Abstract syntax and semantics for the Csharpminor language.
Mostly copied from original CompCert.
Require Import Coqlib Maps AST Integers Floats Values.
Require Import Memory Events Globalenvs Switch Smallstep.
Require Cminor.
Require Import Csharpminor.
Require Import CUAST Footprint MemOpFP String val_casted Cminor_op_footprint.
Require IS_local.
Local Notation footprint :=
FP.t.
Local Notation empfp :=
FP.emp.
Abstract syntax: unchanged
Operational semantics
States
In our case, core type, which is compcert state without memory
Inductive core:
Type :=
|
Core_State:
(* Execution within a function *)
forall (
f:
function)
(* currently executing function *)
(
s:
stmt)
(* statement under consideration *)
(
k:
cont)
(* its continuation -- what to do next *)
(
e:
env)
(* current local environment *)
(
le:
temp_env),
(* current temporary environment *)
core
|
Core_Callstate:
(* Invocation of a function *)
forall (
f:
fundef)
(* function to invoke *)
(
args:
list val)
(* arguments provided by caller *)
(
k:
cont),
(* what to do next *)
core
|
Core_Returnstate:
(* Return from a function *)
forall (
v:
val)
(* Return value *)
(
k:
cont),
(* what to do next *)
core.
need to define binary operation footprints for Cminor.eval_binop
Definition eval_binop_fp :=
Cminor_op_footprint.eval_binop_fp.
footprint for allocation of local variables at function entry
Inductive alloc_variables_fp:
mem ->
list (
ident *
Z) ->
footprint ->
Prop :=
|
alloc_variables_fp_nil:
forall m,
alloc_variables_fp m nil empfp
|
alloc_variables_fp_cons:
forall m id sz vars m1 b1 fp fp',
Mem.alloc m 0
sz = (
m1,
b1) ->
alloc_fp m 0
sz =
fp ->
alloc_variables_fp m1 vars fp' ->
alloc_variables_fp m ((
id,
sz) ::
vars) (
FP.union fp fp').
Lemma alloc_variables_extends:
forall a e m te m'
Lm fp,
alloc_variables e m a te m'->
alloc_variables_fp m a fp->
Mem.extends m Lm ->
exists Hm,
alloc_variables e Lm a te Hm /\
alloc_variables_fp Lm a fp /\
Mem.extends m'
Hm.
Proof.
induction a;
intros.
inv H.
exists Lm.
constructor.
constructor.
inv H0.
constructor.
constructor.
auto.
inv H.
inv H0.
rewrite H6 in H5;
inv H5.
eapply Mem.alloc_extends with(
lo2:=0)(
hi2:=
sz)
in H6 as ?;
eauto;
try Omega.omega.
destruct H as [?[]].
eapply IHa in H0 as [?[?[]]];
eauto.
exists x0.
econstructor;
eauto.
econstructor;
eauto.
econstructor;
eauto.
econstructor;
eauto.
unfold MemOpFP.alloc_fp.
Transparent Mem.alloc.
unfold Mem.alloc in *.
inv H;
inv H6.
auto.
Opaque Mem.alloc.
Qed.
Section RELSEM.
Variable ge:
genv.
Local Notation eval_var_addr := (
eval_var_addr ge).
Local Notation eval_expr := (
eval_expr ge).
Local Notation eval_exprlist := (
eval_exprlist ge).
footprint for evaluation of an expression
Section EVAL_EXPR.
Variable e:
env.
Variable le:
temp_env.
Variable m:
mem.
Inductive eval_expr_fp:
expr ->
footprint ->
Prop :=
|
eval_Evar_fp:
forall id,
eval_expr_fp (
Evar id)
empfp
|
eval_Eaddrof:
forall id b,
eval_var_addr e id b ->
eval_expr_fp (
Eaddrof id)
empfp
|
eval_Econst:
forall cst v,
eval_constant cst =
Some v ->
eval_expr_fp (
Econst cst)
empfp
|
eval_Eunop:
forall op a1 v1 fp1 v,
eval_expr e le m a1 v1 ->
eval_expr_fp a1 fp1 ->
eval_unop op v1 =
Some v ->
eval_expr_fp (
Eunop op a1)
fp1
|
eval_Ebinop:
forall op a1 a2 v1 v2 fp1 fp2 v fp3 fp,
eval_expr e le m a1 v1 ->
eval_expr_fp a1 fp1 ->
eval_expr e le m a2 v2 ->
eval_expr_fp a2 fp2 ->
eval_binop op v1 v2 m =
Some v ->
eval_binop_fp op v1 v2 m =
Some fp3 ->
FP.union (
FP.union fp1 fp2)
fp3 =
fp ->
eval_expr_fp (
Ebinop op a1 a2)
fp
|
eval_Eload:
forall chunk a v1 fp1 v fp2 fp,
eval_expr e le m a v1 ->
eval_expr_fp a fp1 ->
Mem.loadv chunk m v1 =
Some v ->
loadv_fp chunk v1 =
fp2 ->
FP.union fp1 fp2 =
fp ->
eval_expr_fp (
Eload chunk a)
fp.
footprint for evaluation of a list of expressions
Inductive eval_exprlist_fp:
list expr ->
footprint ->
Prop :=
|
eval_Enil:
eval_exprlist_fp nil empfp
|
eval_Econs:
forall a1 al fp1 fp2 fp,
eval_expr_fp a1 fp1 ->
eval_exprlist_fp al fp2 ->
FP.union fp1 fp2 =
fp ->
eval_exprlist_fp (
a1 ::
al)
fp.
End EVAL_EXPR.
One step of execution, with footprint
Inductive step:
core ->
mem ->
footprint ->
core ->
mem ->
Prop :=
|
step_skip_seq:
forall f s k e le m,
step (
Core_State f Sskip (
Kseq s k)
e le)
m
empfp (
Core_State f s k e le)
m
|
step_skip_block:
forall f k e le m,
step (
Core_State f Sskip (
Kblock k)
e le)
m
empfp (
Core_State f Sskip k e le)
m
|
step_skip_call:
forall f k e le m m'
fp,
is_call_cont k ->
Mem.free_list m (
blocks_of_env e) =
Some m' ->
free_list_fp (
blocks_of_env e) =
fp ->
step (
Core_State f Sskip k e le)
m
fp (
Core_Returnstate Vundef k)
m'
|
step_set:
forall f id a k e le m v fp,
eval_expr e le m a v ->
eval_expr_fp e le m a fp ->
step (
Core_State f (
Sset id a)
k e le)
m
fp (
Core_State f Sskip k e (
PTree.set id v le))
m
|
step_store:
forall f chunk addr a k e le m vaddr v m'
fp1 fp2 fp3 fp,
eval_expr e le m addr vaddr ->
eval_expr_fp e le m addr fp1 ->
eval_expr e le m a v ->
eval_expr_fp e le m a fp2 ->
Mem.storev chunk m vaddr v =
Some m' ->
storev_fp chunk vaddr =
fp3 ->
FP.union (
FP.union fp1 fp2)
fp3 =
fp ->
step (
Core_State f (
Sstore chunk addr a)
k e le)
m
fp (
Core_State f Sskip k e le)
m'
|
step_call:
forall f optid sig a bl k e le m vf vargs fd fp1 fp2 fp,
eval_expr e le m a vf ->
eval_expr_fp e le m a fp1 ->
eval_exprlist e le m bl vargs ->
eval_exprlist_fp e le m bl fp2 ->
Genv.find_funct ge vf =
Some fd ->
funsig fd =
sig ->
FP.union fp1 fp2 =
fp ->
step (
Core_State f (
Scall optid sig a bl)
k e le)
m
fp (
Core_Callstate fd vargs (
Kcall optid f e le k))
m
|
step_seq:
forall f s1 s2 k e le m,
step (
Core_State f (
Sseq s1 s2)
k e le)
m
empfp (
Core_State f s1 (
Kseq s2 k)
e le)
m
|
step_ifthenelse:
forall f a s1 s2 k e le m v b fp,
eval_expr e le m a v ->
eval_expr_fp e le m a fp ->
Val.bool_of_val v b ->
step (
Core_State f (
Sifthenelse a s1 s2)
k e le)
m
fp (
Core_State f (
if b then s1 else s2)
k e le)
m
|
step_loop:
forall f s k e le m,
step (
Core_State f (
Sloop s)
k e le)
m
empfp (
Core_State f s (
Kseq (
Sloop s)
k)
e le)
m
|
step_block:
forall f s k e le m,
step (
Core_State f (
Sblock s)
k e le)
m
empfp (
Core_State f s (
Kblock k)
e le)
m
|
step_exit_seq:
forall f n s k e le m,
step (
Core_State f (
Sexit n) (
Kseq s k)
e le)
m
empfp (
Core_State f (
Sexit n)
k e le)
m
|
step_exit_block_0:
forall f k e le m,
step (
Core_State f (
Sexit O) (
Kblock k)
e le)
m
empfp (
Core_State f Sskip k e le)
m
|
step_exit_block_S:
forall f n k e le m,
step (
Core_State f (
Sexit (
S n)) (
Kblock k)
e le)
m
empfp (
Core_State f (
Sexit n)
k e le)
m
|
step_switch:
forall f islong a cases k e le m v n fp,
eval_expr e le m a v ->
eval_expr_fp e le m a fp ->
switch_argument islong v n ->
step (
Core_State f (
Sswitch islong a cases)
k e le)
m
fp (
Core_State f (
seq_of_lbl_stmt (
select_switch n cases))
k e le)
m
|
step_return_0:
forall f k e le m m'
fp,
Mem.free_list m (
blocks_of_env e) =
Some m' ->
free_list_fp (
blocks_of_env e) =
fp ->
step (
Core_State f (
Sreturn None)
k e le)
m
fp (
Core_Returnstate Vundef (
call_cont k))
m'
|
step_return_1:
forall f a k e le m v m'
fp1 fp2 fp,
eval_expr e le m a v ->
eval_expr_fp e le m a fp1 ->
Mem.free_list m (
blocks_of_env e) =
Some m' ->
free_list_fp (
blocks_of_env e) =
fp2 ->
FP.union fp1 fp2 =
fp ->
step (
Core_State f (
Sreturn (
Some a))
k e le)
m
fp (
Core_Returnstate v (
call_cont k))
m'
|
step_label:
forall f lbl s k e le m,
step (
Core_State f (
Slabel lbl s)
k e le)
m
empfp (
Core_State f s k e le)
m
|
step_goto:
forall f lbl k e le m s'
k',
find_label lbl f.(
fn_body) (
call_cont k) =
Some(
s',
k') ->
step (
Core_State f (
Sgoto lbl)
k e le)
m
empfp (
Core_State f s'
k'
e le)
m
|
step_internal_function:
forall f vargs k m m1 e le fp,
list_norepet (
map fst f.(
fn_vars)) ->
list_norepet f.(
fn_params) ->
list_disjoint f.(
fn_params)
f.(
fn_temps) ->
alloc_variables empty_env m (
fn_vars f)
e m1 ->
alloc_variables_fp m (
fn_vars f)
fp ->
bind_parameters f.(
fn_params)
vargs (
create_undef_temps f.(
fn_temps)) =
Some le ->
step (
Core_Callstate (
Internal f)
vargs k)
m
fp (
Core_State f f.(
fn_body)
k e le)
m1
|
step_return:
forall v optid f e le k m,
step (
Core_Returnstate v (
Kcall optid f e le k))
m
empfp (
Core_State f Sskip k e (
Cminor.set_optvar optid v le))
m.
End RELSEM.
TODO: comp_units in all languages could be abstracted
Definition comp_unit := @
comp_unit_generic fundef unit.
Definition init_genv (
cu:
comp_unit) (
ge G:
genv) :=
ge =
G /\
globalenv_generic cu ge.
Definition init_mem := @
init_mem_generic fundef unit.
Copied from compcomp
Definition fundef_init (
cfd:
fundef) (
args:
list val) :
option core :=
match cfd with
|
Internal fd =>
if val_has_type_list_func args (
sig_args (
funsig cfd))
&&
vals_defined args
&&
zlt (4*(2*(
Zlength args)))
Int.max_unsigned
then Some (
Core_Callstate cfd args Kstop)
else None
|
External _=>
None
end.
Definition init_core (
ge :
Genv.t fundef unit) (
fnid:
ident) (
args:
list val):
option core :=
generic_init_core fundef_init ge fnid args.
Require GAST.
Definition at_external (
ge:
Genv.t fundef unit) (
c:
core) :
option (
ident *
signature *
list val) :=
match c with
|
Core_State _ _ _ _ _ =>
None
|
Core_Callstate fd args k =>
match fd with
|
External (
EF_external name sig) =>
match invert_symbol_from_string ge name with
|
Some fnid =>
if peq fnid GAST.ent_atom ||
peq fnid GAST.ext_atom
then None
else Some (
fnid,
sig,
args)
|
_ =>
None
end
|
_ =>
None
end
|
Core_Returnstate v k =>
None
end.
Definition after_external (
c:
core) (
vret:
option val) :
option core :=
match c with
Core_Callstate fd args k =>
match fd with
|
External (
EF_external _ sg)
=>
match vret,
sig_res sg with
None,
None =>
Some (
Core_Returnstate Vundef k)
|
Some v,
Some ty =>
if val_has_type_func v ty
then Some (
Core_Returnstate v k)
else None
|
_,
_ =>
None
end
|
_ =>
None
end
|
_ =>
None
end.
Definition halted (
c :
core):
option val :=
match c with
|
Core_Returnstate v Kstop =>
Some v
|
_ =>
None
end.
Wrap all these definitions into sem_local
Definition Csharpminor_IS :=
IS_local.Build_sem_local fundef unit genv comp_unit core init_genv init_mem
init_core halted step at_external after_external.