with EF_external id sg => Some (Internal f) | _ => None end
  end.

Inductive linkorder_fundef {F: Type}: fundef F -> fundef F -> Prop :=
  | linkorder_fundef_refl: forall fd,
      linkorder_fundef fd fd
  | linkorder_fundef_ext_int: forall f id sg targs tres cc,
      linkorder_fundef (External (EF_external id sg) targs tres cc) (Internal f).

Instance Linker_fundef (F: Type): Linker (fundef F) := {
  link := link_fundef;
  linkorder := linkorder_fundef
}.
Proof.
- intros; constructor.
- intros. inv H; inv H0; constructor.
- intros x y z EQ. destruct x, y; simpl in EQ.
+ discriminate.
+ destruct e; inv EQ. split; constructor.
+ destruct e; inv EQ. split; constructor.
+ destruct (external_function_eq e e0 && typelist_eq t t1 && type_eq t0 t2 && calling_convention_eq c c0) eqn:A; inv EQ.
  InvBooleans. subst. split; constructor.
Defined.

Remark link_fundef_either:
  forall (F: Type) (f1 f2 f: fundef F), link f1 f2 = Some f -> f = f1 \/ f = f2.
Proof.
  simpl; intros. unfold link_fundef in H. destruct f1, f2; try discriminate.
- destruct e; inv H. auto.
- destruct e; inv H. auto.
- destruct (external_function_eq e e0 && typelist_eq t t1 && type_eq t0 t2 && calling_convention_eq c c0); inv H; auto.
Qed.

Global Opaque Linker_fundef.

Linking programs


Definition lift_option {A: Type} (opt: option A) : { x | opt = Some x } + { opt = None }.
Proof.
  destruct opt. left; exists a; auto. right; auto.
Defined.

Definition link_program {F:Type} (p1 p2: program F): option (program F) :=
  match link (program_of_program p1) (program_of_program p2) with
  | None => None
  | Some p =>
      match lift_option (link p1.(prog_types) p2.(prog_types)) with
      | inright _ => None
      | inleft (exist typs EQ) =>
          match link_build_composite_env
                   p1.(prog_types) p2.(prog_types) typs
                   p1.(prog_comp_env) p2.(prog_comp_env)
                   p1.(prog_comp_env_eq) p2.(prog_comp_env_eq) EQ with
          | exist env (conj P Q) =>
              Some {| prog_defs := p.(AST.prog_defs);
                      prog_public := p.(AST.prog_public);
                      prog_main := p.(AST.prog_main);
                      prog_types := typs;
                      prog_comp_env := env;
                      prog_comp_env_eq := P |}
          end
      end
  end.

Definition linkorder_program {F: Type} (p1 p2: program F) : Prop :=
     linkorder (program_of_program p1) (program_of_program p2)
  /\ (forall id co, p1.(prog_comp_env)!id = Some co -> p2.(prog_comp_env)!id = Some co).

Instance Linker_program (F: Type): Linker (program F) := {
  link := link_program;
  linkorder := linkorder_program
}.
Proof.
- intros; split. apply linkorder_refl. auto.
- intros. destruct H, H0. split. eapply linkorder_trans; eauto.
  intros; auto.
- intros until z. unfold link_program.
  destruct (link (program_of_program x) (program_of_program y)) as [p|] eqn:LP; try discriminate.
  destruct (lift_option (link (prog_types x) (prog_types y))) as [[typs EQ]|EQ]; try discriminate.
  destruct (link_build_composite_env (prog_types x) (prog_types y) typs
       (prog_comp_env x) (prog_comp_env y) (prog_comp_env_eq x)
       (prog_comp_env_eq y) EQ) as (env & P & Q & R).
  destruct (link_linkorder _ _ _ LP).
  intros X; inv X.
  split; split; auto.
Defined.

Global Opaque Linker_program.

Commutation between linking and program transformations


Section LINK_MATCH_PROGRAM.

Context {F G: Type}.
Variable match_fundef: fundef F -> fundef G -> Prop.

Hypothesis link_match_fundef:
  forall f1 tf1 f2 tf2 f,
  link f1 f2 = Some f ->
  match_fundef f1 tf1 -> match_fundef f2 tf2 ->
  exists tf, link tf1 tf2 = Some tf /\ match_fundef f tf.

Let match_program (p: program F) (tp: program G) : Prop :=
    Linking.match_program (fun ctx f tf => match_fundef f tf) eq p tp
 /\ prog_types tp = prog_types p.

Theorem link_match_program:
  forall p1 p2 tp1 tp2 p,
  link p1 p2 = Some p -> match_program p1 tp1 -> match_program p2 tp2 ->
  exists tp, link tp1 tp2 = Some tp /\ match_program p tp.
Proof.
  intros. destruct H0, H1.
Local Transparent Linker_program.
  simpl in H; unfold link_program in H.
  destruct (link (program_of_program p1) (program_of_program p2)) as [pp|] eqn:LP; try discriminate.
  assert (A: exists tpp,
               link (program_of_program tp1) (program_of_program tp2) = Some tpp
             /\ Linking.match_program (fun ctx f tf => match_fundef f tf) eq pp tpp).
  { eapply Linking.link_match_program.
  - intros. exploit link_match_fundef; eauto. intros (tf & A & B). exists tf; auto.
  - intros.
    Local Transparent Linker_types.
    simpl in *. destruct (type_eq v1 v2); inv H4. exists v; rewrite dec_eq_true; auto.
  - eauto.
  - eauto.
  - eauto.
  - apply (link_linkorder _ _ _ LP).
  - apply (link_linkorder _ _ _ LP). }
  destruct A as (tpp & TLP & MP).
  simpl; unfold link_program. rewrite TLP.
  destruct (lift_option (link (prog_types p1) (prog_types p2))) as [[typs EQ]|EQ]; try discriminate.
  destruct (link_build_composite_env (prog_types p1) (prog_types p2) typs
           (prog_comp_env p1) (prog_comp_env p2) (prog_comp_env_eq p1)
           (prog_comp_env_eq p2) EQ) as (env & P & Q).
  rewrite <- H2, <- H3 in EQ.
  destruct (lift_option (link (prog_types tp1) (prog_types tp2))) as [[ttyps EQ']|EQ']; try congruence.
  assert (ttyps = typs) by congruence. subst ttyps.
  destruct (link_build_composite_env (prog_types tp1) (prog_types tp2) typs
         (prog_comp_env tp1) (prog_comp_env tp2) (prog_comp_env_eq tp1)
         (prog_comp_env_eq tp2) EQ') as (tenv & R & S).
  assert (tenv = env) by congruence. subst tenv.
  econstructor; split; eauto. inv H. split; auto.
  unfold program_of_program; simpl. destruct pp, tpp; exact MP.
Qed.

End LINK_MATCH_PROGRAM.