
A Program Logic for Concurrent Randomized
Programs in the Oblivious Adversary Model

Weijie Fan1 , Hongjin Liang1� , Xinyu Feng1 , and Hanru Jiang2

1 State Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing 210023, Jiangsu, China

weijiefan@smail.nju.edu.cn, {hongjin, xyfeng}@nju.edu.cn
2 Beijing Institute of Mathematical Sciences and Applications,

Beijing 101408, Beijing, China
hanru@bimsa.cn

Abstract. Concurrent randomized programs in the oblivious adversary
model are extremely difficult for modular verification because the inter-
action between threads is very sensitive to the program structure and
the execution steps. We propose a new program logic supporting thread-
local verification. With a novel “split” mechanism, one can split the state
distribution into smaller partitions, and the reasoning can be done based
on each partition independently, which allows us to avoid considering
different execution paths of branch statements simultaneously. The logic
rules are compositional and are natural extensions of their sequential
counterparts. Using our program logic, we verify four typical algorithms
in the oblivious adversary model.

1 Introduction

Randomization has become an important and powerful technique in the design
of concurrent and distributed algorithms. By introducing probabilistic coin-flip
operations, problems like consensus and leader election can be solved efficiently
(e.g. [12,2,3]), despite being inherently difficult or even impossible to solve in a
non-probabilistic concurrent setting.

To understand the semantics of concurrent randomized programs, one has
to take into account the interplay between concurrency and randomization. In
particular, one must answer the question: can the result of a coin-flip operation
affect the choice of scheduling (i.e. which thread will perform the next oper-
ation)? For this, algorithm designers propose a spectrum of adversary models
specifying the knowledge about the past execution that a scheduler (a.k.a. an
adversary) can use for choosing the next thread. Different adversary models
differs in the amount of knowledge they assume, varying from none to all.

At one end of the spectrum is the oblivious adversary (OA) model, where
an adversary has no knowledge and must fix the entire schedule prior to the
execution. The OA model is a natural abstraction of most real-world scheduling

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-91118-7_13

© The Author(s) 2025
V. Vafeiadis (Ed.): ESOP 2025, LNCS 15694, pp. 322–348, 2025.
https://doi.org/10.1007/978-3-031-91118-7_13

https://orcid.org/0009-0008-0853-0168
https://orcid.org/0000-0002-4337-6548
https://orcid.org/0000-0003-3972-9395
https://orcid.org/0000-0002-5965-1209
https://doi.org/10.1007/978-3-031-91118-7_13
https://doi.org/10.1007/978-3-031-91118-7_13
http://crossmark.crossref.org/dialog/?doi=https://doi.org/10.1007/978-3-031-91118-7_13&domain=pdf

A Program Logic for Concurrent Randomized Programs 323

algorithms, including the round-robin scheduling and the priority-based schedul-
ing. It reflects the scheduling in almost all real general infrastructures such as op-
erating systems or programming languages (e.g. as in golang) where the schedul-
ing does not rely on the specific behaviors of the threads being scheduled.

Designing algorithms for the OA model has gained lots of attention and
more than ten algorithms have been proposed over the years (see [4,5] for a
comprehensive introduction). As a concrete example, consider Chor et al. [12]’s
conciliator algorithm. A conciliator is a weak consensus object that guarantees
probabilistic agreement, namely that with a high probability the return values
of all threads are equal. In Chor et al. [12]’s conciliator algorithm, each thread
i executes Ci:

Ci
def
= (while (s = 0) do ⟨s := i⟩ ⊕p ⟨skip⟩) ; yi := s

Here s is a shared variable initialized to 0, yi is the local variable for thread i
that records its return value. The probabilistic choice ⟨s := i⟩⊕p ⟨skip⟩ says that
thread i writes i to s with probability p and does nothing (skip) with probability
1 − p. It repeats until the thread observes s ̸= 0, then it loads s to yi. Given
n threads running the conciliator code in the OA model, the algorithm ensures
the postcondition Pr(y1 = y2 = · · · = yn) ≥ (1 − p)n−1, i.e., the probability
for the threads to reach a consensus (thus y1 = y2 = · · · = yn) is no less than
(1− p)n−1.

However, there has been little attention paid to verifying algorithms in the
OA model. Existing program logics for verifying concurrent randomized pro-
grams [20,18,14] work with only the strong adversary (SA) model, which is at
the other end of the spectrum of adversary models. A strong adversary has
the full knowledge of the past execution, including outcomes of past coin-flips,
thread-local states and shared states. Consequently, any algorithm which is cor-
rect under SA must still be correct under OA, but not vice versa. For instance,
the aforementioned conciliator algorithm is not correct in SA and we will explain
why in Sec. 6. None of the existing program logics can apply to the conciliator, or
more generally, to any algorithms which are correct only with weaker adversaries
such as OA.

On the one hand, it is unclear how to take advantage of the OA model in
the verification. On the other hand, the OA model brings its own verification
challenges. As we will see in Sec. 3, the program behaviors in the OA model
seem sensitive to the number of execution steps in different program branches,
but the verification with program logics should be modular, syntax-directed and
insensitive to the number of execution steps.

The good news is, from the existing algorithms designed for the OA model, we
observe that the correctness properties of these algorithms usually follow certain
common patterns and can be specified by what we call “closed” assertions, which
will be introduced in Sec. 3.2. To verify these properties, we do not need to prove
they hold over the whole state distribution, which may contain states resulting
from the execution of different program branches. Instead, we can prove there
exists a partition of the distribution such that the property holds over every
part. For closed assertions, the validity over every part implies the validity over
the whole distribution.

324 W. Fan et al.

Based on this observation, we propose the first program logic for concurrent
randomized programs targeting the OA model. Our work makes the following
new contributions:

– We take advantage of the OA model by proposing an abstract small-step
operational semantics over state distributions, which allows us to apply clas-
sical concurrency reasoning techniques (such as invariants) by interpreting
assertions over state distributions.

– We propose a novel proof technique called split to support modular reason-
ing and overcome the problem with branch statements. By splitting a state
distribution into several smaller ones, we can reason about the different pro-
gram branches independently. This leaves us only to prove the postcondition
holds over a partition of the final state distribution. Then we can derive it
for the whole distribution as long as the postcondition is closed.

– We design a set of logic rules for compositional reasoning about concurrent
randomized programs with the split mechanism. Thanks to the split idea, our
rules for sequential composition, if -statements and while-loops are simple
and natural extensions of their classical (non-probabilistic) counterparts.

– We prove that our logic ensures partial correctness of concurrent random-
ized programs where the adversaries are also randomized. Since we focus
on closed assertions as postconditions, the verification is independent of the
distribution of schedules. The partial correctness verified by the logic holds
over arbitrary probabilistic distributions of oblivious adversaries.

– Using our logic, we report the first formal verification of four typical algo-
rithms in the OA model, including the aforementioned conciliator [12], group
election (the core phase of Alistarh and Aspnes’ randomized test-and-set al-
gorithm [2]), a shared three-sided dice and a multiplayer level-up game.

Outline. Below we first review mathematical preliminaries in Sec. 2. Then we
informally explain our key ideas in Sec. 3. We present the language setting in-
cluding our abstract semantics in Sec. 4. We develop our program logic in Sec. 5,
and verify conciliator as a case study in Sec. 6. We discuss related work in Sec. 7.
The accompanying technical report (TR) [13] contains the full formal details,
including semantics rules, logic rules and soundness proofs, and examples.

2 Preliminaries

Below we review the background on probability theory and sketch the basic
mathematical notations used in our work for describing probabilities, expected
values, etc. Readers who are not interested in mathematics can safely skip this
section and come back later when the notations are used.

A sub-distribution over a set A is defined as a function µ :A→ [0, 1] such that

– the support supp(µ) def
= {a ∈ A | µ(a) > 0} is countable; and

– the weight |µ| def
=

∑
a∈A µ(a) is less than or equal to 1.

A Program Logic for Concurrent Randomized Programs 325

If we have |µ| = 1, we say µ is a distribution over A. We use SDA to denote the
set of sub-distributions over A, and DA to denote the set of distributions. For
µ ∈ SDA, intuitively µ(a) represents the probability of drawing a from µ.

We define the probability of an event E : A → Prop and the expected value of a
random variable V : A → R as follows, denoted by Pra∼µ[E(a)] and Ea∼µ[V (a)]
respectively (where a is a bound variable, just like

∑
a∈A f(a)). Here Prop rep-

resents the set of propositions, and R is the set of real numbers.

Pra∼µ[E(a)]
def
=

∑
a∈A{µ(a) | E(a)} Ea∼µ[V (a)]

def
=

∑
a∈A µ(a) · V (a) (1)

For instance, suppose µ is a state distribution, and q is a state assertion (we
write σ |= q if q holds at the state σ). Then Prσ∼µ[σ |= q] represents the
probability that q is satisfied. If JeKσ is the evaluation of the expression e on σ,
then Eσ∼µ[JeKσ] represents the expected value of e in µ.

For an event E with non-zero probability in µ (i.e. Pra∼µ[E(a)] > 0), we
define the conditional sub-distribution µ|E as follows:

µ|E
def
= λa.

{
µ(a)

Pra∼µ[E(a)]
, if E(a) holds

0, otherwise
(2)

Given two sub-distributions µ1, µ2 ∈ SDA and a probability p ∈ [0, 1], we
define the mixture sub-distribution µ1 ⊕p µ2 ∈ SDA as follows:

µ1 ⊕p µ2
def
= λa. p · µ1(a) + (1− p) · µ2(a) (3)

Given two sub-distributions µ1 ∈ SDA and µ2 ∈ SDB , we define the product
sub-distribution µ1 ⊗ µ2 ∈ SDA×B as follows:

µ1 ⊗ µ2
def
= λ(a, b). µ1(a) · µ2(b) (4)

In Sec. 4.2, we will use the product ⊗ to compute the initial distribution of
program configurations, from the initial program C and an initial state distribu-
tion. When C’s execution ends, we will extract the final state distribution from
the final distribution of program configurations by projection. Specifically, given
µ ∈ SDA×B , the projection of µ with the sets A and B is defined as:

µ(A) def
= λa′.Pr(a,b)∼µ[a = a′] µ(B) def

= λb′.Pr(a,b)∼µ[b = b′] (5)

For almost surely terminating programs (i.e. programs which have infinite
executions with zero probability and terminate with probability 1), we define the
“final” state distribution as the limit of an infinite sequence of state distributions.
In general, we define the limit of a convergent sequence of sub-distributions in
Def. 6.

Definition 6 (convergent sequence of sub-distributions). Let A be a set,
→
µ be an infinite sequence of sub-distributions over A. We say

→
µ converges to a

sub-distribution µ, represented as lim
→
µ = µ, if and only if lim

n→∞

∑
a∈A|

→
µ [n](a)−

µ(a)| = 0 (where
→
µ [n] means the n-th element of the sequence

→
µ). We say

→
µ

diverges and lim
→
µ is undefined if

→
µ does not converge to any µ.

326 W. Fan et al.

a1

p1
a2

p2

b1

p11

b2

p12

b1

p21

b2

p22

µ

f(a1) f(a2)

b1

p1p11 + p2p21

b2

p1p12 + p2p22

Ea∼µ{f(a)}

Fig. 1: Expected sub-distribution

Definition 7 (expected sub-distribution). Let µ ∈ SDA and f : A → SDB .
The expected sub-distribution Ea∼µ{f(a)} ∈ SDB is defined as

Ea∼µ{f(a)}
def
= λb.

∑
a∈A µ(a) · f(a)(b)

Definition 7 computes the sub-distributions’ expectation. As illustrated in
Fig. 1, the function f transforms each element ai in the support of µ to a sub-
distribution f(ai), and then the expected sub-distribution (see the right side of
the figure) is the mixture of all f(ai).

Also, from a sub-distributions’ sub-distribution µ ∈ SDSDA
, we can compute

the flattened sub-distribution µ ∈ SDA as the mixture of all the sub-distributions
in the support of µ:

µ
def
= λa.

∑
ν∈supp(µ) µ(ν) · ν(a) . (8)

3 Informal Development

Below we start with reasoning about sequential randomized programs (Sec. 3.1).
For concurrent randomized programs, we introduce the oblivious adversary (OA)
model and define the correctness of programs with randomized schedules (Sec. 3.2).
Then we show how to do thread-local reasoning by taking advantage of OA
(Sec. 3.3). To address the challenges posed by branch statements (Sec. 3.4), we
propose the split mechanism (Sec. 3.5).

3.1 Sequential Randomized Programs and Their Correctness

Randomized programs can be viewed as programs in a classical (non-probabilistic)
programming language (e.g. WHILE) extended with probabilistic choice state-
ments ⟨C1⟩ ⊕p ⟨C2⟩. It makes a random choice to execute ⟨C1⟩ or ⟨C2⟩, with
probability p and 1 − p, respectively. Here we use ⟨C⟩ to represent an atomic
statement that executes C in one step (see the formal semantics in Sec. 4.1).

The execution of a sequential randomized program starting from a particular
initial state forms a tree. For instance, Fig. 2a shows the execution tree for

Coins def
= ⟨x := 0⟩ ⊕ 1

2
⟨x := 1⟩; ⟨y := 0⟩ ⊕ 1

2
⟨y := 1⟩;

starting from the initial state where x and y are both 0. Each branching in the
tree corresponds to a probabilistic choice. If we consider all possible initial states,
the execution becomes a forest (where each node represents a program state σ),
as shown in Fig. 2b.

A Program Logic for Concurrent Randomized Programs 327

(0, 0)

(0, 0)
1
2

1
2

(0, 0)

1
2

(0, 1)

1
2 (1, 0)

1
2

(1, 0)

1
2

(1, 1)

(a)

σ1
1
2

1
2

1
2

1
2

1
2

1
2

σk
1
2

1
2

1
2

1
2

1
2

1
2

. . .

. . .

. . .

(b)
Fig. 2: Execution of a sequential program. In (a), a pair at a node specifies x and
y’s values in the state.

Correctness. Although the execution model based on the view of state transi-
tions is similar to the model of classical sequential programs, the properties of
randomized programs can be significantly different. For the program Coins, one
may want to derive properties like “the probability that x equals y at the end
of the program is 0.5”. Unlike a postcondition in Hoare-style logics for classical
sequential programs, which is expected to hold over every leaf node of the forest,
the above property describes the collection of all the leaf nodes as a whole, i.e.
the state distribution at the end of the program.

Therefore, in the Hoare-style specification {P}C{Q} for randomized pro-
grams, P and Q are assertions over distributions of initial states and final states,
respectively. For the example Coins, we can specify the aforementioned property
as {true}Coins{Pr(x = y) = 0.5} or {true}Coins{⌈x = y⌉ ⊕0.5 ⌈x ̸= y⌉}. Here
⌈p⌉ lifts the state assertion p to an assertion over state distributions µ, requiring
that p holds at all states in supp(µ). The assertion P ⊕p Q holds at µ, if µ is a
mixture of two distributions µ0 and µ1, which are associated with probabilities p
and 1−p, and satisfy P and Q respectively. We can give the following Hoare-logic
rule to probabilistic choices:

⊢sq {P}C1{Q1} ⊢sq {P}C2{Q2}
⊢sq {P}⟨C1⟩ ⊕p ⟨C2⟩{Q1 ⊕p Q2}

(sq-pch)

In this view, a program C transforms a state distribution µ satisfying P
to another state distribution µ′ satisfying Q (an alternative view is expectation-
based, where P and Q are expectations [17,8]). The resulting logic rules (e.g. [6])
are almost the same as the classical (non-probabilistic) ones — we just need to lift
the assertions from predicates over states to predicates over state distributions.

3.2 Concurrent Randomized Programs and the OA Model

A concurrent randomized program C1 ∥ · · · ∥ Cn (denoted by C) has two sources
of nondeterminism: the probabilistic choices (in each thread Ci) and the schedul-
ing. Its correctness usually assumes a certain class of scheduling, specified by an
adversary model.

The oblivious adversary (OA) model considered in this paper requires that
the scheduling must be determined prior to the execution, regardless of the
outcomes of a thread’s local coin-flip operations. For example, Fig. 3 shows all

328 W. Fan et al.

x = 0

x = 0 x = 0

x = 0 x = 0

x = 1 x = 1

1
3

2
3

x := 2x x := x
2

x := 1 x := 1

(a)

x = 0

x = 0 x = 0

x = 1 x = 1

x = 2 x = 1
2

1
3

2
3

x := 1 x := 1

x := 2x x := x
2

(b)

x = 0

x = 1

x = 1 x = 1

x = 2 x = 1
2

x := 1

1
3

2
3

x := 2x x := x
2

(c)

Fig. 3: Execution trees in OA model for Cx
def
= (⟨x := 2x⟩ ⊕ 1

3
⟨x := x

2 ⟩ ∥ x := 1)

µ |= Pµ µ

µ1 µk µ′ |= Q

φ1 φk

. . .

. . .

. . .

Fig. 4: Illustration of |= {P}C{Q}

the possible executions in the OA model for a simple program Cx consisting
of two threads: ⟨x := 2x⟩ ⊕ 1

3
⟨x := x

2 ⟩ ∥ x := 1. In the concurrent setting,
the probabilistic choice ⟨C1⟩ ⊕p ⟨C2⟩ is executed in two steps: it first flips a
coin, getting heads with probability p and tails with probability 1− p, and then
executes either the atomic statement ⟨C1⟩ for heads, or ⟨C2⟩ for tails.

Therefore, in OA, there are only three possible schedules for Cx: t1 t1 t2
(Fig. 3a); t1 t2 t1 (Fig. 3b); and t2 t1 t1 (Fig. 3c). In the figure, state transitions
by different threads are in different colors (in black for t1, and in red for t2). We
can see that, by fixing a specific OA schedule, the transitions at the same layer
of an execution tree must be made by the same thread.

In contrast, the strong adversary (SA) model allows arbitrary scheduling. An
SA scheduler has the full knowledge of machine states, especially including the
outcomes of coin-flip operations, and can rely on that knowledge to schedule
threads. For the example Cx, in addition to the three schedules in Fig. 3, the
SA model also allows two additional schedules, where t1 and t2 are scheduled in
different orders for different outcomes of the coin flip. As such, the transitions
at the same layer of an execution tree could be made by different threads.

This example also demonstrates that, thanks to the restriction of the schedul-
ing, one can derive stronger properties of programs in the OA model that do not
hold in the SA model. As shown in Fig. 3, in the OA model, the expected value
of x at the end of execution is 1, which is not true considering the two more
schedules in the SA model.

Correctness and closed assertions. What is the meaning of the Hoare triple
{P}C{Q} now? Figure 4 shows the execution of a concurrent program, where µ

A Program Logic for Concurrent Randomized Programs 329

is the distribution of the initial states. We use µ |= P to denote that µ satisfies
P , which will be formally defined in Sec. 5.1. The execution under each (OA)
schedule φi corresponds to a forest, as in the case for sequential programs. Edges
of different colors represent execution steps from different threads. The execution
under all schedules forms a set of forests. It is obvious that P specifies µ, but
what about Q?

Here we have two choices. We can either view the schedules as being non-
deterministic, or as being probabilistic. For the former, we require that Q holds
over every µi (the leaf node distribution of the forest generated with the schedule
φi). However, this result is not strong enough — if we sample the execution of C
and observe the final results, the sampled executions may not be generated with
the same schedule, that is, the final states we observe may come from different
µi. So it is more natural to take the latter (probabilistic) view of schedule and
consider the mixture distribution µ′ of µ1, . . . , µk, . . ., where the weight of each
µi is the probability of the schedule φi. Since we do not know the distribution
of schedules in advance, Q needs to hold for all schedule distributions, that is,
Q holds over µ′ obtained by taking an arbitrary probability distribution for
µ1, . . . , µk, . . .

We use |=nd {P}C{Q} to represent the semantics of the Hoare triple under
the non-deterministic view, and |=pr {P}C{Q} for the probabilistic view. It is
easy to prove the latter implies the former. The reverse does not hold in general,
but it holds if Q is “closed”. Here closed(Q) requires that the mixture of any
(potentially countably infinite) number of distributions satisfies Q if each of these
distributions satisfies Q. (We will formally define closed(Q) in Sec. 5.1.) As a
result, for a closed postcondition, we can reduce the proof of |=pr {P}C{Q} to
the proof of |=nd {P}C{Q}.

As far as we know, most concurrent randomized algorithms have closed post-
conditions. As examples of closed assertions, ⌈b⌉, Pr(b) = 0.5 and E(x) = 1∧⌈x ≥
0⌉ are all closed. So, for the earlier example Cx, it suffices to prove that the leaf
distribution of each execution tree in Fig. 3 satisfies E(x) = 1 ∧ ⌈x ≥ 0⌉.

We give the formal definition of |=nd {P}C{Q} in Sec. 4.1. We show the formal
definition of |=pr {P}C{Q} and prove that they are equivalent when Q is closed
in the TR [13]. In this paper we focus on closed Q’s only and omit the subscript
nd/pr henceforth. Note that closed(Q) is not an overly strong requirement for
practical programs, because it is needed only for the postcondition Q of the
whole program C. The postconditions for individual statements and threads do
not need to be closed.

3.3 Thread-Local Reasoning in OA

The question is, how to take advantage of the OA model and verify the stronger
correctness guarantee of a program by thread-local reasoning, i.e., verifying one
thread at a time.

A natural thought is to extend the sequential reasoning in Sec. 3.1 to con-
currency. To this end, we hope to view the execution of a concurrent program as
transitions over state distributions, as we do for sequential reasoning. However,

330 W. Fan et al.

t1

t2

µ

µ′

µ′′

(a)

t1

t2

µ

µ′

µ′′

(b)

Fig. 5: Concrete vs. Abstract Operational Semantics in OA

unlike sequential semantics that are usually big-step (see e.g. [6,19]) and care
about only the initial and final state distributions, the transitions in a concur-
rent setting need to be small-step, to reflect the interleaving between threads.

One might also consider to migrate the existing approaches for the SA model
to the OA setting. However, the interleaving pattern between threads in the OA
model is very different from that in the SA model. The SA model allows that dif-
ferent threads may be scheduled for different outcomes of a probabilistic choice
operation, while the OA model does not allow it. As a result, program logics
for SA (e.g. [18,14]) adopt weak assumptions on the environment behaviors in
the thread view: for different states in the support of the current state distribu-
tion, different environment threads may interrupt and take very different steps.
Therefore, they model the environment behaviors as transitions from states to
state distributions (e.g. [18]) or transitions from states to states (e.g. [14]).

However, this idea may not be as useful in the OA setting as in the SA
setting (thought it is still sound). Algorithms in the OA model usually rely on
the assumption that the scheduling cannot depend on the results of probabilistic
choices, so the weak assumption that different states may be interrupted by
different environment threads is too weak in the OA setting, and it is not obvious
how to forbid the impossible interleavings in the OA model if we still model
the environment behaviors as transitions from states to state distributions or
transitions from states to states.

To address this problem, we exploit the stronger assumption on the environ-
ment behaviors: for different states in the support of the current distribution, it
must be the same environment thread that interrupts and take steps. Therefore,
we propose an abstract operational semantics and layer-based reasoning.

Abstract operational semantics. In the OA model, we observe that, for all the
states at the same layer of the execution forest (i.e. nodes of the same depths,
as shown in Fig. 5a), it is always the same thread picked to execute the next
step, since the schedule is predetermined. That is, the edges with the same
depth are always of the same color, representing steps from the same thread.
Naturally, we can view the states of the same layer as a whole, forming a state
distribution. If we also view the edges between two layers as a whole, then
Fig. 5a is abstracted to Fig. 5b. This gives us an abstract operational semantics
with small-step transitions over state distributions. The execution looks like an
interleaving execution of a classical (non-probabilistic) concurrent program.

A Program Logic for Concurrent Randomized Programs 331

Consequently, we can apply classical concurrency reasoning techniques (e.g.
invariants) to reason about executions in our abstract semantics. Our abstraction
is sound in that the Hoare-triple {P}C{Q} valid in our abstract semantics also
holds with the concrete semantics.

Invariants. To do thread-local reasoning, one needs to specify the interference
between the current thread and its environment (i.e. the other threads), which
can be modeled by an invariant I. For classical concurrent programs, I is a state
assertion that needs to hold at all times. The current thread can assume that I
holds before each of its steps, but it must also ensure that I still holds after each
step. For a randomized program, we define I over state distributions. It holds at
all the µ’s in executions in our abstract semantics (e.g. µ, µ′ and µ′′ in Fig. 5b).
Since every such µ corresponds to a layer in the concrete semantics, we call I a
layer invariant and the reasoning layer-based.

In addition to layer invariants I, our logic also uses non-probabilistic rely-
guarantee conditions (R and G), to simplify the formulation of I in proofs of
programs. By “non-probabilistic”, we mean that R and G specify state transitions
in the concrete semantics (but do not specify the probability of the transitions).
Their treatment is the same as in classical rely-guarantee reasoning [15].

Unfortunately, we need to address one more challenge to make this nice ab-
straction work. To define the abstract operational semantics, we view all the
edges (program steps) at the same layer in Fig. 5a as a whole to get Fig. 5b.
However, although these edges are from the same thread, they may still corre-
spond to the execution of different code, due to the branch statements in the
thread. Below we explain the challenges and our solution in detail.

3.4 Problems with Branch Statements

A program may contain branch statements such as if-statements and while-
loops, which condition on random variables (i.e. variables whose values are prob-
abilistic). Different branches may take different numbers of steps to execute,
making it difficult to do layer-based reasoning.

c11 c21

c12 c3

c4 c4

c3 skip

Fig. 6

For instance, we consider the program C ∥ c4, where:

C
def
= (if (x = 0) then (c11; c12) else c21); c3;

Here each c□ stands for an atomic command. Assume the
initial values of x are assigned in a probabilistic choice, which
is either 0 or 1. Figure 6 shows a possible execution, where
we need to consider the two possibilities corresponding to the
two initial values of x. Note that we allow the right branch
to execute skip when it reaches the end while the left branch
executes c3.

Thread t1 switches to t2 after executing two steps (we
omit the step evaluating the boolean condition). The layer-
based reasoning asks us to find some invariant and prove
that it holds over the distribution of every layer (i.e. every

332 W. Fan et al.

green dashed box). This forces us to consider the simultaneous execution of
c11 in the then-branch and c21 in the else-branch. Even worse, since the two
branches have different lengths, we have to consider the simultaneous execution
of c12 and c3. This looks particularly unreasonable if we consider the fact that c3
actually sequentially follows c12 in the program structure! This makes it almost
impossible to design structural and compositional Hoare-style logic rules. The
problem is exacerbated by while-loops, where the number of rounds of loops
may rely on random variables.

Note that this problem does not show up in the deterministic setting where
there is no randomization and we prove properties of individual states. In the
execution of if-statements, a state either enters the then-branch or enters the
else-branch, but not both. So we only need to verify the two cases respectively.

We also do not have to worry about the problem with branch statements
in the sequential probabilistic setting. Since there is no interleaving, we can
reason about probabilistic properties in a “big-step” flavor where we only con-
sider the initial state distribution and the final one. To reason about the branch
statement, we can reason about the different branches (on the corresponding
sub-distributions) separately and then do a mixture at the join point, as shown
by the (cond) rule in Barthe et al. [6]’s sequential logic:

{P1 ∧ ⌈b⌉}C1{Q1} {P2 ∧ ⌈¬b⌉}C2{Q2}
{(P1 ∧ ⌈b⌉)⊕ (P2 ∧ ⌈¬b⌉)}if (b) then C1 else C2{Q1 ⊕Q2}

(cond)

The (cond) rule in [6] is sound for sequential programs, but not for the con-
current OA setting. If C1 and C2 have different numbers of steps, then Q1 ⊕Q2

specifies a state distribution where states are not at the same “layer”, which will
make it difficult to reason about subsequent statements.

Below we use an interesting example to further demonstrate the problem and
then introduce our solution.

Example: a shared three-sided dice. To see the problem with branch statements
more concretely, we consider a simple program CDice of n threads, where the
code of each thread is Dice:

Dice def
= while (x = 0) do Roll, where Roll def

= (x
$
:=

{
1 : 1

2
| 2x : 1

6
| x

2
: 1

3

}
)

Here x is a shared variable initialized to 0. The loop body Roll is a random
assignment, which is short for the atomic probabilistic choice ⟨⟨x := 1⟩⊕ 1

2
(⟨x :=

2x⟩⊕ 1
3
⟨x := x

2 ⟩)⟩. That is, the thread atomically rolls a 3-sided dice and updates
x according to the outcome: it sets x to 1 with probability 1

2 , doubles x with
probability 1

6 and halves x with probability 1
3 .

We want to verify that CDice satisfies the postcondition E(x) = 1. As we
explained, to do thread-local reasoning, we first find out the invariant IDice to
model the interference:

IDice
def
= I0 ⊕ I1, where I0

def
= ⌈x = 0⌉ and I1

def
= (⌈x ̸= 0⌉ ∧ E(x) = 1)

A Program Logic for Concurrent Randomized Programs 333

µ µ1⊕
IDice

µ′ µ′
1⊕

IDice?
Roll skip

(a) from layer to layer

µ0
I0

µ′
00 µ′

01

⌈x = 0⌉ ⌈x = 1⌉

Roll

(b) split

{IDice}
while (x = 0) do

{IDice}
⟨Roll; split(x = 0, x ̸= 0)⟩
{IDice}

{IDice ∧ ⌈x ̸= 0⌉}
{E(x) = 1}

(c) proof
Fig. 7: Executions of Dice and Its Proof with Split

It says, every whole state distribution µ (at every layer of an execution forest) is
a mixture µ0⊕µ1 (formed by taking µ0 with arbitrary probability and taking µ1

with the remaining probability) in which µ0 and µ1 satisfy I0 and I1 respectively.
To check IDice is indeed an invariant, one may consider showing that IDice is

preserved by Roll. However, even if IDice is preserved by Roll (which is indeed
true), it is still unclear whether IDice is preserved layer by layer. Specifically,
after executing Roll, we will reach a state distribution whose support contains
both the states satisfying x = 0 and those satisfying x ̸= 0. From the former,
the thread will enter the next round of the loop; but from the latter, the thread
will exit the loop and execute the code after the loop (or skip if there is no
subsequent code). Consequently, Roll may be executed “at the same time” with
skip, as shown in Fig. 7a. What we need to prove is that IDice is preserved by
a mixture of executing Roll and skip at the same layer.

However, it is difficult to design logic rules to compose the proofs of Roll and
skip for their mixture, because Roll as the loop body is actually syntactically
sequenced before skip, the code after the loop. We face a similar problem as the
problem with the if-statement, as explained above.

3.5 Our Key Idea: Split

Instead of trying to reason about the mixture of the behaviors of different state-
ments at the whole layer, we split the state distribution of the layer, and reason
about the different statements separately. In detail, we introduce an auxiliary
command split(b1, . . . , bk). It divides the current state distribution µ into k dis-
joint parts µ1, . . . , µk, such that each smaller distribution µi satisfies ⌈bi⌉ and µ
is their mixture µ1 ⊕ . . .⊕ µk. In our abstract operational semantics the thread
non-deterministically picks a µi and continues its execution. One can instrument
the code being verified with proper split commands so that each µi corresponds
to a distinct branch in the control flow. Note that the split commands only
affects the abstract semantics. In the concrete semantics, split has no effect and
can be viewed as a no-op.

With split, the invariant I no longer needs to specify the whole layer µ, but
instead it specifies only the smaller distributions µi generated by split. This I
must be preserved by the execution at every µi. For instance, if we instrument

334 W. Fan et al.

split(b,¬b) before if (b) then C1 else C2, then it suffices to prove that I is
preserved by the executions of C1 and C2 at distributions satisfying ⌈b⌉ and
⌈¬b⌉ respectively.

Split is physical and irreversible. We do not provide any command to mix
back the smaller distributions that result from split. Instead of directly verifying
⊢a {P}C{Q}, where C contains no split commands and thus Q holds at the
whole leaf layer, we verify ⊢a {P}C′{Q} for C′ that results from instrumenting
C with auxiliary split commands. Therefore Q needs to hold at every smaller
distribution at the leaf layer. That said, we do provide the following logic rule
to convert ⊢a {P}C′{Q} back to ⊢a {P}C{Q}:

⊢a {P}C′{Q} closed(Q)

⊢a {P}RemoveSplit(C′){Q}
(removesplit)

Here RemoveSplit(C′) removes all the split commands from C′, and closed(Q)
(introduced at the end of Sec. 3.2) allows us to re-establish Q at the mixture
of smaller distributions that all satisfy Q. The subscript “a” in the judgement
indicates that the reasoning is based on the abstract semantics.

Proof for the shared three-sided dice. To verify Dice, we split the state distribu-
tions so that the states at which the thread enters the next round of the loop
and those at which the thread exits the loop are always separate. As such, the
invariant IDice is revised to be a disjunction:

IDice
def
= I0 ∨ I1, where I0

def
= ⌈x = 0⌉ and I1

def
= (⌈x ̸= 0⌉ ∧ E(x) = 1)

In contrast to the earlier I0 ⊕ I1 which holds at a mixture, this new IDice holds
at a state distribution µ satisfying either I0 or I1. If µ satisfies I0, the thread
enters the next round of the loop; otherwise it exits the loop.

We instrument the loop body with the split command, as shown in red
color in Fig. 7c. This split command ensures that the new IDice is indeed an
invariant. As the blue assertions indicate, if IDice holds before the loop body,
which means either I0 or I1 holds, then IDice still holds after atomically executing
Roll and split. In particular, as shown in Fig. 7b, if I0 holds before the loop body,
executing Roll gives us a state distribution satisfying ⌈x = 0⌉⊕⌈x = 1⌉, and then
executing split(x = 0, x ̸= 0) (see the red vertical bar) results in two separate
state distributions µ′

00 satisfying ⌈x = 0⌉ and µ′
01 satisfying ⌈x = 1⌉. Both µ′

00

and µ′
01 satisfy IDice. The full proof is given in the TR [13].

Logic rules for split and branch statements. Below we introduce our logic rules
for split, if -statements and while-loops to show how the split mechanism works.

G ⊢sq {I∧P}C{(I∧Q∧⌈b1⌉)⊕ · · · ⊕ (I∧Q∧⌈bk⌉)} · · ·
R,G, I ⊢ {P}⟨C⟩ split(b1, . . . , bk){(Q∧⌈b1⌉)∨. . .∨(Q∧⌈bk⌉)}

(atom-split)

As in the Dice example, split is usually inserted after and executed atomi-
cally with some code ⟨C⟩. As such, we provide the command ⟨C⟩ split(b1, . . . , bk),

A Program Logic for Concurrent Randomized Programs 335

which has the same meaning as ⟨C; split(b1, . . . , bk)⟩. The (atom-split) rule re-
quires us to prove the ⊢sq judgement, which reasons about C as sequential code,
and ensures that the state distribution at the end is a mixture of smaller distribu-
tions satisfying ⌈b1⌉, . . . , ⌈bn⌉ respectively. Since split turns the big distribution
into these smaller ones as separate parts, the postcondition of the conclusion
is a disjunctive assertion. We can see that split essentially turns ⊕ into ∨. The
disjunction can be the precondition of the subsequent if and while statements
as required by the (cond) and (while) rules below. Here we omit the side con-
ditions which says that the pre/post-conditions are stable with respect to R and
I. The definition of rely/guarantee conditions and stability will be explained in
Sec. 5.1 and the complete rule will be presented in Sec. 5.2.

P1 ⇒ ⌈b⌉ P2 ⇒ ⌈¬b⌉ R,G, I ⊢ {P1}C1{Q} R,G, I ⊢ {P2}C2{Q} · · ·
R,G, I ⊢ {P1 ∨ P2}if (b) then C1 else C2{Q}

(cond)

P1 ⇒ ⌈b⌉ P2 ⇒ ⌈¬b⌉ ∧Q R,G, I ⊢ {P1}C{P1 ∨ P2} · · ·
R,G, I ⊢ {P1 ∨ P2}while (b) do C{Q}

(while)

Our (cond) rule assumes that, before the if -statement, the state distribu-
tions have already been split into smaller distributions for executing the then-
and else-branches separately. Therefore, the precondition is supposed to be the
disjunction P1∨P2, where P1 ⇒ ⌈b⌉ and P2 ⇒ ⌈¬b⌉. Recall that ⌈b⌉ says b holds
with probability 1, i.e., all the states in the support of the distribution satisfy
b. So, ⌈b⌉ ∨ ⌈¬b⌉ is not implied by ⌈b ∨ ¬b⌉. The latter holds always, but for
the former to hold, we must do split first. Then the branches can be verified
independently, as we do in classical Hoare logic.

Similarly, in the (while) rule, the loop invariant is the disjunction P1 ∨ P2.
Resulting from a split, the part satisfying P1 ensures that the loop always contin-
ues with its next round since P1 ⇒ ⌈b⌉, while the part satisfying P2 terminates
the loop as P2 ⇒ ⌈¬b⌉. If the value of b is probabilistic and can be modified by
the code before the loop and by the loop body C, one need to insert split before
the loop and inside the loop body C, so that P1 ∨ P2 holds before every round
of the loop.

4 The Programming Language

The syntax of the language is defined in Fig. 8. The whole program C consists of
n sequential threads. The statements C of each thread are mostly standard. The
atomic statements ⟨C⟩ and the probabilistic choices ⟨C1⟩ ⊕p ⟨C2⟩ are explained
in Sec. 3. For verification purposes, we also append the atomic statements with
split statements to get (⟨C⟩ sp) where sp is in the form of split(b1, . . . , bk).

Below we give two operational semantics to the language. The concrete one
follows the standard interleaving semantics and models program steps as proba-
bilistic transitions over program states. The split statements are ignored in this
semantics. That is, they are viewed as annotations for verification only and have
no operational effects.

336 W. Fan et al.

(Nat) n, k ∈ N (Real) p, r ∈ R (PVar) x ∈ String
(Expr) e ::= n | x | e1 + e2 | e1 − e2 | e1 ∗ e2 | . . .
(Bexp) b ::= true | false | e1 < e2 | e1 = e2 | e1 ≤ e2 | ¬b | b1 ∧ b2 | b1 ∨ b2 | . . .

(SplitInstr) sp ::= split(b1, . . . , bk)
(Stmt) C ::= skip | x := e | C1;C2 | if (b) then C1 else C2 | while (b) do C

| ⟨C⟩ | ⟨C⟩ sp | ⟨C1⟩ ⊕p ⟨C2⟩
(Prog) C ::= C1 ∥ · · · ∥ Cn

Fig. 8: The Programming Language

Thread IDs, schedules, states and states distributions:
(ThreadId) t ∈ N+ (Schedule) φ ::= t ::φ (coinductive)

(State) σ ∈ PVar → R (DState) µ ∈ DState

Global transitions: (C, σ) p−→
t

(C′, σ′)

(Ct, σ)
p−→ (C′

t, σ
′)

(C1 ∥ · · · ∥ Ct ∥ · · · ∥ Cn, σ)
p−→
t

(C1 ∥ · · · ∥ C′
t ∥ · · · ∥ Cn, σ

′)

Thread-local transitions: (C, σ) p−→ (C′, σ′)
JeKσ = n

(x := e, σ)
1−→ (skip, σ{x ; n}) (skip, σ) 1−→ (skip, σ)

C1 ̸= skip (C1, σ)
p−→ (C′

1, σ
′)

(C1;C2, σ)
p−→ (C′

1;C2, σ
′) (skip;C2, σ)

1−→ (C2, σ)

(⟨C1⟩ ⊕p ⟨C2⟩, σ)
p−→ (⟨C1⟩, σ) (⟨C1⟩ ⊕p ⟨C2⟩, σ)

1−p−−→ (⟨C2⟩, σ)

∃k.∀n ≥ k. (C, σ)
p−→n(skip, σ′)

(⟨C⟩, σ) p−→ (skip, σ′)

(⟨C⟩, σ) p−→ (skip, σ′)

(⟨C⟩ split(b1, . . . , bk), σ)
p−→ (skip, σ′)

Fig. 9: Concrete Operational Semantics

The abstract semantics models program steps as transitions over distribu-
tions of program configurations. We also assign operational semantics to split
statements. We prove that Hoare-triples valid in the abstract semantics are also
valid in the concrete semantics (Thm 1 below).

4.1 Concrete Operational Semantics

We show selected semantics rules in Fig. 9 and give the full set of rules in the
TR [13]. The single-step transition of the whole program is defined through the
thread-local transitions. Each step is decorated with a p, the probability that the
step may occur. For most thread-local transitions except the probabilistic choices
and atomic statements, p is simply 1. Note that we allow the skip command at
the end of execution to stutter with probability 1, but it cannot stutter if it is
sequenced before some C. That is, “skip;C” can only step to C. ⟨C1⟩ ⊕p ⟨C2⟩

A Program Logic for Concurrent Randomized Programs 337

chooses to execute the left or right branches, with probability p and 1 − p,
respectively. The atomic statement ⟨C⟩ is always done in one step, no matter
how complicated C is. We assume C in the atomic statement never contains
while-loops, so it always terminates in a bounded number of steps. Note that the
need of atomicity of the branches in ⟨C1⟩⊕p ⟨C2⟩ is not overly idealistic, because
we mainly use ⟨C1⟩ ⊕p ⟨C2⟩ to encode a random assignment, thus C1 and C2

themselves may correspond to single instructions at the machine level anyway (in
this case, the atomic wrappers ⟨·⟩ are unnecessary). In the proofs of algorithms,
we may insert auxiliary statements (a.k.a. ghost code) to be executed with the
probabilistic choice together in one step. This is actually the only case when C1

or C2 is non-atomic and needs to be wrapped by ⟨·⟩. The more general form of
C1 ⊕p C2 can be encoded as ⟨x := true⟩ ⊕p ⟨x := false⟩; if (x) then C1 else C2.

Before giving semantics to ⟨C⟩, we first introduce the n-step thread-local
transition, represented as (C, σ)

p−→n(C ′, σ′). Informally, if there is only one n-
step execution path from (C, σ) to (C ′, σ′), the probability p in (C, σ)

p−→n(C ′, σ′)
is the product of the probability of every step on the path. If there are more
than one execution paths, we need to sum up the probabilities of all the paths.
We present the formal definition of the n-step thread-local transition and an
illustrative example in the TR [13].

Then the operational semantics rule for ⟨C⟩ says it finishes the execution
of C in one step (that is, the execution of C cannot be interrupted by other
threads). Note that ⟨C⟩ may lead to different states with different probabilities,
since C may contain probabilistic choices.

The multi-step transition ((C, σ) p−→
φ

n(C′′, σ′′)) of the whole program C under

the schedule φ is similar to the multi-step thread-local transitions. The schedule
φ is an infinite sequence of thread IDs. It decides which thread t is to be executed
next. The accumulated probability of an n-step transition is the sum of the
probability of every possible execution path.

Below we define JCKφ as a function that maps an initial state σ to a sub-
distribution of final states. We also lift the function to the distribution µ of the
initial states.

JCKφ(σ)
def
= λσ′. lim

→
pσ′ , where ∀n. (C, σ)

→
pσ′ [n]
−−−−→

φ

n(skip ∥ · · · ∥ skip, σ′)

JCKφ(µ)
def
= Eσ∼µ{JCKφ(σ)} (see Def. 7 for the expected sub-distribution)

Here
→
pσ′ is an infinite sequence of probabilities and

→
pσ′ [n] is the n-th element of

the sequence. Note lim
→
pσ′ always exists as we can prove

→
pσ′ always converges.

Then we can give a simple definition of the partial correctness of C with
respect to the precondition P and the postcondition Q, which are assertions
over state distributions and are defined in Sec. 5.1.

Definition 9. |= {P}C{Q} iff, for all µ and φ, if µ |= P , and |JCKφ(µ)| = 1,
then JCKφ(µ) |= Q.

The premise |JCKφ(µ)| = 1 requires the execution of C (with the schedule φ and
the initial state distribution µ) terminates with probability 1.

338 W. Fan et al.

W ∈ DProg×State W |b
def
= W |λ(C,σ).σ|=b

δ(C) def
= λC1.

{
1, if C1 = C
0, otherwise

init(C, µ) def
= δ(C)⊗ µ (see Eqn. (4) for the definition of ⊗)

nextsplit(C)
def
=


split(b1, . . . , bk), if C = ⟨C1⟩ split(b1, . . . , bk)
nextsplit(C1), if C = C1;C2

split(true), otherwise

nextsplit(W, t)
def
= {nextsplit(Ct) | (C1 ∥ · · · ∥ Cn, σ) ∈ supp(W)}

W
t
; W ′ iff W ′ = λ(C′, σ′).

∑
C,σ{p ·W (C, σ) | (C, σ) p−→

t
(C′, σ′)}

W
t
; W ′ nextsplit(W, t) = {split(b1, . . . , bk)} W ′|bi = W ′′

W
t
↪→ W ′′

W
t
; W ′ #nextsplit(W, t) > 1

W
t
↪→ W ′

Fig. 10: Abstract Operational Semantics

4.2 Abstract Operational Semantics

The abstract semantics, shown in Fig. 10, models each step as a transition be-
tween distributions W of the whole program configurations (C, σ). Also we give
semantics to split statements.

Below we use nextsplit(W, t) to represent the set consisting of the next split
statements to be executed in the thread t of the program configurations in
supp(W). The next split statement of the thread t is sp if the next statement
to be executed is in the form of ⟨C⟩ sp, otherwise the next split is defined as
split(true). Throughout this paper, we assume all the splits split(b1, . . . , bk)
satisfy the following validity check, which says for any state there is always one
and only one bi that holds.

Definition 10. A split statement is valid, i.e., validsplit(split(b1, . . . , bk)) holds,
if and only if for any state σ, ∀i, j. i ̸= j =⇒ σ |= ¬(bi∧ bj) and σ |= b1∨. . .∨bk.

The transition W
t
↪→ W ′′ is done in two steps. First we make the tran-

sition W
t
; W ′ based on the concrete semantics, without considering splits.

Then the splits in nextsplit(W, t) are executed. We expect nextsplit(W, t) to be
a singleton set, i.e., threads t in different program configurations in supp(W)
all have the same subsequent split statement. We non-deterministically pick
a bi from b1 . . . bk, and let W ′′ be the filtered distribution W ′|bi (see Fig. 10
and Eqn. (2) for the definition of W |b). If the split statement is split(true),
we know W ′′ is the same as W ′. If nextsplit(W, t) contains more than one split
statements, then we view the program as inappropriately instrumented. In this
case we ignore all the split statements in nextsplit(W, t) and let W ′′ be W ′.

A Program Logic for Concurrent Randomized Programs 339

P

Q Q Q

. . .

. . .

. . .

Fig. 11: Illustration of |=a {P}C{Q}

Figure 11 illustrates the execu-
tion. The dashed arrows repre-
sent state transitions in the con-
crete semantics, while the solid
arrows represent the transitions
W

t
; W ′ in the abstract seman-

tics. Like before, we use different
colors to represent actions of dif-
ferent threads. The vertical bars
represent splits. The solid arrow
and the split together correspond to the transition W

t
↪→ W ′′. The branching

shown by the two solid red arrows reflects the non-deterministic choice of the
cases of the split.

Before giving the partial correctness under the abstract semantics, we first
define the termination of W0 in Def. 11: if the execution sequence of W0 under
the abstract semantics converges with the limit W , we say W0 terminates at W .

Definition 11 (Termination of W). Given W0 and a schedule φ. We say W0

terminates at W under the schedule φ, represented as W0 ⇓φ W , if and only if

there is an infinite sequence
→
W such that History(W0, φ,

→
W), lim

→
W = W and

W (Prog)(skip ∥ · · · ∥ skip) = 1.

Here History(W0, φ,
→
W) says that

→
W is a possibly infinite sequence W0,W1, . . .

where Wi

φ[i]
↪→ Wi+1 for every i. The formal definition of History can be found

in the TR [13]. The limit (lim
→
W) is defined by Def. 6. The projection of W over

code (W (Prog)) and state (W (State)) are defined by Eqn. (5).
Next we define the partial correctness under the abstract semantics, |=a

{P}C{Q}. The initial distribution of program configurations is init(C, µ). As
defined in Fig. 10, init(C, µ) says the initial program is always C and the state
distribution is µ. Figure 11 illustrates the meaning of |=a {P}C{Q}: if P holds
over the initial distribution, Q must hold over every final distribution. Theorem 1
shows that the partial correctness in the abstract semantics implies the partial
correctness in the concrete semantics when the postcondition is closed. Below
we develop our program logic based on this abstract semantics.

Definition 12. |=a {P}C{Q} iff for all µ, if µ |= P , then for all φ and W , if
init(C, µ) ⇓φ W , then W (State) |= Q.

Theorem 1. For all P,C, Q, if |=a {P}C{Q} and closed(Q), then |= {P}C{Q}.

5 The Program Logic

We present the assertion language and the logic rules in this section.

340 W. Fan et al.

(Assertion) p,q ::= b | ¬q | q1 ∧ q2 | q1 ∨ q2 | ∀X.q | ∃X.q | . . .
(Pexp) ξ ::= r | E(e) | Pr(q) | ξ1 + ξ2 | ξ1 − ξ2 | ξ1 ∗ ξ2 | . . .

(PAssertion) P,Q,M, I ::= ⌈q⌉ | ξ1 < ξ2 | ξ1 = ξ2 | ξ1 ≤ ξ2 | ¬Q | Q1 ∧Q2 | Q1 ∨Q2

| ∀X.Q | ∃X.Q | Q1 ⊕p Q2 | Q1 ⊕Q2 | . . .
(Action) R,G ::= p⋉q | [q] | ¬R | R1∧R2 | R1∨R2 | ∀X.R | ∃X.R | R1◦R2 | . . .

Fig. 12: The Assertion Language

Evaluation of probabilistic expressions:

JE(e)Kµ
def
= Eσ∼µ[JeKσ] JPr(q)Kµ

def
= Prσ∼µ[σ |= q]

Semantics of probabilistic assertions:

µ |= ⌈q⌉ iff for all σ ∈ supp(µ), σ |= q
µ |= Q1 ⊕p Q2 iff p = 1 and µ |= Q1, or p = 0 and µ |= Q2, or 0 < p < 1 and there

exists µ1 and µ2 such that µ = µ1 ⊕p µ2, µ1 |= Q1 and µ2 |= Q2

µ |= Q1 ⊕Q2 iff there exists p such that µ |= Q1 ⊕p Q2

Fig. 13: Semantics of Assertions

5.1 The Assertion Language

We show the syntax of assertions in Fig. 12 and their semantics in Fig. 13.
We use p and q to represent classical assertions over states, and P , Q and
I for probabilistic assertions over state distributions. We also use ξ to denote
probabilistic expressions such as the expected value of an arithmetic expression
or the probability of a classical assertion. The expression ξ evaluates to a real
number under the state distribution µ, represented as JξKµ. E(e) evaluates to the
expected value of JeKσ (where σ ∈ supp(µ)). Pr(q) evaluates to the probability
of σ |= q (where σ ∈ supp(µ)). The key definitions of expected values and
probability of assertions are shown in Eqn. (1).

The assertion ⌈q⌉ lifts the state assertion q to a probabilistic assertion. It
says q holds on all states in the support of the state distribution. The assertion
P ⊕p Q holds at µ, if µ is a mixture of two distributions µ0 and µ1, which
are associated with probabilities p and 1−p, and satisfy P and Q respectively.
Q1⊕Q2 says there exists p such that Q1⊕pQ2 holds. The semantics of ∀X.Q and
∃X.Q are given in the TR [13]. Throughout this paper, we use capital letters X
to indicate that X is a logical variable and lowercase letters x to indicate that x
is a program variable. We define true as a syntactic sugar of ⌈true⌉ which holds
on all state distributions.

Actions R and G are assertions over state transitions. Their semantics, (σ, σ′) |=
R, is the same as that in classical (non-probabilistic) rely-guarantee logics. We
use JRK to denote the set of state transitions that satisfy R.

Stability We define the stability of a probabilistic assertion Q with respect to
the environment interference (specified by I and R) in Fig. 14. We first define

A Program Logic for Concurrent Randomized Programs 341

µ
R7→ µ′ iff ∃θ∈P(State×State). θ⊆JRK ∧ supp(µ)=dom(θ) ∧ supp(µ′)=range(θ)

µ
R
↣
I

µ′′ iff µ |= I ∧ (∃µ′. µ
R7→ µ′ ∧ supp(µ′′) ⊆ supp(µ′)) ∧ µ′′ |= I

Sta(Q,R, I) iff ∀µ, µ′. µ |= Q ∧ µ
R
↣
I

µ′ =⇒ µ′ |= Q

Fig. 14: Stability

µ
R
↣
I

µ′′ to describe that the current state distribution is changed from µ to µ′′

due to the environment interference. As we can see in the abstract operational
semantics, every transition made by a thread is done in two steps. The first step
is normal execution without splits and the second step is the execution of split.
Similarly, we model the execution of the environment in two steps. The first
step is µ

R7→ µ′. It requires us to find a set θ of state transitions allowed by R

(i.e. θ ⊆ JRK), such that θ transforms the states of supp(µ) to those of supp(µ′).
The second step is the execution of split statements by the environment. The
condition supp(µ′′) ⊆ supp(µ′) abstracts the behaviors of split. In addition, the
environment needs to preserve the invariant I, so µ |= I ∧ µ′′ |= I. Then we can
give a simple definition of Sta(Q,R, I) in Fig. 14.

In general, it is not easy to prove the stability of a probabilistic assertion with
respect to classical rely conditions. But in practice, the thread-local pre/post-
conditions and intermediate assertions P are usually “non-probabilistic”, in the
form of ⌈b1⌉ ∨ . . . ∨ ⌈bn⌉. This is because the probabilistic information is often
about the shared resource and has already been specified by the global invariant
I. For such P , proving stability Sta(P,R, I) is not much harder than proving
stability in the classical rely-guarantee reasoning. We give some rules to syntac-
tically proving Sta(P,R, I) in the TR [13].

Closed Assertions As explained in Sec. 3.5, we need the postcondition of
the whole program to be closed for applying split. closed(Q) means that the
mixture of any (maybe countably infinite) number of state distributions satisfies
Q if each of them satisfies Q.

Definition 13. An assertion Q is closed, i.e., closed(Q) holds, if and only if,
for all ν ∈ DDState , if µ |= Q holds for all µ ∈ supp(ν), then ν |= Q (see Eqn. (8)
for the definition of ν).

Many assertions are closed, such as ⌈x = 1⌉, Pr(y > 2) = 0.5, ⌈x = 0⌉⊕⌈x =
1⌉. We give syntactic rules in the TR [13] to prove closedness of assertions. There
do exist non-closed assertions, such as ⌈x = 1⌉ ∨ ⌈x = 2⌉ and Pr(x = 0) ̸= 0.5.
In this work, we focus on the class of randomized algorithms whose correctness
is about the bound of the probability of a random event or the expected value of
a random variable. For this kind of algorithms, our syntactic rules for closedness
are useful enough.

342 W. Fan et al.

Limit-Closed Assertions To verify almost surely terminating programs, we
require the invariant I and the postconditions of all threads are limit-closed
assertions. Below we define limit-closed assertions (see Def. 6 for the definition
of lim

→
µ).

Definition 14. An assertion Q is limit-closed, i.e., lclosed(Q) holds, if and
only if, for all infinite sequences

→
µ , if lim

→
µ = µ, and

→
µ [n] |= Q holds for all n,

then µ |= Q.

We also give syntactic rules in the TR [13] to prove that an assertion is
limit-closed. They are similar to those for closedness and thus are also useful in
verifying algorithms whose correctness is about the bound of the probability of
a random event or the expected value of a random variable.

5.2 Inference Rules

Our inference rules are organized into three layers for the whole program, the
thread local reasoning, and sequential reasoning, as shown in Fig. 15. The top-
level judgement for the whole program is in the form of ⊢a {P}C{Q} where “a”
means abstract. One can use the parallel composition rule (par) to decompose
the verification of concurrent programs into the verification of each thread. The
judgement for thread-local reasoning is in the form of R,G, I ⊢ {P}C{Q} where
R and G are rely/guarantee conditions and I is the layer invariant. To verify
atomic blocks, one can use the (atom) and (atom-split) rules to apply sequen-
tial reasoning to the code in the atomic blocks. The judgement for sequential
reasoning is in the form of ⊢sq {P}C{Q} where “sq” means sequential.

Whole-Program Rules The top-level rules are used to verify whole programs.
The judgement is in the form of ⊢a {P}C{Q}. Here P and Q are probabilistic
assertions, which specify the initial state distributions and the terminating state
distributions respectively.

The parallel composition rule (par) is (mostly) standard. The invariant I and
the postcondition of each thread Q1, . . . , Qn are required to be limit-closed asser-
tions, which ensures that the limit state distribution of the infinite sequence pro-
duced by C under the abstract operational semantics satisfies I and Q1, . . . , Qn.

The (lazycoin) rule is used to verify probabilistic choices. Note that the ex-
ecution of ⟨C1⟩⊕p ⟨C2⟩ is not atomic, and its two steps (i.e. the coin flip and the
execution of ⟨C1⟩ or ⟨C2⟩) can interleave with the environment steps. The (lazy-
coin) rule allows us to verify lazycoin(C) instead of C, where lazycoin(C) re-
places every ⟨C1⟩⊕p ⟨C2⟩ in C with skip; ⟨⟨C1⟩⊕p ⟨C2⟩⟩. We can view lazycoin
as a transformation that defers the coin flip step to be executed with ⟨C1⟩ or ⟨C2⟩
together. This transformation is sound because, in the OA model, the scheduler
and the environment threads should not be aware of the outcome of the coin flip,
so we can soundly swap the coin-flip step and the environment steps, and reason
about the atomic probabilistic choice ⟨⟨C1⟩ ⊕p ⟨C2⟩⟩ instead. The extra skip is
to ensure that the new code has the same number of steps as the non-atomic

A Program Logic for Concurrent Randomized Programs 343

Whole program rules: ⊢a {P}C{Q}

∀i. Ri, Gi, I ⊢ {Pi}Ci{Qi} ∀i, j. i ̸= j =⇒ (Gi ⇒ Rj)
P ⇒ I ∧ P1 ∧ · · · ∧ Pn I ∧Q1 ∧ · · · ∧Qn ⇒ Q lclosed({I,Q1, . . . , Qn})

⊢a {P}C1 ∥ · · · ∥ Cn{Q}
(par)

⊢a {P}C{Q} closed(Q)

⊢a {P}RemoveSplit(C){Q}
(removesplit)

⊢a {P}lazycoin(C){Q}
⊢a {P}C{Q}

(lazycoin)

Thread-local rules: R,G, I ⊢ {P}C{Q}

G ⊢sq {I ∧ P}C{I ∧Q}
Sta({P,Q}, R, I)

R,G, I ⊢ {P}⟨C⟩{Q}
(atom)

R,G, I ⊢ {P}C1{M}
R,G, I ⊢ {M}C2{Q}

R,G, I ⊢ {P}C1;C2{Q}
(seq)

G ⊢sq {I ∧ P}C{(I ∧Q ∧ ⌈b1⌉)⊕ · · · ⊕ (I ∧Q ∧ ⌈bk⌉)}
Sta({P,Q ∧ (⌈b1⌉ ∨ · · · ∨ ⌈bk⌉)}, R, I)

R,G, I ⊢ {P}⟨C⟩ split(b1, . . . , bk){(Q∧⌈b1⌉)∨. . .∨(Q∧⌈bk⌉)}
(atom-split)

P1 ⇒ ⌈b⌉ P2 ⇒ ⌈¬b⌉ Sta(P1 ∨ P2, R, I)
R,G, I ⊢ {P1}C1{Q} R,G, I ⊢ {P2}C2{Q}
R,G, I ⊢ {P1 ∨ P2}if (b) then C1 else C2{Q}

(cond)

P1⇒⌈b⌉ P2⇒⌈¬b⌉∧Q R,G, I ⊢ {P1}C{P1∨P2} Sta({P1∨P2, Q}, R, I)

R,G, I ⊢ {P1 ∨ P2}while (b) do C{Q}
(while)

Fig. 15: Selected Logic Rules

⟨C1⟩ ⊕p ⟨C2⟩, and thus to ensure that lazycoin(C) and C generate the same
behaviors in the OA model. Note that (lazycoin) is unsound in the SA model.

The (removesplit) rule has been explained in Sec. 3. We also support
the standard consequence rule, conjunction rule and disjunction rule for whole
programs, which are shown in the TR [13].

Thread-Local Rules The thread-local judgement is in the form of R,G, I ⊢
{P}C{Q}. The rely/guarantee conditions R and G are non-probabilistic and
their meaning are the same as in the traditional rely-guarantee reasoning. The
invariant I specifies the probabilistic property that is preserved by both the
thread and its environment at every layer. The rely/guarantee conditions need
to be reflexive in well-formed thread-local judgements.

To verify ⟨C⟩, the (atom) rule asks one to verify C as sequential code, and
requires I is preserved at the end if it holds at the beginning, and the whole
state transitions resulting from the sequential execution C satisfy the guarantee
G. The pre/post-conditions need to be stable with respect to R and I. We
use Sta({P,Q}, R, I) as a shorthand for Sta(P,R, I) ∧ Sta(Q,R, I). Similar
representations are used in the remaining part of the paper.

Our (seq) rule for sequential composition is standard. The (atom-split),
(cond) and (while) rules have been explained in Sec. 3.5. Note that (atom-

344 W. Fan et al.

split) cannot be replaced by (atom), since only split can turn ⊕ into ∨ (see
the first premise and conclusion’s postconditions in (atom-split)).

Sequential Rules The judgement for sequential rules is in the form of G ⊢sq
{P}C{Q}. Note that the guarantee G does not specify the state transition of ev-
ery single step of C. Instead it specifies the state transitions from initial states to
the corresponding final states at the end of C. The rules for sequential reasoning
are simple extensions of those in [6] and are presented in the TR [13].

Soundness The following theorem shows that our logic is sound with respect
to the abstract operational semantics, where |=a {P}C{Q} is given in Def. 12.

Theorem 2. For all P,C, Q, if ⊢a {P}C{Q}, then |=a {P}C{Q}.

6 Case Study: Conciliator

As introduced in Sec. 1, Chor et al. [12] give a probabilistic-write based concil-
iator for probabilistic agreement between n threads, each thread i executing Ci

below, where s is a shared variable and yi is the local variable for thread i that
records its return value.

Ci
def
= (while (s = 0) do ⟨s := i⟩ ⊕p ⟨skip⟩) ; yi := s

We want to prove {⌈s = 0⌉}C1 ∥ · · · ∥ Cn{Pr(y1 = · · · = yn) ≥ (1− p)n−1}.
Intuitively the postcondition holds because, when there is exactly one thread i
which succeeds in writing to s, all threads will return i. This ideal case happens
with probability no less than (1 − p)n−1 in OA, because (i) for the program to
terminate, at least one thread has updated s, and (ii) after the first update to
s, each of the other n − 1 threads has at most one chance to update s, and
such an update happens with probability no more than 1 − p. Note that this
algorithm does not work in SA, where different threads can be scheduled for
different outcomes of coin flips. For example, a strong adversary may behave
as follows: It first non-deterministically selects a thread and keeps scheduling it
until it flips heads. It then selects another thread and schedules it in the same
manner, until all threads have flipped heads. After that, it schedules each thread
for two consecutive steps, so that each returns its own number. In this case, the
probability of agreement is 0.

To formulate the intuition, we introduce a shared auxiliary variable c that
counts how many threads have updated s and insert the auxiliary code c := c+1
which is executed atomically with s := i. We also introduce flag variables di
to formalize the “at most one chance” update to s. When di is set, it means
thread i can no longer update s. We insert the auxiliary code SetFlagi to
set di at the proper time. At the whole-program level, we apply (lazycoin)
and (removesplit) to wrap the probabilistic choice in an atomic block, and
to instrument split(s = 0, s ̸= 0) at the end of the loop body such that the
resulting smaller distributions either enter or exit the loop, respectively. Using
the (par) rule, our goal becomes to thread-locally verify the code below.

A Program Logic for Concurrent Randomized Programs 345

(while (s = 0) do (skip; ⟨PWritei⟩ split(s = 0, s ̸= 0))); ⟨ SetFlagi ; yi := s⟩,

where PWritei
def
= ⟨s := i; c := c+ 1;SetFlagi ⟩ ⊕p ⟨ SetFlagi ⟩

and SetFlagi
def
= if (s ̸= 0) then di := 1 else skip

We define the invariant I below, which says that either s = 0 (and thus c = 0
and each thread has chance to update s), or s ̸= 0 (and thus c > 0) and the
probability of c = 1 has a lower bound.

I
def
= I0 ∨ I1, where I0

def
= ⌈s = 0 ∧ c = 0 ∧ ∀i. di = 0⌉, I1

def
= ⌈s ̸= 0 ∧ c > 0⌉ ∧ PBound,

and PBound def
= ∃K ≤ n. ⌈

∑n
i=1 di = K⌉ ∧ Pr(c = 1) ≥ (1− p)K−1

We give the detailed proofs in the TR [13]. The logic presented in the paper
requires us to split in each round of the while-loop. This technique is sufficient
to prove conciliator and Dice. However, for more advanced examples such as
group election and multiplayer level-up game (in the TR), their loops require
split in the first few rounds only. Thus, we extend the logic with a new while rule
for while loops and a new sequential composition rule for sequential statements.
With the two new rules, we can prove the two advanced examples. The full logic
and the proofs of the advanced examples can be found in the TR.

7 Related Work and Discussions

McIver et al. [18] develop the probabilistic rely-guarantee calculus, which, to our
knowledge, is the first program logic for concurrent randomized programs. Their
semantics assume arbitrary schedules, i.e. the strong adversary (SA) model, and
their reasoning rules use probabilistic rely/guarantee conditions. Their logic does
not apply to the algorithms of conciliator and group election verified in our work,
whose correctness assumes weaker adversary models. Besides, we encode proba-
bilistic properties in the invariant and use only non-probabilistic rely-guarantee
conditions, which enable simple stability proofs.

Tassarotti and Harper [20] extend the concurrent program logic Iris [16] with
probabilistic relational reasoning, to establish refinements between concurrent
randomized programs and monadic models. They also give rules for reasoning
about probabilistic properties on monadic models. On the one hand, their pro-
gram semantics assumes the SA model. On the other hand, their logic soundness
only holds for schedules under which the program is guaranteed to certainly ter-
minate (i.e. terminate in a finite number of steps). As a result, they cannot verify
the examples in our work.

Fesefeldt et al. [14] propose a concurrent quantitative separation logic for
reasoning about lower-bound probabilities of realizing a postcondition of a con-
current randomized program in the SA model. Like us, they require program ex-
ecutions to preserve invariants on shared states. But their invariants are limited
to qualitative expectations, which map states to either 0 or 1, so they cannot
specify probabilistic distributions as ours can. Moreover, they can only verify
lower bounds of probabilities, while we can verify exact probabilities and expec-
tations.

346 W. Fan et al.

For the part of sequential reasoning, our rules mostly follow Barthe et al. [6].
Our lclosed condition (see the (par) rule in Fig. 15) is similar to their “t-closed”
condition, both introduced for supporting almost surely terminating programs.
Our assertion language for invariants and pre/post-conditions is similar to theirs
too, where an assertion is a predicate over state distributions. They provide a
(split) rule which is very different from our split mechanism. Using their (split)
rule, one can logically split the initial distribution into two parts, reason about
the execution of the same code on the two parts separately, and mix the two
final distributions back. Our (sq-oplus) rule for sequential reasoning in the
TR [13], is almost the same as their (split) rule. It is interesting to extend our
assertion language with separating conjunctions, to specify spatial disjointness
of state distributions and probabilistic independence (following [7]). There are
also (sequential) program logics (e.g. [9,8,1]) where assertions denote functions
from program states to probabilities or expected values.

Bertrand et al. [10,11] apply model checking techniques for verifying random-
ized algorithms in weak adversary models. However, Bertrand et al.’s approach
does not apply to the algorithms we have verified. Their work focuses on the
class of algorithms with some form of “symmetry” regarding the local control
flow. Such an algorithm must execute “symmetric” code for different outcomes
of a coin flip. But none of the algorithms verified here satisfies this property. In-
stead they all have probabilistic branch statements that take different numbers
of steps, which is the main challenge to our logic design. We conjecture that our
split idea may still be helpful when developing automata-based approaches to
verify these algorithms.

Verification overhead and scalability. One may be concerned about the verifica-
tion overhead caused by adding auxiliary variables and auxiliary code, and the
scalability of our logic to large algorithms. In our proofs, auxiliary variables and
code are introduced to capture the key intuition of the probabilistic properties
that we care about, so they are usually highly related to the random variables
and the probabilistic operations (coin flips) in the original algorithms. As a re-
sult, the overhead of the auxiliary variables and code is usually proportional to
the number of random variables and probabilistic operations rather than the
number of lines of code. For large-scale randomized algorithms, the number of
probabilistic operations may not be that large, thus the proof overhead of adding
auxiliary variables and splits statements should be acceptable.

In our current setting, the auxiliary variables and split statements are added
manually during the verification process, which requires a good understanding
of the algorithm, i.e., how the algorithm works and why it is correct. We leave
it as future work to support automated code instrumentation and verification.

Acknowledgments. We thank anonymous referees for their suggestions and com-
ments on earlier versions of this paper. This work is supported in part by National
Natural Science Foundation of China (NSFC) under Grant No. 62232015.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

A Program Logic for Concurrent Randomized Programs 347

References

1. Aguirre, A., Barthe, G., Hsu, J., Kaminski, B.L., Katoen, J.P., Matheja, C.: A
pre-expectation calculus for probabilistic sensitivity. Proc. ACM Program. Lang.
5(POPL) (jan 2021). https://doi.org/10.1145/3434333, https://doi.org/10.
1145/3434333

2. Alistarh, D., Aspnes, J.: Sub-logarithmic test-and-set against a weak adversary. In:
Proceedings of the 25th International Conference on Distributed Computing. pp.
97–109. DISC’11, Springer-Verlag, Berlin, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-24100-0_7

3. Aspnes, J.: Randomized protocols for asynchronous consensus. Distributed Com-
put. 16(2-3), 165–175 (2003). https://doi.org/10.1007/s00446-002-0081-5,
https://doi.org/10.1007/s00446-002-0081-5

4. Aspnes, J.: Notes on randomized algorithms (2023), https://www.cs.yale.edu/
homes/aspnes/classes/469/notes.pdf

5. Aspnes, J.: Notes on theory of distributed systems (2023), https://www.cs.yale.
edu/homes/aspnes/classes/465/notes.pdf

6. Barthe, G., Espitau, T., Gaboardi, M., Grégoire, B., Hsu, J., Strub, P.: An
assertion-based program logic for probabilistic programs. In: Proceedings of the
27th European Symposium on Programming (ESOP 2018). pp. 117–144. Springer
(2018). https://doi.org/10.1007/978-3-319-89884-1_5, https://doi.org/10.
1007/978-3-319-89884-1_5

7. Barthe, G., Hsu, J., Liao, K.: A probabilistic separation logic. Proc. ACM Program.
Lang. 4(POPL), 55:1–55:30 (2020)

8. Batz, K., Kaminski, B.L., Katoen, J.P., Matheja, C.: Relatively complete veri-
fication of probabilistic programs: An expressive language for expectation-based
reasoning. Proc. ACM Program. Lang. 5(POPL) (jan 2021). https://doi.org/
10.1145/3434320, https://doi.org/10.1145/3434320

9. Batz, K., Kaminski, B.L., Katoen, J.P., Matheja, C., Noll, T.: Quantitative sep-
aration logic: A logic for reasoning about probabilistic pointer programs. Proc.
ACM Program. Lang. 3(POPL) (jan 2019). https://doi.org/10.1145/3290347,
https://doi.org/10.1145/3290347

10. Bertrand, N., Konnov, I., Lazic, M., Widder, J.: Verification of randomized con-
sensus algorithms under round-rigid adversaries. In: Fokkink, W.J., van Glabbeek,
R. (eds.) Proceedings of the 30th International Conference on Concurrency The-
ory (CONCUR 2019). LIPIcs, vol. 140, pp. 33:1–33:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.CONCUR.2019.
33, https://doi.org/10.4230/LIPIcs.CONCUR.2019.33

11. Bertrand, N., Lazic, M., Widder, J.: A reduction theorem for randomized dis-
tributed algorithms under weak adversaries. In: Henglein, F., Shoham, S., Vizel,
Y. (eds.) Proceedings of the 22nd International Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI 2021). Lecture Notes in Computer
Science, vol. 12597, pp. 219–239. Springer (2021). https://doi.org/10.1007/
978-3-030-67067-2_11, https://doi.org/10.1007/978-3-030-67067-2_11

12. Chor, B., Israeli, A., Li, M.: Wait-free consensus using asynchronous hardware.
SIAM Journal on Computing 23(4), 701–712 (1994). https://doi.org/10.1137/
S0097539790192635, https://doi.org/10.1137/S0097539790192635

13. Fan, W., Liang, H., Feng, X., Jiang, H.: A program logic for concurrent randomized
programs in the oblivious adversary model. Tech. rep. (2025), https://plax-lab.
github.io/publications/randoa/randoa-tr.pdf

https://doi.org/10.1145/3434333
https://doi.org/10.1145/3434333
https://doi.org/10.1145/3434333
https://doi.org/10.1145/3434333
https://doi.org/10.1007/978-3-642-24100-0_7
https://doi.org/10.1007/978-3-642-24100-0_7
https://doi.org/10.1007/978-3-642-24100-0_7
https://doi.org/10.1007/978-3-642-24100-0_7
https://doi.org/10.1007/s00446-002-0081-5
https://doi.org/10.1007/s00446-002-0081-5
https://doi.org/10.1007/s00446-002-0081-5
https://www.cs.yale.edu/homes/aspnes/classes/469/notes.pdf
https://www.cs.yale.edu/homes/aspnes/classes/469/notes.pdf
https://www.cs.yale.edu/homes/aspnes/classes/465/notes.pdf
https://www.cs.yale.edu/homes/aspnes/classes/465/notes.pdf
https://doi.org/10.1007/978-3-319-89884-1_5
https://doi.org/10.1007/978-3-319-89884-1_5
https://doi.org/10.1007/978-3-319-89884-1_5
https://doi.org/10.1007/978-3-319-89884-1_5
https://doi.org/10.1145/3434320
https://doi.org/10.1145/3434320
https://doi.org/10.1145/3434320
https://doi.org/10.1145/3434320
https://doi.org/10.1145/3434320
https://doi.org/10.1145/3290347
https://doi.org/10.1145/3290347
https://doi.org/10.1145/3290347
https://doi.org/10.4230/LIPIcs.CONCUR.2019.33
https://doi.org/10.4230/LIPIcs.CONCUR.2019.33
https://doi.org/10.4230/LIPIcs.CONCUR.2019.33
https://doi.org/10.4230/LIPIcs.CONCUR.2019.33
https://doi.org/10.4230/LIPIcs.CONCUR.2019.33
https://doi.org/10.1007/978-3-030-67067-2_11
https://doi.org/10.1007/978-3-030-67067-2_11
https://doi.org/10.1007/978-3-030-67067-2_11
https://doi.org/10.1007/978-3-030-67067-2_11
https://doi.org/10.1007/978-3-030-67067-2_11
https://doi.org/10.1137/S0097539790192635
https://doi.org/10.1137/S0097539790192635
https://doi.org/10.1137/S0097539790192635
https://doi.org/10.1137/S0097539790192635
https://doi.org/10.1137/S0097539790192635
https://plax-lab.github.io/publications/randoa/randoa-tr.pdf
https://plax-lab.github.io/publications/randoa/randoa-tr.pdf

348 W. Fan et al.

14. Fesefeldt, I., Katoen, J., Noll, T.: Towards concurrent quantitative separation logic.
In: Proceedings of 33rd International Conference on Concurrency Theory (CON-
CUR 2022). pp. 25:1–25:24 (2022). https://doi.org/10.4230/LIPIcs.CONCUR.
2022.25, https://doi.org/10.4230/LIPIcs.CONCUR.2022.25

15. Jones, C.B.: Tentative steps toward a development method for interfering pro-
grams. ACM Trans. Program. Lang. Syst. 5(4), 596–619 (oct 1983). https:
//doi.org/10.1145/69575.69577, https://doi.org/10.1145/69575.69577

16. Jung, R., Swasey, D., Sieczkowski, F., Svendsen, K., Turon, A., Birkedal, L., Dreyer,
D.: Iris: Monoids and invariants as an orthogonal basis for concurrent reasoning. In:
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages. p. 637–650. POPL ’15, Association for Comput-
ing Machinery, New York, NY, USA (2015). https://doi.org/10.1145/2676726.
2676980, https://doi.org/10.1145/2676726.2676980

17. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Monographs in Computer Science, Springer (2005). https://doi.org/10.
1007/b138392, https://doi.org/10.1007/b138392

18. McIver, A., Rabehaja, T.M., Struth, G.: Probabilistic rely-guarantee calculus.
Theor. Comput. Sci. 655, 120–134 (2016). https://doi.org/10.1016/j.tcs.
2016.01.016, https://doi.org/10.1016/j.tcs.2016.01.016

19. Rand, R., Zdancewic, S.: VPHL: A verified partial-correctness logic for proba-
bilistic programs. In: Ghica, D.R. (ed.) Proceedings of the 31st Conference on
the Mathematical Foundations of Programming Semantics (MFPS 2015). Elec-
tronic Notes in Theoretical Computer Science, vol. 319, pp. 351–367. Elsevier
(2015). https://doi.org/10.1016/j.entcs.2015.12.021, https://doi.org/10.
1016/j.entcs.2015.12.021

20. Tassarotti, J., Harper, R.: A separation logic for concurrent randomized programs.
Proc. ACM Program. Lang. 3(POPL) (jan 2019). https://doi.org/10.1145/
3290377, https://doi.org/10.1145/3290377

Open Access. This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution, and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.4230/LIPIcs.CONCUR.2022.25
https://doi.org/10.4230/LIPIcs.CONCUR.2022.25
https://doi.org/10.4230/LIPIcs.CONCUR.2022.25
https://doi.org/10.4230/LIPIcs.CONCUR.2022.25
https://doi.org/10.4230/LIPIcs.CONCUR.2022.25
https://doi.org/10.1145/69575.69577
https://doi.org/10.1145/69575.69577
https://doi.org/10.1145/69575.69577
https://doi.org/10.1145/69575.69577
https://doi.org/10.1145/69575.69577
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1007/b138392
https://doi.org/10.1007/b138392
https://doi.org/10.1007/b138392
https://doi.org/10.1007/b138392
https://doi.org/10.1007/b138392
https://doi.org/10.1016/j.tcs.2016.01.016
https://doi.org/10.1016/j.tcs.2016.01.016
https://doi.org/10.1016/j.tcs.2016.01.016
https://doi.org/10.1016/j.tcs.2016.01.016
https://doi.org/10.1016/j.tcs.2016.01.016
https://doi.org/10.1016/j.entcs.2015.12.021
https://doi.org/10.1016/j.entcs.2015.12.021
https://doi.org/10.1016/j.entcs.2015.12.021
https://doi.org/10.1016/j.entcs.2015.12.021
https://doi.org/10.1145/3290377
https://doi.org/10.1145/3290377
https://doi.org/10.1145/3290377
https://doi.org/10.1145/3290377
https://doi.org/10.1145/3290377
http://creativecommons.org/licenses/by/4.0/

	A Program Logic for Concurrent Randomized Programs in the Oblivious Adversary Model

