Library CompOptCert.optimizer.Kildall


Solvers for dataflow inequations. Modification: we do optimization on bblock

Require Import Coqlib.
Require Import Iteration.
Require Import Maps.
Require Import Lattice.
Require Import LibTactics.
Require Import Syntax.
Require Import Language.
Local Unset Elimination Schemes.
Local Unset Case Analysis Schemes.
Require Import Basics.
A forward dataflow problem is a set of inequations of the form
  • X(s) transf n X(n) if program point s is a successor of program point n
  • X(n) a if n is an entry point and a its minimal approximation.
The unknowns are the X(n), indexed by program points (e.g. nodes in the CFG graph of a RTL function). They range over a given ordered set that represents static approximations of the program state at each point. The transf function is the abstract transfer function: it computes an approximation transf n X(n) of the program state after executing instruction at point n, as a function of the approximation X(n) of the program state before executing that instruction.
Symmetrically, a backward dataflow problem is a set of inequations of the form
  • X(n) transf s X(s) if program point s is a successor of program point n
  • X(n) a if n is an entry point and a its minimal approximation.
The only difference with a forward dataflow problem is that the transfer function transf now computes the approximation before a program point s from the approximation X(s) after point s.
This file defines two solvers for dataflow problems. The first two solve (optimally) forward and backward problems using Kildall's worklist algorithm. They assume that the unknowns range over a semi-lattice, that is, an ordered type equipped with a least upper bound operation.

Solving forward dataflow problems using Kildall's algorithm

A forward dataflow solver has the following generic interface. Unknowns range over the type L.t, which is equipped with semi-lattice operations (see file Lattice).

Module AI (L: SEMILATTICE).
  Section AI.
    Definition t := L.t.
Abstract Interpretation
    Definition bot := L.bot.
    Definition ge := L.ge.

    Inductive b' :=
    | Atom (l: t)
    | Cons (l: t) (b: b')
    .

    Definition b := b'.
Abstract list of a block
    Definition bots:b := Atom bot .
TODO: may change this to other definition?
    Definition APartial := PMap.t t.
    Definition ACdhp := PMap.t (b).
Analysis result of a codeheap

    Definition AProg := PTree.t (ACdhp).

    Notation "l : b" := (Cons l b) (at level 69, right associativity).

    Definition getFirst (br: b): t :=
      match br with
      | Atom ll
      | l:br'l
      end.

    Fixpoint getLast (br: b): t :=
      match br with
      | Atom ll
      | l:br'getLast(br')
      end.

    Definition getTail (br: b): b :=
      match br with
      | Atom _br
      | l:br'br'
      end.

    Fixpoint len (br: b): nat :=
      match br with
      | Atom l ⇒ 1
      | l:br' ⇒ 1+(len br')
      end.

    Theorem len_gt_zero:
       b,
        (len b) > 0.
    Proof.
      intros. unfolds len; simpls.
      destruct b0; eauto.
      lia.
    Qed.

`br` for block result
    Definition In_bb (br: b): t :=
      match br with
      | l:br'l
      | Atom ll
      end.

    Fixpoint Out_bb (br: b): t :=
      match br with
      | Atom ll
      | l:b'Out_bb b'
      end.

    Fixpoint br_from_i_opt (br: b) (i: nat) {struct i}: option b :=
      match i with
      | OSome br
      | S i'
          match br with
          | l:br'br_from_i_opt br' i'
          | _None
          end
      end.

      Definition br_from_i (br: b) (i: nat): b :=
        match br_from_i_opt br i with
        | Some rr
        | NoneAI.Atom (getLast br)
        end.

    Fixpoint br_index_i (br: b) (i: nat): option t :=
      match i with
      | O
        match br with
        | l : _Some l
        | _None
        end
      | S i'
          match br with
          | l:br'br_index_i br i'
          | _None
          end
      end.

    Theorem get_first_from_blk_bots:
       i,
      getFirst (br_from_i bots i) = bot.
    Proof.
      destruct i.
      -
      unfolds bots.
      unfolds br_from_i; unfolds br_from_i_opt.
      unfolds getFirst; trivial.
      -
      unfolds br_from_i; unfolds br_from_i_opt.
      simpls.
      trivial.
    Qed.

    Theorem get_first_from_bots:
       analysis l i,
        analysis = PMap.init bots
        
        getFirst (br_from_i (analysis!!l) i) = bot.
    Proof.
      intros.
      unfold "!!".
      rewrite H. simpls.
      rewrite PTree.gempty.
      unfolds br_from_i.
      unfolds br_from_i_opt. unfolds bots.
      destruct i; eauto.
    Qed.

    Theorem get_first_from_eval:
     analysis l i eval,
      analysis = PMap.init (Atom eval)
      
      getFirst (br_from_i (analysis!!l) i) = eval.
    Proof.
      intros.
      unfold "!!".
      rewrite H. simpls.
      rewrite PTree.gempty.
      unfolds br_from_i.
      unfolds br_from_i_opt. unfolds bots.
      destruct i; eauto.
    Qed.

    Theorem get_head_from_eval:
     analysis l eval,
      analysis = PMap.init (Atom eval)
      
      getFirst (analysis!!l) = eval.
    Proof.
      intros.
      unfold "!!".
      rewrite H. simpls.
      rewrite PTree.gempty.
      unfolds br_from_i.
      unfolds br_from_i_opt. unfolds getFirst. trivial.
    Qed.

    Theorem get_last_from_bots:
     analysis l i,
      analysis = PMap.init bots
      
      getLast (br_from_i (analysis!!l) i) = bot.
  Proof.
    intros.
    unfold "!!".
    rewrite H. simpls.
    rewrite PTree.gempty.
    unfolds br_from_i.
    unfolds br_from_i_opt. unfolds bots.
    destruct i; eauto.
  Qed.

  Theorem get_last_from_eval:
   analysis l i eval,
    analysis = PMap.init (Atom eval)
    
    getLast (br_from_i (analysis!!l) i) = eval.
  Proof.
    intros.
    unfold "!!".
    rewrite H. simpls.
    rewrite PTree.gempty.
    unfolds br_from_i.
    unfolds br_from_i_opt. unfolds bots.
    destruct i; eauto.
  Qed.

  Theorem br_from_i_eval:
   i eval,
    br_from_i (Atom eval) i = Atom eval.
  Proof.
    induction i.
    intros. unfold br_from_i. unfold br_from_i_opt. trivial.
    intros. unfold br_from_i. unfold br_from_i_opt. eapply f_equal. unfold getLast. trivial.
  Qed.

  Theorem from_cons_plus:
     i ai ablk,
    br_from_i (Cons ai ablk) (S i) = br_from_i ablk i.
  Proof.
    induction i.
    -
    intros.
    unfold br_from_i; unfold br_from_i_opt. trivial.
    -
    intros.
    unfold br_from_i; unfold br_from_i_opt. simpls.
    fold br_from_i_opt.
    destruct ablk eqn:EqAblk; eauto.
  Qed.

  Theorem get_first_from_ablk_bots:
   i,
    getFirst (br_from_i bots i) = bot.
  Proof.
    intros.
    unfolds br_from_i.
    unfolds br_from_i_opt. unfolds bots.
    destruct i; eauto.
  Qed.

  Theorem get_first_from_ablk_eval:
   i eval,
    getFirst (br_from_i (Atom eval) i) = eval.
  Proof.
    intros.
    unfolds br_from_i.
    unfolds br_from_i_opt. unfolds bots.
    destruct i; eauto.
  Qed.

  Theorem get_last_from_ablk_bots:
     i,
      getLast (br_from_i bots i) = bot.
  Proof.
    intros.
    unfolds br_from_i.
    unfolds br_from_i_opt. unfolds bots.
    destruct i; eauto.
  Qed.

  Theorem get_last_from_ablk_eval:
   i eval,
    getLast (br_from_i (Atom eval) i) = eval.
  Proof.
    intros.
    unfolds br_from_i.
    unfolds br_from_i_opt. unfolds bots.
    destruct i; eauto.
  Qed.

    Lemma get_tail_from_i_eq_i_plus_one:
       i ai,
        getTail (br_from_i ai i) = br_from_i ai (i+1).
    Proof.
      induction i.
      - intros.
        unfolds getTail.
        simpls.
        unfold br_from_i. unfold br_from_i_opt.
        destruct ai; simpls.
        unfolds br_from_i.
        unfolds br_from_i_opt; eauto.
        unfolds br_from_i.
        unfolds br_from_i_opt; eauto.
      -
        intros.
        unfold getTail.
        unfolds br_from_i.
        unfolds br_from_i_opt; eauto. simpls.
        destruct ai eqn:EqAi; simpls; trivial.
        folds br_from_i_opt.
        eapply (IHi b0).
    Qed.

    Lemma get_last_from_i_eq_i_plus_one:
       i ai,
        len ai > S i
        
        getLast (br_from_i ai i) = getLast (br_from_i ai (i+1)).
    Proof.
      induction i.
      - intros.
        unfolds br_from_i; unfolds br_from_i_opt.
        unfolds bots.
        simpls.
        destruct ai eqn:Eq; eauto.
      - intros.
        unfold br_from_i; unfold br_from_i_opt; simpls.
        destruct ai eqn:EqAI; eauto.
        unfold len in H. simpl in H.
        assert (((fix len (br : b) : nat :=
            match br with
            | Atom _ ⇒ 1
            | _ : br'S (len br')
            end) b0) > S i). {lia. }
        eapply IHi in H0.
        trivial.
    Qed.

    Lemma get_last_from_i_eq_from_zero:
     i ai,
      len ai > S i
      
      getLast (br_from_i ai i) = getLast ai.
  Proof.
    induction i.
    - intros.
      unfolds br_from_i; unfolds br_from_i_opt.
      unfolds bots.
      simpls.
      destruct ai eqn:Eq; eauto.
    - intros.
      unfold br_from_i; unfold br_from_i_opt; simpls.
      destruct ai eqn:EqAI; eauto.
      unfold len in H. simpl in H.
      assert (((fix len (br : b) : nat :=
          match br with
          | Atom _ ⇒ 1
          | _ : br'S (len br')
          end) b0) > S i). {lia. }
      eapply IHi in H0.
      trivial.
  Qed.

    Lemma br_from_i_not_atom:
     i ai_blk,
      len ai_blk > i + 1
       l,
      br_from_i ai_blk i Atom l.
    Proof.
      induction i.
      intros. unfolds len. unfolds br_from_i. unfolds br_from_i_opt.
      destruct ai_blk. lia. intro. discriminate.

      intros. unfold len in H. unfold br_from_i. unfold br_from_i_opt.
      destruct ai_blk. lia. folds len.
      assert (len ai_blk > i + 1). {lia. }
      eapply (IHi) in H0; eauto.
    Qed.

    Lemma get_i_plus_1_eq_get_last:
     i ai,
      len ai = i + 2
      getFirst (br_from_i ai (i+1)) = getLast ai.
    Proof.
      induction i.
      -
        intros.
        unfold getFirst.
        unfold br_from_i. unfold br_from_i_opt.
        unfold getLast.
        destruct ai eqn:EqAi; unfold len; try discriminate.
        simpl.
        destruct b0; trivial.
        unfold len in H. fold len in H.
        pose proof (len_gt_zero b0).
        lia.
      -
        intros.
        destruct ai eqn:EqAi.
        {
          unfold len in H. lia.
        }
        unfold len in H.
        fold len in H.
        assert (len b0 = i + 2). {lia. }
        eapply IHi in H0; eauto.
    Qed.
  End AI.
End AI.

Module Type DATAFLOW_SOLVER.
Declare Module L : SEMILATTICE.
Module AI := AI(L).

Should I use AI.t here?

fixpoint successors transf ep ev is the solver. It returns either an error or a mapping from program points to values of type L.t representing the solution. successors is a finite map returning the list of successors of the given program point. transf is the transfer function, ep the entry point, and ev the minimal abstract value for ep.
{A} will be BBlock of concur-rtl finally, `PMap.t AI.t` will be additionally transferred into `PMap.t AI.b`

  Parameter fixpoint:
     {A: Type} (code: PTree.t A) (successors: A list positive)
           (transf: positive AI.t AI.t)
           (ep: positive) (ev: AI.t),
    option (PMap.t AI.t).

The fixpoint_solution theorem shows that the returned solution, if any, satisfies the dataflow inequations.
The fixpoint_entry theorem shows that the returned solution, if any, satisfies the additional constraint over the entry point.
Finally, any property that is preserved by L.lub and transf and that holds for L.bot also holds for the results of the analysis.

  Axiom fixpoint_invariant:
     A (code: PTree.t A) successors transf ep ev
           (P: L.t Prop),
    P L.bot
    ( x y, P x P y P (L.lub x y))
    ( pc instr x, code!pc = Some instr P x P (transf pc x))
    P ev
     res pc,
    fixpoint code successors transf ep ev = Some res
    P res!!pc.

End DATAFLOW_SOLVER.

Kildall's algorithm manipulates worklists, which are sets of CFG nodes equipped with a ``pick next node to examine'' operation. The algorithm converges faster if the nodes are chosen in an order consistent with a reverse postorder traversal of the CFG. For now, we parameterize the dataflow solver over a module that implements sets of CFG nodes.

Module Type NODE_SET.

  Parameter t: Type.
  Parameter empty: t.
  Parameter add: positive t t.
  Parameter pick: t option (positive × t).
  Parameter all_nodes: {A: Type}, PTree.t A t.

  Parameter In: positive t Prop.
  Axiom empty_spec:
     n, ¬In n empty.
  Axiom add_spec:
     n n' s, In n' (add n s) n = n' In n' s.
  Axiom pick_none:
     s n, pick s = None ¬In n s.
  Axiom pick_some:
     s n s', pick s = Some(n, s')
     n', In n' s n = n' In n' s'.
  Axiom all_nodes_spec:
     A (code: PTree.t A) n bb,
    code!n = Some bb In n (all_nodes code).

End NODE_SET.

Reachability in a control-flow graph.

Section REACHABLE.

Context {A: Type} (code: PTree.t A) (successors: A list positive).

Inductive reachable: positive positive Prop :=
  | reachable_refl: n, reachable n n
  | reachable_left: n1 n2 n3 i,
      code!n1 = Some i In n2 (successors i) reachable n2 n3
      reachable n1 n3.

Scheme reachable_ind := Induction for reachable Sort Prop.

Lemma reachable_trans:
   n1 n2, reachable n1 n2 n3, reachable n2 n3 reachable n1 n3.
Proof.
  induction 1; intros.
- auto.
- econstructor; eauto.
Qed.

Lemma reachable_right:
   n1 n2 n3 i,
  reachable n1 n2 code!n2 = Some i In n3 (successors i)
  reachable n1 n3.
Proof.
  intros. apply reachable_trans with n2; auto. econstructor; eauto. constructor.
Qed.

End REACHABLE.

We now define a generic solver for forward dataflow inequations that works over any semi-lattice structure.

Module Dataflow_Solver (LAT: SEMILATTICE) (NS: NODE_SET) <:
  DATAFLOW_SOLVER with Module L := LAT.

Module L := LAT.
Module AI := AI(L).

Section Kildall.

Context {A: Type}.
Variable code: PTree.t A.
Variable successors: A list positive.
Variable transf: positive AI.t AI.t.

The state of the iteration has three components:
  • aval: A mapping from program points to values of type L.t representing the candidate solution found so far. Change to analysis result of block.
  • worklist: A worklist of program points that remain to be considered.
  • visited: A set of program points that were visited already (i.e. put on the worklist at some point in the past).
Only the first two components are computationally relevant. The third is a ghost variable used only for stating and proving invariants. For this reason, visited is defined at sort Prop so that it is erased during program extraction.

Record state : Type :=
  mkstate { aval: PTree.t AI.t; worklist: NS.t; visited: positive Prop }.

Definition abstr_value (n: positive) (s: state) : AI.t :=
  match s.(aval)!n with
  | NoneAI.bot
  | Some vv
  end.

Kildall's algorithm, in pseudo-code, is as follows:
    while worklist is not empty, do
        extract a node n from worklist
        compute out = transf n aval[n]
        for each successor s of n:
            compute in = lub aval[s] out
            if in <> aval[s]:
                aval[s] := in
                worklist := worklist union {s}
                visited := visited union {s}
            end if
        end for
    end while
    return aval
propagate_succ corresponds, in the pseudocode, to the body of the for loop iterating over all successors. For successor `n`, we meet out with old_in, to see if fact changed if changed then add to worklist, change state else unchanged.

Definition propagate_succ (s: state) (out: AI.t) (n: positive) :=
  match s.(aval)!n with
  | None
      {| aval := PTree.set n out s.(aval);
         worklist := NS.add n s.(worklist);
         visited := fun pp = n s.(visited) p |}
  | Some oldl
      let newl := L.lub oldl out in
      if L.beq oldl newl
      then s
      else {| aval := PTree.set n newl s.(aval);
              worklist := NS.add n s.(worklist);
              visited := fun pp = n s.(visited) p |}
  end.

propagate_succ_list corresponds, in the pseudocode, to the for loop iterating over all successors.

Fixpoint propagate_succ_list (s: state) (out: AI.t) (succs: list positive)
                             {struct succs} : state :=
  match succs with
  | nils
  | n :: rempropagate_succ_list (propagate_succ s out n) out rem
  end.

step corresponds to the body of the outer while loop in the pseudocode.
Definition step (s: state) : PMap.t AI.t + state :=
  match NS.pick s.(worklist) with
  | None
      inl _ (L.bot, s.(aval))
  | Some(n, rem)
      match code!n with
      | None
          inr _ {| aval := s.(aval); worklist := rem; visited := s.(visited) |}
      | Some instr
          inr _ (propagate_succ_list
                  {| aval := s.(aval); worklist := rem; visited := s.(visited) |}
                  (transf n (abstr_value n s))
                  (successors instr))
      end
  end.

The whole fixpoint computation is the iteration of step from an initial state.
There are several ways to build the initial state. For forward dataflow analyses, the initial worklist is the function entry point, and the initial mapping sets the function entry point to the given abstract value, and leaves unset all other program points, which corresponds to L.bot initial abstract values.

Definition start_state (enode: positive) (eval: AI.t) :=
  {| aval := PTree.set enode eval (PTree.empty (AI.t));
     worklist := NS.add enode NS.empty;
     visited := fun nn = enode |}.

Definition fixpoint (enode: positive) (eval: AI.t) :=
  fixpoint_from (start_state enode eval).

For backward analyses (viewed as forward analyses on the reversed CFG), the following two variants are more useful. Both start with an empty initial mapping, where all program points start at L.bot. The first initializes the worklist with a given set of entry points in the reversed CFG. (See the backward dataflow solver below for how this list is computed.) The second start state construction initializes the worklist with all program points of the given CFG.

  Definition start_state_nodeset (enodes: NS.t) :=
    {| aval := PTree.empty AI.t;
       worklist := enodes;
       visited := fun nNS.In n enodes |}.

  Definition fixpoint_nodeset (enodes: NS.t) :=
    fixpoint_from (start_state_nodeset enodes).

  Definition start_state_allnodes :=
    {| aval := PTree.empty AI.t;
       worklist := NS.all_nodes code;
       visited := fun n instr, code!n = Some instr |}.

  Definition fixpoint_allnodes :=
    fixpoint_from start_state_allnodes.

Characterization of the propagation functions


Inductive optge: option AI.t option AI.t Prop :=
  | optge_some: l l',
      L.ge l l' optge (Some l) (Some l')
  | optge_none: ol,
      optge ol None.

Remark optge_refl: ol, optge ol ol.
Proof. destruct ol; constructor. apply L.ge_refl; apply L.eq_refl. Qed.

Remark optge_trans: ol1 ol2 ol3, optge ol1 ol2 optge ol2 ol3 optge ol1 ol3.
Proof.
  intros. inv H0.
  inv H. constructor. eapply L.ge_trans; eauto.
  constructor.
Qed.

Remark optge_abstr_value:
   st st' n,
  optge st.(aval)!n st'.(aval)!n
  L.ge (abstr_value n st) (abstr_value n st').
Proof.
  intros. unfold abstr_value. inv H. auto. apply L.ge_bot.
Qed.

propagate_succ的一些性质
Lemma propagate_succ_charact:
   st out n,
  let st' := propagate_succ st out n in
     optge st'.(aval)!n (Some out)
   ( s, n s st'.(aval)!s = st.(aval)!s)
   ( s, optge st'.(aval)!s st.(aval)!s)
   (NS.In n st'.(worklist) st'.(aval)!n = st.(aval)!n)
   ( n', NS.In n' st.(worklist) NS.In n' st'.(worklist))
   ( n', NS.In n' st'.(worklist) n' = n NS.In n' st.(worklist))
   ( n', st.(visited) n' st'.(visited) n')
   ( n', st'.(visited) n' NS.In n' st'.(worklist) st.(visited) n')
   ( n', st.(aval)!n' = None st'.(aval)!n' None st'.(visited) n').
Proof.
  unfold propagate_succ; intros; simpl.
  destruct st.(aval)!n as [v|] eqn:E;
  [predSpec L.beq L.beq_correct v (L.lub v out) | idtac].
  -
    repeat split; intros.
    + rewrite E. constructor. eapply L.ge_trans. apply L.ge_refl. apply H; auto. apply L.ge_lub_right.
    + apply optge_refl.
    + right; auto.
    + auto.
    + auto.
    + auto.
    + auto.
    + congruence.
  -
    simpl; repeat split; intros.
    + rewrite PTree.gss. constructor. apply L.ge_lub_right.
    + rewrite PTree.gso by auto. auto.
    + rewrite PTree.gsspec. destruct (peq s n).
      subst s. rewrite E. constructor. apply L.ge_lub_left.
      apply optge_refl.
    + rewrite NS.add_spec. auto.
    + rewrite NS.add_spec. auto.
    + rewrite NS.add_spec in H0. intuition.
    + auto.
    + destruct H0; auto. subst n'. rewrite NS.add_spec; auto.
    + rewrite PTree.gsspec in H1. destruct (peq n' n). auto. contradiction.
  -
    simpl; repeat split; intros.
    + rewrite PTree.gss. apply optge_refl.
    + rewrite PTree.gso by auto. auto.
    + rewrite PTree.gsspec. destruct (peq s n).
      subst s. rewrite E. constructor.
      apply optge_refl.
    + rewrite NS.add_spec. auto.
    + rewrite NS.add_spec. auto.
    + rewrite NS.add_spec in H. intuition.
    + auto.
    + destruct H; auto. subst n'. rewrite NS.add_spec. auto.
    + rewrite PTree.gsspec in H0. destruct (peq n' n). auto. congruence.
Qed.

Lemma propagate_succ_list_charact:
   out l st,
  let st' := propagate_succ_list st out l in
     ( n, In n l optge st'.(aval)!n (Some out))
   ( n, ¬In n l st'.(aval)!n = st.(aval)!n)
   ( n, optge st'.(aval)!n st.(aval)!n)
   ( n, NS.In n st'.(worklist) st'.(aval)!n = st.(aval)!n)
   ( n', NS.In n' st.(worklist) NS.In n' st'.(worklist))
   ( n', NS.In n' st'.(worklist) In n' l NS.In n' st.(worklist))
   ( n', st.(visited) n' st'.(visited) n')
   ( n', st'.(visited) n' NS.In n' st'.(worklist) st.(visited) n')
   ( n', st.(aval)!n' = None st'.(aval)!n' None st'.(visited) n').
Proof.
  induction l; simpl; intros.
  - repeat split; intros.
    + contradiction.
    + apply optge_refl.
    + auto.
    + auto.
    + auto.
    + auto.
    + auto.
    + congruence.
  - generalize (propagate_succ_charact st out a).
    set (st1 := propagate_succ st out a).
    intros (A1 & A2 & A3 & A4 & A5 & A6 & A7 & A8 & A9).
    generalize (IHl st1).
    set (st2 := propagate_succ_list st1 out l).
    intros (B1 & B2 & B3 & B4 & B5 & B6 & B7 & B8 & B9). clear IHl.
    repeat split; intros.
    + destruct H.
      × subst n. eapply optge_trans; eauto.
      × auto.
    + rewrite B2 by tauto. apply A2; tauto.
    + eapply optge_trans; eauto.
    + destruct (B4 n). auto.
      destruct (peq n a).
      × subst n. destruct A4. left; auto. right; congruence.
      × right. rewrite H. auto.
    + eauto.
    + exploit B6; eauto. intros [P|P]. auto.
      exploit A6; eauto. intuition.
    + eauto.
    + specialize (B8 n'); specialize (A8 n'). intuition.
    + destruct st1.(aval)!n' eqn:ST1.
      apply B7. apply A9; auto. congruence.
      apply B9; auto.
Qed.

Characterization of fixpoint_from.

Inductive steps: state state Prop :=
  | steps_base: s, steps s s
  | steps_right: s1 s2 s3, steps s1 s2 step s2 = inr s3 steps s1 s3.

Scheme steps_ind := Induction for steps Sort Prop.

Lemma fixpoint_from_charact:
   start res,
  fixpoint_from start = Some res
   st, steps start st NS.pick st.(worklist) = None res = (AI.bot, st.(aval)).
Proof.
  unfold fixpoint; intros.
  eapply (PrimIter.iterate_prop _ _ step
              (fun ststeps start st)
              (fun res st, steps start st NS.pick (worklist st) = None res = (L.bot, aval st))); eauto.
  intros. destruct (step a) eqn:E.
   a; split; auto.
  unfold step in E. destruct (NS.pick (worklist a)) as [[n rem]|].
  destruct (code!n); discriminate.
  inv E. auto.
  eapply steps_right; eauto.
  constructor.
Qed.

Monotonicity properties

We first show that the aval and visited parts of the state evolve monotonically:
  • at each step, the values of the aval[n] either remain the same or increase with respect to the optge ordering;
  • every node visited in the past remains visited in the future.

Lemma step_incr:
   n s1 s2, step s1 = inr s2
  optge s2.(aval)!n s1.(aval)!n (s1.(visited) n s2.(visited) n).
aval 一定会变大
Proof.
  unfold step; intros.
  destruct (NS.pick (worklist s1)) as [[p rem] | ]; try discriminate.
  destruct (code!p) as [instr|]; inv H.
  + generalize (propagate_succ_list_charact
                     (transf p (abstr_value p s1))
                     (successors instr)
                     {| aval := aval s1; worklist := rem; visited := visited s1 |}).
      simpl.
      set (s' := propagate_succ_list {| aval := aval s1; worklist := rem; visited := visited s1 |}
                    (transf p (abstr_value p s1)) (successors instr)).
      intros (A1 & A2 & A3 & A4 & A5 & A6 & A7 & A8 & A9).
      auto.
  + split. apply optge_refl. auto.
Qed.

Lemma steps_incr:
   n s1 s2, steps s1 s2
  optge s2.(aval)!n s1.(aval)!n (s1.(visited) n s2.(visited) n).
Proof.
  induction 1.
  - split. apply optge_refl. auto.
  - destruct IHsteps. exploit (step_incr n); eauto. intros [P Q].
    split. eapply optge_trans; eauto. eauto.
Qed.

Correctness invariant

The following invariant is preserved at each iteration of Kildall's algorithm: for all visited program point n, either n is in the worklist, or the inequations associated with n (aval[s] transf n aval[n] for all successors s of n) hold. In other terms, the worklist contains all nodes that were visited but do not yet satisfy their inequations.
The second part of the invariant shows that nodes that already have an abstract value associated with them have been visited.

  Record good_state (st: state) : Prop := {
    gs_stable: n,
      st.(visited) n
      NS.In n st.(worklist)
      ( i s,
       code!n = Some i In s (successors i)
       optge st.(aval)!s (Some (transf n (abstr_value n st))));
    gs_defined: n v,
      st.(aval)!n = Some v st.(visited) n
  }.

We show that the step function preserves this invariant.

Lemma step_state_good:
   st pc rem instr,
  NS.pick st.(worklist) = Some (pc, rem)
  code!pc = Some instr
  good_state st
  good_state (propagate_succ_list (mkstate st.(aval) rem st.(visited))
                                  (transf pc (abstr_value pc st))
                                  (successors instr)).
Proof.
  intros until instr; intros PICK CODEAT [GOOD1 GOOD2].
  pose proof (NS.pick_some _ _ _ PICK) as PICK2.
  set (out := transf pc (abstr_value pc st)).
  generalize (propagate_succ_list_charact out (successors instr) {| aval := aval st; worklist := rem; visited := visited st |}).
  set (st' := propagate_succ_list {| aval := aval st; worklist := rem; visited := visited st |} out
                                  (successors instr)).
  simpl; intros (A1 & A2 & A3 & A4 & A5 & A6 & A7 & A8 & A9).
  constructor.
  -
    intros.
    destruct (A8 n H); auto. destruct (A4 n). auto.
    replace (abstr_value n st') with (abstr_value n st)
      by (unfold abstr_value; rewrite H1; auto).
    exploit GOOD1; eauto. intros [P|P].
    +
      rewrite PICK2 in P; destruct P.
      ×
        subst n. fold out. right; intros.
        assert (i = instr) by congruence. subst i.
        apply A1; auto.
      ×
        left. apply A5; auto.
    +
      right. intros. apply optge_trans with st.(aval)!s. eapply A3. eapply P; eauto.
  -
    intros.
    destruct st.(aval)!n as [v'|] eqn:ST.
    + apply A7. eapply GOOD2; eauto.
    + apply A9; auto. congruence.
Qed.

Lemma step_state_good_2:
   st pc rem,
  good_state st
  NS.pick (worklist st) = Some (pc, rem)
  code!pc = None
  good_state (mkstate st.(aval) rem st.(visited)).
Proof.
  intros until rem; intros [GOOD1 GOOD2] PICK CODE.
  generalize (NS.pick_some _ _ _ PICK); intro PICK2.
  constructor; simpl; intros.
  -
    exploit GOOD1; eauto. intros [P | P].
    + rewrite PICK2 in P. destruct P; auto.
      subst n. right; intros. congruence.
    + right; exact P.
  -
  eapply GOOD2; eauto.
Qed.

Lemma steps_state_good:
   st1 st2, steps st1 st2 good_state st1 good_state st2.
Proof.
  induction 1; intros.
  - auto.
  - unfold step in e.
    destruct (NS.pick (worklist s2)) as [[n rem] | ] eqn:PICK; try discriminate.
    destruct (code!n) as [instr|] eqn:CODE; inv e.
    eapply step_state_good; eauto.
    eapply step_state_good_2; eauto.
Qed.

We show that initial states satisfy the invariant.

Lemma start_state_good:
   enode eval, good_state (start_state enode eval).
Proof.
  intros. unfold start_state; constructor; simpl; intros.
  - subst n. rewrite NS.add_spec; auto.
  - rewrite PTree.gsspec in H. rewrite PTree.gempty in H.
    destruct (peq n enode). auto. discriminate.
Qed.

Lemma start_state_nodeset_good:
   enodes, good_state (start_state_nodeset enodes).
Proof.
  intros. unfold start_state_nodeset; constructor; simpl; intros.
  - left. auto.
  - rewrite PTree.gempty in H. congruence.
Qed.

Lemma start_state_allnodes_good:
  good_state start_state_allnodes.
Proof.
  unfold start_state_allnodes; constructor; simpl; intros.
  - destruct H as [instr CODE]. left. eapply NS.all_nodes_spec; eauto.
  - rewrite PTree.gempty in H. congruence.
Qed.

Reachability in final states.

Lemma reachable_visited:
   st, good_state st NS.pick st.(worklist) = None
   p q, reachable code successors p q st.(visited) p st.(visited) q.
Proof.
  intros st [GOOD1 GOOD2] PICK. induction 1; intros.
  - auto.
  - eapply IHreachable; eauto.
    exploit GOOD1; eauto. intros [P | P].
    eelim NS.pick_none; eauto.
    exploit P; eauto. intros OGE; inv OGE. eapply GOOD2; eauto.
Qed.

Correctness of the solution returned by fixpoint.

As a consequence of the good_state invariant, the result of fixpoint, if defined, is a solution of the dataflow inequations. This assumes that the transfer function maps L.bot to L.bot.
Theorem fixpoint_solution:
   ep ev res n instr s,
  fixpoint ep ev = Some res
  code!n = Some instr
  In s (successors instr)
  ( n, L.eq (transf n AI.bot) AI.bot)
  L.ge res!!s (transf n res!!n).
Proof.
  unfold fixpoint; intros.
  exploit fixpoint_from_charact; eauto. intros (st & STEPS & PICK & RES).
  exploit steps_state_good; eauto. apply start_state_good. intros [GOOD1 GOOD2].
  rewrite RES; unfold PMap.get; simpl.
  destruct st.(aval)!n as [v|] eqn:STN.
  - destruct (GOOD1 n) as [P|P]. eauto.
    {
      eelim NS.pick_none; eauto.
    }
    {
      exploit P; eauto. unfold abstr_value; rewrite STN. intros OGE. inv OGE. auto.
    }
  - apply L.ge_trans with L.bot. apply L.ge_bot. apply L.ge_refl. apply L.eq_sym. eauto.
Qed.

Theorem fixpoint_solution_fst_bot:
   ep ev res,
  fixpoint ep ev = Some res
  fst res = AI.bot.
Proof.
  intros.
  unfolds fixpoint.
  remember (start_state ep ev) as start.
  pose proof (fixpoint_from_charact start res) H.
  destruct H0 as (a & b & c & HH).
  rewrite HH. simpls. trivial.
Qed.

Moreover, the result of fixpoint, if defined, satisfies the additional constraint given on the entry point.

Theorem fixpoint_entry:
   ep ev res,
  fixpoint ep ev = Some res
  L.ge res!!ep ev.
Proof.
  unfold fixpoint; intros.
  exploit fixpoint_from_charact; eauto. intros (st & STEPS & PICK & RES).
  exploit (steps_incr ep); eauto. simpl. rewrite PTree.gss. intros [P Q].
  rewrite RES; unfold PMap.get; simpl. inv P. auto.
Qed.

Theorem fixpoint_entry_exists:
   ep ev res,
  fixpoint ep ev = Some res
   l,
  (snd res)!ep = Some l.
Proof.
  unfold fixpoint; intros.
  exploit fixpoint_from_charact; eauto. intros (st & STEPS & PICK & RES).
  exploit (steps_incr ep); eauto. simpl. rewrite PTree.gss. intros [P Q].
  rewrite RES.
  unfold snd.
  simpl. inv P.
  eexists. auto.
Qed.

For fixpoint_allnodes, we show that the result is a solution without assuming transf n L.bot = L.bot.

Theorem fixpoint_allnodes_solution:
   res n instr s,
  fixpoint_allnodes = Some res
  code!n = Some instr
  In s (successors instr)
  L.ge res!!s (transf n res!!n).
Proof.
  unfold fixpoint_allnodes; intros.
  exploit fixpoint_from_charact; eauto. intros (st & STEPS & PICK & RES).
  exploit steps_state_good; eauto. apply start_state_allnodes_good. intros [GOOD1 GOOD2].
  exploit (steps_incr n); eauto. simpl. intros [U V].
  exploit (GOOD1 n). apply V. instr; auto. intros [P|P].
  eelim NS.pick_none; eauto.
  exploit P; eauto. intros OGE. rewrite RES; unfold PMap.get; simpl.
  inv OGE. assumption.
Qed.

For fixpoint_nodeset, we show that the result is a solution at all program points that are reachable from the given entry points.

Theorem fixpoint_nodeset_solution:
   enodes res e n instr s,
  fixpoint_nodeset enodes = Some res
  NS.In e enodes
  reachable code successors e n
  code!n = Some instr
  In s (successors instr)
  L.ge res!!s (transf n res!!n).
Proof.
  unfold fixpoint_nodeset; intros.
  exploit fixpoint_from_charact; eauto. intros (st & STEPS & PICK & RES).
  exploit steps_state_good; eauto. apply start_state_nodeset_good. intros GOOD.
  exploit (steps_incr e); eauto. simpl. intros [U V].
  assert (st.(visited) n).
  { eapply reachable_visited; eauto. }
  destruct GOOD as [GOOD1 GOOD2].
  exploit (GOOD1 n); eauto. intros [P|P].
  eelim NS.pick_none; eauto.
  exploit P; eauto. intros OGE. rewrite RES; unfold PMap.get; simpl.
  inv OGE. assumption.
Qed.

Preservation of a property over solutions

Theorem fixpoint_invariant:
   ep ev
    (P: L.t Prop)
    (P_bot: P L.bot)
    (P_lub: x y, P x P y P (L.lub x y))
    (P_transf: pc instr x, code!pc = Some instr P x P (transf pc x))
    (P_entrypoint: P ev)
    res pc,
  fixpoint ep ev = Some res
  P res!!pc.
Proof.
  intros.
  set (inv := fun st x, P (abstr_value x st)).
  assert (inv (start_state ep ev)).
  {
    red; simpl; intros. unfold abstr_value, start_state; simpl.
    rewrite PTree.gsspec. rewrite PTree.gempty.
    destruct (peq x ep). auto. auto.
  }
  assert ( st v n, inv st P v inv (propagate_succ st v n)).
  {
    unfold inv, propagate_succ. intros.
    destruct (aval st)!n as [oldl|] eqn:E.
    destruct (L.beq oldl (L.lub oldl v)).
    auto.
    unfold abstr_value. simpl. rewrite PTree.gsspec. destruct (peq x n).
    apply P_lub; auto. replace oldl with (abstr_value n st). auto.
    unfold abstr_value; rewrite E; auto.
    apply H1.
    unfold abstr_value. simpl. rewrite PTree.gsspec. destruct (peq x n).
    auto.
    apply H1.
  }
  assert ( l st v, inv st P v inv (propagate_succ_list st v l)).
  {
    induction l; intros; simpl. auto.
    apply IHl; auto.
  }
  assert ( st1 st2, steps st1 st2 inv st1 inv st2).
  {
    induction 1; intros.
    auto.
    unfold step in e. destruct (NS.pick (worklist s2)) as [[n rem]|]; try discriminate.
    destruct (code!n) as [instr|] eqn:INSTR; inv e.
    apply H2. apply IHsteps; auto. eapply P_transf; eauto. apply IHsteps; auto.
    apply IHsteps; auto.
  }
  unfold fixpoint in H. exploit fixpoint_from_charact; eauto.
  intros (st & STEPS & PICK & RES).
  replace (res!!pc) with (abstr_value pc st). eapply H3; eauto.
  rewrite RES; auto.
Qed.

End Kildall.

Section RtlSolver.

  Definition fixpoint_blk
             (cdhp: CodeHeap)
             (successors: BBlock.t list (Language.fid))
             (enode: positive) (eval: AI.t)
             (transf_blk: positive AI.t AI.b): option AI.ACdhp :=
    let transf := (fun n aiAI.getLast (transf_blk n ai)) in
    match (fixpoint cdhp successors transf enode eval) with
    | NoneNone
    | Some resSome (AI.bots, PTree.map transf_blk (snd res))
    end.

  Theorem fixpoint_blk_entry:
     cdhp_s succ fentry_s eval transf_blk acdhp,
      ( i l, (AI.getFirst (transf_blk i l)) = l)
      
      fixpoint_blk cdhp_s succ fentry_s eval transf_blk = Some acdhp
      
      AI.ge (AI.getFirst (acdhp !! fentry_s)) eval.
  Proof.
    intros until acdhp. intro GOOD_TRANF_BLK. intros.
    unfolds fixpoint_blk.
    remember (fixpoint cdhp_s succ
                       (fun (n : positive) (ai : AI.t) ⇒ AI.getLast (transf_blk n ai))
                       fentry_s eval) as fx.
    destruct fx eqn:EQFX.
    - inversion H. rename t into realfx.
      assert (L.ge realfx!!fentry_s eval). {
        eapply fixpoint_entry; eauto.
      }
      assert (AI.getFirst (acdhp !! fentry_s) = realfx!!fentry_s). {
        remember acdhp!!fentry_s as aentry_blk.
        unfold "!!" in Heqaentry_blk.
        rewrite <- H1 in Heqaentry_blk; simpls.
        remember ((PTree.map transf_blk (snd realfx)) ! fentry_s) as ablks.
        rewrite PTree.gmap in Heqablks; unfolds option_map; simpls.
        remember ((snd realfx) ! fentry_s) as realaentry.
        assert ( l, realaentry = Some l). {
          rewrite Heqrealaentry.
          eapply fixpoint_entry_exists; eauto.
        }
        destruct H2 as (l & H2).
        rewrite H2 in Heqablks.
        rewrite Heqablks in Heqaentry_blk.
        rewrite Heqaentry_blk.
        rewrite GOOD_TRANF_BLK.
        unfold "!!".
        rewrite <- Heqrealaentry. rewrite H2; auto.
      }
      rewrite <- H1 in H2.
      rewrite H2; auto.
    - discriminate.
  Qed.

  Definition analyze_func
thrd
             (func: Func)
             (successors: BBlock.t list (Language.fid))
             (eval: AI.t)
             (transf_blk': AI.t BBlock.t AI.b): option AI.ACdhp :=
    let (cdhp, fid) := func in
    let transf_blk := (fun n ai
                         match (cdhp!n) with
                         | Some btransf_blk' ai b
                         | NoneAI.Atom ai
                         end
                      ) in
    fixpoint_blk cdhp successors fid eval (transf_blk).

  Theorem analyze_func_solution_get
            succ transf_blk acdhp cdhp_s fentry_s n blk ep
            (WF_TRANS_FORWARD: l blk, (AI.getFirst (transf_blk l blk)) = l)
            (BOT_TRANS: b, AI.getLast (transf_blk AI.bot b) = AI.bot)
            (ANALYSIS: analyze_func (cdhp_s, fentry_s) succ ep transf_blk = Some acdhp)
            (GET_BLK: cdhp_s ! n = Some blk):
    transf_blk (AI.getFirst acdhp !! n) blk = acdhp !! n
    acdhp !! n = AI.bots.
  Proof.
    unfold analyze_func in ANALYSIS.
    unfold fixpoint_blk in ANALYSIS.
    remember (fun (n : positive) (ai : AI.t) ⇒
                  AI.getLast match cdhp_s ! n with
                             | Some btransf_blk ai b
                             | NoneAI.Atom ai
                             end) as transf.
    destruct (fixpoint cdhp_s succ transf fentry_s ep) eqn:Heqe; simpls; tryfalse.
    inv ANALYSIS. unfold "!!". simpl.
    rewrite PTree.gmap. unfold option_map.
    rewrite GET_BLK; simpl.
    destruct ((snd t) ! n) eqn:ANALYSIS; eauto.
    rewrite WF_TRANS_FORWARD. eauto.
  Qed.

  Theorem analyze_func_solution1
          succ transf_blk acdhp cdhp_s fentry_s n blk s blk_s ep
          (WF_TRANS_FORWARD: l blk, (AI.getFirst (transf_blk l blk)) = l)
          (BOT_TRANS: b, AI.getLast (transf_blk AI.bot b) = AI.bot)
          (ANALYSIS: analyze_func (cdhp_s, fentry_s) succ ep transf_blk = Some acdhp)
          (GET_BLK: cdhp_s ! n = Some blk)
          (SUCC: In s (succ blk))
          (SUCC_BB: cdhp_s ! s = Some blk_s):
    AI.ge (AI.getFirst acdhp !! s) (AI.getLast (transf_blk (AI.getFirst (acdhp !! n)) blk)).
  Proof.
    unfold analyze_func in ANALYSIS.
    unfold fixpoint_blk in ANALYSIS.
    remember (fun (n : positive) (ai : AI.t) ⇒
                  AI.getLast match cdhp_s ! n with
                             | Some btransf_blk ai b
                             | NoneAI.Atom ai
                             end) as transf.
    destruct (fixpoint cdhp_s succ transf fentry_s ep) eqn:Heqe; simpls; tryfalse.
    lets DEFAULT: Heqe. eapply fixpoint_solution_fst_bot in DEFAULT.
    inv ANALYSIS.
    eapply fixpoint_solution with (s0 := s) (instr := blk) in Heqe; eauto.
    rewrite GET_BLK in Heqe.
    unfold "!!". simpl.
    repeat (rewrite PTree.gmap). unfold option_map.
    rewrite GET_BLK. rewrite SUCC_BB.
    destruct ((snd t) ! s) eqn:ANALYSIS_s.
    {
      destruct ((snd t) ! n) eqn:ANALYSIS_n.
      rewrite WF_TRANS_FORWARD. rewrite WF_TRANS_FORWARD.
      unfold "!!" in Heqe. rewrite ANALYSIS_s, ANALYSIS_n in Heqe. eauto.
      simpl. rewrite BOT_TRANS.
      eapply L.ge_bot; eauto.
    }
    {
      destruct ((snd t) ! n) eqn:ANALYSIS_n.
      rewrite WF_TRANS_FORWARD. simpl.
      unfold "!!" in Heqe. rewrite ANALYSIS_s, ANALYSIS_n in Heqe.
      rewrite DEFAULT in Heqe. eauto.
      simpl. unfold "!!" in Heqe. rewrite ANALYSIS_s, ANALYSIS_n in Heqe.
      rewrite DEFAULT in Heqe. eauto.
    }
    intro. destruct (cdhp_s ! n0); simpl.
    rewrite BOT_TRANS; eauto. eapply L.eq_refl; eauto.
    eapply L.eq_refl; eauto.
  Qed.

  Theorem analyze_func_entry1
          succ eval transf_blk acdhp cdhp_s fentry_s
          (WF_TRANS_FORWARD: l blk, (AI.getFirst (transf_blk l blk)) = l)
          (ANALYSIS: analyze_func (cdhp_s, fentry_s) succ eval transf_blk = Some acdhp):
    AI.ge (AI.getFirst (acdhp !! fentry_s)) eval.
  Proof.
    unfold analyze_func in ANALYSIS.
    unfold fixpoint_blk in ANALYSIS.
    remember (fun (n : positive) (ai : AI.t) ⇒
                  AI.getLast match cdhp_s ! n with
                             | Some btransf_blk ai b
                             | NoneAI.Atom ai
                             end) as transf.
    destruct (fixpoint cdhp_s succ transf fentry_s eval) eqn:Heqe; simpls; tryfalse.
    inv ANALYSIS.
    lets Heqe': Heqe.
    eapply fixpoint_solution_fst_bot in Heqe'; simpls.
    eapply fixpoint_entry in Heqe.
    unfold "!!" in ×. simpl.
    rewrite PTree.gmap.
    unfold option_map.
    destruct ((snd t) ! fentry_s) eqn:ENTRY; tryfalse.
    destruct (cdhp_s ! fentry_s); simpl; eauto.
    rewrite WF_TRANS_FORWARD; eauto.
    simpl. rewrite Heqe' in Heqe. eauto.
  Qed.

  Definition analyze_program
             (prog: Code)
             (successors: BBlock.t list (Language.fid))
             (eval: AI.t)
             (transf_blk': AI.t BBlock.t AI.b): AI.AProg :=
    let func := (fun f
                   match (analyze_func f successors eval transf_blk') with
                   | Some resultresult
                   | NonePMap.init (AI.Atom eval)
other way to deal with this ?
                   end
                )
    in
    PTree.map1 func prog.

  Theorem wf_analyze_func:
     code_s fid cdhp_s fentry_s eval transfb,
      code_s ! fid = Some (cdhp_s, fentry_s)
      
       acdhp,
        (analyze_program code_s succ eval transfb) ! fid = Some acdhp.
  Proof.
    intros.
    unfolds analyze_program.
    rewrite PTree.gmap1; unfolds option_map.
    unfold Func.
    rewrite H.
    destruct (analyze_func (cdhp_s, fentry_s) succ eval transfb) eqn:EqAFunc; eauto.
  Qed.

  Theorem analyze_func_entry:
     code_s succ eval transf_blk fid acdhp cdhp_s fentry_s,
      ( l blk, (AI.getFirst (transf_blk l blk)) = l)
      
      (analyze_program code_s succ eval transf_blk) ! fid = Some acdhp
      
      code_s ! fid = Some (cdhp_s, fentry_s)
      
      AI.ge (AI.getFirst (acdhp !! fentry_s)) eval.
  Proof.
    intros until fentry_s. intro HH. intros. unfolds analyze_program.
    rewrite PTree.gmap1 in H; unfolds option_map. rewrite H0 in H.
    remember (analyze_func (cdhp_s, fentry_s) succ eval transf_blk)
      as analysis_func_partial.
    inversion H.
    destruct analysis_func_partial eqn:EQH.
    2: {
bot
      unfolds AI.getFirst.
      rewrite PMap.gi; simpls; auto.
      eapply L.ge_refl. eapply L.eq_refl.
    }
eval
    simpls.
    eapply fixpoint_blk_entry; eauto.
    intros.
    unfolds AI.getFirst.
    destruct (cdhp_s!i); eauto.
  Qed.


  Theorem analyze_func_solution:
     code_s succ eval transf_blk fid acdhp cdhp_s fentry_s n blk s,
      
wf transf_blk
      ( l blk, (AI.getFirst (transf_blk l blk)) = l)
      ( b,
          AI.getLast (transf_blk AI.bot b) = AI.bot)
      (analyze_program code_s succ eval transf_blk) ! fid = Some acdhp
      
      code_s ! fid = Some (cdhp_s, fentry_s)
      cdhp_s!n = Some blk
      In s (succ blk)
      
      AI.ge (AI.getFirst acdhp !! s) (AI.getLast (acdhp !! n)).
  Proof.
    intros until s. intros HH0 HH. intros.
    unfolds analyze_program.
    rewrite PTree.gmap1 in H; unfolds option_map.
    rewrite H0 in H.
    remember (analyze_func (cdhp_s, fentry_s) succ eval transf_blk) as afunc.
    inversion H.
    destruct afunc eqn:EQAFunc.
    2: {
      repeat rewrite PMap.gi.
      unfolds AI.getFirst; unfolds AI.getLast; simpls.
      eapply L.ge_refl. eapply L.eq_refl.
    }
    unfolds analyze_func.
    unfolds fixpoint_blk.
    remember ((fun (n : positive) (ai : AI.t) ⇒
                 AI.getLast
                   match cdhp_s ! n with
                   | Some btransf_blk ai b
                   | NoneAI.Atom ai
                   end)) as transf.
    remember (fixpoint cdhp_s succ transf fentry_s eval) as realfx.
    destruct realfx eqn:EQRealFx.
    2: { discriminate. }
    rename t into res.
    assert (AI.ge res!!s (transf n res!!n)). {
      eapply fixpoint_solution; eauto.
      intros.
      rewrite Heqtransf.
      destruct (cdhp_s ! n0) eqn: EQBlk.
      2: { unfolds AI.getLast. eapply L.eq_refl. }
      rewrite HH. unfolds AI.bot. eapply L.eq_refl.
    }
    assert (AI.getLast a !! n = transf n (res !! n) ). {
      rewrite Heqtransf.
      rewrite H1.
      inversion Heqafunc. unfold "!!"; simpls.
      rewrite PTree.gmap; unfolds option_map.
      rewrite H1.
      remember ((snd res) ! n) as former.
      destruct former; eauto.
FIXME: maybe some def inconsistency
      assert (fst res = AI.bot). {
        eapply fixpoint_solution_fst_bot; eauto.
      }
      rewrite H5.
      rewrite HH.
      unfolds AI.getLast; simpls. trivial.
    }
    assert (AI.getFirst a !! s = res !! s). {
      remember (a !! s) as ablk.
      inversion Heqafunc.
      rewrite H7 in Heqablk.
      unfold "!!" in Heqablk. simpls.
      rewrite PTree.gmap in Heqablk; unfolds option_map.
      unfold "!!".
      remember ((snd res) ! s) as asblk.
      rewrite Heqablk. unfolds AI.getFirst.
      destruct asblk eqn:EqAsblk; simpls.
      2: {
        assert (fst res = AI.bot). {
          eapply fixpoint_solution_fst_bot; eauto.
        } rewrite H6. trivial.
      }
      remember (cdhp_s!s) as sblk.
      destruct sblk eqn:EqSblk; eauto.
    }
    rewrite H6.
    rewrite H5.
    auto.
  Qed.

  Theorem analyze_func_solution':
   succ eval transf_blk acdhp cdhp_s fentry_s n blk s,
    
wf transf_blk
    ( l blk, (AI.getFirst (transf_blk l blk)) = l)
    ( b,
        AI.getLast (transf_blk AI.bot b) = AI.bot)
    analyze_func (cdhp_s, fentry_s) succ eval transf_blk = Some acdhp
    cdhp_s!n = Some blk
    In s (succ blk)
    AI.ge (AI.getFirst acdhp !! s) (AI.getLast (acdhp !! n)).
Proof.
  intros until s. intros HH0 HH. intros.
  remember (analyze_func (cdhp_s, fentry_s) succ eval transf_blk) as afunc.
  inversion H.
  destruct afunc eqn:EQAFunc.
  2: {
    discriminate.
  }
  unfolds analyze_func.
  unfolds fixpoint_blk.
  remember ((fun (n : positive) (ai : AI.t) ⇒
               AI.getLast
                 match cdhp_s ! n with
                 | Some btransf_blk ai b
                 | NoneAI.Atom ai
                 end)) as transf.
  remember (fixpoint cdhp_s succ transf fentry_s eval) as realfx.
  destruct realfx eqn:EQRealFx.
  2: { discriminate. }
  rename t into res.
  assert (AI.ge res!!s (transf n res!!n)). {
    eapply fixpoint_solution; eauto.
    intros.
    rewrite Heqtransf.
    destruct (cdhp_s ! n0) eqn: EQBlk.
    2: { unfolds AI.getLast. eapply L.eq_refl. }
    rewrite HH. unfolds AI.bot. eapply L.eq_refl.
  }
  assert (AI.getLast a !! n = transf n (res !! n) ). {
    rewrite Heqtransf.
    rewrite H0.
    inversion Heqafunc. unfold "!!"; simpls.
    rewrite PTree.gmap; unfolds option_map.
    rewrite H0.
    remember ((snd res) ! n) as former.
    destruct former; eauto.
FIXME: maybe some def inconsistency
    assert (fst res = AI.bot). {
      eapply fixpoint_solution_fst_bot; eauto.
    }
    rewrite H4.
    rewrite HH.
    unfolds AI.getLast; simpls. trivial.
  }
  assert (AI.getFirst a !! s = res !! s). {
    remember (a !! s) as ablk.
    inversion Heqafunc.
    rewrite H6 in Heqablk.
    unfold "!!" in Heqablk. simpls.
    rewrite PTree.gmap in Heqablk; unfolds option_map.
    unfold "!!".
    remember ((snd res) ! s) as asblk.
    rewrite Heqablk. unfolds AI.getFirst.
    destruct asblk eqn:EqAsblk; simpls.
    2: {
      assert (fst res = AI.bot). {
        eapply fixpoint_solution_fst_bot; eauto.
      } rewrite H5. trivial.
    }
    remember (cdhp_s!s) as sblk.
    destruct sblk eqn:EqSblk; eauto.
  }
  inversion H2.
  rewrite <- H7.
  rewrite H5.
  rewrite H4.
  auto.
Qed.

End RtlSolver.
End Dataflow_Solver.

Solving backward dataflow problems using Kildall's algorithm

A backward dataflow problem on a given flow graph is a forward dataflow program on the reversed flow graph, where predecessors replace successors. We exploit this observation to cheaply derive a backward solver from the forward solver.

Construction of the reversed flow graph (the predecessor relation)

Definition successors_list (successors: PTree.t (list positive)) (pc: positive) : list positive :=
  match successors!pc with Nonenil | Some ll end.

Notation "a !!! b" := (successors_list a b) (at level 1).

Section Predecessor.

Context {A: Type}.
Variable code: PTree.t A.
Variable successors: A list positive.

Fixpoint add_successors (pred: PTree.t (list positive))
                        (from: positive) (tolist: list positive)
                        {struct tolist} : PTree.t (list positive) :=
  match tolist with
  | nilpred
  | to :: remadd_successors (PTree.set to (from :: pred!!!to) pred) from rem
  end.

Lemma add_successors_correct:
   tolist from pred n s,
  In n pred!!!s (n = from In s tolist)
  In n (add_successors pred from tolist)!!!s.
Proof.
  induction tolist; simpl; intros.
  tauto.
  apply IHtolist.
  unfold successors_list at 1. rewrite PTree.gsspec. destruct (peq s a).
  subst a. destruct H. auto with coqlib.
  destruct H. subst n. auto with coqlib.
  fold (successors_list pred s). intuition congruence.
Qed.

Definition make_predecessors : PTree.t (list positive) :=
  PTree.fold (fun pred pc instradd_successors pred pc (successors instr))
             code (PTree.empty (list positive)).

Lemma make_predecessors_correct_1:
   n instr s,
  code!n = Some instr In s (successors instr)
  In n make_predecessors!!!s.
Proof.
  intros until s.
  set (P := fun m pm!n = Some instr In s (successors instr)
                       In n p!!!s).
  unfold make_predecessors.
  apply PTree_Properties.fold_rec with (P := P); unfold P; intros.
  apply H0; auto. rewrite H; auto.
  rewrite PTree.gempty in H; congruence.
  apply add_successors_correct.
  rewrite PTree.gsspec in H2. destruct (peq n k).
  inv H2. auto.
  auto.
Qed.

Lemma make_predecessors_correct_2:
   n instr s,
  code!n = Some instr In s (successors instr)
   l, make_predecessors!s = Some l In n l.
Proof.
  intros. exploit make_predecessors_correct_1; eauto.
  unfold successors_list. destruct (make_predecessors!s); simpl; intros.
   l; auto.
  contradiction.
Qed.

Lemma reachable_predecessors:
   p q,
  reachable code successors p q
  reachable make_predecessors (fun ll) q p.
Proof.
  induction 1.
  - constructor.
  - exploit make_predecessors_correct_2; eauto. intros [l [P Q]].
    eapply reachable_right; eauto.
Qed.

End Predecessor.

Solving backward dataflow problems

The interface to a backward dataflow solver is as follows.
Module Type BACKWARD_DATAFLOW_SOLVER.
  Declare Module L : SEMILATTICE.
  Module AI := AI(L).

fixpoint successors transf is the solver. It returns either an error or a mapping from program points to values of type L.t representing the solution. successors is a finite map returning the list of successors of the given program point. transf is the transfer function.

  Parameter fixpoint:
     {A: Type} (code: PTree.t A) (successors: A list positive)
           (transf: positive L.t L.t),
    option (PMap.t L.t).

The fixpoint_solution theorem shows that the returned solution, if any, satisfies the backward dataflow inequations.
fixpoint_allnodes is a variant of fixpoint, less algorithmically efficient, but correct without any hypothesis on the transfer function.

  Parameter fixpoint_allnodes:
     {A: Type} (code: PTree.t A) (successors: A list positive)
           (transf: positive L.t L.t),
    option (PMap.t L.t).

  Axiom fixpoint_allnodes_solution:
     A (code: PTree.t A) successors transf res n BB s,
    fixpoint_allnodes code successors transf = Some res
    code!n = Some BB In s (successors BB)
    L.ge res!!n (transf s res!!s).

End BACKWARD_DATAFLOW_SOLVER.

We construct a generic backward dataflow solver, working over any semi-lattice structure, by applying the forward dataflow solver with the predecessor relation instead of the successor relation.

Module Backward_Dataflow_Solver (LAT: SEMILATTICE) (NS: NODE_SET) <:
                   BACKWARD_DATAFLOW_SOLVER with Module L := LAT.

  Module L := LAT.
  Module AI := AI(L).

  Module DS := Dataflow_Solver L NS.

  Section Kildall.

    Context {A: Type}.
    Variable code: PTree.t A.
    Variable successors: A list positive.
    Variable transf: positive AI.t AI.t.

Finding entry points for the reverse control-flow graph.

    Section Exit_points.

Assuming that the nodes of the CFG code are numbered in reverse postorder (cf. pass Renumber), an edge from n to s is a normal edge if s < n and a back-edge otherwise.
sequential_node returns
  • true if the given node has at least one normal outgoing edge.
  • It returns false if the given node is an exit node (no outgoing edges) or the final node of a loop body (all outgoing edges are back-edges).
As we prove later, the set of all non-sequential node is an appropriate set of entry points for exploring the reverse CFG.

      Definition sequential_node (pc: positive) (instr: A): bool :=
        existsb (fun smatch code!s with Nonefalse | Some _plt s pc end)
                (successors instr).

      Definition exit_points : NS.t :=
        PTree.fold
          (fun ep pc instr
             if sequential_node pc instr
             then ep
             else NS.add pc ep)
          code NS.empty.

      Lemma exit_points_charact:
         n,
          NS.In n exit_points i, code!n = Some i sequential_node n i = false.
      Proof.
        intros n. unfold exit_points. eapply PTree_Properties.fold_rec.
        -
          intros. rewrite <- H. auto.
        -
          simpl. split; intros.
          eelim NS.empty_spec; eauto.
          destruct H as [i [P Q]]. rewrite PTree.gempty in P. congruence.
        -
          intros. destruct (sequential_node k v) eqn:SN.
          + rewrite H1. rewrite PTree.gsspec. destruct (peq n k).
            subst. split; intros [i [P Q]]. congruence. inv P. congruence.
            tauto.
          + rewrite NS.add_spec. rewrite H1. rewrite PTree.gsspec. destruct (peq n k).
            subst. split. intros. v; auto. auto.
            split. intros [P | [i [P Q]]]. congruence. i; auto.
            intros [i [P Q]]. right; i; auto.
      Qed.

      Lemma reachable_exit_points:
         pc i,
          code!pc = Some i x, NS.In x exit_points reachable code successors pc x.
      Proof.
        intros pc0. pattern pc0. apply (well_founded_ind Plt_wf).
        intros pc HR i CODE.
        destruct (sequential_node pc i) eqn:SN.
        -
          unfold sequential_node in SN. rewrite existsb_exists in SN.
          destruct SN as [s [P Q]]. destruct (code!s) as [i'|] eqn:CS; try discriminate. InvBooleans.
          exploit (HR s); eauto. intros [x [U V]].
           x; split; auto. eapply reachable_left; eauto.
        -
           pc; split.
          rewrite exit_points_charact. i; auto. constructor.
      Qed.

The crucial property of exit points is that any nonempty node in the CFG is reverse-reachable from an exit point.

      Lemma reachable_exit_points_predecessor:
         pc i,
          code!pc = Some i
           x, NS.In x exit_points reachable (make_predecessors code successors) (fun ll) x pc.
      Proof.
        intros. exploit reachable_exit_points; eauto. intros [x [P Q]].
         x; split; auto. apply reachable_predecessors. auto.
      Qed.

    End Exit_points.

The efficient backward solver.

    Definition fixpoint :=
      DS.fixpoint_nodeset
        (make_predecessors code successors) (fun ll)
        transf exit_points.

    Theorem fixpoint_solution:
       res n BB s,
        fixpoint = Some res
        code!n = Some BB In s (successors BB)
        ( n a, code!n = None L.eq (transf n a) L.bot)
        L.ge res!!n (transf s res!!s).
    Proof.
      intros.
      exploit (make_predecessors_correct_2 code); eauto. intros [l [P Q]].
      destruct code!s as [BB'|] eqn:CS.
      - exploit reachable_exit_points_predecessor. eexact CS. intros (ep & U & V).
        unfold fixpoint in H. eapply DS.fixpoint_nodeset_solution; eauto.
      - apply L.ge_trans with L.bot. apply L.ge_bot.
        apply L.ge_refl. apply L.eq_sym. auto.
    Qed.

The alternate solver that starts with all nodes of the CFG instead of just the exit points.

    Definition fixpoint_allnodes :=
      DS.fixpoint_allnodes
        (make_predecessors code successors) (fun ll)
        transf.

    Theorem fixpoint_allnodes_solution:
       res n instr s,
        fixpoint_allnodes = Some res
        code!n = Some instr In s (successors instr)
        L.ge res!!n (transf s res!!s).
    Proof.
      intros.
      exploit (make_predecessors_correct_2 code); eauto. intros [l [P Q]].
      unfold fixpoint_allnodes in H.
      eapply DS.fixpoint_allnodes_solution; eauto.
    Qed.

    Theorem fixpoint_allnodes_solution_fst_bot:
       res,
        fixpoint_allnodes = Some res
        fst res = AI.bot.
    Proof.
      intros.
      unfolds fixpoint_allnodes, DS.fixpoint_allnodes.
      remember (DS.start_state_allnodes (make_predecessors code successors)) as start.
      pose proof (DS.fixpoint_from_charact _ _ transf start res) H.
      destruct H0 as (a & b & c & HH).
      rewrite HH. simpls. trivial.
    Qed.

  End Kildall.

  Section RtlSolverBackward.

    Definition fixpoint_blk_backward
               (cdhp: CodeHeap)
               (successors: BBlock.t list (Language.fid))
               (transf_blk: positive AI.t AI.b): option AI.ACdhp :=
      let transf := (fun n aiAI.getFirst (transf_blk n ai)) in
      match (fixpoint_allnodes cdhp successors transf) with
      | NoneNone
      | Some resSome (AI.bots, PTree.map transf_blk (snd res))
      end.

    Definition analyze_func_backward
thrd
               (func: Func)
               (successors: BBlock.t list (Language.fid))
               (transf_blk': AI.t BBlock.t AI.b): option AI.ACdhp :=
      let (cdhp, fid) := func in
      let transf_blk := (fun n ai
                           match (cdhp!n) with
                           | Some btransf_blk' ai b
                           | NoneAI.Atom ai
                           end
                        ) in
      fixpoint_blk_backward cdhp successors (transf_blk).

    Theorem analyze_func_solution_backward_get
            succ transf_blk acdhp cdhp_s fentry_s n blk ablk
            (WF_TRANS_BACK: l blk, (AI.getLast (transf_blk l blk)) = l)
            (ANALYSIS: analyze_func_backward (cdhp_s, fentry_s) succ transf_blk = Some acdhp)
            (GET_BLK: cdhp_s ! n = Some blk)
            (ANALYSIS_GET: (snd acdhp) ! n = Some ablk):
      transf_blk (AI.getLast acdhp !! n) blk = ablk.
    Proof.
      unfold analyze_func_backward in ANALYSIS.
      unfold fixpoint_blk_backward in ANALYSIS.
      remember (fun (n : positive) (ai : AI.t) ⇒
                   AI.getFirst match cdhp_s ! n with
                               | Some btransf_blk ai b
                               | NoneAI.Atom ai
                               end) as transf.
      destruct (fixpoint_allnodes cdhp_s succ transf) eqn:ANALYZE_NODE; tryfalse. inv ANALYSIS; simpl.
      unfold "!!"; simpl.
      rewrite PTree.gmap. rewrite GET_BLK.
      unfold option_map; simpl.
      destruct ((snd t) ! n) eqn:Heqe; simpl.
      unfold DS.AI.t, AI.t in ×. unfold DS.L.t in ×.
      rewrite Heqe.
      rewrite WF_TRANS_BACK; eauto. simpls.
      rewrite PTree.gmap in ANALYSIS_GET. unfold option_map in ANALYSIS_GET.
      unfold DS.AI.t, AI.t in ×. unfold DS.L.t in ×.
      rewrite Heqe in ANALYSIS_GET. rewrite GET_BLK in ANALYSIS_GET. inv ANALYSIS_GET; eauto.
      simpl in ×.
      rewrite PTree.gmap in ANALYSIS_GET.
      unfold option_map in ANALYSIS_GET.
      unfold DS.AI.t, AI.t in ×.
      rewrite Heqe in ANALYSIS_GET. tryfalse.
    Qed.

    Theorem analyze_func_solution_backward_get_none
            succ transf_blk acdhp cdhp_s fentry_s n blk
            (WF_TRANS_BACK: l blk, (AI.getLast (transf_blk l blk)) = l)
            (ANALYSIS: analyze_func_backward (cdhp_s, fentry_s) succ transf_blk = Some acdhp)
            (GET_BLK: cdhp_s ! n = Some blk)
            (ANALYSIS_GET: (snd acdhp) ! n = None):
      acdhp !! n = AI.bots.
    Proof.
      unfold analyze_func_backward in ANALYSIS.
      unfold fixpoint_blk_backward in ANALYSIS.
      remember (fun (n : positive) (ai : AI.t) ⇒
                   AI.getFirst match cdhp_s ! n with
                               | Some btransf_blk ai b
                               | NoneAI.Atom ai
                               end) as transf.
      destruct (fixpoint_allnodes cdhp_s succ transf) eqn:ANALYZE_NODE; tryfalse. inv ANALYSIS; simpl.
      unfold "!!"; simpl.
      rewrite PTree.gmap. rewrite GET_BLK.
      unfold option_map; simpl.
      simpls. rewrite PTree.gmap in ANALYSIS_GET.
      unfold option_map in ANALYSIS_GET.
      destruct ((snd t) ! n) eqn:Heqe; simpl.
      unfold DS.AI.t, AI.t in ×. unfold DS.L.t in ×.
      rewrite Heqe in ANALYSIS_GET. tryfalse.
      unfold DS.AI.t, AI.t in ×. unfold DS.L.t in ×.
      rewrite Heqe.
      eauto.
    Qed.

    Theorem analyze_func_solution_backward':
       succ transf_blk acdhp cdhp_s fentry_s n blk s blk_s,
        ( l blk, (AI.getLast (transf_blk l blk)) = l)
        analyze_func_backward (cdhp_s, fentry_s) succ transf_blk = Some acdhp
        cdhp_s ! n = Some blk
        In s (succ blk) cdhp_s ! s = Some blk_s
        AI.ge (AI.getLast acdhp !! n) (AI.getFirst (transf_blk (AI.getLast (acdhp !! s)) blk_s)).
    Proof.
      introv GET_LAST_PROP ANALYZE BLK SUCC SUCC_BLK.
      unfold analyze_func_backward in ANALYZE.
      unfold fixpoint_blk_backward in ANALYZE.
      remember (fun (n : positive) (ai : AI.t) ⇒
                   AI.getFirst match cdhp_s ! n with
                               | Some btransf_blk ai b
                               | NoneAI.Atom ai
                               end) as transf.
      destruct (fixpoint_allnodes cdhp_s succ transf) eqn:ANALYZE_NODE; tryfalse.
      lets ANALYZE_NODE': ANALYZE_NODE.
      eapply fixpoint_allnodes_solution with (instr := blk) in ANALYZE_NODE'; eauto.
      subst transf. rewrite SUCC_BLK in ANALYZE_NODE'.
      assert (GET: AI.getLast acdhp !! n = t !! n).
      {
        inv ANALYZE. unfold "!!" in *; simpls.
        rewrite PTree.gmap. unfold option_map. rewrite BLK.
        destruct ((snd t) ! n) eqn:Heqe.
        unfold DS.AI.t, AI.t in ×. unfold DS.L.t in ×.
        rewrite Heqe. eauto.
        unfold DS.AI.t, AI.t in ×. unfold DS.L.t in ×.
        rewrite Heqe.
        eapply fixpoint_allnodes_solution_fst_bot in ANALYZE_NODE.
        unfold DS.AI.t, AI.t in ×. unfold DS.L.t in ×.
        rewrite ANALYZE_NODE. simpls. eauto.
      }
      rewrite GET.
      assert (GET': AI.getLast acdhp !! s = t !! s).
      {
        clear GET. inv ANALYZE.
        unfold "!!"; simpls. rewrite PTree.gmap.
        unfold option_map.
        destruct ((snd t) ! s) eqn:Heqe; simpls.
        unfold DS.AI.t, AI.t in ×. unfold DS.L.t in ×.
        rewrite Heqe. rewrite SUCC_BLK. eauto.
        unfold DS.AI.t, AI.t in ×. unfold DS.L.t in ×.
        rewrite Heqe.
        eapply fixpoint_allnodes_solution_fst_bot in ANALYZE_NODE.
        unfold DS.AI.t, AI.t in ×. unfold DS.L.t in ×.
        rewrite ANALYZE_NODE. eauto.
      }
      rewrite GET'. eauto.
    Qed.

    Theorem analyze_func_solution_backward:
       succ transf_blk acdhp cdhp_s fentry_s n blk s,
        
wf transf_blk
        ( l blk, (AI.getLast (transf_blk l blk)) = l)
        analyze_func_backward (cdhp_s, fentry_s) succ transf_blk = Some acdhp
        cdhp_s ! n = Some blk
        In s (succ blk)
        AI.ge (AI.getLast acdhp !! n) (AI.getFirst (acdhp !! s)).
    Proof.
      introv GET_LAST_PROP ANALYZE BLK SUCC.
      unfold analyze_func_backward in ANALYZE.
      unfold fixpoint_blk_backward in ANALYZE.
      remember (fun (n : positive) (ai : AI.t) ⇒
                   AI.getFirst match cdhp_s ! n with
                               | Some btransf_blk ai b
                               | NoneAI.Atom ai
                               end) as transf.
      destruct (fixpoint_allnodes cdhp_s succ transf) eqn:ANALYZE_NODE; tryfalse.
      lets ANALYZE_NODE': ANALYZE_NODE.
      eapply fixpoint_allnodes_solution in ANALYZE_NODE'; eauto.
      assert (TRANS: L.ge (transf s (t!!s)) (AI.getFirst acdhp!!s)).
      {
        inv ANALYZE. unfold "!!"; simpls.
        rewrite PTree.gmap. unfold option_map.
        destruct ((snd t) ! s) eqn:Heqe.
        unfold DS.AI.t, AI.t in ×. unfold DS.L.t in ×.
        rewrite Heqe.
        eapply L.ge_refl. eapply L.eq_refl.
        unfold DS.AI.t, AI.t in ×. unfold DS.L.t in ×.
        rewrite Heqe. simpls.
        eapply L.ge_bot.
      }
      assert (GET: AI.getLast acdhp !! n = t !! n).
      {
        inv ANALYZE. unfold "!!" in *; simpls.
        rewrite PTree.gmap. unfold option_map. rewrite BLK.
        destruct ((snd t) ! n) eqn:Heqe.
        unfold DS.AI.t, AI.t in ×. unfold DS.L.t in ×.
        rewrite Heqe. eauto.
        unfold DS.AI.t, AI.t in ×. unfold DS.L.t in ×.
        rewrite Heqe.
        eapply fixpoint_allnodes_solution_fst_bot in ANALYZE_NODE.
        unfold DS.AI.t, AI.t in ×. unfold DS.L.t in ×.
        rewrite ANALYZE_NODE. simpls. eauto.
      }
      rewrite GET. unfold AI.ge.
      eapply L.ge_trans; eauto.
    Qed.
  End RtlSolverBackward.

End Backward_Dataflow_Solver.

Node sets

We now define implementations of the NODE_SET interface appropriate for forward and backward dataflow analysis. As mentioned earlier, we aim for a traversal of the CFG nodes in reverse postorder (for forward analysis) or postorder (for backward analysis). We take advantage of the following fact, valid for all CFG generated by translation from Cminor: the enumeration n-1, n-2, ..., 3, 2, 1 where n is the top CFG node is a reverse postorder traversal. Therefore, for forward analysis, we will use an implementation of NODE_SET where the pick operation selects the greatest node in the working list. For backward analysis, we will similarly pick the smallest node in the working list.

Require Import Heaps.

Module NodeSetForward <: NODE_SET.
  Definition t := PHeap.t.
  Definition empty := PHeap.empty.
  Definition add (n: positive) (s: t) : t := PHeap.insert n s.
  Definition pick (s: t) :=
    match PHeap.findMax s with
    | Some nSome(n, PHeap.deleteMax s)
    | NoneNone
    end.
  Definition all_nodes {A: Type} (code: PTree.t A) :=
    PTree.fold (fun s pc instrPHeap.insert pc s) code PHeap.empty.
  Definition In := PHeap.In.

  Lemma empty_spec:
     n, ¬In n empty.
  Proof.
    intros. apply PHeap.In_empty.
  Qed.

  Lemma add_spec:
     n n' s, In n' (add n s) n = n' In n' s.
  Proof.
    intros. rewrite PHeap.In_insert. unfold In. intuition.
  Qed.

  Lemma pick_none:
     s n, pick s = None ¬In n s.
  Proof.
    intros until n; unfold pick. caseEq (PHeap.findMax s); intros.
    congruence.
    apply PHeap.findMax_empty. auto.
  Qed.

  Lemma pick_some:
     s n s', pick s = Some(n, s')
               n', In n' s n = n' In n' s'.
  Proof.
    intros until s'; unfold pick. caseEq (PHeap.findMax s); intros.
    inv H0.
    generalize (PHeap.In_deleteMax s n n' H). unfold In. intuition.
    congruence.
  Qed.

  Lemma all_nodes_spec:
     A (code: PTree.t A) n instr,
      code!n = Some instr In n (all_nodes code).
  Proof.
    intros A code n instr.
    apply PTree_Properties.fold_rec with
        (P := fun m setm!n = Some instr In n set).
    intros. apply H0. rewrite H. auto.
    rewrite PTree.gempty. congruence.
    intros. rewrite PTree.gsspec in H2. rewrite add_spec.
    destruct (peq n k). auto. eauto.
  Qed.
End NodeSetForward.

Module NodeSetBackward <: NODE_SET.
  Definition t := PHeap.t.
  Definition empty := PHeap.empty.
  Definition add (n: positive) (s: t) : t := PHeap.insert n s.
  Definition pick (s: t) :=
    match PHeap.findMin s with
    | Some nSome(n, PHeap.deleteMin s)
    | NoneNone
    end.
  Definition all_nodes {A: Type} (code: PTree.t A) :=
    PTree.fold (fun s pc instrPHeap.insert pc s) code PHeap.empty.
  Definition In := PHeap.In.

  Lemma empty_spec:
     n, ¬In n empty.
  Proof NodeSetForward.empty_spec.

  Lemma add_spec:
     n n' s, In n' (add n s) n = n' In n' s.
  Proof NodeSetForward.add_spec.

  Lemma pick_none:
     s n, pick s = None ¬In n s.
  Proof.
    intros until n; unfold pick. caseEq (PHeap.findMin s); intros.
    congruence.
    apply PHeap.findMin_empty. auto.
  Qed.

  Lemma pick_some:
     s n s', pick s = Some(n, s')
               n', In n' s n = n' In n' s'.
  Proof.
    intros until s'; unfold pick. caseEq (PHeap.findMin s); intros.
    inv H0.
    generalize (PHeap.In_deleteMin s n n' H). unfold In. intuition.
    congruence.
  Qed.

  Lemma all_nodes_spec:
     A (code: PTree.t A) n instr,
      code!n = Some instr In n (all_nodes code).
  Proof NodeSetForward.all_nodes_spec.
End NodeSetBackward.