A Program Logic for Concurrent Randomized
Programs in the Oblivious Adversary Model

Abstract. Concurrent randomized programs under the oblivious adver-
sary model are extremely difficult for modular verification because the
interaction between threads is very sensitive to the program structure
and the execution steps. We propose a new program logic supporting
thread-local verification. With a novel “split” mechanism, one can split
the state distribution into smaller partitions, and the reasoning can be
done based on each partition independently, which allows us to avoid
considering different execution paths of if-statements and while-loops
simultaneously. The logic rules are compositional and are natural exten-
sions of their sequential counterparts. Using our program logic, we verify
four typical algorithms under the oblivious adversary model.

1 Introduction

Randomization has become an important and powerful technique in the design
of concurrent and distributed algorithms. By introducing probabilistic coin-flip
operations, problems like consensus and leader election can be solved efficiently
(e.g. [12I2]3]), despite that they are inherently difficult or even impossible to
solve in a non-probabilistic concurrent setting.

To understand the semantics of concurrent randomized programs, one has to
take into account the interplay between concurrency and randomization. In par-
ticular, one must answer the question: can the result of a coin-flip operation affect
the choice of scheduling (i.e. which thread will perform the next operation)? For
this, algorithm designers propose a spectrum of adversary models specifying the
knowledge about the past execution that a scheduler (a.k.a. an adversary) can
use for choosing the next thread. Different adversary models assume different
knowledge, varying from none to all.

At one end of the spectrum is the oblivious adversary (OA) model, where an
adversary has no knowledge and must fix the entire schedule prior to the execu-
tion. The OA model is a natural abstraction of most real-world scheduling algo-
rithms, including the round-robin scheduling and the priority-based scheduling.
It reflects the scheduling in almost all real general infrastructures such as operat-
ing systems or programming languages (e.g. as in golang) where the scheduling
does not rely on the specific behaviors of the threads being scheduled.

Designing algorithms for the OA model has gained lots of attention and
more than ten algorithms have been proposed over the years (see [4l5] for a
comprehensive introduction). As a concrete example, consider Chor et al. [12]’s
conciliator algorithm. A conciliator is a weak consensus object that guarantees
probabilistic agreement, namely that with a high probability the return values



of all threads are equal. In Chor et al. [I2]’s conciliator algorithm, each thread
1 executes C;:

c & (while (s =0) do (s:=1) @, (skip));y; :== s

Here s is a shared variable initialized to 0, y; is the local variable for thread i
that records its return value. The probabilistic choice (s := i) @&, (skip) says that
thread ¢ writes ¢ to s with probability p and does nothing (skip) with probability
1 — p. It repeats until the thread observes s # 0, then it loads s to y;. Given n
threads running the conciliator code in the OA model, the algorithm ensures the
postcondition Pr(y; = y2 = --- = y,,) > (1 — p)" 71, i.e. the probability for the
threads to reach a consensus (thus y; = yo = -+ = y,,) is no less than (1—p)"~ 1.

However, there has been little attention paid to verifying algorithms in the
OA model. Existing program logics for verifying concurrent randomized pro-
grams [T9I7IT3] work with only the strong adversary (SA) model, which is at
the other end of the spectrum of adversary models. A strong adversary has
the full knowledge of the past execution, including outcomes of past coin-flips,
thread-local states and shared states. Consequently, any algorithm which is cor-
rect under SA must still be correct under OA, but not vice versa. For instance,
the aforementioned conciliator algorithm is not correct in SA. None of the ex-
isting program logics can apply to the conciliator, or more generally, to any
algorithms which are correct only with weaker adversaries such as OA.

On the one hand, it is unclear how to take advantage of the OA model in
the verification. On the other hand, the OA model brings its own verification
challenges. As we will see in Sec. [3] the program behaviors in the OA model
seem sensitive to the number of execution steps in different program branches,
but the verification with program logics must be modular, syntax-directed and
insensitive to the number of execution steps.

The good news is, from the existing algorithms designed for the OA model,
we observe that the correctness properties of these algorithms usually follow
certain common patterns and can be specified by what we call “closed” assertions.
To verify these properties, we do not need to prove they hold over the whole
state distribution, which may contain states resulting from the execution of
different program branches. Instead, we can prove there exists a partition of the
distribution such that the property holds over every part. For closed assertions,
the validity over every part implies the validity over the whole distribution.

Based on this observation, we propose the first program logic for concurrent
randomized programs targeting the OA model. Our work makes the following
new contributions:

— We take advantage of the OA model by proposing an abstract small-step
operational semantics over state distributions, which allows us to apply clas-
sical concurrency reasoning techniques (such as invariants) by interpreting
assertions over state distributions.

— We propose a novel proof technique called split to support modular reason-
ing and overcome the problem with branch statements. By splitting a state



distribution into several smaller ones, we can reason about the different pro-
gram branches independently. This makes us prove the postcondition holds
over a partition of the final state distribution. Then we can derive it for the
whole distribution as long as the postcondition is closed.

— We design a set of logic rules for compositional reasoning about concurrent
randomized programs with the split mechanism. Thanks to the split idea, our
rules for sequential composition, if-statements and while-loops are simple
and natural extensions of their classical (non-probabilistic) counterparts.

— We prove that our logic ensures partial correctness of concurrent random-
ized programs where the adversaries are also randomized. Since we focus
on closed assertions as postconditions, the verification is independent of the
distribution of schedules. The partial correctness verified by the logic holds
over arbitrary probabilistic distributions of oblivious adversaries.

— Using our logic, we report the first formal verification of four typical algo-
rithms in the OA model, including the aforementioned conciliator [12], group
election (the core phase of Alistarh and Aspnes’ randomized test-and-set al-
gorithm [2]), a shared three-sided dice and a multiplayer level-up game.

Outline. We first review mathematical preliminaries in Sec. 2| (readers who are
not interested in formal details can skip this section). Then we informally explain
our key ideas in Sec. [3] We present the language setting including our abstract
semantics in Sec.[d] We develop our program logic in Sec. [} and verify conciliator
as a case study in Sec.[6] We discuss related work in Sec.[7] The appendix contains
the full formal details of this work, including semantics rules, logic rules, example
proofs and logic soundness proofs.

2 Preliminaries

Below we review the background on probability theory and sketch the basic
mathematical notations used in our work for describing probabilities, expected
values, etc. Readers who are not interested in mathematics can safely skip this
section and come back later when the notations are used.

A sub-distribution over a set A is defined as a function p: A— [0, 1] such that

— the support supp(p) &f {a € A u(a) > 0} is countable; and
— the weight |u| ef Y oacatla) <1

If 11 is a sub-distribution over A and its weight |u| = 1, we say p is a distribution
over A. We use SD 4 to denote the set of sub-distributions over A, and D4 to
denote the set of distributions over A.

For pu € SDy, intuitively p(a) represents the probability of drawing a from
. Then, the probability of an event £ : A — Prop and the expected value of a
random variable V' : A — R are defined as follows, denoted by Pr,.,[E(a)] and
Eq~p[V(a)] respectively (here a is a bound variable).

ProouE(@)] € S cidu@) | E(@}  Eawu[V(a)] € Y,cana)-Vie) (2.1)



For instance, suppose p is a state distribution, and q is a state assertion (we
write ¢ |= q if q holds at the state o). Then Pr,.,[c = q] represents the
probability that q is satisfied. If [e], is the evaluation of the expression e on o,
then E,~,[[e]s] represents the expected value of e in p.

For an event E with non-zero probability in p (i.e. Proy[E(a)] > 0), we
define the conditional sub-distribution p|g as follows:

(a) i
M‘E d:ef \a. {Praf‘,“[E(a)]’ if E(a) holds

0, otherwise

(2.2)

Given two sub-distributions w1, 2 € SD4 and a probability p € [0, 1], we
define the mizture sub-distribution p; @, po € SD4 as follows:

1 ®p pz = Aa. p-pa(a) + (1—p) - pa(a) (2.3)

Given two sub-distributions p; € SD4 and pe € SDp, we define the product
sub-distribution p1 ® ps € SDaoxp as follows:

11 ® piz S A(a,b). pa(a) - pa(b) (2.4)

In Sec. [£:2] we will use the product ® to compute the initial distribution of
program configurations, from the initial program C and an initial state distribu-
tion. When C’s execution ends, we will extract the final state distribution from
the final distribution of program configurations by projection. Specifically, given
1 € SDaxp, the projection of p with the sets A and B is defined as:

p E N Pripyela = d] p® N Pryb=b]  (25)

For almost surely terminating programs (i.e. programs which have infinite
executions with zero probability and terminate with probability 1), we define the
“final” state distribution as the limit of an infinite sequence of state distributions.
In general, we define the limit of a convergent sequence of sub-distributions in
Def.

Definition 2.6 (convergent sequence of sub-distributions). Let A be a

set, ﬁ be an infinite sequence of sub-distributions over A. We say ﬁ converges to a
. — . . . —
sub-distribution p, represented as lim p = p, if and only if lim »° _ ,[u[n](a) —
n— oo

p(a)] = 0 (where i[n] means the n-th element of the sequence 1i). We say i
diverges and lim /_f is undefined if /7 does not converge to any u.

Definition 2.7 (expected sub-distribution). E| Let p € SD4 and f: A —
SDg. The ezpected sub-distribution Eq~,{f(a)} € SDp is defined as

Eap{f(0)} € A0 3,0 pla) - f(a)(b)

! Tt is also known as the “bind” operator of the monadic structure of sub-distributions.
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(a)
Fig. 2: Execution of a sequential program. In (a), a pair at a node specifies « and
y’s values in the state.

(1, 1)

Definition 2.7] computes the sub-distributions’ expectation. As illustrated in
Fig. [1} the function f transforms each element a; in the support of u to a sub-
distribution f(a;), and then the expected sub-distribution (see the right side of
the figure) is the mixture of all f(a;).

Also, from a sub-distributions’ sub-distribution p € SDgp,, we can compute
the flattened sub-distribution @ € SD 4 as the mixture of all the sub-distributions
in the support of u:

7 N >vesn, HV) - v(a). (2.8)

3 Informal Development

Below we start with reasoning about sequential randomized programs (Sec. .
For concurrent randomized programs, we introduce the oblivious adversary (OA)
model and define the correctness of programs with randomized schedules (Sec.[3.2)).
Then we show how to do thread-local reasoning by taking advantage of OA
(Sec. . To address the challenges posed by branch statements (Sec. 7 we
propose the split mechanism (Sec. . Finally we show some other key ideas of

our approach (Sec. .

3.1 Sequential Randomized Programs and Their Correctness

Randomized programs can be viewed as programs in a classical (non-probabilistic)
programming language (e.g. WHILE) extended with probabilistic choice state-
ments (C1) @, (C2). It makes a random choice to execute (Cy) or (Cs), with
probability p and 1 — p, respectively. Here we use (C) to represent an atomic
statement that executes C' in one step. We explain atomicity in Sec. [3:2}



The execution of a sequential randomized program starting from a particular
initial state forms a tree. For instance, Fig. 28] shows the execution tree for

Coins < (2:=0)®1 (x:=1); (y:=0) Dy (y:=1);

starting from the initial state where  and y are both 0. Each branching in the
tree corresponds to a probabilistic choice. If we consider all possible initial states,
the execution becomes a forest (where each node represents a program state o),
as shown in Fig. 2B

Correctness Although the execution model based on the view of state transitions
is similar to the model of classical sequential programs, the properties about
randomized programs can be significantly different. For the program Coins, one
may want to derive properties like “the probability that = equals y at the end
of the program is 0.5”. Unlike a postcondition in Hoare-style logics for classical
sequential programs, which is expected to hold over every leaf node of the forest,
the above property describes the collection of all the leaf nodes as a whole, i.e.
the state distribution at the end of the program.

Therefore, in the Hoare-style specification {P}C{Q} for randomized pro-
grams, P and @ are assertions over distributions of initial states and final states,
respectively. For the example Coins, we can specify the aforementioned property
as {true} Coins{Pr(z = y) = 0.5} or {true} Coins{[z = y]| Do5 [x # y|}. Here
[p] lifts the state assertion p to an assertion over state distributions p, requiring
that p holds at all states in supp(u), the support of u. The assertion P &, @
holds at pu, if p is a mizture of two distributions po and w1, which are associated
with probabilities p and 1—p, and satisfy P and @ respectively. We can give the
following Hoare-logic rule to probabilistic choices:

Feq {P}C1{Q1} Fsa {P}C2{Q2}
Fsa {P}HC1) ®p (Co){Q1 Dp Q2}

(sq-pcH)

In this view, a program C' transforms a state distribution p (that satisfies P)
to another u' (that satisfies Q)E| The resulting logic rules (e.g. [6]) are almost
the same as the classical (non-probabilistic) ones — we just need to lift the
assertions from predicates over states to predicates over state distributions.

3.2 Concurrent Randomized Programs and the OA Model

A concurrent randomized program Cy || - - - || Cy, (denoted by C) has two sources
of nondeterminism: the probabilistic choices (in each thread C;) and the schedul-
ing. Its correctness usually assumes a certain class of scheduling, specified by an
adversary model.

The oblivious adversary (OA) model considered in this paper requires that
the scheduling must be determined prior to the execution, regardless of the

2 An alternative view is expectation-based, where P and Q are expectations
(e.g. [1618]).



Fig. 3: Execution trees in OA model, for C, & ((z:=2x)®

outcomes of a thread’s local coin-flip operations. For example, Fig. [3| shows all
the possible executions in the OA model for a simple program C, consisting
of two threads: (z := 2z) ®1 (z := 3) || # := L. In the concurrent setting,
the probabilistic choice (Ci) @, (Ca) is executed in two steps: it first flips a
coin, getting heads with probability p and tails with probability 1 — p, and then
executes either the atomic statement (Cp) for heads, or (C3) for tails. Note
that, although we require the two branches to be atomic statements, we mainly
use (C1) @, (Ca) to encode a random assignment, so C; and Cy themselves
may correspond to single instructions at the machine level anyway (in this case,
the atomic wrappers (-) are unnecessary) and the need of atomicity here is
not overly idealistic. The more general form of C; @&, C3 can be encoded as
((x := true) &, (z := false); if (z) then C; else Cs). E|

Therefore, in OA, there are only three possible schedules for C,: t1 1 to
(Fig. ; t1 to t1 (Fig. ; and to t1 t1 (Fig. . In the figure, state transitions
by different threads are in different colors (in black for ¢;, and in red for t5). We
can see that, by fixing a specific OA schedule, the transitions at the same layer
of an execution tree must be made by the same thread.

In contrast, the strong adversary (SA) model allows arbitrary scheduling. An
SA scheduler has the full knowledge of machine states, especially including the
outcomes of coin-flip operations, and can rely on that knowledge to schedule
threads. For the example C,, in addition to the three schedules in Fig. [3] the SA
model also allows two more schedules, where ¢; and to are scheduled in different
orders for different outcomes of the coin flip. As such, the transitions at the same
layer of an execution tree could be made by different threads.

This example also demonstrates that, thanks to the restriction of the schedul-
ing, one can derive stronger properties of programs in the OA model that do not
hold in the SA model. As shown in Fig. [3] in the OA model the expected value

3 In the proofs of algorithms, we may insert auxiliary statements (a.k.a. ghost code)
to be executed with the probabilistic choice together. This is actually the only case
when C; or C3 is non-atomic and needs to be wrapped by (-).



Fig. 4: llustration of = {P}C{Q}.

of x at the end of execution is 1, which is not true considering the two more
schedules in the SA model.

Correctness and closed assertions. What is the meaning of the Hoare triple
{P}C{Q} now? Figure [4] shows the execution of a concurrent program, where y
is the distribution of the initial states. The execution under each (OA) schedule
@; corresponds to a forest, as in the case for sequential programs. Edges of
different colors represent execution steps from different threads. The execution
under all schedules forms a set of forests. It is obvious that P specifies p, but
what about Q7

Here we have two choices. We can either view the schedules being mnon-
deterministic, or being probabilistic. For the former, we require that @ hold over
every p; (the leaf node distribution of the forest generated with the schedule
;). However, this result is not strong enough — if we sample the execution of C
and observe the final results, the sampled executions may not be generated with
the same schedule, that is, the final states we observe may come from different
(i So it is more natural to take the latter (probabilistic) view of schedule and
consider the mixture distribution p’ of us,..., uk, ..., where the weight of each
Wi is the probability of the schedule ;. Since we do not know the distribution
of schedules in advance, @ needs to hold with all schedule distributions, that
is, @ holds over p’ obtained by taking an arbitrary probability distribution for
M1ye ooy HEy -

We use Eyp {P}C{Q} to represent the semantics of the Hoare triple under
the non-deterministic view, and |=pr {P}C{Q} for the probabilistic view. It is
easy to prove the latter implies the former. The reverse does not hold in general,
but it holds if @ is “closed”. Here closed(Q)) requires that the mixture of any
(potentially countably infinite) number of distributions satisfies @ if each of these
distributions satisfies Q. (We will formally define closed(Q) in Sec. [p.1]) As a
result, for a closed postcondition, we can reduce the proof of =px {P}C{Q} to
the proof of =yp { P}C{Q}.

Most concurrent randomized algorithms that we know have closed postcondi-
tions. As examples of closed assertions, [b], Pr(b) = 0.5 and E(z) = 1A [z > 0]
are all closed. So, for the earlier example C,, we only need to prove that the leaf
distribution of each execution tree in Fig. [3|satisfies E(z) = 1 A [z > 0].

We give the formal definition of =y, { P}C{Q} in Sec. We show the formal
defintiion of pr { P}C{Q} and prove that they are equivalent when @ is closed in
Appendix[B] In this paper we focus on closed @Q’s only and omit the subscript ND
henceforth. Assuming closed(Q) not only gives us the equivalence between the



(a) (b)

Fig.5: Concrete vs. Abstract Operational Semantics in OA.

probabilistic and non-deterministic views of schedules, but also is crucial to make
our split mechanism work, as we show in Sec. below. Note that closed(Q)
is not an overly strong requirement for practical programs, because it is needed
only for the postcondition @ of the whole program C. The postconditions for
individual statements and threads do not need to be closed.

3.3 Thread-Local Reasoning in OA

The question is, how to take advantage of the OA model and verify the stronger
correctness guarantee of a program by thread-local reasoning, i.e. verifying one
thread at a time.

A natural thought is to extend the sequential reasoning in Sec. to con-
currency. To this end, we hope to view the execution of a concurrent program
as transitions over state distributions, as what we do for sequential reasoning.
However, unlike sequential semantics that are usually big-step (see e.g. [6/18])
and care about only the initial and final state distributions, the transitions in
a concurrent setting need to be small-step, to reflect the interleaving between
threads.

One might also consider to migrate the existing approaches for the SA model
to the OA setting. However, the interleaving pattern between threads in the OA
model is very different from that in the SA model. The SA model allows that dif-
ferent threads may be scheduled for different outcomes of a probabilistic choice
operation, while the OA model does not allow it. As a result, program logics
for SA (e.g. [I7/13]) adopt weak assumptions on the environment behaviors in
the thread view: for different states in the support of the current state distribu-
tion, different environment threads may interrupt and take very different steps.
Therefore, they model the environment behaviors as transitions from states to
state distributions (e.g. [I7]) or transitions from states to states (e.g. [13]).

However, this idea may not be as useful in the OA setting as in the SA
setting (thought it is still sound). Algorithms in the OA model usually rely on
the assumption that the scheduling cannot depend on the results of probabilistic
choices, so the weak assumption that different states may be interrrupted by
different environment threads it too weak in the OA setting, and it is not obvious
how to forbid the impossible interleavings in the OA model if we still model
the environment behaviors as transitions from states to state distributions or
transitions from states to states.



To address this problem, we exploit the stronger assumption on the environ-
ment behaviors: for different states in the support of the current distribution, it
must be the same environment thread that interrupts and take steps. Therefore,
we propose the abstract operational semantics and layer-based reasoning.

Abstract operational semantics. In the OA model, we observe that, for all the
states at the same layer of the execution forest (i.e. nodes of the same depths,
as shown in Fig. , it is always the same thread picked to execute the next
step, since the schedule is predetermined. That is, the edges with the same
depths are always of the same color, represents a step from the same thread.
Naturally, we can view the states of the same layer as a whole, forming a state
distribution. If we also view the edges between two layers as a whole, then
Fig. |bal is abstracted to Fig. This gives us an abstract operational semantics
with small-step transitions over state distributions. The execution looks like an
interleaving execution of a classical (non-probabilistic) concurrent program.

Consequently, we can apply classical concurrency reasoning techniques (e.g.
invariants) to reason about executions in our abstract semantics. Our abstraction
is sound in that the Hoare-triple { P}C{Q} valid in our abstract semantics also
holds with the concrete semantics.

Invariants. To do thread-local reasoning, one needs to specify the interference
between the current thread and its environment (i.e. the other threads), which
can be modeled by an invariant I. For classical concurrent programs, I is a state
assertion that needs to hold at all times. The current thread can assume that
holds before each of its steps, but it must also ensure that I still holds after each
step. For a randomized program, we define I over state distributions. It holds at
all the p’s in executions in our abstract semantics (e.g. u, ¢’ and p” in Fig. [5b)).
Since every such p corresponds to a layer in the concrete semantics, we call I a
layer invariant and the reasoning layer-based.

In addition to layer invariants I, our logic also uses mon-probabilistic rely
and guarantee conditions R and G, to simplify the formulation of I in proofs of
programs. By “non-probabilistic”’, we mean that R and G specify state transitions
in the concrete semantics (but do not specify the probability of the transitions).
Their treatment is the same as in classical rely-guarantee reasoning [14].

Unfortunately, we need to address one more challenge to make this nice ab-
straction work. To define the abstract operational semantics, we view all the
edges (program steps) at the same layer in Fig. as a whole to get Fig.
However, although these edges are from the same thread, they may still corre-
spond to the execution of different code, due to the branch statements in the
thread. Below we explain the challenges and our solution in detail.

3.4 Problems with Branch Statements

A program may contain branch statements such as if-statements and while-
loops, which condition on random variables (i.e. variables whose values are prob-
abilistic). In general, different branches may take different numbers of steps to
execute, making it difficult to do layer-based reasoning.



For instance, we consider the program C' || ¢4, where:

def .
C = (if (x = 0) then (c11;c12) else ¢21);cs; - o1
Here each ¢ stands for an atomic command. Assume the

initial values of x are assigned in a probabilistic choice, ¢, 3
which is either 0 or 1. Figure [f] shows a possible execu-
tion, where we need to consider the two possibilities cor-
responding to the two initial values of z. Note we allow
the right branch to execute skip when it reaches the end
while the left branch executes cs.

Thread t; switches to to after executing two steps
(we omit the step evaluating the boolean condition). The
layer-based reasoning asks us to find some invariant and Fig. 6
prove that it holds over the distribution of every layer (i.e.
every green dashed box). This forces us to consider the si-
multaneous execution of ¢1; and cp; in the then-branch
and the else-branch. Even worse, since the two branches have different lengths,
we have to consider the simultaneous execution of ¢12 and c3. This looks partic-
ularly unreasonable if we consider the fact that cs actually sequentially follows
c12 in the program structure! This makes it almost impossible to design struc-
tural and compositional Hoare-style logic rules. The problem is exacerbated by
while-loops, where the number of rounds of loops may rely on random variables.

Note that this problem does not show up in the deterministic setting where
there is no randomization and we prove properties of individual states. In the
execution of if-statements, a state either enters the then-branch or enters the
else-branch, but not both. So we only need to verify the two cases respectively.
But in the probabilistic setting, assertions are properties of state distributions.
We are reasoning about all the possible execution traces collectively. It is pos-
sible that some states enter the then-branch in some execution traces and the
other states enter the else-branch in different execution traces. They need to be
considered together to prove probabilistic properties.

We also do not have to worry about the problem with branch statements in
the sequential probabilistic setting. Since there is no interleaving, we can reason
about probabilistic properties in a “big-step” flavor where we only consider the
initial state distribution and the final one. To reason about the branch state-
ment, we can reason about the different branches (on the corresponding sub-
distributions) separately and then do a mixture at the join point. To see this
more clearly, consider the (COND) rule for if-statements in Barthe et al. [6]’s
sequential logic:

{PATOI}CH{@Q1) {2 A[-D][}C02{Q2}
{(P1 A [b]) ® (P2 A [-D])}if (b) then C else C2{Q1 ® Q2}

c3 skip

(conD)

When using this rule, we do not mix the intermediate state distributions in the
then and else branches until the end of both branches. That is, we do not need
to specify or reason about the whole intermediate state distributions of the if-



statement (though we may specify the intermediate distributions for the then
and else branches separately).

The (conD) rule in [6] is perfectly fine for sequential programs, but not for
the concurrent OA setting, in which we need to specify the intermediate state
distributions that are subject to the environment interference. Furthermore, the
intermediate assertions in the program proofs in Barthe et al. [6]’s logic are not
necessarily the ones we want to expose to the environment. Consider the code C
in the above example: (if (z = 0) then (c11; ¢12) else ca1); 3. When using Barthe
et al. [6]’s logic to verify {P}C{Q}, one picks an intermediate assertion M, and
verifies { P}f---{M} and {M }c3{Q} separately. Note that this M specifies the
final state distribution after executing the whole if-statement, but the states
in the support are not at the same “layer”, because it takes different numbers
of steps for the then and else branches. So, this M does not specify the state
distribution that should be exposed to the environment. Therefore, the sequential
logic in [6] cannot be directly generalized to the concurrent OA setting due to
the problem with branch statements.

Below we use an interesting example to further demonstrate the problem and
then introduce our solution.

Ezxample: a shared three-sided dice. To see the problem with branch statements
more concretely, we consider a simple program Cp;. of n threads, where the
code of each thread is Dice:

Dice %' while (z =0) do Roll, where Roll def (z 2 {1:1)20:5]12:4}
Here x is a shared variable initialized to 0. The loop body Roll is a random
assignment, which is short for the atomic probabilistic choice ((z := 1) &, ({z ==
2z) ® 1 (x:=%))). That is, the thread atomically rolls a 3-sided dice and updates

x according to the outcome: it sets x to 1 with probability %, doubles x with
probability % and halves x with probability %

We want to verify that Cp;.. satisfies the postcondition E(z) = 1. As we
explained, to do thread-local reasoning, we first find out the invariant Ip;c to
model the interference:

IDice def Io® I, where Iy def [t=0] and I; def (Jx #0] AE(z) = 1)
It says, every whole state distribution p (at every layer of an execution forest) is
a mixture po® py (formed by taking pg with arbitrary probability and taking uq
with the remaining probability) in which po and py satisfy Iy and I7 respectively.

To check Ip;.. is indeed an invariant, one may consider showing that Ip;. is
preserved by Roll. However, even if Ip;.. is preserved by Roll (which is indeed
true), it is still unclear whether Ip;.. is preserved layer by layer. Specifically,
after executing Roll, we will reach a state distribution whose support contains
both the states satisfying = 0 and those satisfying  # 0. From the former, the
thread will enter the next round of the loop; but from the latter, the thread will
exit the loop and do the code after the loop (or skip if there is no subsequent
code). Consequently, Roll may be executed “at the same time” with skip, as



{IDicc}

v )@ ( {Dice while (z = 0) do
{IDice}
Roll skip (Roll; split(z = 0,z # 0))
= IDice? / {IDice}
! ! .
oo m {Ipice A [z # 0]}
[ = 0] [=11 {E(z)=1}
(a) from layer to layer (b) split () proof

Fig. 7: Executions of Dice and Its Proof with Split.

shown in Fig. [Ta] What we need to prove is that Ip;c. is preserved by a mizture
of executing Roll and skip at the same layer.

However, it is difficult to design logic rules to compose the proofs of Roll and
skip for their mixture, because Roll as the loop body is actually syntactically
sequenced before skip, the code after the loop. We face a similar problem as the
problem with the if-statement, as explained above.

3.5 Our Key Idea: Split

Instead of trying to reason about the mixture of the behaviors of different state-
ments at the whole layer, we split the state distribution of the layer, and reason
about the different statements separately. In detail, we introduce an auxiliary
command split(by, ..., bg). It divides the current state distribution p into k dis-
joint parts uq, ..., pug, such that each smaller distribution p; satisfies [b;] and p
is their mixture pq @ ... ® pk. In our abstract operational semantics the thread
non-deterministically picks a py, and continues its execution. One can instrument
the code being verified with proper split commands so that each ;. corresponds
to a different branch of a branch statement.

With split, the invariant I no longer needs to specify the whole layer p, but
instead it specifies only the smaller distributions u generated by split. This
must be preserved by the execution at every puy. For instance, if we instrument
split(b, =b) before if (b) then C; else Cs, then we only need to prove that I
is preserved by the executions of Cy and Cy at distributions satisfying [b] and
[-b] respectively.

Split is physical and irreversible. We do not provide any command to mix
back the smaller distributions that result from split. Instead of directly verifying
Fa {P}(C{Q}ﬂ where C contains no split commands and thus () holds at the
whole leaf layer, we verify b, {P}C'{Q} for C’ that results from instrumenting
C with auxiliary split commands. Therefore @) needs to hold at every smaller
distribution at the leaf layer. That said, we do provide the following logic rule
to convert -, {P}C'{Q} back to k-, {P}C{Q}:

4 The subscript “A” indicates that the judgment is for reasoning based on the abstract
semantics.



Fa {P}C'{Q} closed(Q)
F. {P}RemoveSplit(C"){Q}

(REMOVESPLIT)

Here RemoveSplit(C’) removes all the split commands from C’, and closed(Q)
(defined at the end of Sec. allows us to re-establish @) at the mixture of
smaller distributions that all satisfy Q.

Proof for the shared three-sided dice. To verify Dice, we split the state distribu-
tions so that the states at which the thread enters the next round of the loop
and those at which the thread exits the loop are always separate. As such, the
invariant Ip;.. is revised to be a disjunction:
Ipice ¥ Iov I, where Iy &' [t =0] and I, def ([ 0] ANE(z) =1)

In contrast to the earlier Iy ¢ I; which holds at a mixture, this new Ip;.. holds
at a state distribution p satisfying either Iy or Iy. If p satisfies Iy, the thread
enters the next round of the loop; otherwise it exits the loop.

We instrument the loop body with the split command, as shown in red
color in Fig. This split command ensures that the new Ip;. is indeed an
invariant. As the blue assertions indicate, if Ip;.. holds before the loop body,
which means either I or I; holds, then I p;. still holds after atomically executing
Roll and split. In particular, as shown in Fig.[7D] if Iy holds before the loop body,
executing Roll gives us a state distribution satisfying [« = 0]@® [« = 1], and then
executing split(z = 0,2 # 0) (see the red vertical bar) results in two separate
state distributions p, satisfying [z = 0] and p(, satisfying [z = 1]. Both pg
and pg; satisfy Ipice. The full proof is given in Appendix

Logic rules for split and branch statements. Below we introduce our logic rules
for split, if-statements and while-loops to show how the split mechanism works.

Gl {INPYC{UIAQA[b1]) ® - ® (IAQATBL])}
R7G,I [ {P}<C> Split(bl, .. 7bk){(Q/\|—b1—|)V . \/(Q/\[bk.l)}

(ATOM-SPLIT)

As in the Dice example, split is usually inserted after and executed atomi-
cally with some code (C). As such, we provide the command (C) split(by, ..., bg),
which has the same meaning as (C; split(by, ..., bx)). The (ATOM-SPLIT) rule re-
quires us to prove the s, judgment, which reasons about C' as sequential code,
and ensures that the state distribution at the end is a mixture of smaller distribu-
tions satisfying [b1], ..., [b,] respectively. Since split turns the big distribution
into these smaller ones as separate parts, the postcondition of the conclusion
is a disjunctive assertion. We can see that split essentially turns @ into V. The
disjunction can be the precondition of the subsequent if and while statements
as required by the (COND) and (WHILE) rules below. Here we omit the side con-
ditions which says that the pre/post-conditions are stable with respect to R and
1. The definition of rely/guarantee conditions and stability will be explained in
Sec. and the complete rule will be presented in Sec.



Pl = [b—l P2 = [_‘b—| R7 Gv-l F {Pl}cl{Q} R7G7] F {PQ}CQ{Q}
R,G, I+ {PV P, }if (b) then C: else C2{Q}

(conD)

P = [b] P = ’V—\b—| A Q R,G,I [ {P1}C{P1 Vv PQ}
R,G,IF {P.V Ps}while (b) do C{Q}

(WHILE)

Our (conND) rule assumes that, before the if-statement, the state distribu-
tions have already been split into smaller distributions for executing the then-
and else-branches separately. Therefore, the precondition is supposed to be the
disjunction P; V Ps, where P; = [b] and P» = [—b]. Recall that [b] says b holds
with probability 1, i.e. all the states in the support of the distribution satisfy
b. So, [b] V [—b] is not implied by [bV —b]. The latter holds always, but for
the former to hold, we must do split first. Then the branches can be verified
independently, as we do in classical Hoare logic.

Similarly, in the (WHILE) rule, the loop invariant is the disjunction P; V Ps.
Resulting from a split, the part satisfying P; ensures that the loop always contin-
ues with its next round since P; = [b], while the part satisfying P> terminates
the loop as P, = [—b]. One may need to insert split before the loop and inside
the loop body C, so that P; V P, holds before every round of the loop.

3.6 “Big-Step” Reasoning for Probabilistic Choices in OA

In the Dice example, the probabilistic choices are included in an atomic block,
so we can apply the sequential rule to reason about them. But in general, the
execution of (C1) &, (C2) is not atomic, and its two steps (i.e. the coin flip and
the execution of (C1) or (C3)) can interleave with the environment steps.
Fortunately, despite the interference, we can still apply sequential reasoning
to probabilistic choices by taking advantage of OA. In the OA model, the sched-
uler and the environment threads should not be aware of the outcome of the coin
flip. So we can soundly swap the coin-flip step and the environment steps, and
reason about the atomic probabilistic choice ({(C1) &, (C2)) instead, as shown
by the (LAZYCOIN) rule below:
k. {P}azycoin(C){Q}
Fa {P}IC{Q}
Here lazycoin(C) replaces every (C1)®,(C2) with skip; ((C1)®,(Cs)) in C. This
extra skip is to ensure that the new code has the same number of steps as the
non-atomic (C1) @, (Ca), and thus to ensure that lazycoin(C) and C generate

the same behaviors in the OA model. Note that (LAZYCOIN) is unsound in the
SA model.

(LAZYCOIN)

Summary. Our logic takes advantage of the OA model in two aspects. First, the
logic soundness is established via our abstract operational semantics, which views
program execution as thread-interleaving transitions over state distributions. It
allows us to achieve thread compositionality using classical concurrency reasoning
techniques (e.g. invariants). The abstract semantics reflects the key feature of
OA that the same thread is scheduled for all states at the same layer of the



(Nat) n,k €N (Real) p,r € R (PVar) = € String

(Bzpr) e w=n|z|ei+ex|er—ex|erxea]...

(Bezp) b u=true|false|e; <ex|er=ea]er <ea|-b|biAby|biVba]...
(SplitInstr) sp ::= split(bs,...,bs)

(Stmt) C ==skip |z :=e|Ci;C: | if (b) then C; else C; | while (b) do C
[{C) [(C) sp | {C1) ®p (C2)
(Prog) C ==C1 |-+ || Cn

Fig.8: The Programming Language.

execution forest. Second, the (LAZYCOIN) rule allows us to verify probabilistic
choices as if they were atomic. It exploits that in OA the outcomes of coin flips do
not affect the schedule nor the environment threads. That said, OA also makes it
challenging to achieve intra-thread compositional reasoning (i.e. reasoning about
branch statements in each thread), and we address the challenges using split.

4 The Programming Language

The syntax of the language is defined in Fig. 8] The whole program C consists of
n sequential threads. The statements C of each thread are mostly standard. The
atomic statements (C') and the probabilistic choices (C1) @, (C2) are explained
in Sec. [3| For verification purpose, we also append the atomic statements with
split statements to get ((C') sp) where sp is in the form of split(by,...,bx).

Below we give two operational semantics to the language. The concrete one
follows the standard interleaving semantics and models program steps as proba-
bilistic transitions over program states. The split statements are ignored in this
semantics. That is, they are viewed as annotations for verification only and have
no operational effects.

The abstract semantics models program steps as transitions over distribu-
tions of program configurations. We also assign operational semantics to split
statements. We prove that Hoare-triples valid in the abstract semantics are also
valid in the concrete semantics (Thm below).

4.1 Concrete Operational Semantics

We show selected semantics rules in Fig. [0] and give the full set of rules in Ap-
pendix The single-step transition of the whole program is defined through
the thread-local transitions. Each step is decorated with a p, the probability
that the step may occur. For most thread-local transitions except the proba-
bilistic choices and atomic statements, p is simply 1. Note that we allow the
skip command at the end of execution to stutter with probability 1, but it can-
not stutter if it is sequenced before some C'. That is, “skip; C” can only step to
C. (C1) @, (C3) chooses to execute the left or right branches, with probability



Thread IDs, schedules, states and states distributions:

(ThreadId) t € N4 (Schedule) ¢ = t::p (coinductive)
(State) o € PVar — R (DState) p € Dsgtate
Global transitions: (C, o) % (C',o")
(Ci,0) & (Cl,0")
€l Gl 1 Cryo) 5 (Coll - [ CL -+ ]| Cn0)

Thread-local transitions: (C,0) & (C’, o)
[e]lo =n

(z :=e,0) = (skip,c{z ~ n}) (skip, ) = (skip, o)
Cy #skip (C1,0) & (C1,0")
(C1; Ca,0) £ (C1; Ca, o) (skip; C2,0) = (C2,0)

(C1) By (C2),0) B ((C1),0)  ((Ch) By (Ca), 0) =25 ((Ca),0)
3kVn > k. (C,0) B (skip, o) (C),0) & (skip, o)
(C), o) RN (skip, o’) ((C) split(bi,...,bk),0) RN (skip, o’)

Fig.9: Concrete Operational Semantics.

p and 1 — p, respectively. The atomic statement (C) is always done in one step,
no matter how complicated C' is. We assume C' in the atomic statement never
contains while-loops, so it always terminates in a bounded number of steps.

Before giving semantics to (C'), we first
introduce the n-step thread local transi-
tion, represented as (C, o) 2™(C’,¢"). In-
formally, if there is only one n-step ex- 0.4
ecution path from (C, o) to (C’,0’), the (C1,01)
probability p in (C,0) £"(C",¢’) is the 1
product of the probability of every step (skip, 03)
on the path. If there are more than one 1
execution paths, we need to sum up the )
probabilities of all the paths.

(skip, o3

Figure [I0] shows an execution. There
is only one 2-step path from (Cy,00) to
(Cs,05), thus (Co,00) —22252(Cy, 0).
Similarly, there is a 2-step transition (Cy,o00) 242 (skip, o3). However, since
there is another 3-step path from (Cy, o) to (skip, o3), we also have (Cy, o¢) oT,
3 (skip, 03), where the probability is the sum of 0.4x1x1 and 0.6x0.5x 1.

Then the operational semantics rule for (C') says it finishes the execution
of C in one step (that is, the execution of C' cannot be interrupted by other

threads). For the example in Fig. we know ((Cy),09) 27, (skip, 03) and



({Co), 00) 23, (skip, 06). This also shows that (C) may lead to different states
with different probabilities, since C' may contain probabilistic choices.
The multi-step transition ((C, o) £5"(C",¢”)) of the whole program C under
©

the schedule ¢ is similar to the multi-step thread-local transitions. The schedule
 is an infinite sequence of thread IDs. It decides which thread ¢ is to be executed
next. The accumulated probability of an m-step transition is the sum of the
probability of every possible execution path.

Below we define [C], as a function that maps an initial state o to a sub-
distribution of final states. We also lift the function to the distribution p of the
initial states.

N
pyrinl ,

4 \o’. lim p,/, where Vn. (C, o) =" (skip || - - - || skip, o)
»

[Cle(0) =

[Tl () def Eonn{[Cle (o)} (see Eqn. 7] for the expected sub-distribution)

Here E,r is an infinite sequence of probabilities and K,r [n] is the n-th element
of the sequencd’]

Then we can give a simple definition of the partial correctness of C with
respect to the precondition P and the postcondition ), which are assertions
over state distributions and are defined in Sec. 5.1l

Definition 4.1. |= {P}C{Q} iff, for all p and ¢, if p = P, and |[C], ()| = 1,
then [Cl, () = Q.

The premise |[C], (1) = 1 requires the execution of C (with the schedule ¢ and
the initial state distribution p) terminates with probability 1.

4.2 Abstract Operational Semantics

The abstract semantics, shown in Fig. models each step as a transition be-
tween distributions W of the whole program configurations (C, o). Also we give
semantics to split statements.

Below we use nextsplit(W, t) to represent the set consisting of the next split
statements to be executed in the thread ¢ of the program configurations in
supp(W). The next split statement of the thread ¢ is sp if the next statement
to be executed is in the form of (C) sp, otherwise the next split is defined as
split(true). Throughout this paper, we assume all the splits split(by,...,bs)
satisfy the following validity check, which says for any state there is always one
and only one b; that holds.

Definition 4.2. A split statement is valid, i.e., validsplit(split(by,...,bx))
holds, if and only if for any state o, Vi,j. i # j = o = —(b; Ab;) and
o ': b1V...Vby.

5 In our definition of [Cle (o), lim BU/ always exists as we can prove Bgf always con-
verges.



w € Dprogx State wl, & W a@,o).0k=b
5C) . {1’ e =0
0, otherwise
LI 5(C) @ p (see Eqn. 24 for the definition of ®)
split(b1,...,bx), if C = (C1) split(by,...,bk)
nextsplit(C) &ef nextsplit(Cy), if C =C1;Cs
split(true), otherwise
nextsplit(W, t) €ef {nextsplit(Cy) | (C1 || -+ || Cn,0) € supp(W)}

WASW i W= AT 0'). Y Ap- W(C,0) | (C,0) % (C',0)}

nit(C, p)

WL w nextsplit(W,t) = {split(b1,...,bx)} W'|p, = W"

W w
WS W' #nextsplit(W,t) > 1

Wb W

Fig. 11: Abstract Operational Semantics.

t
The transition W < W' is done in two steps. First we make the tran-

sition W ~& W’ based on the concrete semantics, without considering splits.

Then the splits in nextsplit(W,t) are executed. We expect nextsplit(W,t) to be
a singleton set, i.e. threads t in different program configurations in supp(W)
all have the same subsequent split statement. We non-deterministically pick b;
from by ...bg, and let W be the filtered distribution W[y, (see Fig. and
Eqn. for the definition of W|,). If the split statement is split(true), we
know W” is the same as W’'. If nextsplit(W,t) contains more than one split
statements, then we view the program as inappropriately instrumented. In this
case we ignore all the split statements in nextsplit(W,t) and let W be W'.
Figure [[2] illustrates the execu-
tion. The dashed arrows repre-
sent state transitions in the con-
crete semantics, while the solid
arrows represent the transitions
W -5 W’ in the abstract seman-

tics. Like before, we use different
colors to represent actions of dif-
ferent threads. The vertical bars
represent splits. The solid arrow
and the split together correspond

to the transition W i) W'. The

Fig. 12: Mlustration of =, {P}C{Q}.



branching shown by the two solid red arrows reflects the non-deterministic choice
of the cases of the split.

Before giving the partial correctness under the abstract semantics, we first
define the termination of Wy in Def. -3} if the execution sequence of Wy under
the abstract semantics converges with the limit W, we say W, terminates at W.

— —
Here History (W, ¢, W) says that W is a possibly infinite sequence Wy, W7, . ..

where W; ?—[3] W41 for every i. The formal definition of History can be found

5
in Appendix The limit (lim W) is defined by Def. The projection of W
over code (Wm9)) and state (W (5t%€)) are defined by Eqn.

Definition 4.3 (Termination of W). Given Wy and a schedule . We say W)
terminates at W under the schedule o, represented as Wy Uw , if and only if
—

there is an infinite sequence W such that History (W, ¢, W) limW =W and
W (Pro9)(skip || - - || skip) = 1.

Next we define the partial correctness under the abstract semantics, =,
{P}C{Q}. The initial distribution of program configurations is init(C, u). As
defined in Fig. init(C, u) says the initial program is always C and the state
distribution is p. Figure [12] illustrates the meaning of =, {P}C{Q}: if P holds
over the initial distribution, 2 must hold over every final distribution. Theo-
rem shows that the partial correctness in the abstract semantics implies the
partial correctness in the concrete semantics when the postcondition is closed.
Below we develop our program logic based on this abstract semantics.

Definition 4.4. =, {P}C{Q} iff for all p, if u = P, then for all ¢ and W, if
init(C, p) b, W, then W(Stete) = Q.

Theorem 4.1. forall P,C, Q, if =, {P}C{Q} and closed(Q), then = {P}C{Q}.

5 The Program Logic

We present the assertion language and the logic rules in this section.

5.1 The Assertion Language

We show the syntax of assertions in Fig. [I[3] and their semantics in Fig. 4]
We use p and q to represent classical assertions over states, and P, () and
I for probabilistic assertions over state distributions. We also use £ to denote
probabilistic expressions such as the expected value of an arithmetic expression
or the probability of a classical assertion. The expression £ evaluates to a real
number under the state distribution u, represented as [£]),,. E(e) evaluates to the
expected value of [e], (where o € supp(u)). Pr(q) evaluates to the probability
of o E q (where o € supp(u)). The key definitions of expected values and
probability of assertions are shown in Eqn. .



(Assertion) p,a =b|qlaiAq|aiVa|VX.q|3IXq]...
(Pezp) 3 =7 ]E(e) [Pr(q) [&+& & —& [ &*é]...
(PAssertion) P,Q,M,I == [q] |§&1 <& & =866 <& -QQ1AQ2|Q1V Q2
IVX.Q|3IXQ|Q10p Q2| Q1 DQ2| ...
(Action) R,G :=pxq]l[q]|-R|RiAR2|RiVR: |VX.R|3X.R|RioRz2|...

Fig.13: The Assertion Language.

Evaluation of probabilistic expressions:

[l = B == Ervulle].]
6 + &2l = 6] + [2] [Pr(@)]. = Proulo = d
Semantics of probabilistic assertions:
uE [q] iff for all o € supp(u), o = q

pLEQ®,Qifp=land pEQ1,orp=0and uE=Q2,0or 0 <p<1and
there exist p1 and po such that = p1 ®p 2, p1 E Q1 and us = Q2
wE Q1P Q2 iff there exists p such that u = Q1 ®p Qo

Fig. 14: Semantics of Assertions.

The assertion [q] lifts the state assertion q to a probabilistic assertion. It
says q holds on all states in the support of the state distribution. The assertion
P @, Q holds at p, if p is a mizture of two distributions o and p;, which are
associated with probabilities p and 1—p, and satisfy P and @ respectively. Q1 BQ>
says there exists p such that Q1 ©, Q2 holds. The semantics of VX.Q) and 3X.Q
are given in Appendix Throughout this paper, we use capital letters X to
indicate that X is a logical variable and lowercase letters = to indicate that x is
a program variable. We define true as a syntactic sugar of [true| which holds
on all state distributions.

Note that @ & Q = @ may not hold. For instance, let’s instantiate @ with
([ = 0]V [z #0]). A state distribution p satisfying Q & @ may be a mixture of
w1 and po such that all the states in supp(uq) satisfy z = 0 (thus p; satisfies Q)
while all the states in supp(us) satisfy x # 0 (thus ug satisfies @ too). However,
w itself does not satisfy @, which requires either all the states in supp(u) satisfy
x = 0, or all the states satisfy = # 0.

Actions R and G are assertions over state transitions. Their semantics, (o, 0’) =
R, is the same as that in classical (non-probabilistic) rely-guarantee logics. We
use [R] to denote the set of state transitions that satisfy R.

Stability We define the stability of a probabilistic assertion ) with respect to
the environment interference (specified by I and R) in Fig. We first define

R
po 1"’ to describe that the current state distribution is changed from p to p”

due to the environment interference. As we can see in the abstract operational



Sy iff 30 € P(State x State). 0 C [R] A supp(u) = dom(0) A supp(') = range(6)
I % W' IA G S ) A supp(u'”) C supp(u')) A T
. R
Sta(Q, R, 1) ift Vp, p'. p = QA p— ' — p = Q

Fig. 15: Stability.

semantics, every transition made by a thread is done in two steps. The first step
is normal execution without splits and the second step is the execution of split.
Similarly, we model the execution of the environment in two steps. The first

step is p it i’ . It requires us to find a set @ of state transitions allowed by R

(i.e. 8 C [R]), such that 6 transforms the states of supp(u) to those of supp(p').
The second step is the execution of split statements by the environment. The
condition supp(n’) C supp(y') abstracts the behaviors of split. In addition, the
environment needs to preserve the invariant I, so p = I A " = I. Then we can
give a simple definition of Sta(Q, R, I) in Fig.

In general, it is not easy to prove the stability of a probabilistic assertion with
respect to classical rely conditions. But in practice, the thread-local pre/post-
conditions and intermediate assertions P are usually “non-probabilistic”, in the
form of [by| V...V [b,]. This is because the probabilistic information is often
about the shared resource and has already been specified by the global invariant
1. For such P, proving stability Sta(P, R, I) is not much harder than proving
stability in the classical rely-guarantee reasoning. We give some rules to syntac-
tically proving Sta(P, R,I) in Appendix @

Closed Assertions As explained in Sec. 3.5 we need the postcondition of
the whole program to be closed for applying split. closed(()) means that the
mixture of any (maybe countably infinite) number of state distributions satisfies
Q if each of them satisfies Q.

Definition 5.1. An assertion @ is closed, i.e., closed(Q) holds, if and only if,

for all v € Dpy,,,., if p = Q holds for all 1 € supp(v), then 7 = Q (see Eqn. (2.8)
for the definition of 7).

Many assertions are closed, such as [z = 1], Pr(y > 2) = 0.5, [z = 0] ®
[ = 1]. We have some syntactic rules to prove that an assertion is closed: The
lifted assertion [p] is closed. Conjunction and universal quantification of closed
assertions are closed. If both (), and > are closed, then Q1 ®,Q2 and Q1 D)2 are
closed. In addition, assertions in the form of (& >1 &) AQ (where > € {<, =, <})
are closed if @ is closed, and, for any sub-expression E(e) in &; or &, @) ensures
that e is bounded or non-negative. For instance, both E(z) = 1A[—10 < z < 10]
and E(z) < 2 A [z > 0] are closed. The formal rules for proving closedness are
given in Appendix



Note that disjunction, existential quantification and negation of closed as-
sertions may not be closed. For instance, [x = 1] V [z = 2], IN.[z = N, and
Pr(z = 0) # 0.5 are not closed. It may be surprising to notice that, (Q®Q = Q)
does not imply closed(Q), because the mixture of an infinite number of distri-
butions can possibly fail @ (here we do not expand the reason which will need
deep knowledge about limit). For example, E(z) = 1 is not closed. But this does
not seem to limit the applicability of our logic, because the values of program
variables are often bounded, e.g. x is never less than 0, and E(x) = 1 A [z > 0]
is closed.

In this work, we focus on the class of randomized algorithms whose correct-
ness is about the bound of the probability of a random event or the expected
value of a random variable. For this kind of algorithms, our syntactic rules for
closedness are useful enough. The postconditions of these algorithms can usually
be expressed in the form of Pr(b) < r or E(e) <t r, where r is a real number
and < is a comparison operator which can be <,=,<,>, >. The closedness of
the assertion Pr(b) >ir can be proved directly following the syntactic rules. For
E(e) < r, we need to strengthen it with the bound of e, i.e. [r; < e < r3] holds
for some 71 and ro. Then we can prove that (E(e) >r) A [r; < e < rg] is closed
using our rules. In practice, the bounds r; and r, for e are easy to find and
prove, based on the specific functionality of the verified algorithm.

Limit-Closed Assertions To verify almost surely terminating programs, we
require the invariant I and the postconditions of all threads are limit-closed
assertions. Below we define limit-closed assertions (see Def. [2.6| for the definition

of lim /_I)

Definition 5.2. An assertion @ is limit-closed, i.e., lclosed(Q) holds, if and
only if, for all infinite sequences f, if lim 1z = y, and 4 [n] = Q holds for all n,

then pu = Q.

We also have some syntactic rules to prove that an assertion is limit-closed:
The lifted assertion [p] is limit-closed. Conjunction, disjunction and universal
quantification of limit-closed assertions are limit-closed. If both @7 and Q5 are
limit-closed, then (Q1A[q])®, (Q2A[—q]) and (Q1A[q])B(Q2A[—q]) are limit-
closed. In addition, assertions in the form of (&; <1 €2) A Q where < € {=, <} is
limit-closed if @ is closed, and, for any sub-expression E(e) in &; or &2, () ensures
that e is bounded. These rules are similar to the rules for closedness and thus
are also useful in verifying algorithms whose correctness is about the bound of
the probability of a random event or the expected value of a random variable.
The formal rules for proving lclosed(Q) are given in In Appendix @

5.2 Inference Rules

Our inference rules are organized into three layers for the whole program, the
thread local rely-guarantee reasoning, and sequential reasoning, as shown in

Fig.



Whole-Program Rules The top-level rules are used to verify whole programs.
The judgement is in the form of -, {P}C{Q}. Here P and @ are probabilistic
assertions, which specify the initial state distributions and the terminating state
distributions respectively.

The parallel composition rule (PAR) is (mostly) standard. One verifies each
thread C; separately, proving that if the behaviors of its environment satisfy its
rely condition and preserves the invariant, then the thread itself satisfies its guar-
antee and preserves the invariant. One also checks the interference constraints
(G; = Rj), i.e. the guarantee of each thread is permitted in the rely of every
others. The invariant I and the postcondition of each thread Qq,...,Q, are
required to be limit-closed assertions, which ensures that the limit state distri-
bution of the infinite sequence produced by C under the abstract operational
semantics satisfies I and @Q1,...,Qy.

As mentioned before, we may instrument programs with auxiliary split in-
structions to make reasoning and verification easier. We provide the (REMOVES-
PLIT) rule to convert the instrumented program back to the original program we
want to verify, as long as the postcondition @ is closed. Here RemoveSplit(C)
removes all the split instructions from C. The formal definition of RemoveSplit
is trivial and thus omitted.

The (LAZYCOIN) rule allows us to replace every non-atomic probabilistic
choice (C1) @), (Cz) with skip; ((C1) &, (Ca)) in C, as explained in Sec. We
also support the standard consequence rule, conjunction rule and disjunction
rule for whole programs, which are omitted here.

Thread-Local Rules The thread-local judgement is in the form of R, G, I -
{P}C{Q}. As in the traditional rely-guarantee reasoning [14], the rely condition
R of a thread specifies the permitted state transitions that its environment may
have, and its guarantee condition G specifies the possible state transitions made
by the thread itself. The invariant I specifies the probabilistic property that is
preserved by both the thread and its environment at every layer. The rely/guar-
antee conditions need to be reflexive in well-formed thread-local judgements.

To verify (C), the (ATOM) rule verifies C as sequential code, and requires I is
preserved at the end if it holds at the beginning, and the whole state transitions
resulting from the sequential execution C satisfy the guarantee G. The pre/post-
conditions need to be stable with respect to R and I. We use Sta({P,Q}, R, I)
as a shorthand for Sta(P, R, I) A Sta(Q, R, I). Similar representations are used
in the remaining part of the paper.

Our (SEQ) rule for sequential composition is standard. The (ATOM-SPLIT),
(conD) and (WHILE) rules have been explained in Sec. Note that (ATOM-
SPLIT) cannot be replaced by (ATOM), since only split can turn @ into V (see
the first premise and conclusion’s postconditions in (ATOM-SPLIT)).

Sequential Rules The judgement for sequential rules is in the form of G Fgq
{P}C{Q}. Note that the guarantee G does not specify the state transition of



‘Whole program rules: +, {P}C{Q}
Vi. Ri, Gi, I - {P;}Ci{Q:} Vi,j.i#j = (Gi = Rj)
P=IAPLA- APy IAQIA-AQn=Q lclosed({I,Q1,...,Qn})
FAA{PYCL - || Co{@Q)
F. {P}azycoin(C){Q}
Fa {PIC{Q}

(PAR)

Fa {P}C{Q} closed(Q)
F. {P}RemoveSplit(C){Q}

(REMOVESPLIT) (LAZYCOIN)

Thread-local rules: R,G,I+ {P}C{Q}
G Fso {I APYC{IAQ} R,G, 1+ {P}C,{M}
Sta({P,Q}, R, I) R,G, I+ {M}C2{Q}
RGIF(PHOqQT YT B G T (PICy Ga10)
Gro {INPYC{IAQA[I]) @+ @ (IAQATbL])}
Sta({P,Q A ([01] V-V ]}, R, )
R,G, 1+ {PHC) split(by,...,bx){(QA[b1])V...V(QATbL])}
P = |_b.| Py = |_—‘b-‘ Sta(Pl V Py, R, ])
R,G,I+{P}Ci{Q}  R,G, I+ {P}C{Q}
R.G.IT (P BJif (b) then Oy else (5{Q} \CON)
P = ’—b] P2:>|Vﬁb-|/\Q R,G,I"{P1}C{P1\/P2} Sta({Pl\/Pg,Q},R,I)
R,G,IF {P:V Py}while (b) do C{Q}

(sEQ)

(ATOM-SPLIT)

(WHILE)

Sequential rules: G tsq {P}C{Q}

G Fsq {P}Cl{Ql} G Fsq {P}OQ{QZ}
G |_SQ {P}<Cl> Dp <CQ>{Q1 Dp QZ}

(sQ-pPcH)

Fig. 16: Selected Logic Rules.

every single step of C'. Instead it specifies the state transitions from initial states
to the corresponding final states at the end of C.

For the probabilistic choice (C7) @, (Cs), the (SQ-PCH) rule asks one to verify
C1 and (5 separately and mix their postconditions ;1 and @2 according to the
probability of the coin flip. The rules for other statements are simple extensions
of those in [6] and are presented in Appendix

Soundness The following theorem shows that our logic is sound with respect
to the abstract operational semantics, where =, {P}C{Q} is given in Def.

Theorem 5.1. For all P,C,Q, if -, {P}C{Q}, then =, {P}C{Q}.

Why split is an explicit operation instead of a logical one. The explicit
instrumentation of split can simplify the logic soundness proof. Instead, if split
is treated as a logical step, the formulation of the judgment semantics would in-
volve alternating universal and existential quantifications (where the existential



quantification says there exists a logical split), which would make the soundness
proof much harder. The explicit split can also make the correctness proofs of
programs easier to read, since the instrumented code explicitly shows where the
key proof steps occur.

6 Case Study: Conciliator

As introduced in Sec. [I} Chor et al. [I2] give a probabilistic-write based concil-
iator for probabilistic agreement between n threads, each thread i executing C;
below.

c (while (s = 0) do (s := 1) B, (skip));y; 1= s
Here s is a shared variable, y; is the local variable for thread ¢ that records its
return value.

We want to prove {[s =0]}Cy || -+ || Co{Pr(y1 = -+ =yn) > (1 —p)"'}.
Intuitively the postcondition holds because, when there is exactly one thread
1 succeeded in writing to s, all threads will return ¢. This ideal case happens
with probability no less than (1 — p)»~! in OA, because (i) for the program to
terminate, at least one thread has updated s, and (ii) after the first update to
s, each of the other n — 1 threads has at most one chance to update s, and
such an update happens with probability no more than 1 — p. Note that this
algorithm does not work in SA, where different threads can be scheduled for
different outcomes of coin flips, making the aforementioned ideal case happens
with probability less than (1 — p)"~!.

To formulate the intuition, we introduce a shared auxiliary variable ¢ that
counts how many threads have written to s and insert the auxiliary code ¢ := c+ 1
which is executed atomically with s := . We also introduce flag variables d; to
formalize the “at most one chance” update to s. When d; is set, it means thread
i can no longer update s. We insert the auxiliary code SetFlag;, to set d; at
the proper time. At the whole-program level, we apply the (REMOVESPLIT) and
(LAZYCOIN) rules to wrap the probabilistic choice in an atomic block, and to in-
strument split(s = 0, s # 0) after the loop body such that the resulting smaller
distributions either enter or exit the loop. Using the (PAR) rule, our goal becomes
to thread-locally verify the code below.

(while (s = 0) do (skip; (PWrite;) split(s = 0,s # 0))) ; (SetFlag;; y: := s),
where PWrite; < (s := ;¢ := c+ 1; SetFlag;) ®p (SetFlag,)
and  SetFlag; T (s #0) then d; := 1 else skip

We define the invariant I below, which says that either s = 0 (and thus ¢ = 0
and each thread has chance to update s), or s # 0 (and thus ¢ > 0) and the
probability of ¢ = 1 has a lower bound.

T I,V I, where Ip < [s=0Ac=0AVi.d; =0], I < [s # 0Ac> 0] APBound,

and PBound ¥ 3K <n.[¥7,d; = K] APr(c=1)> (1—p)K*



The formal proof is presented in Appendix [G.2] Besides Dice discussed in
Sec. 3] and conciliator discussed here, in Appendix [G.3] and Appendix [G.4] we
also prove two more complicated algorithms, group election [2] and a multiplayer
level-up game, by extending the logic in Sec. with more advanced rules (the
full logic can be found in Appendix .

7 Related Work and Discussions

Mclver et al. [I7] develop the probabilistic rely-guarantee calculus, which, to
our knowledge, is the first program logic for concurrent randomized programs.
They use event structures to define the semantics of concurrent randomized pro-
grams, in which they assume arbitrary schedules, i.e. the strong adversary (SA)
model. On top of that semantics, they take an algebraic approach (in the spirit
of concurrent Kleene algebra) to derive the reasoning rules, with probabilistic
rely /guarantee conditions. Their calculus does not apply to the algorithms of
conciliator and group election verified in our work, whose correctness assumes
weaker adversary models. Besides, we encode probabilistic properties in the in-
variant and use only non-probabilistic rely-guarantee conditions, which enable
simple stability proofs.

Tassarotti and Harper [I9] extend the concurrent program logic Iris [I5] with
probabilistic relational reasoning, to establish refinements between concurrent
randomized programs and monadic models. These monadic models are more
abstract and are not concerned about concurrent executions. They also give
rules for reasoning about probabilistic properties on monadic models. On the one
hand, their program semantics assumes the SA model. On the other hand, their
logic soundness only holds for schedules under which the program is guaranteed
to certainly terminate (i.e. terminate in a finite number of steps). As a result,
they cannot verify the examples in our work. That said, it seems interesting
to incorporate in our work the advanced features of Iris for modular reasoning
about nested data structures and/or higher-order functions.

Fesefeldt et al. [I3] propose a concurrent quantitative separation logic for
reasoning about lower-bound probabilities of realizing a postcondition of a con-
current randomized program in the SA model. Like us, they require program
executions to preserve resource invariants on shared states. But their invariants
are limited to qualitative expectations, which map states to either 0 or 1, so
cannot specify probabilistic distributions as ours. Moreover, they can only verify
lower bounds of probabilities, while we can also reason about exact probabilities
and expectations.

For the part of sequential reasoning, our rules mostly follow Barthe et al. [6].
Our Iclosed condition (see the (PAR) rule in Fig. is similar to their “¢-closed”
condition, both introduced for supporting almost surely terminating programs.
Our assertion language for invariants and pre- and post-conditions is similar
to theirs too, where an assertion is a predicate over state distributions. They
provide a (SPLIT) rule which is very different from our split mechanism. Using
the (SPLIT) rule, one can logically split the initial distribution into two parts,



reason about the execution of the same code on the two parts separately, and
mix the two final distributions back. This rule is similar in spirit to their (COND)
rule and cannot be applied to solve the problem with branch statements in the
concurrent OA setting. We provide a (SQ-OPLUS) rule for sequential reasoning
in Appendix [E| which is almost the same as their (SPLIT) rule. It is possible to
extend our assertion language with separating conjunctions, to specify spatial
disjointness of state distributions and probabilistic independence (following [7]).
There are also (sequential) program logics (e.g. [9U8II]) where assertions denote
functions from program states to probabilities or expected values.

Bertrand et al. [TI0JTT] apply model checking techniques for verifying random-
ized algorithms in weak adversary models. However, Bertrand et al.’s approach
does not apply to the algorithms we have verified. Their work focuses on the
class of algorithms with some form of “symmetry” regarding the local control
flow. Such an algorithm must execute “symmetric” code for different outcomes
of a coin flip. But none of the algorithms verified here satisfies this property. In-
stead they all have probabilistic branch statements that take different numbers
of steps, which is the main challenge to our logic design. We conjecture that our
split idea may still be helpful when developing automata-based approaches to
verify these algorithms.

Comparison with operational semantics based verification. Although it is possible
to do verification based on concrete operational semantics directly (by inductive
reasoning about execution traces or by exploring the whole state space), we
prefer the logic-based approach for the following reasons.

First, our program logic supports syntax-directed verification with high-level
abstraction. Users do not need to enumerate the possible executions of pro-
grams, and the detailed low-level operational semantics are hidden by the logic
soundness proofs. In particular, users do not need to enumerate the schedules
of the threads. This is a great advantage because an almost surely terminating
program (like the algorithms we have verified) can have an infinite number of
schedules and have schedules of infinite lengths. By contrast, to carry out the
proofs using the operational semantics directly, users would have to consider all
possible schedules, and may need co-induction over schedules, which would lead
to much more complicated proofs.

Second, the program logic enables users to formalize the key intuition of
algorithms. We believe that, when trying to design or understand an algorithm,
people actually conduct compositional (though informal) reasoning instead of
exploring the whole state space of the execution. Our logic gives a systematic way
to describe the intuition and explain the correctness through the formalization
of program specifications (e.g. invariants, rely and guarantee conditions) and
the insertion of the auxiliary split. For instance, in our informal understanding
of the shared 3-sided dice example (Sec. and the conciliator (Sec. [B]), we
already implicitly partition the whole state distributions. Our work identifies
this implicit but crucial step in the intuition, finds a way (called split) to allow
users to specify this step, and proves that this step is sound.



Usefulness of split beyond the OA model. The split mechanism and closed asser-
tions actually give us a general abstraction mechanism for compositional reason-
ing of randomized algorithms. Just like loop invariants abstract away the number
of loops executed, and environment invariants and rely /guarantee conditions ab-
stract away the concrete interleaving between threads, our split mechanism and
closed assertions allow us to abstract away the probabilistic weights of differ-
ent branches (including loops) taken in randomized algorithms. Although the
mechanism is particularly useful for the OA model, it also provides insights to
simplify reasoning in randomized algorithms in general.

Limitations and future directions First, since we assume closed postconditions,
non-closed properties such as probabilistic independence and (co)variance can-
not be proved using our logic. It is interesting and nontrivial to explore how
to verify algorithms with these properties. Second, we have not implemented or
mechanized our logic. It would also be interesting to automate the code instru-
mentaion (split) and the side-condition checks (closed, l-closed, stability). The
last but not the least, the current set of logic rules may not be perfect. We will
try more advanced mathematics and semantic theories to generalize and simplify
our rules, and also test their applicability by more real-world algorithms.
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A  More Preliminaries

Definition A.1 (finite series of real numbers). Let ro,...,7, be a finite
sequence of real numbers, the finite series Z?:o r; is inductively defined as

Z?:o i =
def
Yo S (Xig i) + a1

Definition A.2 (infinite series of real numbers). Let (r,;),en be an infinite
sequence of real numbers, the infinite series > ;- 7; is defined as

def
dicoTi = lim D ieo i

li

n—oo
Definition A.3 (summation on finite sets). Let A be a finite set and f :
A — R be a function, then there exists a bijection g : {0,...,#A4—1} — A, and
> aca f(a) is defined as

def A— .
Yaea F(@) = X0 F(g(i).
We can prove the definition does not depend on the choice of g.

Definition A.4 (summation on countably infinite sets). Let A be a count-
ably infinite set and f : A — R be a function, then there exists a bijection
g:N = A Wesay > ., f(a) is absolutely convergent iff Y% [f(g(i))| con-
verges, and the value of ) _, f(a) is defined as

def o0 .
Diacaf(@) = 2220 f(9(d).
We can prove the definition does not depend on the choice of g.

Definition A.5 (summation on uncountable sets). Let A be an uncount-

able set and f : A — R be a function such that supp(f) f {a € A f(a) # 0}
is countable. ), f(a) is defined as

def

2aea F(@) = Xacouppip) (@)

We write >, 4{f(a) | P(a)} as a shorthand for },c,ic 4| p(ar)y f(a), where
P is a predicate over A.

Definition A.6 ((sub-)distribution). A sub-distribution over a set A is de-
fined by a function p: A — [0, 1] such that

— the support supp(p) is countable; and
— the weight |u e Y acati(a) <1

If 1 is a sub-distribution over A and |u| = 1, we say p is a distribution over A.
We use SD 4 to denote the set of sub-distributions over A, and D4 to denote the
set of distributions over A.



Definition A.7 (probability of events). Let i € SDy4. The probability of an
event £/ : A — Prop w.r.t p is defined as

Pro . [E(a)] € S, 4{n(a) | E(a)}

Definition A.8 (expected value of random variables). Let € SD4. The
expected value of a random variable V : A — R w.r.t p is defined as

Eomn[V(@)] € 3004 pla) - V(a)

Definition A.9 (expected sub-distribution). Let ¢ € SDy and f : A —
SDg. The expected sub-distribution E,~,{f(a)} € SDp is defined as

Eop{f(@)} N0 32 e 4 (@) - f(a) (D)

Definition A.10 (flattened sub-distribution).
Let 11 € SDgp ,. The flattened sub-distribution @ € SD 4 is defined as

__ def
N0 Yo, 1) 1(a).

Definition A.11 (conditional sub-distribution). Let 4 € SDy and £ : A —
Prop such that Pr,~,[E(a)] > 0. The conditional sub-distribution y|g is defined
as

’u,|E = \a. Pro~u[E(a)]’ )
otherwise

def {“(“) if B(a) holds

)

Definition A.12 (convergent sequence of sub-distributions). Let A be a
set, ﬁ be an infinite sequence of sub-distributions over A. We say ﬁ converges to a
- . e 1 —
sub-distribution pi, represented as lim p = p, if and only if lim > [u[n](a)—
n— oo

p(a)] = 0 (where i[n] means the n-th element of the sequence 1i). We say 1
diverges and lim ,l_; is undefined if /7 does not converge to any u.

Definition A.13 (product sub-distribution). Let u; € SD4 and us € SDp.
The product sub-distribution @ ® s € SD 4 p is defined as

1 ® pa E A(a,b). i (a) - pa(b)

Definition A.14 (projection of sub-distribution). Let y € SDaxp. and
t2 € SDp. The projection of p with the sets A and B is defined as:

pA) L N\a. Pr, p)~pula = d']
pB EENY Prg b=V



B Full Operational Semantics

Fig. [I7] gives full rules of concrete operational semantics. The step rules for
sequencing, ifs and while-loops are mostly standard except that in the first rule
for sequencing, we require that C; is not skip to prevent conflicts with the
stutter rule for skip.

The rule for atomic blocks assumes that programmers never write while loops
in atomic blocks so that atomic blocks can always terminate in a bounded num-
ber of steps. We also have a more general rule for atomic blocks that permit while
loops inside, as shown below. When (C) contains no while loops, the two rules
are equivalent. To simplify the presentation, we choose to present the simpler
rule (that avoids using limit) in this paper.

vn. (C, o) 2n (skip, ')

(Y, o) TP, (skip, o)

In Sec. we give the definition of =y, {P}C{Q}. Now we give the defini-

tion of pr {P}C{Q} in Def. We use ¢ € Dgepequie to denote the distribu-

tion of oblivious schedules and we define [C]4(u) Lo Euo{[Cl, (1)} as the final

state distribution of the execution forest of C from the initial state distribution
1 under probabilistic schedules sampled from ¢.

Definition B.1. = {P}C{Q} iff, for all 4 and ¢, if u = P, and |[C]s(p)| = 1,
then [Clo() — Q.

As explained in Sec. Ew {P}C{Q} and =y, {P}C{Q} are equivalent

when @ is closed, as shown by Thm.

Theorem B.1. For all P,C, Q such that closed(Q), then |y, {P}C{Q} <—
Fer {PYC{Q}-

Proof. For all P,C,Q such that closed(Q), first we prove =y, {P}C{Q} =
o APYCLQ}.

To prove |=pr {P}C{Q}, we need to prove for all u and ¢, if 4 = P and
ICTs(1)] = 1, then [Clo(x) b= @ From 1 = [[Clo()] = [Egmg{ICL, (1)} =
Eosll[Clo (0]l = 3, 0(0) - [IClo(0)] < X, 6(¢) = 1 we know >, 6() -
(1) = 3, 6(): 50 3, 6()-(1-[[C1, (1)) = 0, thus 6()- (1= [CT (1)) =
0 for all ¢. Therefore |[C],(x)| = 1 for all ¢ € supp(¢). From =y, {P}C{Q}
and p = P we know [Cly(p) = Q for all ¢ € supp(¢). From [Cly(p) =
E s {[Cly ()} and closed(@Q) we have [CL () = Q-

Next we prove =pr {P}C{Q} = = {PIC{Q}.

To prove Eyp {P}C{Q}, we need to prove for all x and ¢, if u = P and
def

I[CT, ()] = 1, then [Cl, (1) = Q. Let ¢ 2 5(p), then [Cly (1) = E s (I (1)} =
[Tl (1), 50 |[Cls(w)] = [[Cly ()] = 1. From Fpr {P}C{Q} and = P we have
[l () = Q. From [Cly () = [Tl (1) we have [Tl () = Q.



Thread IDs, schedules, states and states distributions:

(Threadld) t € N4 (Schedule) ¢ == t::¢p (coinductive)
(State) o € PVar — R (DState) p € Dsgtate
Global transitions: (C, o) % (C',o")
(Ct,0) & (Cy,0”)
€l Gl [ Cryo) 5 (Coll - [ CL -+ || Cn0)

Global multistep transitions: (C,o) 2™ (C’, ")
p=Sc 2 [ (C0) 25 (C0") A (T 0) 257 (C", ")}
’ @
(C,0) =°(C,0) (C,0) =mH(C", ")
® B

Thread-local transitions: (C,0) 2 (C’,0")
[e]o =n
(skip, o) 4 (skip, o) (z:=-e,0) EN (skip, o{x ~ n})
Cy #skip  (C1,0) & (C1,0”)

(C1; Ca,0) &5 (C1;Ca,0) (skip; Cz,0) - (Ca,0)
[b]> = tt [b], = fF
(if (b) then C; else Cy,0) = (C1,0)  (if (b) then C; else Cs,0) - (Ca,0)
[6] = tt [b]o = ff

(while (b) do C,0) = (C;while (b) do C,0)  (while (b) do C,0) = (skip, o)

((C1) @p (Ca),0) B ((Ch), o) ((Ch) @, (Ca),0) > ((Ch), )

Jk.Vn > k. (C,0) B"(skip, o) (C),0) & (skip, o)
(C),0) & (skip,o”) (C) split(br,...,by),0) 2 (skip,o’)
P=cr o1 p2 | (Cro) =5 (C',0") A (C,0") 27(C",0")}
(C,0) B°(C,0) (C,0) Bt ")

Fig. 17: Appendix: Full Rules for Concrete Operational Semantics



— —
In Sec. we use History(W, o, W) to represent that W is an infinite

sequence Wy, Wy, ... where W; f—[é] W41 for every i, as defined coinductively

below (see the definition of W and W W in Fig. .

5

W < W’ History(W', o, W)

=7

History (Wt :: o, W :: W)

C Justifications for Non-probabilistic Rely/Guarantee
Conditions

As explained in Sec. [3:3] we use R, G, I to specify the interference between the
current thread and its environment, where I is the probabilistic layer invariant
(over state distributions) and R, G are non-probabilistic rely /guarantee condi-
tions (over state transitions). One might suggest to replace the layer invariant by
probabilistic rely/guarantee conditions to uniform probabilistic rely/guarantee
conditions and non-probabilistic ones. To do that, we need to use higher-order
rely /guarantee conditions R, G, but it is not obvious what type R, G should be
defined as.

One solution is to define R, G as predicates over transitions between state dis-
tributions, which has been tried in earlier versions of our work. It indeed works in
proving probabilistic properties of randomized programs. However, when we try
to prove some non-probabilistic properties, such R, G seems not to be expressive
enough to support traditional rely-guarantee reasoning. For example, we might
define G as (t = O0xy = 1)V (z # 0 x y = 2) for a thread with the code
(if (b) then y := 1 else y := 2) in traditional rely-gurantee reaoning. Here p x g
means the initial state of the transition satisfies p and the resulting state satisfies
g. In the probabilistic setting, the initial state distribution may contain some
states where = 0 and some states where x # 0. We want to define some G to
express that for the initial states where x = 0, the corresponding resulting states
satisfies y = 1, and for the initial states where = # 0, the correponding resulting
states satisfies y = 2. However, this property cannot be expressed by any predi-
cate over transitions between state distributions because we have no information
about the correpondence between the initial states and the resulting states given
the initial state distribution and the resulting state distribution. One may define
Gas ([x=0]x[y=1])V([z #0]x [y =2])or [z =0Vz # 0] x [y =1vy =2].
But Both of them are different from the property we want to express. What we
want to express is actually [(z =0x y =1) V (z # 0 x y = 2)], which is not a
predicate over transitions between state distributions.

Another solution is to define R, G as predicates over transitions from states
to state distributions. In this way R, are expressive enough to specify state
transitions as in the traditional rely-gurantee reasoning. We can define G as
(x=0x[y=1])V(xz #0x [y = 2]) for a thread with the code (if () then y :=
1 else y := 2), which solves the problem of the previous solution. However, such



R,G are not expressive enough to specify the initial state distribution, which
makes it more difficult to prove that an assertion P is stable with respect to

R than the previous solution. For instance, we want to prove that an assertion

P E(z) = 1 is stable under the interference of an environment thread with

the code {x := 1 @& 5 skip); skip in the oblivious adversary model. It is obvious
that both (x := 1 @¢ 5 skip) and skip preserves P. In the previous solution, we
can define R as P x P. It is trivial to prove P is stable with respect to R. In
the current solution, one might define R as IN.2 = N x (([x = 1] ®o5 [z =
N1)V [z = NJ), where N is a logical variable used to record the initial value
of z. We can see that R actually allows that some of the initial states execute
(x := 1 @05 skip) while some of the initial states exeucte skip, which will not
happen in the oblivious adversary model. This makes P not stable with respect
to R. To ensure that P is stable, we need to strengthen R to reject the possibility
that some of the initial states execute (x := 1@ 5 skip) while some of the initial
states exeucte skip. To do that, we might need to use program counters in P
and R, which makes the proof more complicated.

The third solution is to define R, G as predicates over distributions of state
transitions, i.e., R, G € Dgiatex state — Prop. This solution solves the problems
of the first solution and the second solution. First, R,G are expressive enough
to specify state transitions as in the traditional rely-gurantee reasoning becase
we know the correspondence between the initial states and the resulting states
given the distribution of state transitions. Second, R, G are expressive enough to
specify the initial state distribution becase we know the initial state distribution
given the distribution of state transitions. However, R, G cannot be used to spec-
ify the split operation. Recall that the split operation devides the current state
distribution into smaller distributions and then select one of them nondetermin-
istically. It is not obvious how to view a split operation as a distribution of state
transitions. A possible solution is to extend State with a bottom state L and view
a split operation as a process where some of the initial states take identity tran-
sitions while other initial states move to L. This seems to be a feasible solution
but we might need to be careful with the bottom state in the design of the pro-
gram logic. What’s more, the assertion language for R, G € Dgatex State — Prop
might be very complicated.

To be brief, we want the rely /guarantee conditions to satisfy the following re-
quirements: (1) They should be expressive enough to specify state transitions as
in the traditional rely-gurantee reasoning. (2) They should be expressive enough
to specify the inital state distribution to make stability easy to prove. (3) The
should be expressive enough to specify the split operation. (4) The assertion
language should be simple enough.

As explained in Sec. our solution is to separate the rely/guarantee condi-
tions for concurrent randomized programs into three components: R, G, I where
I is the probabilistic layer invariant (over state distributions) and R, G are non-
probabilistic rely /guarantee conditions (over state transitions). We can see that
this solution satisfies the four requirements. First, R, G are expressive enough
to specify state transitions as in the classical rely-guarantee reasoning. Actu-



ally R,G are exactly the classical rely/guarantee conditions. Second, I is the
probabilistic layer invariant so it is expressive enough to specify the initial state
distributions. Third, we can specify the split operation by I becase the split op-
eration is a transition between state distributions. Lastly, the assertion language
for R,G is the same as the one in the classical rely-guarantee reasoning and
the assertion language for I is the same as the one for pre/post-conditions of
sequential randomized programs.

We have to admit that the expressive power of our rely/guarantee conditions
are far from complete, but they are expressive enough to prove the examples
in this paper. How to define complete rely/guarantee conditions is beyond the
scope of our work.

D Full Assertion Language

The syntax of assertions is shown in Fig. [I§] and semantics in Fig. [I9] We use p
and q to represent classical assertions over states, and £ for probabilistic expres-
sions such as the expected value of an arithmetic expression or the probability
of a classical assertion. The expression £ evaluates to a real number under the
state distribution p, represented as [£],,. E(e) evaluates to the expected value of
[e]o (where o € supp(u)). Pr(q) evaluates to the probability of o = q (where
o € supp(p)). The key definitions of expected values and probability of assertions
are shown in Eqn. .

We also use P, @ and I to denote probabilistic assertions over state distri-
butions. The assertion [q] lifts the state assertion q to a probabilistic assertion.
It says q holds on all states in the support of the state distribution. The asser-
tion P @, @ holds at p, if v is a mizture of two distributions p¢ and g, which
are associated with probabilities p and 1—p, and satisfy P and @ respectively.
(1 ® Q2 says there exists p such that Q1 &, Q2 holds. @ @ holds on y if and only
if there exists a distribution of state distribution V' such that p is the flattened
distribution of V' and @ holds on each state distribution in the support of V' (see
Eqn. for the definition of flattened distribution). V.X.Q holds on p if and
only if @ holds on pu{X ~» r} for any real number r. Here, u{X ~» r} changes
the value of X to r in all states in p. Note that X must be a logical variable.
Throughout this paper, we use capital letters X to indicate that X is a logical
variable and lowercase letters x to indicate that x is a program variable.

Note that @ ® Q = @ may not hold. For instance, let’s instantiate @ with
([ = 0]V [z #£0]). A state distribution y satisfying Q ® Q may be a mixture of
w1 and po such that all the states in supp(uq) satisfy z = 0 (thus u; satisfies Q)
while all the states in supp(ps) satisty x # 0 (thus ug satisfies @ too). However,
w itself does not satisfy @, which requires either all the states in supp(u) satisfy
x = 0, or all the states satisfy x # 0.

We define true as a syntactic sugar of [true] which holds on all state distribu-
tions. In addition, we define Q | e1, ..., e, to describe that @ is probabilistically
independent from ey, ..., e,. Informally speaking, @ | e1,...,e, holds on p if



and only if p can be split into multiple distributions such that each satisfies @
and the values of eq,...,e, are all deterministic.

Actions R and G are assertions over state transitions. The action p X q means
the initial state of the transition satifies p and the final state of the transition
satifies q. [q] specifies an identity transition with the states satisfying q. R; o Ry
holds on (o, 0") if and only if there exists ¢” such that R; holds on (o,0”) and
Rs holds on (¢”,0"). It can be used to specify multistep state transitions.

(Assertion) p,q ==b|-q|laiAq|q1VQqg|VXq|IXq]...
(Pezp) & u=r|E(e) [Pr(q) [&+& & —& & x&. ..
(PASSETtiOTl) P,Q,M,I ::= [q—\ |£1 < & | & =6 | &H <& | Q) | Q1N Q2 | Q1V Q2
|VX.Q|3XQ|Q1®p Q2|18 Q2 | DA ...

(Action) R,G :=pxql[q]|-R|RiAR:|RiVR: |VX.R|3X.R| RioRz2|...

Fig. 18: The Assertion Language

Below we introduce the concept of semi-classical assertions.

Definition D.1. An assertion @ is semi-classical, i.e., scl(Q) holds, if and only
if, for all u, 1/, if p = Q and supp(p’) C supp(u), then p' = Q.

We can see that semi-classical assertions only care about the support of a
distribution but do not care about the probability of each state in the support.
It is easy to see [q] is semi-classical, for any classical state assertion q. Con-
junction, disjunction, universal quantification and existential quantification of
semi-classical assertions are also semi-classical assertions.

Semi-classical assertions are heavily used in the thread-local proofs of our
examples. By separating the postconditions into probabilistic properties and
non-probabilistic properties, we put all probabilistic properties into the global
invariant I and keep all thread-local assertions semi-classical, which makes our
thread-local proof concise and easy to understand. What’s more, since semi-
classical assertions do not care about probability, proving the stability of semi-
classical assertions does not need complicated reasoning about probability, which
makes the rely/guarantee reasoning much simpler.

In Figs.[20} 21] 22] and 23] we give sets of rules to syntactically prove properties
of assertions.

Inference rules for stability of probabilistic assertions are given in Fig. To
prove [q] is stable with respect to R and I, it suffices to prove that q is stable
with respect to R under the classical definition of stability. An assertion @ is
stable with respect to R and @ for any R. @Q is stable with respect to R and
I if an equivalent assertion @’ is stable with respect to a weaker rely condition
R’ and a weaker invariant I’. The other rules are straightforward and need no
explanation.



Evaluation of probabilistic expressions:

[l = [Ee)]. = Eoullelo]
6 + &1 @ [ + [E2]n [Pr(a)]. = Provulo =
Semantics of probabilistic assertions:
uwE[dq] iff for all o € supp(p), o = q

HEQL ®p Q2 iff p=T1and u=Qr,orp=0and p|=Q2,0or 0 <p<1and
there exist pu1 and po such that p = p1 ®p pe, w1 E Q1 and 2 E Q2
uwE Q1 ® Q2 iff there exists p such that u = Q1 @p Q2
nEPQ iff there exists V' € Dpyg,,,, such that u =V and Vv € supp(V).v E Q
def

X o1t B (X ~ 1))
nEVvX.Q iff forallr, p{X ~r} EQ
uwE3IX.Q iff there exists r such that u{X ~r} = Q
true & [true] Qlei,...,en d:ef@(Ele,...,Xn.]'el =XiA-New =X, AQ)
Semantics of actions:

o,0)Epxq ifc Epando Eq
) = [d] iffo =0’ and o =q
YEVX.R iffforallr, (c{X ~r},o'{X~71})ER
Y E3X.R iff there exists r such that (6{X ~ r},0’{X ~7r}) ER
)

def

True & true x true Id = [true] Inv(e) X e=Xne=X
def

[R] = {(0,0) | (0,0") = R}

Fig.19: Semantics of More Assertions

sta(q, R) iff Vo,0’. c EqA (0,0')) ER = o' Eq
sta(q, R) Sta(Q, R,I) Sta(Q, R, I)
Sta([q], R, I) Sta(VX.Q,R,I) Sta(3X.Q, R, 1)
Sta(Qi,R,I) Sta(Q:, R,I)  Sta(Q:,R,I) Sta(Qs,R,I)

Sta(Ql A Q27R, [) Sta(Ql N Q27R7 I)
Sta(Q',R,I') Q< Q R=R I=1T
Sta(Q, R, Q) Sta(Q, R, I)

Fig. 20: Inference Rules for Stability



Inference rules for semi-classical assertions are given in Fig. It is easy
to see [q] is semi-classical, for any classical state assertion q. Conjunction, dis-
junction, universal quantification and existential quantification of semi-classical
assertions are also semi-classical assertions.

scl(Q) scl(Q) scl(Q1) scl(Q2) scl(Q1) scl(Q2)
scl([q]) scl(VX.Q) scl(3X.Q) scl(@Q1 A Q2) scl(@Q1 V Q2)

Fig. 21: Inference Rules for Semi-Classical Assertions

Inference rules for closed assertions are given in Fig. The lifted assertion
[q] is closed. Conjunction and universal quantification of closed assertions are
closed. If both @1 and Q2 are closed, then Q1 ®, Q2 and Q1 ® Q2 are closed. An
assertion equivalent to a closed assertion is also closed. In addition, assertions
in the form of & < & A Q where 1 € {<, =, <} is closed if Q is closed and Q
ensures that every arithmetic expression e appears in the form of E(e) in & or
&5 is bounded or nonnegative.

getExprs € Pexp — P(Expr)
getExprs(r) )

getExprs(E(e)) Lof {e}

getExprs(Pr(q)) <y

getExprs(&1 + &2) Lef getExprs(€1) U getExprs(&2)

getExprs({&€1,&2}) def getExprs(€1) U getExprs(&2)

closed(Q) Ve € getExprs({&1,&2}). (Fri,re. Q= [r1 <eAe<r2])V(Q = [e>0])
closed(&1 < &2 A Q)

closed(Q) Ve € getExprs({&1,&2}). (Fri,r2. Q= [r1 <eAe<r2])V(Q = [e>0])
closed(é1 =& A Q)

closed(Q) Ve € getExprs({&1,&2}). (Fri,r2. Q= [r1 <eAe<r2])V(Q = [e>0])
closed(é1 <& A Q)

closed(Q1) closed(Q2) closed(Q)
closed([q]) closed(Q1 A Q2) closed (VX.Q)
closed(Q1) closed(Q-) closed(Q1) closed(Q2) closed(Q') Q' & Q
closed(Q1 ®p Q2) closed(Q1 ® Q2) closed(Q)

Fig. 22: Inference Rules for Closed Assertions



Inference rules for limit-closed assertions are given in Fig. [23] The lifted as-
sertion [q] is limit-closed. Conjunction, disjunction and universal quantification
of limit-closed assertions are limit-closed. If both ()7 and @2 are limit-closed,
then (Q1 A [q])®p (Q2A[—q]) and (Q1 A[q])® (Q2 A [—q]) are limit-closed. In
addition, assertions in the form of &; 1 & A Q where < € {=, <} is limit-closed
if @ is limit-closed and @ ensures that every arithmetic expression e appears in
the form of E(e) in & or & is bounded.

Iclosed(Q) Ve € getExprs(€1) U getExprs(&2). Iri,re. Q@ = [r1 <eAe < ra]
Iclosed(é1 = & A Q)

Iclosed(Q) Ve € getExprs(§1) U getExprs(€2). Iri,re. Q@ = [r1 <eAe < ra
Iclosed(&1 < & A Q)
Iclosed(Q1) Iclosed(Q2) Iclosed(Q1) Iclosed(Q2)

Iclosed([q]) Iclosed (@1 A Q2) Iclosed(Q1 V Q2)
Iclosed(Q) lclosed(Q') Q' < Q
Iclosed (VX.Q) Iclosed(Q)
Iclosed(Q1) Iclosed(Q2) Iclosed(Q1) Iclosed(Q2)

Iclosed((Q1 A [q]) @y (Q2 AT—ql))  lclosed((Q1 A [q]) & (@2 A [—q]))

Fig. 23: Inference Rules for Limit-closed Assertions

E Extensions to Logic Rules

Unfortunately the rules in Fig. [16] are not sufficient for verifying more advanced
examples, such as group election [2] and the multiplayer level-up game, whose
loops require split in the first few rounds only. In this section, we motivate our
extensions to the logic and give the full set of logic rules.

Ezample: a multiplayer level-up game. The program Cp,y, consists of n threads,
where every thread 7 runs the following code LvUp, (ignore the code in red for
now):

1k =1,

2 while (k; <m Av; =0) do

3 (@[ka] := z[ke] + Lylki] == ylki] + 1) @p (vi := Ly[ka] := ylki] + 1);

4 ki = k; + 1;
The game has m levels. In the shared array z[1..m], each z[j] records the number
of threads that has passed the level j. At each level, the threads try to progress
to the next level, succeeding with probability p. If a thread ¢ fails at some level, it
sets v; to 1 and exits the game. Each thread 7 has two local variables: k; records
its next level, and v; records whether it has failed the game.



Intuition. We want to verify that Cp,,y, satisfies the postcondition Vj. E(z[j]) =
n - p’. To see why this holds, we first observe the following when the program
terminates:

— E(z[1]) = n-p. Clearly all the n threads can enter the first round of the loop
and flip the coin at line 3. E(z[1]) is the expected number of heads in these
n flips, so it is n - p.

— Vj. E(z[j + 1)) = p - E(z[j]). Similarly, z[j] is the number of threads that
can enter the (j 4 1)-th round of the loop and flip the coin. So E(z[j +1]) =

p-E(z[j)).

Then, by induction, we know the postcondition holds. To turn this intuition into
an invariant, we introduce an auxiliary array y[l..m] with each y[j] recording
the number of threads that execute line 3 of round j. We instrument line 3 with
the auxiliary code (in red above) that increments y[k;]. So, when the program
terminates, Vj. z[j] = y[j + 1] holds. We formulate the invariant as follows:

Inovpy 2 V4. Q;,  where Q; & E(z[j]) = p - E(y[j])

The key of the proof is to show that I, is indeed an invariant. Since I,y
is defined as Vj. ();, we only need to prove, for every j, (J; is an invariant.
Unfortunately, just as in the Dice example, it is possible that the transitions at
the same layer are made by different code, making it difficult to prove that Q;
is preserved layer by layer.

Split. Apparently line 3 of round j is the only code that modifies z[j] and y[j]. So
it is the only line that can possibly invalidate @;. To prove @); can be preserved,
we split the state distributions before round j according to the value of v;, in
order to separate out the states at which the thread exits the loop and has no
change to enter round j, from the states at which the thread enters the next
round (thus has a chance to continue to round j).

After round j (i.e. k; > j), the execution will not access x[j] or y[j], and
hence will naturally preserve @;. In this case, we do not need to split the state
distribution even though it may contain different code (code either in the loop
body or skip), as neither of them access z[j] or y[j] anyway.

The challenging case is the exact round j (i.e. k; = j), where z[j] and y[j]
are actually updated. Suppose ; holds before executing line 3. The left branch
of line 3 increments both z[j] and y[j] with probability p, while the right branch
only increments y[j] with probability 1 —p. We can see that Q; would be invalid
if we consider the distribution resulting from only one of the branches indepen-
dently. It is preserved only if we consider the whole distribution resulting from
both branches. Therefore, at the end of line 3 we cannot split the distribution
based on the value of v;, otherwise (); becomes invalid after the split.

As such, we insert split(k; < jAv; = 0,k; < jAv; = 1,k; > j) at line 3, just
after the probabilistic choice, to split the state distributions into smaller ones
satisfying [v; = 0] and [v; = 1] when (and only when) k; < j.

However, as we explain above, the third partition (where k; > j) resulting
from the split will produce distributions whose supports contain different code.



(b) non-split, where blue boxes indicate ter-

(a) split in two rounds, where P = [b] mination of the loop’s executions

Fig. 24: Execution of the loop in the (WHILE-NST) rule.

Our logic rules cannot reason about this case because they always rely on proper
splits of distributions to avoid the mix of code. We have to extend our logic to
verify examples like LvUp.

New rules. The (WHILE) rule in Fig. [16| cannot apply to the loop of LvUp. The
reason is, the rule requires the loop invariant be P; V P such that P; = [b] and
P, = [—b], which requires one to split the state distributions into smaller ones
satisfying [b] and [—b] in all rounds of the loop; but in the loop of LvUp, we
must only split when k; < j (i.e. at the first j — 1 rounds).

To reason about loops that split in the first few rounds only, we design a new
(WHILE-NST) rule as below:

Sta(P1 V Py, R, [) P = |_b—| R,G1,I+ {Pl}C{Pl \/PQ} P> N |——|b-| = Q
Py A [b] = [q] R, G2, [q] Fxsr {P2 A [D]}C{ P2} Yz € fu(I). G2 = Inv(x)
disablesplit([q], C) sta(q, R) Sta({P2, Q}, R, true) closed(Q) scl(P,)

R,G1 V Gz,] Fust {Pl V Pz}While (b) do C{Q}

(WHILE-NST)

Like the (WHILE) rule in Fig. the (WHILE-NST) rule requires the loop
invariant be a disjunction Py V P, such that P; = [b]. But it does not require
P, = [-b]. For the loop in LvUp, P, and P» are instantiated as [k; < jAv; = 0]
and [k; < j Av; = 1]V [k; > j] respectively. With the precondition P;, one
verifies that the loop body C satisfies R, G1, I {P;}C{ P,V Py}, which requires
C to properly split the state distributions to regain P; V Ps, just as in the
(WHILE-ST) rule. With the precondition P,, the states exiting the loop satifies
@ because P, is semi-classical and P, A [-b] = Q. The states entering the
loop satifies P2 A [b] due to the same reason. The (WHILE-NST) rule requires us
to verify C with the precondition P A [b]. It requires that, starting from state
distributions satisfying P, A[b], the execution of C satisfies the two requirements:
(1) Tt does not modify the free variables in the invariant I. (2) It does not split
the state distribution into smaller ones. In this way, the execution of C' naturally
perserves [.



We formulate (1) as the premise Vo € fv(I). Go = Inv(z). We formulate (2)
as the premise disablesplit([q],C) where [q] is an invariant throughout the
execution of C. disablesplit([q], C') means for any state distribution u satisfy-
ing [q], every split instruction in C' cannot split x into smaller ones. The formal
definition of disablesplit is given in Definition To ensure [q] is an invari-
ant, we require that all states entering the loop satisfies q, i.e., P» A [b] = [q],
and q is preserved by the environment, i.e., sta(q, R). Note that different states
may terminate the loop after executing different number of steps. However, the
invariant I holds on the whole state distribution at each layer, which means
conditional distribution of terminating states in each layer, which satifies @,
may not satifies I. To ensure that @ will not be invalidate by the environ-
ment, it is required that () is stable under the interference from the environment
without the assumption that the environment preserves I. That’s why we need
Sta(Q, R, true). Sta(Ps, R, true) is required due to the same reason. What’s
more, we need closed(Q) to conclude that the terminating state distribution
satifies @@ from the fact that states terminating with any number of steps satifies
Q.

Note that in the (WHILE-NST) rule, we use a new kind of judgment R, G, I Fygr
{P}C{Q}. Here “NST” is short for “non-simultaneous termination”. Roughly it
means, for any state distribution p satisfying P, the executions of C starting
from a state in the support of p can (probabilistically) terminate within differ-
ent numbers of steps, and we keep all the probabilistic states upon termination
in the same distribution (i.e. we do not split). This judgment is introduced for
characterizing the executions of while-loops in which we do not split in all
rounds.

Figure[24] shows executions of the different rounds of the loop. In the first few
rounds, we always split (see Fig. , so that the execution of the loop body C
starting from P; terminates at separate state distributions satisfying P; and P,
respectively. In this case, we verify C with R, Gy, I+ {P,}C{P; V P»}. For later
rounds, we do not split (see Fig. , so the final state distribution when the
loop terminates is a mixture of uy (corresponding to termination in one round),
p12 (corresponding to termination in two rounds), and so on. That’s why in
the (WHILE-NST) rule we conclude with the NST judgment for the while-loop.
Moreover we allow each of the later rounds to non-simultaneously terminate, so
we verify the NST judgment R, Go, Is Fysr {P2 A [0]}C{P2}.

We provide a set of rules for the NST judgment. Notably, the (SEQ-NST) rule
for sequential composition of the NST judgments is as below:

RV Ga,G1, I Fyer {P}C1{M} R, G2, true Fygr {M}CQ{Q}
Vz € fu(I). G2 = Inv(z) Nosplit(Cs) closed(Q) scl(M)
R,G1V G2, 1 Fysr {P}C1; Co{Q}

(SEQ-NST)

Since the proof of C; uses the NST judgment, C1 may have multiple execution
traces that terminate in different numbers of steps (like the loop in Fig. .
Consequently, in the execution of Cy;C5, different statements may be executed
“at the same time”. Therefore we encounter the same problem as in Sec.
However, we can borrow the ideas of the (WHILE-NST) rule and conservatively



require that the execution of C5 neither modifies the free variables in the invari-
ant I nor splits the state distributions into smaller ones. The first requirement is
formulated as the premise Vo € fv(I). G2 = Inv(z). The second requirement is
formulated as Nosplit(Cs), which means that C contains no split commands.
Note that C; is verified under the rely condition RV G5, because the execution
of C'y may still influence the behaviors of C; by modifying other variables used in
Cy. What’s more, we require closed(Q) to conclude that the terminating state
distribution satifies ) from the fact that states terminating with any number
of steps satifies (). Moreover, the execution of C; terminates within different
number of steps. To use the post-condition M as the pre-condition of Cs, we
need M to be semi-classical.

Although the resulting (SEQ-NST) rule looks very restrictive, we expect that,
for most examples, we can properly split at all rounds of the loops and verify
them using the (WHILE) and (SEQ) rules. The (SEQ-NST) rule is supposed to
be used only for advanced examples, where the thread’s code is in the form of
while (b) do C;C5 and we split in the first few rounds of the loop only.

The full version of the extended logic rules are given in Fig. 28] Fig. [26]
and Fig. We use R,G,I o {P}C{Q} to denote the judgement R,G,I
{P}C{Q} in Sec. to highlight its difference from the judgement R, G, I Fysr
{P}C{Q}, where “ST” is short for “simultaneous termination” and “NST” is short
for “non-simultaneous termination”.

The full version of whole-program rules is given in Fig. The (REMOVES-
PLIT) rule and the (LAZYCOIN) rule are the same as that in Fig. The (PAR)
rule is almost the same as the one in Fig. [I6] except that we only need to
prove R;, G;, I bysr {P;}C{Q;} for every thread instead of proving R;, G;, I Fgr
{P;}C{Q;} for the need of supporting more advanced examples in Sec. |G| In ad-
dition, we provide the standard consequence rule (P-csQ). The (BIGCONJ) and
(BIGDISJ) rule are simple generalizations of the standard conjunction rule and
disjunction rule in hoare logic.

P=P k. {P}C{Q:1} Q:1=Q
Fa{PIC{Q}

Fa{P}C{@Q1) .. Fa{Pu}C{Qn}

Fa{PiA- - APJC{Q1 A ANQn}

Fa AP }C{Q1) .. R P }C{Qn}

Fa{PL1V- - VP IC{Q1 V- VQun}

Fa {P}C{Q} closed(Q) F. {P}Hazycoin(C){Q}
. {PTRomoveSplit(C){Q] EMOVESPLIT) F {P}C{Q}
VZ,] 7 75] - Gj = R; Vi. Ri,Gi,I Frst {PZ}CZ{QZ}

P=IANP A---ANP, INQIN---ANQn=Q lclosed({I,Q1,...,Qn})

FaAPICL |-+ || Ca{@Q}

(P-csQ)

(BIGCONY)

(B1GDISY)

(LAZYCOIN)

(PAR)

Fig. 25: Whole Program Rules: Full Version



The full version of our thread-local rules is given in Fig. [26] The OJ symbol
is used in many thread-local rules. It can be instantiated to ST or NST in those
rules.

The (ST-NST) rule allows us to derive a Fysr judgement by deriving its Fgr
counterpart. The rules for deriving 4, judgements are easier to use than the rules
for deriving Fysr judgements. If the executions of C' starting from all initial states
indeed terminate after the same numbers of steps, we can prove R,G, I Fygr
{P}C{Q} using the (sT-NST) rule and the rules for deriving ¢ judgements.

The disjunction rule (D1sJ) and the conjunction rule (CONJ) are standard.
The (EXIST) rule and the (FORALL) rule introduce existential quantification
and universal quantification over pre/post-conditions, respectively, as long as
the quantified variable is not free in R, G, I and cannot be modified by C'. The
consequence rule (csQ) allows adaptions of different parts of the judgement.

In the (skip) rule, the postcondition is the same as the precondition for the
skip statement does not modify any variable. The guarantee condition is Id due
to the same reason. In addtion, the pre/post-condition @Q is required to be stable
under the interference from the environment (specified using R and I), which
ensures that the environment does not invalidate Q).

The (ATOM) rule and the (ATOM-SPLIT) rule are the same as that in Fig.
The (SEQ-ST) rule is generalized from the (SEQ) rule in Fig. If O is instanti-
ated to ST, it is the same as the (SEQ) rule. The (SEQ-ST) rule also works when
[ is instantiated to NST for we only require that the execution of C; terminate
simultaneously on different states. Similarly, the (COND) rule also works when
O is instantiated to NST. The (WHILE-ST) rule is the same as the one in Fig.

The following definition gives the condition when a split command sp is
disabled by an assertion @), which is used in the (WHILE-NST) rule.

Definition E.1. A split instruction split(by, ..., bs) is disabled by an assertion
Q, i.e.,

disablesplit(Q, split(by, ..., bx)) holds if and only if there exists i such that
Q= [bi].

Definition E.2. disablesplit(Q, C) holds if and only if every split instruction
in C is disabled by Q.

The sequential rules are given in Fig. 27} The judgement for sequential rules
is in the form of G F¢q {P}C{Q}. Note that the guarantee G does not specify the
state transition of every single step of C'. Instead it specifies the state transitions
from initial states to the corresponding final states at the end of C.

For the probabilistic choice (C7) @, (Cs), the (SQ-PCH) rule asks one to verify
C1 and C5 separately and mix their postconditions ;1 and @2 according to the
probability of the coin flip. The (SQ-COND) rule takes a similar form: one only
needs to verify the then- and else-branches separately.

The (SQ-SEQ) rule is similar to the standard sequential composition rule. Note
that the intermediate assertion M may specify a state distribution consisting of
states at different layers. The guarantee condition of C7;C5 is the composition
of the guarantee condition of Cj and the guarantee condition of Cs for the



R,G,I s {P}C{Q}

R.G.I o (P1O{Q} ST7NST)
R7G7[|_D {Pl}C{Ql} R,G,[}_D {Pl}C{Ql}
R,G,1Fg {P}C{Q-} R,G,1Fg {P}C{Q2}
RGPV Brc{a v asr ) BG Tro (PA B IOTQr A Qa) (OO
X ¢ fu(R,G,I)Uwv(C) X ¢ fu(R,G,I) Uwv(C)
R,G,IFo {P}C{Q} R,G,I o {PYC{Q}
(EXIST) (FORALL)

R,G,IFg {3X.P}C{3X.Q} R,G,I+g {VX.P}C{VX.Q}

P=P. R=R Gi=G Qi=Q Ri,GiIFg{P}C{Q:}
R,G,I o {P}C{Q}
Sta(Q, R, I) (skrp) Sta({P,Q},R,I) GlFs {INPIC{IANQ}
R,1d, I s {Q}skip{Q} R,G, It {PHCYHQ}
Grsq {INPYC{UNQA[L])® - DUINQA[b])}
Sta({P,QA([b1] V-V [be])}, R, 1)
R,G, I+ {P}C) split(by,...,bi){(QATbi]) V- V(QA[br])}
R,G, It {P}C1{M} R,G,Itg{M}C2{Q}
R,G,I g {P}C1;C2{Q}

RV Ga,G1, T Fuer {PYCL{M} R, G, true Fysx {M}C2{Q}
Vz € fo(I). G2 = Inv(z) Nosplit(C3) closed(Q) scl(M)

(csq)

(ATOM)

(ATOM-SPLIT)

(SEQ-ST)

R, GV Ga, I Frox {P}C1: Co{Q} (s8Q-NST)
Sta(P1 V Py, R, I) P = ’—b] P = ’—ﬁb—|
R,G,I g {P1}Ci{Q} R,G, 1o {P2}CAQ}
(conD)

R,G,I g {P1V Pa}if (b) then C, else C2{Q}
Sta({P1VPs,QY,RI) Py=T[b] Po=[-b]AQ R,G,Ile {P}C{PVPs)

R,G,1 Fer {P1 V Py}while (b) do C{Q} (WHILE-ST)
Sta(P1 VvV P2, R, I) P = “ﬂ R,Gl,f Far {Pl}C{Pl V Pz} Py A [—\b—| = Q
Py A [b] = [q] R, Go, [q] Frse {P2 A [0]}C{P2} Vo € fu(I). G2 = Inv(z)
disablesplit([q], C) sta(q, R) Sta({P2, Q}, R, true) closed(Q) scl(P,)

R,G1V Ga,1 Fysr {P1V Po}while (b) do C{Q} (WHILE-NST)

Fig. 26: Thread-local Rules: Full Version



G Fe {P}C{Q1} G tsq {P1}C{Q1}

G '_SQ {P2}C{Q2} G '_SQ {P2}C{Q2}
G (v PICIQ v Q) ) G TR A (@ Ay PY OO
X ¢ fo(G) Uwou(C) X ¢ fv(G) Uwu(C)
G Fo {PYC{Q} G Fsa {PYC{Q}
(SQ-EXIST) (SQ-FORALL)

G ts {(3X.P}C{3X.Q} Feo {VX.P}YC{VX.Q}
P="P GFro{P}C{Q} @ =Q G =G

G e (PIC{Q} (sQ-csQ)

G '_SQ {Pl}C{Ql}
G bsq {P2}C{Q2} G s {P}C{Q}

G o (P @y PR}OLQr 0, Q) CXOMS) GE @ PIO(@ Q)
G (PYCHM) G Fa {M)C{Q)

(sQ-BIGOPLUS)

Id Fsq {Q}Skip{Q} (SQ-SKIP) G10Go Fgq {P}Clz CQ{Q} (SQ'SEQ)
P = Qle/z] Vu,o.plEPAo € supp(n) = (0,0{z~ [e].}) EG
G FSQ {P}[E = e{Q} (SQ-ASGN)
G Feq {P1 A [B]}C1{Q1} G lsq {P2 A [-]}C2{Q2}
(sQ-conD)

G Faq {(P1 A [b]) @p (P2 A [<b]) Hf (b) then C; else C2{Q1 &, Qa}

G "scz {P}C{Q} (SQ-ATOM) G }_SQ {P}Cl{Ql} G }_SQ {P}C2{Q2}
G Fso {PHONQ} G bsq {P}HC1) ®p (C2){Q1 Bp Q2}

(SQ-PCHOICE)
Fig. 27: Sequential Rules: Full Version

guarantee condition in the sequential judgement specifies the transition from
the initial state to the terminating state. For example, we can prove

(z=yxaz=y) o {lz=yllz=a+Ly:=y+ Yz =y]}

using the (sQ-SEQ) rule by instantiating G; with (x =y x z = y + 1) and G»
with (z =y +1xz =y).

The (sQ-OPLUS) rule and the (SQ-BIGOPLUS) rule are useful for local reason-
ing and reflect the additivity of the semantics. Using the (SQ-OPLUS) rule, we can
logically split the initial state distribution into two parts, reasoning about the
execution of C on the two parts separately, and mix the two terminating state
distributions back according to their weight in the initial state distribution. The
(sQ-BIGOPLUS) rule is similar but allows us to logically split the initial state dis-
tribution into infinite ones. The other sequential rules are direct generalizations
of the classical Hoare logic rules to the probabilistic setting.

F Judgement Semantics

The semantics of the top-level judgement 4 {P}C{Q} has already been defined
in Definition [£.4] based on the abstract operational semantics.



Before giving the definition of the thread-local judgement, we define thread-
local transitions in Fig. 28] As in the abstract operational semantics, we model
the execution of a thread under the interference from the environment as tran-
sitions between the sub-distributions 1 of thread configurations (C, o). Thread-
local transitions include transitions made by the thread itself and transitions
made by the environment.

Let 6 be a set of state transitions (6 € P(State x State)). The transition made
by the thread itself is represented as n < (6,7n”), which is done in two steps.
First we make the transition n ~ (6,7’) based on the concrete semantics and
collect all state transitions in this step as 8, without considering splits. Then the
splits in nextsplit(n) are executed just like in the abstract operational semantics.
Here nextsplit(n) represents the set consisting of the next split statements to be
executed in the thread configurations in supp(n).

R
The transition made by the environment is represented as 7 - n”, which

is also done in two steps. The first step is represented as 7 kit n’. We collect

all transitions between thread configurations made by the environment as .
Note that the environment never modifies the thread’s code and is assumed
to make state transitions permitted in the rely condition R. The second step
models the execution of split statements from the environment. No matter what
split statement is executed by the environment, there always exists a b such that
7’|y = n”. If the environment does not execute any split statement, then 7" must
be equal to n’ and we can safely let b be true. In addition, the environment is
assumed to perserve the invariant, i.e., n' 5% =1

n € Dstmix state U1l & N|A(C,0).0b

nit(C, ) et s(CY®p nextsplit(n) def {nextsplit(C) | (C,0) € supp(n)}
€ P((Stmt x State) x (Stmt x State))
' iff Fp. dom(p) = supp(n) A range(p) = supp(n’) A
(V((C,0),(C",0")) €. C"=C A(0,0") ER)
n % 77// iff an/,b. n »i 77/ /\77/|b _ 77// /\n//(State) ': I
n~ (0,7) iff ' = MC',0"). S0 A n(C,0) | (Coo) & (C7, 0"} A
0 ={(c,0")|3C,C". n(C,0) >0A(C,0) L (C",0') Ap > 0}

(4
nas

n~ (0,n') neatsplit(n) = {split(b1,...,bx)} 7'lo; =7
n = (0,n")
n~n"  #nestsplit(n) > 1
n = (0,n)

Fig. 28: Thread-local Transitions



The following definition describes that a thread behaves appropriately within
n steps under the interference from the environment.

Definition F.1. (n, R,I) =% (G, Q) is inductively defined as follows:
(n,R, 1) =2, (G,Q) always holds; (n, R,I) =1 (G, Q) if and only if the
following are true:

n(code) (skip) =0 or 77(code) (Skip) — 1.
if 77(C°de) (skip) > 0, then 77(Sztmte) = Q;
n(State) ': I7

for all o/, if 5 = o, then (i, R, 1) =1, (G, Q);

for all 0,7/, if 5 < (6,7), then 0 C [G], '™ |= I and (i, R, 1) =7,
(G,Q).

(n, R, I) =2, (G, Q) means, from an initial distribution n, if the thread in-
terfere with the environment within n steps where each environment step satifies
R and preserves I, then each step done by the thread itself satifies G and pre-
serves I. What’s more, throughout this process, either all thread configurations
in the support of the distribution is terminated or none of them is terminated,
and if all thread configurations are terminated, then the state distribution satifies

Q

CU o b

The semantics of the thread-local judgement R, G, I F¢r {P}C{Q} is defined
below. Given the initial state distribution u, the initial distribution of thread
configurations is defined as init(C, u1) (see Fig. [28).

Definition F.2. R,G,I =5 {P}C{Q} iff for all p, if u =1 A P, then
(init(C, p), R, I) =1 (G, Q) for all n.

R,G,I Esr {P}C{Q} means, from an inital state distribution satisfying I
and P, the execution of C' under the interference from the environment behaves
appropriately within any finite number of steps.

Definition F.3. (n, R, I) =1, (G, Q) is inductively defined as follows:
(n, R, 1) =2, (G, Q) always holds; (n, R, I) =14 (G, Q) if and only if the

NST
following are true:

1. if n(ced) (skip) > 0, then 7]siip'" ) = Q;
2. ,,,I(State) ': I

3. for all 7/, if % 7', then (', R, I) =7 (G, Q);
4. for all 0,1, if n — (0,1/), then 6§ C [G], n’*"'? = I and (nf, R, T) =",
(G, Q).
Here 7|skip def Nx(C,0).c=skip is the terminated part of 1.

The main difference between (n,R,I) =7, (G,Q) and (n,R,I) =1,
(G, Q) is that, for NST judgement, condition (1) it does not require 1 to be termi-
nated or not terminated with probability 1. This way it allows “non-simultaneous



termination”. To ensure that @ is still meaningful, it requires the terminated por-
tion to satisfy Q.

The semantics of the thread-local judgement R, G, I Fysr {P}C{Q} is defined
below.

Definition F.4. R,G,I |Eysr {P}C{Q} iff for all p, if i = I A P, then
(init(Cyp), R, I) =7 (G, Q) for all n.

Before giving the semantics of the b, judgement, we define [C] as a function
that maps an initial state o to a sub-distribution of final states. We also lift
the function to the distribution p of the initial states. The definition of [C](o)
and [C](p) are similar to [C],(c) and [C], (1) except that we don’t need the
scheduler for C' is a sequential program.

[Cl (o) 4 \o’. lim p,/, where Vn. (C,o) L[n]W(skip, o’)

def
[CI(1) = Eonp{ICI(0)}
Then we can give the semantics of the sequential judgement G o {P}C{Q}
below.

Definition F.5. G =, {P}C{Q} iff for all p, if p = P and |[C](p)| = 1, then
[C](r) E @ and for all o € supp(p) and o’ € supp([C](0)), (0,0") E G.

Similar to Definition the premise |[[C](u)| = 1 indicates the execution
of C' (with the initial state distribution u) terminates with the probability 1.
G Esq {P}C{Q} means, if the execution of C' from an initial state distribu-
tion satifying P terminate with the probability 1, then the terminating state
distribution satifies ), and the transitions from any possible initial state to any
possible terminating state reachable from that initial state satifies G.

G Proofs of More Examples

G.1 Shared 3-Sided Dice

We show the full proof of the shared 3-sided dice in Fig. [29] which we informally
discussed in Sec. [3.5] We split atomically after Roll as before, but slightly revise
the previously defined invariant Ip;... This is because we need the invariant to
be Iclosed to apply the (PAR) rule, but Ip;c. = ([ = 0]V ([z # 0] AE(x) = 1))
is not. A counterexample is the sequence i[n] = §({z ~ ndly) @1 0({z~ .

Each /i[n] in the sequence satisfies Ip;ce, but its limit p = §({z ~ 31}) does not.

The main reason for Ip;.. to be not Iclosed is that x can be arbitrarily large.
However, it is the formulation of Ip;.. to blame, instead of the shared 3-sided
dice which does enforce an upper bound for xz. To see this, observe that each
thread may increase x by setting it to 1, or doubling it when it is positive. The
former trivially ensures = is bounded. The latter can be done at most once by
each thread, thus, x should be bounded by 2", where n is the number of threads.



{[z =01}

Ri, G I {[o = 0}Ci{[= > 0T} s {[z=0]V[z>0]}
FaA{PICL - || ChiQ) (REMOVESPLIT) while (z = 0) do
FAPC ] - Cni@) Ri,Gi, I+ Hizg}}\/[m>0/\c':m}
P Y[z =0A (Vi ¢, =0)] (Roll;) split(z = 0,z # 0)
Q= [¢> 0] AE(x) =1 {M{EC(;}OWDDOW}

C; % while (z = 0) do (Roll;),

0
C! % while (z = 0) do (Roll;) split(z = 0,z # 0)
(

Roll; © (z :=1) &

1
3
SetFlag(z, c;) 4o if (zx >0) then¢; =1

Ipice & [2= 0]V ([ > 0] AE(z) = 1)
T Inice A [z < 256 % A (V. IsFlag(z, i)

R ((z=0x2>0)V(z>0xz>0)AInv(c)
Gi ¥ (x=0xa>0)V(z>0xz>0))A (V) #iInv(c)))

IsFlag(z, ;) Lof [c;=0Ve=1]A[z=0= ¢ =0]

Fig. 29: Proof Sketch of Shared 3-sided Dice.

To formulate this observation, we introduce an auxiliary flag ¢; for each
thread ¢, to record whether thread ¢ has doubled a positive . We instrument the
loop body Roll; with an auxiliary statement SetFlag(z,c;) just before z := 2z,
that sets ¢; when a positive x is doubled by thread . Meanwhile, we strengthen
Ipjce into I, as shown in the bottom half of Fig. 29] I additionally requires
[2 < 22:¢] and IsFlag(z, ¢;). The former enforces an upper bound on x, and
the latter enforces the integrity of the values stored in ¢;. Now we can prove
Iclosed(I), as explained in Sec.

The rest of the proof is straightforward using our logic rules, sketched in
Fig. The precondition P additionally require c¢; to be initialized to 0. The
rely and guarantee conditions R; and G; simply says x changes only from 0 to
positive, and stays positive thereafter. They additionally require that ¢; is local
to each thread using Inv(c;) (see Fig. |14] for the definition of Inv).

The loop body (Roll;) split(x = 0,2 # 0) is verified by applying the (ATOM-
SPLIT) rule, where @ is instantiated with ([z = 0] V [z > 0]). This requires us
to verify Roll;:

Gitea {IN(Jz=0]V[z>0Ac =0} Rl {IAQA[z=0))®(IAQA [z #0])}.

It is equivalent to the following, which simplifies the postcondition and can be
proved by applying the (sQ-PCH) rule:

Gite {IN([2 =01V [z>0Ac =0} Roll{(I Az =0])® (I A[z#0])}.



G.2 Conciliator

As introduced in Sec. [I} [I2] gives a probabilistic-write based conciliator for

probabilistic agreement between n threads, each thread i executing C; below.
C; %' (while (s = 0) do (s := i) @, (skip));y: := s

Here s is a shared variable, y; is the local variable for thread ¢ that records its

return value.

We want to prove {[s = 0]}Cy || -+ || Cou{Pr(y1 = -+ =yn) > (1 —p)"'}.
Intuitively the postcondition holds because, when there is exactly one thread
1 succeeded in writing to s, all threads will return ¢. This ideal case happens
with probability no less than (1 — p)»~! in OA, because (i) for the program to
terminate, at least one thread has updated s, and (ii) after the first update to
s, each of the other n — 1 threads has at most one chance to update s, and
such an update happens with probability no more than 1 — p. Note that this
algorithm does not work in SA, where different threads can be scheduled for
different outcomes of coin flips, making the aforementioned ideal case happens
with probability less than (1 — p)™~!.

To formulate the intuition, we introduce a shared auxiliary variable ¢ that
counts how many threads have written to s and insert the auxiliary code ¢ := c+1
which is executed atomically with s := i (see PWrite; in Fig. . Similar to the
shared 3-sided dice example, we also introduce flag variables d; to formalize the
“at most one chance” update to s. When d; is set, it means thread ¢ can no longer
update s. We insert the auxiliary code SetFlag(s, d;) to set d; at the proper time.

The proof is sketched in Fig. [30] At the whole-program level, we apply the
(REMOVESPLIT) and (LAZYCOIN) rules to wrap the probabilistic choice in an
atomic block, and to instrument split(s = 0,s # 0) after the loop body such
that the resulting smaller distributions either enter or exit the loop. Using the
(PAR) rule, our goal becomes to thread-locally verify C! in Fig. In thread-
local proof, the invariant I says that either s = 0 (and thus ¢ = 0 and each
thread has chance to update s), or s # 0 (and thus ¢ > 0) and the probability
of ¢ =1 has a lower bound (specified by PBound). The rest of the proof follows
directly from our logic rules.

G.3 Multiplayer Level-up Game

We verify the multiplayer level-up game using the instrumented code (C/LU\UP =

ml Il L/UU\pn, where the code for thread i is L/UU\pZ
1 kl == 1;

2 while (k; < m Av; =0) do

3 (xlki] == xlks] + 15 ylki] := ylks] + 15 zi[ks] := Lws[ks] :=1)
Op (vi :=1; ylki] == ylki] + Lwilks] :==1)

4 ki =k +1;



{ls=0]Vv[s #0]}
Ri, Gy I+ {PYCI{Q:) while (s =0) do

7 oy (PAR) {[s =01}
EAPICY |- | Cr{ @} (REMOVESPLIT) {[s=0]V[s#0Ad; =0]}
FaAPICL - || Ch{Q} skip;
PO [ [ Ougqy ABYCON) g Gt (s =01V [s#0Adi=0]}
(PWrite;) split(s =0, s # 0);
def ) {[s=0]V[s#0]}
P d;f Lc-Oﬁs-E/\(V;.dll—O)]n_l ([s # 0]}
Q= Priy=--=yn)2(1-p) ( SetFlag(s,d;) ; yi := s)

{l[di=1A((c=1Ayi=s)V(c>1))]}

c (while (s = 0) do PWrite;); ( SetFlag(s,d;) ;yi == s)

Cy ef (while (s = 0) do (skip; (PWrite;))); { SetFlag(s,d;) ;i :== s)

c! X' (while (s = 0) do (skip; (PWrite;) split(s = 0, s # 0))); ( SetFlag(s, ds) ; y; = )
PWrite; &' (s:=1; c:=c+ 1;SetFlag(s,d;) ) ®p (skip; SetFlag(s,d;) )

I Y [s=0Ac=0A(Vi.di =0)]V ([s#0Ac> 0] APBound)

PBound % 3K < n.[(Vi.di=0vd; =1)AY"  di = K] APr(c=1)> (1—p)¥*
P Y [s=0]V[s#£0], Qi L ldi=1A((c=1Ayi=5)V(c>1))]
Ri ¥ (Inv(c) ANInv(s))V(AN. c= N x (c= N +1As #0))) AInv(d:) AInv(y;)

G X (Inv(e) AInv(s)) V(EN. c= N x (c= N+ 1As #0))) A (V] # i.Inv(d;) AInv(y;))

Fig. 30: Proof Sketch of Conciliator.

Following the intuition in Appendix [E} we introduce auxiliary array y[1..m] such
that y[j] records the number of threads that executes line 3 of round j, and
instrument line 3 of LvUp, with auxiliary code y[k;] := y[ki] + 1. We further
introduce auxiliary thread local arrays w;[1..m] and z;[1..m] for the convenience
of local reasoning. Here w;[j] is a flag recording whether thread ¢ has executed
line 3 of round j, and z;[j] is a flag recording whether thread i has leveled up in
round j (execute the left branch with probability p). Auxiliary code for setting
w; and z; are also appended in line 3.

The proof sketch is at the top of Fig.[31} As in Sec.[E] we prove post conditions
Q; for each round j by applying (P-csQ) and (BIGCONJ) rules. We use the NST
judgements for thread local proofs, and insert split(k; < jAv; = 0,k; < jAv; =
1,k; > j) at line 3 of mz We denote the resulting thread local code by Ci(j).
In addition to E(z[j]) = p-E(y[j]), the invariant I; further require that the flags
z;[j] and w;[j] are consistent with z[j] and y[j], i.e., [z[j] = >, z:[J] Aylji] =

> wild]]-



The rest of the proof is straightforward. The seemingly complicated interme-
diate assertions such as T}; and Mj; are mostly talking about the data consis-
tencies of the auxiliary variables.

G.4 Group Election

Group election [2] is a probabilistic algorithm for consensus on leadership. It
selects a relatively small group of leaders rapidly against oblivious adversaries.

A simplified version of group election C g, consists of n threads, each thread
runs the following code Elct;:

1 k’z = 1;

2 while (ks <mAv; =0) do
3 (s[ki] :==1) @p (vi := slki]);
4 k’l = k’l + 1;

5 yi:=1—wy;

Similar to Cr,yp, the election has m rounds. In the shared array s[1..m], each
s[j] records whether there is a winner in round j. In each round j, the threads
try to win the round and progress to the next round, by writing 1 to s[j] with
probability p. Different from Cp,pyp, if thread ¢ failed in round j, it does not exit
the election immediately, but checks whether someone else has won by reading
s[j] into v;. If so (v; = 1), thread ¢ terminates and lose the election; if not
(v; = 0), thread ¢ automatically progress to the next round. In the end, a thread
with v; = 0 becomes a leader and sets its local variable y; to 1, while a thread
with v; = 1 becomes a follower and set its local variable y; to 0.

We want to verify that Cpgy, satisfies the postcondition E(3", v;) < f™(n),
where f = Az.p-z+ %. To see why this holds, we first observe an invariant that,
for any round j,

E(#threads finish line 3 with v; = 0) < f (E(#threads execute line 3)).

This follows by observing that (i) in line 3, a thread has probability p to win,
and (ii) calculating the number of thread that execute the right branch in line 3
and return v; = 0, is the same as calculating the time before success of a finite
number of independent Bernoulli trial with success probability p, which has an
expectation no larger than %

The proof is sketched in Fig. 32] We introduce two thread local auxiliary
arrays ¢;[1..m] and w;[1..m] to formalize the invariant. For each thread i and
round j, ¢;[j] records whether thread ¢ has executed line 3 in round j, w;[j]
records whether thread ¢ finish round j with v; = 0. The previously introduced
intuition is formalized in a more precise way:

. . 1ep—(1—p)Lt2iey cild
E(SC, wili]) = E(p- Y, ailj] + 22=0=p=m ),
The above assertion is the main part of S;, which is the main part the invariant

I = S; | s[1],....s[j — 1]. Here P | z1,...,2, < @DEXy,...,X,. [Vi.z; =
X;] A P), it implies P is independent of x1, ..., Zy,.




R;,Gi, Ij Fyse {Pi}O[(5){Qji}
Fa APYCIG) || -+ Il Ch({Qy}
Fa {P}Croon{Qs}
P {P A APYCLup{Qi A A Q)
Fa AP}CLo0p{Q}
{(HKSJ [ki:K/\’Uz’:O/\Tji—l)\/ [(kz >j\/1}¢:1)/\Tji—|}
while (kl <mAwv; = 0) do
(3K < j. [ki = K Av; = 0ATyi]}
{(Tki =jAvi=0AT;]) vV (EK <j. [ki = K ANvi = 0ATj])}
(@[ki] := w[ks] + 1; ylki] := ylks] + 1; zilks] = 1 wilki] := 1))
®p
Ri, Gy, I; Far (vi =15 ylki] := ylka] + Lwilki] := 1)
Split(ki < jAv; =0,k <j/\’l)i:1,ki 2])
{’—kz :j/\Mjﬂ \Y (HK < J. |_l<71 =KAv = O/\Mji])\/
(3K <j. [(ki =K Av; =1) A Mj;])}
ki=k +1
{(HK <7 |_l€z =K Av; :O/\Tj”)v [(kl >V = 1)/\Tji-|}
{[Tji A [ki > mVv; # 0[]}
{Twill] = 1A (G <m = z[j] =wi[j + 1])1}
P Y (Vi ki =1 Av; =0) A (V). 2] = 0Aylj] = 0)]

Q=) <m. E(aj]) =n-p’

Q; = E(lj]) =p-E@h) ATyl =nA (G <m = al] = y[j +1])]
I; © E(zlj]) = p-E@) A 2] = X, 2l Ayl = 2, wili]]
P AK < [ki=KAvi=0AT;])V [(ki > 5V =1) AT
Qi E [will] = 1A (j < m = 2] = wilj +1])]

Li ¥ (ki =1Av =0) vuy[l] = 1

(PAR)

(REMOVESPLIT)

(B1GCONY)

(P-csQ)

(ki <jAz[jl=0Aw[j+1]=0)V

def o (ki =j+1Awilj+1]=0A

T = L) ( (af] = 1 Avi = 0) V (5f] = 0 Awi = 1))) v
(ki >j+1Az[fl=1Awj+1] =1))
(ki <jAzilj]=0Awlj+1]=0)V

def o (ki =3 Awi[j+1]=0A

M”L(“( (alf] = TAw = 0) V (5f] = 0 A vy = 1)) v
(ki >+ 1A 2] = 1 Aw[j +1] = 1))

Ri ¥ Inv(k:) AInv(v:) A (V). Inv(2:[5]) A Inv(w;[j]))

def
G: = /\i’;ﬁi R

Fig. 31: Proof Sketch of Multiplayer Level-up Game



i - (PAR)
FAAPYCI() |- | Ch({Q;} (REMOVESPLIT)
H{PYCL || --- | Cn{Q;} (BIGCONJ)
F{PA---AP}CL |- || Co{Qi A--- A Qm} (P-05Q)
F{PICL | - || CufB(Zi, 90) < ™ (n)} )

(P}
{(HKSJ |—k‘1 =K Av; IO/\Tbi—l)\/ ’—(kl >jVu = 1)/\T]1—|}
while (k; <m Av; =0) do
{HKSj |—I€1 =K A :0/\Tj¢.|}
{(l_kz Zj/\’lh':O/\T}i—l)\/(HK<j. |_I€l =K Ay IO/\T]'Z'-D}
((s[ks] == 1; eilks] :i= 1; wilks] :=1 )@,
(vi := slki]; cilki] :== 1; if (v; = 0) then w;lk;] :=1))
Split(k/’i <jAv=0,ki <jAv; #0,k; 2]),
{l_kh :j/\Mji—l Vv (HK < 7. |_]€1 =K Av; :O/\M]'J)V
(HK < J. [(kl =KAv; = 1)/\Mj¢—|)}
ki=Fk +1
{BK <j [ki=KANvi=0ATu])V[(ki>jVoi=1)ATy)}
(T3 A The > m v wr # 01])
{[((wifm] =1 Avi =0) V (wi[m] =0Av; =1)) A
all] = 1A G <m = wl] = ali + 1)}
(i :=1—w)
(T(Carfn] =1 Ay = 1)V ] = 0 Ay = 0)) A
ell] = 1A G < m = wlj) = elj + 1))
{lyi =wilm] ANei[1] =1 A (G <m = wilj] = ci[j +1])]}
def

Q; TEC, wilf]) <p BT, ali) + LA
[Vi. yi = wilm] Aci[l] = LA (5 < m = wilj] = eslj +1))]
@4§w—mecm—mu<m¢wm—ava

S; = ]E(ZZ.:1 w;i[j]) = E(p - Zi:& el ]. 1-p—(1— p>;+z?:1 c;ld] YA
Pr(s[j] = 0) = E((1 — p)=i=1 i)

L s s, sli — 1]

P%HWkwﬂAv—m<wﬁm:mwm 0) A (¥i, j. wilj] = 0 A ci[4] = 0)]
= ((wifm] = 1 Avi = 0) V (wifm] = 0A (ki <m Vv = 1)) A
(( 1/\’01‘:0)Vci[1]:1)

Ri7 Gi7 Ij '_NS’I‘

(ki <jAwil]=0Aclj+1]=0)V
def (ki=j+1Acalj+1]=0A
Bt = LA (nlj] = 1 A0 = 0) v (wilj] = 0 Awi = 1)) v
(ki >]+1/\w[j]—1/\c[j+1]:1)
,-d:e mzl/\vl—O [m]=0A (ki <mV (ki =mAv =1)))) A
1Av; =0) Vel 1]—1)
k<j/\w |=0Aclj+1]=0)V
d_ k’—j/\clj-f—l—O/\
- 71/\1)70) (wilj] = 0 Av; = 1))V
k>j+1/\w |=1Aalj+1]=1)

R; & Inv ) A Inv(v) Adnv(y;) A (V5. Inv(e[j]) A Inv(w;[j]))
def
G = /\#ZR

Fig. 32: Proof Sketch of Group Election



H Proof of Soundness

H.1 Preliminary Lemmas

Lemma 1. For all set A and pn € Dy, Eq,...,Ex € A — Prop, if Vi, j. i
j = ~(Ei(a) AN Ej(a)) for all a € A, then Proc,[Ei(a)V ---V Ei(a)]

it PraculEi(a)]

Proof. For all set A and p € Dy, F1,...,Ex € A — Prop such that Vi, j. i
Jj = —(Ei(a) A Ej(a)) for all a € A, we have Prqc,[Ei(a) V-V Ei(a)]
Ya{ula) | Ev(a) V-V Ei(a)} = 31, PraculEi(a)).

Lemma 2. For all set A,B and p € Daxp, £ € A — Prop, Prp~u[E(a)] =
P'T'aN#(A) [E(a)}

[N

[N

Proof. For all set A, B and u € Daxp, £ € A — Prop,

Pr)~ulE(a)]
= Zab{u(a b) | E(a)}
=2 {Zbu(a b) | E(a)}

=2 {6 (a) | E(a)}
= PI’aNu(A) [E(a)]

Lemma 3. For all set A, B and p € Daxp, E € B — Prop, Pri,p)~,[E(b)] =
P’l"bNN(B) [E(b)]

Proof. For all set A, B and p € Duaxp, F € B — Prop,

Prg )~ E ()]
=2 ap{p(a,b) | E(b)}
= 2 {2, #la,b) | E(0)}
= Zb{u(B’( ) | E(b)}
= PI‘bNH(B) [E(b)]

Lemma 4. For all set A and p € D, E € A — Prop, if Pry.,[E(a)] =1, then
ple = p

Proof. For all set A and € Dy, E € A — Prop such that Pr,.,[E(a)] = 1,

we have 3 {a | E(a)} = Provu[E(0)] = 1= |u| = 32, nla) =3 ,{a | E(aﬁ +
Yola | ~E(a)}, thus Y- {a | ~E(a)} =0, so p(a) = 0 for all a such that E(a)
does not hold. Therefore,

@) .
lp = Aa. {PrawE(a)7 if E(a) —\a {u(a), if B(a)

, otherwise p(a), otherwise

Lemma 5. For all set A and pp € Dy, plraca.true = [t

Proof. For all set A and pu € Dy, from Pry.,ftrue] = > p(a) = |u| = 1 by
Lem. [4l we know pi|xae A true = /-



Lemma 6. Let A be any set, ﬁ be any infinite sequence of sub-distributions
over A, and p be any sub-distribution over A, if lim y = p, then for all a € A,

. —

Jim pi[n)(a) = p(a).

Proof. From lim i = y we know nll)rréo Za,eAm[n](a') — u(a’)| = 0. For all a, to
prove li_>m Ji[n](a) = p(a), we need to prove for all € > 0, there exists N such
that |7[n](a)—pu(a)| < efor allnm > N. For all e > 0, from lim Za,eAm[n](a’)f

n—oo

w(a’)| = 0 we know there exists N such that for all n > N, Za,eAm[n](a’) -
w(a')| < e, thus |g[n](a) — p(a)| < € for all n > N.

Definition H.1. Let A be any set, ﬁ be any infinite sequence of sub-distributions
— def

over A, and f € A — Dy, we define f(11) < An. f(u[n)).

Lemma 7. Let A, B be any set, ﬁ be any infinite sequence of sub-distributions

over A X B and p be any sub-distribution over A X B, if limﬁ = u, then

A
lim ﬁ( ) =,

Proof. From lim i = 1 we know ILm ZaeA’beB|ﬁ[n](a, b) — u(a,b)| = 0, thus

(4)

lim 57100 (@) — 1)

= lim Y, aYpep nlnl(a0) = Yyep ulab)]
= lim 3, Y pep(Knl(a,b) — pu(a,b)

< nlingo ZaeA ZbeB|ﬁ[n](a’ b) - p’(av b)|

=0.

A) (4)

(
From Y, 4|1 [n]

H(@)] 2 0, thus lim e il
).

Lemma 8. Let A, B be any set, ,17 be any infinite sequence of sub_—)distributions
over A x B and pu be any sub-distribution over A x B, if ilmu = u, then

(a) = (a)| > 0 for all n we know lim ZaeAm[n]

(a)—
A
(a) — Y (a)| = 0. Therefore lim /7( .

. — . —
Proof. From lim p = p we know nh_}n;o > acapenlnl(a,b) — p(a,b)| = 0, thus
. —- ,(B)
Tim 3 70 (1) = 1P )
. —
= lim Zb€B|Za€A p[nl(a,b) — ZaEA p(a,b)|

n— o0
= lim Svenl S aca(#n)(a,b) — p(a, b))l
< nh_)f{.lo ZbeB ZaeAlﬁ[ (a,b) — p(a,b)|
= lim 3,4 Y epliilnl(a,b) — pu(a,b)]  (by Tonelli’s Theorem)

n— oo

=0.

n
n



(B) (B)

From Yy 4| 12[n]

D) 2 0, thus lim 3, pl5i[n]
B)'

(b) — B (b)| > 0 for all n we know lim beBm[n]
n— oo
(B)

(b) -

(B

(b) — uB)(b)| = 0. Therefore lim = =
ul
Lemma 9. Let A be any set, ﬁ be any infinite sequence of sub-distributions
over A, p be any sub-distribution over A, and E € A — Prop, if limﬁ = U,
PT(lNﬁ[’n] [E(a)] > 0 for all n, p[n+1)(a) > w[n)(a) for all n and a such that

E(a) holds, and nhﬁrréO P'r‘ammn] [E(a)] =1, then lim /|5 = p|p.

Proof. From lim 11 = j1 we know ILm ZaeAm[n](a) —p(a)] =0, and by Lem.|§|
we know p(a) = lim fi[n](a) for all a. From [n+1](a) > 1[n](a) for all n and
n—00

a such that E(a) holds by Monotone Convergence Theorem for Series we know

S L lim F[n)(a) | B(a)} = lim ¥, {7ln](a) | E(a)}, thus

Pr, ., [E(a)
= 2aipla) | B(a)}
>4 lim_jifn](a) | B(a)}
— 1im >, (jinl(a) | (@)
= nh_}n;o Pr A ][E(a)]
1.
For all a such that E(a) holds, we have zi[n]|g(a) — pl|g(a) = #% -
ar p[n]
a 1i[n)(a - -
PraNi[)E'(a)] = rafﬁ[[l(] [;3(,1)] —,u(a), 50 N[n]‘E(a)_ME(a) > /‘[n](a)_ﬂ(a)- From

s[n+1)(a) > p[n](a) for all n and p(a) = lim z[n](a) by Monotone Conver-
n— oo
gence Theorem we know p(a) > p[n](a) for all n, so i[n]|g(a) — plep(a) =

%*u(a) < P2 ey — (o). From filn] (@) ~ u(a) < filn|(a) -
Hli(e) < g2y — ula) we know 1 [n]lp(@) — plp(@)] < max(|ji[n)(e) -

~p[n]
2atmla) [ E(a)}-( Tim Prmlﬁm [E(@)] ) =0 and nhjgo ZaeA{W[n]( a)—p(a)] |

B(a)} < lim 3,4 7iln) (@) — p(a)] = 0 we know
lim 5 en max([ () — (@), | e ey — #(@)l) | B(@)} = 0, thus
Tim Y, alulnle(a) = ple(@)] = lim 3,4 {[E 0]l s(a) = plz(a)] | E(a)} =0

Therefore lim 11| 5 = p|s.

@) |2y — pl@)])- From lim 3 {l 2y — ()] | B(a)}
(

Lemma 10. Let A be any set, ﬁ) be any infinite sequence of sub-distributions
ovegA, W be any sub-dijtribution over A, and N be any natural number, if
lim o = p, then lim(An. p[n + N]) =



Proof. From lim i = p we know 11m ZaeA\,u[ n](a) — p(a)| = 0, thus
lim 5,4l + NJ(@) — (@) = 0. so lim(An. il + N)) =

n—oo

Lemma 11. For all set A, B and p1,p2 € Daxp, p € [0,1], (11 ®p Mg)(A) —
A g (4)
H1 p M2

Proof. For all set A, B and p1, 2 € Daxp, p € 0,1],

(11 ®p p2)
= Aa. ), (11 ®p p2)(a,b)
=Aa.) ,p-p(a,b) + (1 —p)-p2(a,b)
=Xa.p- Zb pa(a,b) + (1 —p)- Zb,ug(a,b)
=Aa. p- ™ (a) + (1 —p) - p2(a)
— 1@ @, u .

Lemma 12. For all set A,B and p1,p2 € Daxp, p € [0,1], (11 &) ug)(B) =
B) g 1, B
251 p M2

Proof. For all set A, B and p1,pus € Daxp, p € [0,1],
B
(,Ul Dp ,UQ)( )

= Ab. 3, (11 @y p2)(a,b)
(1 —p) - pa(a,b)

=Ab. >, p-pa(a,b) +
=Xb.p- >, pi(a,b) + (1 —p)- >, po(a,b)
— b p- 1y D) (B) + (1= p) - 2 P (b)

— ,ul(B) @p I’LQ( )

Lemma 13. For all set A,B and a € A, p € Daxp, if p(a) = 1, then
=5(a) @ p'P).

Proof. For all set A,B and a € A, i € Daxp such that u((a) = 1, from
p(a) = 1 we know pu(a’,b) = 0 for all @’ and b such that o’ # a, thus
3(a) @ u? = Xd',b). d(a)(a’) - P (b) = A(a',b). d(a)(a’) - Xqn u(a”,b) =
A(d',b). d(a)(a’) - u(a,b) = A(d',b). p(a’,b).

Lemma 14. For all set A, B and p1, 1o € Da, ps € Dp,p € [0,1], (11 ®p p2) @
ps = (1 @ p3) Bp (12 @ pg).

Proof. For all set A, B and py,pus € D, pg € Dp,p € [0,1],

©p p2) @ i3

b). (k1 ®p p2)(a) -
b). (p-pa(a) +(1—
)- 3(b
)-p (a

H1
a,

p3(b)

p) - pa(a)) - p3(b)
)+ (1—p)- Mz() 3(b)
)7b)+( p) (M2®M3)(avb)

). p-pafa) - p
(M1®M3)

A
A
A
Aa, b

i ®u)@p(uz®u

(n
(
(a,
(a
(a,

=



Lemma 15. For all set A,B,C and p € Dy, f € A — Dp,g € B — D¢,
EbN]anu{f(a)}{g(b)} = anu{]Ebe(a){g(b)}}'

Proof. For all set A, B,C and p €Dy, f € A— Dp,g€ B— D¢,

Ep g, {f()}19(b)}
=Ac. >y Eanp{f(@) }(b) - g(b)(c)
=Ac. Dy 2 oq (@) - fa)(d) - g(b)
=Ac. ), pu(a) - 32, fa)(b) - g(b
=Ae.y o, mla) - Eyopay{g(b)}(c)
= Eoop{Epmp(a){9(0) }}-

Lemma 16. For all set A, B and 1,10 €Da,f € A— Dp,p €[0,1],
Eanp@pps {f(@)} = Eonp, { (@)} ®p Eanpin { f(a)}-

Proof. For all set A, B and py,us € Dy, f € A — Dp,p € [0,1],

Ea”ﬂl@pﬂz{f( )}
= Ab. 3, (11 ®p p2)(a) - f(a)(b)
=Ab. > (p-pa(a) + (L —p) - pa(a)) - f(a)(b)
=Ab.p- 3, pa(a)f(a)(b) + (1 —p)- 32, pa(a) - fa)(b)
= Ab. p - Eany, {f(a)}(b) + (1 —p) - Eanp, {f(a) }(b)
_anﬂl{f( )} @p aNMz{f( >}

Lemma 17. For all set A, B and f € A— Dp,a € A, Eq o5 = f(a).

(©)
)(c)

Proof. Forallset A,Band f € A — Dp,a € A, wehave Eq/ 5q) = Ab. >, 6(a)(a’)-
f(a')(b) = Ab. f(a)(b) = f(a).

Lemma 18. For all set A,B and p1 € Da, pus € Dp, (11 @ /.Lg)(A) = 1.

Proof. For all set A, B and p; € Da,us € Dp, (11 ®ﬂ2)(A) = Aa. Y (11 ®
p2)(a,b) = Aa. 32, pa(a) - p2(b) = Aa. pa(a) - 32, p2(b) = Aa. pi(a) = p.

Lemma 19. For all set A,B and p1 € D, pus € D, (11 ® ug)(B) = lo.

Proof. For all set A,B and p1 € Da,pe € Dp, (11 ®,u2)(B) = Ab. Y (11 ®
p2)(a,b) = Ab. 3, p(a) - pa(b) = Ab. pa(b) - 3=, pa(a) = Ab. p2(b) = po.

Lemma 20. For all set A and p,p' € Do, E € A — Prop, if ulp = 1/, then
supp(p') C supp(p).

Proof. For all set A and p,pu’ € Dy, E € A — Prop such that plg = o/,
supp() = {a | (@) > 0} = {a | ulp(a) > 0} = {a | B(a) A pla) > 0} C
{a | p(a) >0} C supp(p).

Lemma 21. For all set A, B and p € Daxp, supp(u) = dom(supp(u)).



Proof. For all set A, B and p € Dy« p,

supp(u')
={a | (a) > 0}
= {a| X, u(a,b) > 0}
={a| 3. p(a,b) > 0}
= {a [ 3b. (a,b) € supp(p)}
= dom(supp(p)).

Lemma 22. For all set A, B and i € Daxp, supp(u®) = range(supp(p)).
Proof. For all set A, B and p € Dy p,

supp(pu'?)
— (b 4P () > 0)

={b |22, u(a,b) > 0}
= {b| Ja. u(a,b) > 0}

= {b| Ja. (a,b) € supp(n)}

= range(supp()).
Lemma 23. For all set A, B and p1, s € Daxp, if supp(p1) C supp(pz), then
supp(pa M) C supp(po ).
Proof. For all set A, B and 1, 2 € Daxp such that supp(u1) C supp(usz), by
Lem. we know supp(p1(D) = dom(supp(p1)) C dom(supp(po) = supp(pue).
Lemma 24. For all set A, B and py, po € Daxp, if supp(u1) C supp(ps), then
supp(pnP)) C supp(pz'?).
Proof. For all set A, B and 1,2 € Daxp such that supp(pi) C supp(ue), by
Lem. 22 we know supp(ui1P)) = range(supp(i1)) C range(supp(pa) = supp(paP).
Lemma 25. For all set A and p € Da,a € A, if p(a) =1 then pn = d(a).

Proof. For all set A and p € D, a € A such that u(a) = 1, we have 1 = |u| =

2o ila) = pla) + 32, {uld) [ d' # a} <pla) =1, thus 3, {p(d) [ o’ # a} =
0, so u(a’) =0 for all ' # a. From p(a) =1 we know p = d6(a).

Lemma 26. For all set A and p € Dy,a € A, = 9(a) if and only if supp(p) =
{a}.
Proof. For all set A and € Da,a € A, we prove the two directions respectively.

— it 1= 8(a), we have supp(i') € supp(u) = {a’ | p(a) > 0} = {a’ | 6(a)(a’) >
0} = {a}.
— if supp(p) = {a}, we have 1 = |u| = >, p(a) = > Auld) | o €
supp(p')} = > A{u(a’) | ' € {a}} = p(a). By Lem. We know ' = 6(a).
Lemma 27. For all set A and p, i’ € Da,a € A, if p = d(a) and supp(p') C
supp(u), then p' = o6(a).
Proof. For all set A and p, /' € Da,a € A such that p = §(a) and supp(p’) C

supp(yt), by Lem. 26| we know supp(p) = {a}, thus supp(u') C {a}. It is obvious
that supp(p') # 0, thus supp(p') = {a}. By Lem. 26| we know x’ = é(a).



H.2 Proof of Theorem [4.7]

Proof (Proof of Theorem . For any P,C,Q such that =, {P}C{Q@} and
closed(Q), by Lem. [02] we have |=, { P}RemoveSplit(C){Q}. It is obvious that
Nosplit(RemoveSplit(C)), by Lem. [6§ we have = { P}RemoveSplit(C){Q}.
From Lem. [75| we have = {P}C{Q}.

The remainder of this section gives the proofs of the lemmas used in the
proof of Thereorem

— —
Definition H.2. Given Wy, ¢, W such that History (Wy, ¢, W). We write W iL:D
—  (Prog) —
w if and only if lim Wn] (skip || --- || skip) = 1 and Vo. lim Win|(skip ||
. n—roo n—roo
. || skip,0) = 1(o).

Definition H.3. =, {P}C{Q} iff for all y, if 4 = P, then for all ¢ and p/, if
init(C, p) I, 1/, then ' = Q.

— —  (Prog)
Lemma 28. For all W, if lim Win| (skip || --- || skip) =1, then
n— oo
—
lim Y {WIn)(C.0) | C # skip | - | skip} = 0.
— — _(Prog)
Proof. For all W such that li_>m Wn] (skip || --- || skip) = 1, we have
— —
1i_>m > Winl(skip || --- || skip,o) = 1. From Vn. |[W[n]| = 1 we know
n—oo
IR
lim |[W[n]| =1, so
n—oo
5
1= lim |[W[n]|
n—oo N
= lim Z«:,:W[n](@a) B
= Jim (5, Wlal(skip | -+ || skip. o) + S, (IWnl(C.0) | € # skip | -+ | skip})
— —
— Tim 3, Winl(skip || -+ || skip,o) + lim S, {W[n](C.0) | C # skip | --- | skip}
—
=1+ lim 3 ¢ {W[n|(C,o) | C #skip | - || skip},
—
S0 ILm > c.oAW[n](C,o) | C#skip || -+ || skip} = 0.
— —
Lemma 29. For all W, W, if imW = W and W9 (skip || --- || skip) = 1,
—
then for all o, W(State) (5) = lim W(n](skip | -+ || skip, o).
— —
Proof. For all W, W such that lim W = W and W(Fm9) (skip || --- || skip) = 1,

—s (Prog)

=
from limW = W by Lem. |7| we know lim W = WFr9) By Lem. |6| we



— _(Prog)

know lim W(n] (skip || --- || skip) = W(F™9)(skip || --- || skip) = 1. By
71— OO
5
Lem. We know li_>m Yo AWn|(C,o) | C # skip || --- || skip} = 0. It is
n o0 ’
5
obvious that for all o1 and n, 0 < Y {Wn](C,0;) | C # skip || --- || skip} <
—
>coAW[n(C,o) | C # skip || --- || skip}, by Squeeze Theorem we have
— —
0< lim 3o {W[n|(C,01) | C # skip || --- || skip} < lim > ¢ {W[n](C,0) |
n—00 IR n— 00 ’
C # skip || --- || skip} = 0, thus lim ZC{W[n]((C,U)} = 0 for all 0. From
(State)
lim W W by Lem Iwe know lim W = W(State) By Lem. |§|We know for
s (State)
all o, lim W{n] (o) = W(State) (5) | s0
n—oo
W(State)(o,)
) = (State)
= lim W[n ] (o)
= lim Zc Wln)(C.0) .
~ lim (Winl(skip | --- || skip,0) + Se{Wn)(C. ) | € # skip | --- | skip})
— —
= Jim Wiliskip || - || skip. )+ lim Sc{W[al(C.0) | € # skip | -+ | skip}
5
= lim Win|(skip | --- || skip,o) +0
n— oo
5
= lim Win|(skip || - -- || skip, o)
n— oo

holds for all o.

—

— n
Lemma 30. For alln, W, <p7 , if History(W, ¢, W) then Wn] Sf[—>] Win+1].

Proof. by induction on n.

- base case: n = 0.
— —
From History(W p, W) there exists t, o', W', W such that ¢ = t s, W=

5 7

—
Waew, W < W' and Hlstory(W’,w W W0l = (W = W )[O] w.

—

From Hlstory(W ,90, ) by Lem. l we know W [0] = W', so W[1] =

(W W] = W [0] = W, o[0] = (£ :: )[0] = . Therefore W[0] 23 W1].

- inductive case: n = k + 1.

— — k
IH: for all W, p, W, if History(W, ¢, W) and Nosplit(WW), then W[ | — w[ )
—
Wik +1].
5
From Hlstory(W ®, W) there exists ¢, ¢ ,W’ W such that ¢ = ¢ :: ¢/, W =
/!

—/

—
w W, W < W and History (W', ¢’ ,W ). From History(W' ¢/, W)



by TH we know W [k] 0 W [k + 1] Win] = (W = W[k +1] = W [k].
Win 1] = (W ]?vj[k o = W+ 1), pln] = (¢ 5 &)k + 1] = K]

Therefore W/[n} — Win+1].

Lemma 31. For all W,W' t, if W ~» W', then for all o, W'(skip || --- ||

Proof. For all W, W, t, o such that W ~> W7,

W/(skip || - -- || skip, o)
=3¢, {W(C1,01) | (C1,01) 2 (skip | --- || skip, o)}
> W(skip || - - - || skip, o) - p, where (skip || --- || skip, o) % (skip || - - || skip, o)
= W (skip || - -- || skip, o) - p, where (skip, o) £ (skip, o)
= W(skip | --- || skip, o).

Lemma 32. For all WW' t, if W <y W', then for all o, W' (skip || --- |
skip, o) > W (skip || --- || skip,0).

Proof. For all W, W', t such that W AN W', it is obvious that W(F9) (skip ||

|| skip) = 0 Vv W9 (skip || --- || skip) > 0, we prove the two cases
respectively.
— case 1: W(Pr9) (skip || - -- || skip) = 0.
From W (P9 (skip || - - - || skip) = 0 we know > W (skip || - - || skip, o) =
0, thus W(skip || --- || skip,o) = 0 for all o. Therefore W’(skip || - |
skip, o) > W (skip || - - - || skip, o) for all o.
— case 2: W9 (skip || --- || skip) > 0.
From W9 (skip || --- || skip) > 0 by Lem. [38) we know nextsplit(W) 2
split(true). From W Lwr by Lem. 48| we know W ~5 W’. By Lem. [31| we
know for all o, W'(skip || - -- || skip,o) > W(skip || --- || skip, o).
— — —
Lemma 33. For all W, o, W, if History(W, o, W), then for alln and o, W[n+
—
1)(skip || - -+ || skip,o) > Win|(skip || - || skip,0).

— —
Proof. For all W, o, W, n,o such that History(W, ¢, W), by Lem. [30[ we know

— eln] = = . .
Win] — Wi[n + 1]. By Lem. |32| we have Wn + 1](skip || --- | skip,o) >
5
Win|(skip [| - - || skip, o).
— — —  (Prog)
Lemma 34. For all W, o, W, if History(W, o, W) and lim W{n| (skip ||
n—oo

—
-+ || skip) =1, then for all C,o, lim Wn](C,o) exists.
n—oo



(Prog)

=
Proof. For all W, p, W C, o such that History (W, ¢, ) W) and hm W(n] (skip ||

- |l skip) = 1, it is obvious that C = skip || - - - || skip or C ;é sklp I --- || skip,
we prove the two cases respectively.

— C=skip| | Sklp
From History (W, ¢, ) by Lem. . we know Vn. W[n —|— 1)(skip || --- ||
—
skip,o) > Win](skip || --- || skip, o). It is obvious Vn.W[ |(skip || -+ |

=
skip, o) < 1, by Monotone Convergence Theorem we know lim Wn|(skip ||
n—oQ
- || skip, o) exists.

— C#skip || --- || skip.
—  (Prog)
From lim W(n] (skip || --- || skip) = 1 by Lem. we know
—
lim > ¢, 5 AWI[n|(C1,01) | Cy # skip || --- || skip} = 0.
n—oo

— —
It is obvious that for all n, 0 < W[nJ(C,0) < > ¢ , {W[n](Ci,01) | C1 #

—
skip || --- || skip}, by Squeeze Theorem we have 0 < lim W[n](C,o) <
n—oo
— —
Tim Yo, (Wnl(Croo0) | €1 # skip | - || skip} = 0, thus lim W[n)(C,0) =
0.
Lemma 35. For all W, there exists W1 and Wa such that W = Wi @y (proo) (skipl|.-- || skip)
Wo, Wi E709 (skip || - - - || skip) = 1 and W59 (skip || - - - || skip) = 0.
def §(skip||---||skip) (C)-W(C,0)
Proof. For all W, let W; = X\(C, o). ngrog)(skg‘lml‘skip) ,
def (1—46(skip||---||skip)(C))- W (C,o)
W2 = A, 0) =0t Gl sk then
W1 @ (Prog) (skip|---||skip) W2
= A(C,0). WFro9)(skip || - -- || skip) - W1(C, o) + (1 — W9 (skip || - - || skip)) - W2(C, o)
= AMC, o). d(skip || --- || skip)(C) - W(C, 0) 4 (1 — é(skip || -- - || skip)(C)) - W(C, 0)
= \C, o). W(C,o0)
=W.

Lemma 36. For all Wy, Wa,p,t, W/, W3, if Wy ~5> W{ and Wy ~o W3, then
Wy @, Wa -5 W] @, Wi,

Proof. For all Wy, Wy, p,t, W{, W} such that W, A W{ and Wy A W35, we know

/

Wi = MC,0"). Xe . {Wi(C,0) 0 | (C,0) == (T, 0')}, W = AT, 0'). S , {W2(C, 0)-



P (C0) L (T, 0"}, 50
W] @, W}
= NC,0"). p T {Wi(C0) -1/ | (C,0) 25 (T, 0")}+
(1-1) e W2(C,0) 4 | (C0) 25 (T, 0")}
= A(C/7Ul)' Z(C,a{(p' WI(C>U) + (1 _p) : W2((Cv )) 'p/ | (C’U) %) ((C/’OJ)}

= AT, 0"). Yo {(W1 @, W2)(C,0) -1 | (C,0) == (T, 0")},
thus Wy @, W & WY &, Wj.

Lemma 37. For all Wy, Wa,p,t, W', if W1 &, Ws A W', then there exists W
and W} such that W' = W| &, W3, Wy ~o W] and Wy~ WJ.

Proof. For all Wy, Wa, p, t, W' such that W1 @, W A W', let Wy def (C,d"). ZC,J{WI (C,0)-
p1(Ca) B (€ W AT 0). S, (T(C.0) 5 | (€0) B (€0,

then W, AN W{ and Wy A W;. By Lem. we know Wy &, W, AN Wi &, W3.

From W, &, W, 5 W’ by Lem. [57| we know W’ = W/ @, Ws.

Lemma 38. For allW, if W9 (skip || - - - || skip) > 0, then nextsplit(W,t) D
{split(true)} for allt.

Proof. For all W such that W9 (skip || - - - || skip) > 0, we know >__ W (skip ||
.-+ || skip, o) > 0, thus there exists o1 such that W (skip || - - - || skip, 1) > 0.

nextsplit(W,t)

= {nextsplit(Cy) | (C1 || -+ || Cn,0) € supp(W)}

= {nextsplit(Cy) | W(Cy || --- || Cn,0) > 0}

D {nextsplit(skip)}

= {split(true)}
Lemma 39. For all W, if W9 (skip || - -- || skip) = 1, then W -5 W for all
t.
Proof. For all W such that W9 (skip | --- || skip) = 1, by Lem.

we know W = d(skip || --- || skip) ® W(St)  For all ¢, we have W ~5



AT

Wi

') Ye o AW(C,0) | (C,0) = (T, 0")}.
MC',0"). e AW (C,0) -p | (C,0) > (C',0)}
MC',0"). Yo Ad(skip | -+ || skip)(C) - W) (o) - p | (C,0) % (T, 0")}
AT, o). S AW S () - p | (skip || --- | skip, o) 2 (C',0")}
AT, 0"). o AW (o) . p | C' = skip || -+ || skip Ao’ = o Ap =1}
A(C',0").5(skip || - - || skip)(C’) - WSte) (o)
5(Sklp I+ || skip) & W (5tate)

— —
Lemma 40. For all n,W, o, W, W1, Wa,p such that History(W,p, W), W =

@®p Wo and W9 (skip || --- || skip) = 1, there exists W' such that

i
Wn] = Wy @, W'.

Proof. by induction on n.

base case: n = O

For all W, <p,W W1, Wa, p such that History (W, go,W) W = Wi ®, Wy

and W, (P9 (skip || - - - || skip) = 1, from Hlstory(W ©, ) by Lem. |50 we
—

know W[0] = W = Wi @, Wa. Let W4 % Wa, then W[0] = Wy &, W'
inductive case: n =k + 1.

— —
IH: For all W, ¢, W, W1, Wy, p such that History(W, o, W), W = W; &, Ws
—

and W, P9 (skip || --- || skip) = 1, there exists W' such that W[k] =
Wi @, W'.

=
For all W, ¢, W, W7, Wy, p such that History (W, ¢, ), = = Wi @p, Wa
and W, (9 (skip | --- || skip) = 1, from Hlstory(W, ©, W) there ex-

— — —
ists t, g, Wy, W such that ¢ = ¢ 2 g, W <—> Wo, W = W :: Wy and
—

— —
History (W, w9, Wo), then Wn] = (W :: Wo)[k: + 1] = Wylk]. It is obvious
that p =0V p > 0, we prove the three cases respectively.
e case 1: p=0.
def — — —
Let W/ = Wo[k}], then W[n] = Wo[k’] =W, Gy W'.
e case 2: p > 0.

WPreo) (skip || -- - || skip)
= (W @, W)™ (skip | --- | skip)
= (WP @, Wo "9 (skip || --- | skip)  (by Lem.
=p- WL (skip || - - || skip) + (1 —p) - Wo"") (skip || -- - || skip)

>p>0,



by Lem. |38 we know nextsplit(W,t) 2 {split(true)}. From W SN
by Lem. we know W ~5 Wo. From W = W; @, Wa by Lem.
there exists Wy and Wy such that Wy = Wy @, Woo, Wi A Wo1
and W ~5 Woy. From W9 (skip || --- || skip) = 1 by Lem. [39| we
know W3 A Wi. From W A Wo1 by Lem. we have W7 = Wy,

=
so Wy = Wy Dyp Woa2. From HiStOI‘y(Wo,(po,Wo) Wo = Wy Dp Woa
and W, P9 (skip || --- || sklp) = 1 by IH there exists W' such that
—

Wo[k} =W, By W', thus W[ ] Wo[ ] Wy Sy w’'.

— — —

Lemma 41. For allW, o, W, W' if History(W, o, W) andVC,o. lim Wn|(C,o) =
n—oo

W'(C,0), then Y ¢ ,IW(C,0) = W'(C,0)| < 2(1 — WFr9) (skip || - - - || skip)).

Proof. Forall W, <p,W W' such that History (W, ¢, )and vC,o. hm W[ J(C,o) =

W'(C,0), let p %ef WFrog)(skip || --- || skip), by Lem. there exists W;
and Wy such that W = Wy @, W, W79 (skip || --- || skip) = 1 and
W, (P9 (skip || --- || skip) = 0. By Lem. 40| we know for all n, there exists

—

W’ such that Wn] = Wi GSP W’. By Axiom of Choice, there exists W such that
— — !

for all n, W[n] = W1 @, W [n]. For all C and o, W/(C,0) = hm W[ ]((C,O’)

.y

Tim (pW1(C.0)+(1-p)-W [)(C.0)) = p-Wi(€.0)+ (1-p)- lim W [n](C.0).

Therefore,

S,/ W(C,0) = W'(C,0)] < 2(1 = W9)(skip | - | skip)) ,
= S, lp Wi(C,0) + (1= p) Wa(C,0) = p- Wi(C,0) — (1= p) - lim W [n](C,0)
= (1-)- Se,,[Wa(C,0) — Tim W [n](C,0)|

< (1-p) T, (Wa(C,0) + lim W [1](C,0))
= (1-p) (Se, WalC.0) + T,y lim W [n](C,0))
<(1-p)- (T, Wa(C.0) + lim Yo, W [1)(C.0))  (by Fatou's Lemma)
=2(1-p)
= 21— W9 (skip | --- | skip))

— — —
Lemma 42. For alln, W, o, W, W', if History(W, o, W) and VC, 0. li_>m Win|(C,o) =
n oo

—  (Prog)

WA(C,0), then S ,[Winl(C,0) = W(C.0) < 200 — W) (skip || -+ |
skip)).

Proof. by induction on n.



— base case: n = 0.
For all W, go,W W’ such that History (W, ¢, )and VC, 0. hm W[ I(C o) =

W'(C, o), by Lem .we have > ¢ J| (C,o0)—W'(C,0)| < 2(1 W(ng)(skip I

5
- || skip)). From History(W, ¢, ) by Lem. [50| we know W[0] = W, so
(Prog)

zcﬁ[ 0)(C,0) — W'(C,0)| <201 —W[0]  (skip | - || skip)).
— inductive: n—k—|—1

IH: for all W, ¢, W W', if History (W, ¢, W) and VC, 0. lim ﬁ/[n]((c,a) =

n—oo
W'(C.o). th WIEI(C. o) —W(C.o)| < 20—l (skip | -
( ,O’), en Z(C,c;| [ ]( 70) ( >U)| = ( [ ] (S 1p ” ”

skip)).
— — —
For all W, p, W, W’ such that History (W, o, W) and VC, 0. lim Win](C,o) =

n—oo

— —
((C o), from Hlstory(W ®, W) there exists t, ', W1, W1 such that ¢ =
o, W < Wy, W W W1 and History (Wi, ¢’ 7Wl) For all C, o,

lim Wl[n]((C,J) = lim (W = Wl)[n + 1J(C,0) = lim W[n+ 1J(C,0) =

n— o0 n— o0 n—oo
lim W{n](C,0) = W'(C,0). By IH we have ., [W1[k](C, o) ~WW/(C.0)] <
— (Prog) — —
2(1 — W1lk] (skip || - || skip)). From W{n] = (W = W1)[k + 1] =
(Prog)
Wik] we know Y [Wn)(C,0) — W'(C,0)] < 201 — W[n]  (skip |
|| skip)).

— — —  (Prog)
Lemma 43. For all W, o, W, W', if History(W, o, W), lim W{n| (skip ||
n—oo

— —
- |l skip) = 1, and VC,o. lim Wn](C,o) = W'(C,0), then imW = W’.

n—oo

. S . (Prog)
Proof. For all W, o, W, W' such that History (W, ¢, W), lim Wn| (skip ||
n—oo

N
- |l skip) = 1, and VC, 0. ILm Wn](C,o) = W/(C, o), by Lem. 42| we know for
- - (Prog)
all n, 0 < Y0 WR)(C,0) — W/(C,0)| < 201~ Wn]  (skip || --- || skip)).
By Squeeze Theorem we have

. ~  (Prog)
0 < lim 3¢, [W[n|(C,0) = W/(C,0)| < lim 2(1 - Win]  (skip || --- |

n— 00
Prog)

- ( —
skip)) = 2(1— ILm Win] (skip || --- || skip)) = 0, so ILm > c.oWnJ(C,o)—
W'(C,0)| = 0, by Def. we have lim W = .
Lemma 44. For all P,C,Q, =, {P}C{Q} if and only if = {P}C{Q}.

Proof. For all P,C,Q, first we prove if =, {P}C{Q} then =, {P}C{Q}. By
definition of =, we need to prove for all u, o, W, if u |= P and mzt( pw) o W

then WSt®) = Q. From init(C, ) |, W we know there exists W such that



— —

History (init(C, i), o, W), imW = W and W9 (skip || --- | skip) = 1.
— — (Prog)

From lim W = W by Lem. |7] we know lim W = W(Pr9) By Lem. |6 we

—  (Prog)
know lim Win) (skip || --- || skip) = W{Fr9)(skip || --- || skip) = 1.

n—o0

°,

From lim W = W and W9 (skip || --- || skip) = 1 by Lem. [29| we know for
—

all o, W(State) (5) = lim Win](skip | --- || skip, o), thus init(C, o) I, Ty (State)

From =, {P}C{Q}, p = P we know W (5tete) = Q.
Then we prove if =, {P}C{Q} then =, {P}C{Q}. By definition of |=,/, we
need to prove for all u, o, p/, if u = P and inat(C, ) I, p', then p' = Q. From

init(C, p) I, p' we know there exists W such that History(init(C, ), <p,W),

— (ng)
lim W{n] (skip || --- || skip) = 1 and Vo. lim W(skip || --- || skip,o) =
n—oo n—0o0
— — _(Prog)
w/ (o). From History (init(C, 1), o, W) and lim Win| (skip || -+ | skip) =

1 by Lem. I we know hm W[ J(C,0) exists for all C and o. Let w4

AC, o). lim W[ J(C,0), by Lem. I we know th W. By Lem. Hwe
n— oo

~, (Prog)
know lim W = WPre9) By Lem. |§|We know W (Fro9)(skip || --- || skip) =

(Prog)

— 9 —
lim W{n] (skip || - - - || skip) = 1. From History (init(C, p), ¢, W) ImW =
n—oo
W and W9 (skip || --- || skip) = 1 we know init(C,u) |, W. From
—

E. {P}C{Q} and pu = P we have W(S%t) = Q. From limW = W and
WProg)(skip || - - - || skip) = 1 by Lem. We know Vo. W (State) — lim (skip |

- || skip, o). From Vo. lim (skip || - - - || skip, o) = u/(0) we know W (State) —
n—oo
1. From W(Stete) = @ we have i/ = Q.

Definition H.4. Nosplit(C; || --- || Cy) if and only if Nosplit(Ci) A --- A
Nosplit(Cy,).

Definition H.5. Nosplit(W) if and only if V(C, o) € supp(W). Nosplit(C).
Lemma 45. For all C, if Nosplit(C) then nextsplit(C) = split(true).
Proof. by induction on the structure of C.

- case 1: C'= (C4) sp, which contradicts with Nosplit(C).

- case 2: C'= (Cy;Cy. TH: if Nosplit(Cy) then nextsplit(Cy) = split(true).
From Nosplit(C) we know Nosplit(C1), so nextsplit(C') = nextsplit(Cy; Ca) =
nextsplit(Cy) = split(true).

- other cases.
nextsplit(C) = split(true).

Lemma 46. For all W,t, if Nosplit(W) then nextsplit(W,t) = { split(true)}.



Proof. For all W and ¢ such that Nosplit(W), we have
nextsplit(W, t)

— {neatsplit(Cy) | (Cr || -+ || Cyor) € supp(W)}

= {nextsplit(Cy) | (C1 || -+ || Cn,0) € supp(W) A Nosplit(Cy || --- || Cr)} (by Def.

= {nextsplit(Cy) | (Cy || -+ || Cn, o) € supp(W) A Nosplit(Cy) A --- A Nosplit(Cy,) } (by Def. [H.4])
= {split(true) | (C1 || -+« || Cn,0) € supp(W) A Nosplit(Cy) A --- A Nosplit(C,,)} (by Lem. [45)
= {split(true)}

Lemma 47. For all W, Wlyue = W.

Proof. For all W, Wlirue = W{xc,0).0true = Wr(C,0)4rue = W. The last step
is by Lem.

Lemma 48. For all W,t,W’, if nextsplit(W) D {split(true)}, then W > W' if
and only if W Swr

Proof. For all W,t, W' such that nextsplit(W) 2 {split(true)}, we prove the two
directions respectively.
—if W5 W, from nextsplit(W,t) O {split(true)} we know nextsplit(W,t) =

{split(true)} or nextsplit(W,t) O {split(true)}. We prove the two cases
respectively.

o nextsplit(W, t) = {split(true)}.
By Lem. H we know W'liue = W'. From W A W', nextsplit(W,t) =
{split(true)} and W’'|trye = W’ we have W Sw.
o nextsplit(W,t) D {split(true)}.
#nextsplit(W,t) > 1, so W Lwr,
—ifw W', there are two cases.

e case 1: there exists W by, ..., by, i such that W A W' nextsplit(W,t) =

{split(by,...,bx)} and W"|,, = W".

From nextsplit(W,t) 2O {split(true)} we know k =i = 1, b; = true. By
Lem. We know W' |grue = W7, 80 W = Wy, = W tuwe = W
From W ~5 W we have W ~& W'

o case 2: #nextsplit(W) > 1 and W ~& W', trivial.

Lemma 49. For oll W,t,W’, if Nosplit(W), then W L W' if and only if
Wb W

Proof. For all W, t, W’ such that Nosplit(W), by Lem. We know neatsplit(W) =
{split(true)}, so nextsplit(W) 2 {split(true)}. By Lem. 48| we know W 4w

if and only if W <& W".



N
Lemma 50. For all W, go, , if History(W, o, W) then W[0] = W.

5
Proof. For all W, 90, W such that Hlstory(W o, W) there ex1sts t © ,W such
that ¢ =t 1 ¢, W= W W W <5 W’ and History (W’ ,(p,W) so W[O]

(W TX//)[O] =W.

Lemma 51. For all C,0,C",c’,p, if (C,0) EN (C',0’) and Nosplit(C), then
Nosplit(C").

Proof. by induction on the derivation of (C, o) £ (C”,0").

-case 1: O =C" =skip,c=0',p=1.
From Nosplit(skip) we know Nosplit(C”).
-case 2: C =x:=e,C’ =skip,0’ =c{z~ [e],},p=1.
From Nosplit(skip) we know Nosplit(C”).
- case 3: C = skip; Cy,C' = Cy,0 =0',p=1.
From Nosplit(C) we know Nosplit(Cs).
- case 4: C' = C; Cq, Cy # skip,C" = C}; Cy, (C1,0) & (C}, 0").
IH: if Nosplit(C1) then Nosplit(C}).
From Nosplit(C) we know Nosplit(C;) and Nosplit(Cs). By IH we have
Nosplit(C1), so Nosplit(Cy; Cs), i.e., Nosplit(C”).
- case 5: C = if (b) then C] else Co, [b], = tt,C' = Cy,0' =0,p = 1.
From Nosplit(C) we know Nosplit(Cy) and Nosplit(Cs), so Nosplit(C’).
- case 6: C' = if (b) then C; else Cs, [b], = f,C' = Cy,0' =0,p=1.
From Nosplit(C) we know Nosplit(C;) and Nosplit(Cs), so Nosplit(C’).
- case 7: C' = while (b) do C4,[b], = tt,C" = Cy;while (b) do Cy,0’ =
o,p=1.
From Nosplit(C) we know Nosplit(C}), so Nosplit(C; while (b) do C),
i.e., Nosplit(C’).
- case 8 C = while (b) do C1, [b], = ff,C' = skip,0’ =o,p = 1.
From Nosplit(skip) we know Nosplit(C’).
- case 9: C = (C),C" = skip.
From Nosplit(skip) we know Nosplit(C”).
- case 10: C = (C}) sp, C" = skip, ((C1),0) & (skip, o’).
C = (Cy) sp contradicts with Nosplit(C).
- case 11: C' = (C1) &p (Ca),C" = (Ch), 0 =0",p=1p'.
From Nosplit((C})) we know Nosplit(C’).
- case 12: C = (Ch) ®p (C2),C" = (Cy), 0 =0, p=1—7p
From Nosplit({C2)) we know Nosplit(C").

Lemma 52. For all C,0,C' 0’ t,p, if (C,0) % (C’,0") and Nosplit(C), then
Nosplit(C’).

Proof. For all C,a,C’,o’,t,p such that (C, o) % (C’,0") and Nosplit(C), there
exists C1,...,Cp,C} such that C = Cy || --- || C’n, C=0C|...C-1 |



Cll Cor || -+ || Cn, and (Cy,0) & (C4,0"). From Nosplit(C) we know
Nosplit(C}) A --- A Nosplit(C,,). From Nosplit(C;) and (Cy,0) 2 (CI,0")
by Lem. [51] we have Nosplit(C}).

Lemma 53. For all W,t, W', if Nosplit(W) and W ~& W', then Nosplit(W").

Proof. For all W,t, W’ such that Nosplit(W) and W ~5> W', we know

W= MC",0").32c AW(C,0)p| (C,o0) % (C',0")}. Forall (C', ¢") € supp(W'),
we know > {W(C,o)-p|(C,0) % (C',0")} > 0, so there exists W, o such that
W(C,0) >0Ap>0A(C,o0) % (C,0"). From W(C,0) > 0 we know (C,0) €
supp(W). From Nosplit(W) we know Nosplit(C). From (C, o) % (C,0") b
lem. [52| we know Nosplit(C’).

Lemma 54. For all W,t, W', if Nosplit(W) and W < W", then Nosplit(W").

Proof. For all W,t, W’ such that Nosplit(W) and W N W', by Lem I we
know W ~& W', by Lem I we have Nosplit(W’).

Lemma 55. For all n, W, gp, , if History(W, o, W) and Nosplit(W), then
— nl =

Win] 2% Win +1).

Proof. by induction on n.

- base case: n = 0. ,
— —
From Hlstory(W ©, W) there exists ¢, ¢ ,W' W suchthat p =t :: ', W =

W W W <% W’ and Hlstory(W/,go ,W ). From W L owr by Lem. [49

1
151

we know W ~& W', W[O] = (W= W )[0] = W. From History(W’, ¢/, W

~—

by Lem. [50| we know W' [0] = W', so W = (W = WO = W [0] = w.
©[0] = (¢t :: ¢)[0] = t. Therefore W[O 28 W[l]

- inductive case: n= k+1. .
IH: for all W, <p,W, if History(W, go,W) and Nosplit(WW), then Win| 24
Wk + 1],
From History(WV, <p7W) there exists t,¢’, W', W such that ¢ = t 1 ¢,
W =W=: W/ W <5 W' and History(W', ¢ 7W ). From Nosplit(W) and

N
WS W by Lem. I we know Nosplit(W'). From History (W’ ¢/, W )
[k] Ny N Ny Ny

byIHweknowW[] W[kJrl] Win] = (W = W)k+ 1] = W [k].



/

Win + 1] = v?i)[k o = Wk 1] ] = (¢ )+ 1] = K.
Therefore Wn] 2] Win +1].

Lemma 56. For all C, u, if Nosplit(C), then Nosplit(init(C, u)).

Proof. For all C, u such that Nosplit(C), we need to prove V(C’, o) € supp(init(C, 1)). Nosplit(C).
For all (C', o) € supp(init(C, p)), we know (6(C) ® u)(C’,0) > 0, i.e., §(C)(C') -

p(o) >0, so C' = C. From Nosplit(C) we have Nosplit(C’).

Lemma 57. For all W, Wy, Wa,t, if W -5 Wy and W ~5 Wa, then Wy = Ws.

Proof. From W ~5 Wy we know Wi = M(C',0'). Y¢,{p- W(C,0) | (C,0)

(C',0")}. From W 4 Wy we know Wy = MCa"). Yo Ap-W(C, o) | (C,o)
(C’,0")}. Therefore, Wy = Wh.

“lﬁ wiﬁ

Definition H.6. Level(C, o, p,n) def T, 0"). p,where (C,0) L(C,0").
©

Definition H.7. Level(C, p, p, )d—ef Eg~p{Level(C,o,p,n)}

Lemma 58. For alln,C,o,¢, Level(C,o,p,n) 2l Level(C,0,p,n + 1).

Proof. by induction on n.

— base case: n = 0.

Level(C, o, ¢,0)
= \(C',0"). p,where (C,0) 52(C’,0")
©

T, o) 1, fC'=CAd' =0
= ,o').
0, otherwise

=§(C, o).
Level(C, 0, p,1)
= \NC, o). p,where (C,0) %1(@,0)
= \NC, o). p,where (C,0) ﬁ) (C,d)
=AMC,0). 3¢, .6, {0(C,0)(Cr,01) - p | (C,0) ;0] (€0}
= AC0). Sy (L€, 0)(Ca0) 9| (€10) o (€):

p
p

Therefore Level(C, o, ¢, 0) 2l Level(C,0,p,1).



— inductive case: n = k + 1.
IH: for all C, 0, ¢, Level(C, o, v, k) 2l Level(C,0,p,k + 1).
By IH we have for all C,a, ¢, C’, o,
Level(C, 0,0, k+1)(C',0") = Y ¢, , {Level(C,0,¢,k)(Cy,01)-p | (C1,01) %
’ ¥
(C,0")}.

By definition of Schedule there exists ¢ and ¢’ such that p =t :: ¢'.

Level(C,0,p,n + 1)
= Level(C,o,t :: ¢’ k + 2)
= AT, 0"). p,where (C,0) —2=*+2(C’,0")

tip!
)‘((CI7U/)' Z(Cl al{pl * P2 ‘ ((C,O') p%) (Claal) A ((C1,0’1) p—2>k+1((cl7a/)}
E) <Pl

( )- X¢; 0y {P1 - Level(Ca, 01, ¢ k +1)(C',0) | (C,0) £ (C1,01)}
(C,0"). g, o dm .Zc,lyai{Level((Chcn,tp/,k)( 1,01) - p| (Cy,oh) ﬁ (C', "} ] (C,0) pT1> (Cq,01)}
( ) chlvai {ch,zn {pl : Level(@hal,tp/,k)( /170/1) | ((C,O’) ptl (leal)} p | 1701) o[ ((C/ /)}
( )

- 2o {220, 0y P P2 | (C0) p—1> (C1,01) A (Cy,01) %k( 100} p|(Ci,o0) %Ucf (C,0")}

’

=MC",0"). Yo o1 {p P | (C,0) —>k+1( 1,01) A (Ch, 01) % (Ca")}
! @’
= \C',d"). Zc’l Ui{Level((C,U,t 2@ k+1)(Cho1) - p| (C,o1) %) (€, o)}
£ LP/
= )‘(Cl70/)' Zc’l,aﬁ{l’evel(cva’ @»n)( ,150—1) p ‘ ( lagl) (an] (6170/)}'

Therefore Level(C, o, ¢, n) ol Level(C,0,p,n 4+ 1).
Lemma 59. For alln,C, pu,p, Level(C, u, o, n) el Level(C, p, o, m + 1).

Proof. For all n,C, p, u, by Lem. we know for all o, Level(C,o,¢p,n) ~»
Level(C, o, p,n+1), so for all C’, o', Level(C, o, ¢, n+1)(C’,0’) = ZCI’UI{Level((C, a,0,n)(Cy,01)-
p|(Cy,01) % (C',0")}, thus

pln

Level(C, p, o,m + 1)
=Ey~, {Level(C,o,p,n+1)}
= )\((C’ a'). >, (o) - Level(C, o, p,n+1)(C',0")
C/’ ! Zcr IU‘(U) . ZC1,¢71 {Level((C, g, ¢, n)((cla Ul) P | ((Cl? 01) %) ((Clv J/)}
eln

AT, 0").
= N(C,0"). S, o {5, 1(0) - Level(C, 0, p,0)(C1, 1) - p | (C1,04) [—> (©,o')}
= MC,0"). 2o, o0, {Bonp{Level(C, 0, 0,m)}HCry01) - p | (Cry00) — [ (C,0")}
)‘((C/’UI) ZCl,ol{Level(Cvﬂv(p»n)((clval) D l ((Chal) ﬁ (Clval)}'

Therefore Level(C, u, o, n) 2l Level(C, p, 0,m + 1).



N
Lemma 60. For all C u,go, , if Nosplit(C) and History(init(C, u), o, W),
then for all n, W[n] = Level(C, u, p,n).

o

Proof. For all C, u, o, W such that Nosplit(C) and Hlstory(zmt((c ), e, W),
—/ — —/

there exists t, ', W such that ¢ =t :: ¢/, W = init(C, u) = W, init(C, pu) —

— ! —
W' and History (W', o', W ). we prove W[n] = Level(C, i, p,n) for all n by
induction on n.

- kle}se case: n = 0.
WI0] = init(C, u) = 6(C) @ u, and

Level(C, p1, ¢, 0)

= A(C, ') Yo {u(o) - p | (C,0) 20T, 0")}
=XNC,d"). Y {nlo) - p|C=CAro=0"Ap=1}
= AT, 0"). §(C)(CT) - (o)
=4(C) ® p.

—
so W[0] = Level(C, p1, ¢, 0).
- induguive case:n =k + 1.
IH: W[k] = Level(C, u, ¢, k
From Nosplit(C) by lem. |56/ we know Nosplit(init(C, 11)). From History (init(C, u), ¢, W

= olk] 7 o[k
by Lem. |30|we know W k] ~ W[k+1]. By Lem.|59|we know Level(C, i, ¢, k) ~>

—
Level(C, p, ¢, k+1), by IH we have W k] ekl Level(C, pu, o, k+1). By Lem.
—
we know Wk + 1] = Level(C, p, o, k + 1).

Lemma 61. For all W and t, there exists W' such that W Lwe

Proof. Let W' € NC,0"). S {p-W(C.0) ]| (C,0) % (C',0")}, by definition

of ~» we know W ~5 W".

Lemma 62. For all W and b, [Pr(b)]y sty = Pr(c,o)ow o = b].

Proof. For all W and b, by Lem. [3| we know [Pr(b)]y (statey = Pr Ly (state) [0 =
b =

Prco)wlo = b].

Lemma 63. For all W and b, W, ezists if and only if [Pr(b)]y (starey > 0.
Proof. For all W and b, by deﬁnition of W|, we know W/, exists if and only
if Wlx(c,0). opb exists. By Eqn. [2.2) we know W|x(c,0). s=p exists if and only if

Prco)~wlo = b] > 0. By Lem. . we know Prc ,)~w[o = b > 0 if and only
if [Pr(b)]yy (statey > 0. Therefore, W], exists if and only if [Pr(b)]y (statey > 0.



Lemma 64. For allW andby, ..., by, if validsplit(split(by, ..., b)), then Zle[[Pr(bi)]]mem) =
1.

Proof. For all W and by, ..., by such that validsplit(split(by,...,bx)), we know
forall o,Vi,j.i#j = —(cEb Ao =b;)and o =01 V... by, thus

S 1 [Pr(b:)ystere
= Zle Pro.NW(State) [0’ ': bz]
= Pro-NW(State) [(0’ ': bl) VeV (J ': bk)] (by Lem.
= Pro-NW(Sta.te) [0’ ): byv---V bk}
=2 AW (0) [o by V-V b}
_ ZU W(State) (0.)

_ |W(State)|
=1.

Lemma 65. For allW andby, ..., by, if validsplit(split(by, ..., by)), then there
exists i such that Wy, exists.

Proof. For all W and by, ..., by, such that validsplit(split(by, ..., b)), by Lem.
we need to prove there exists ¢ such that [Pr(b;)]yy(statey > 0. We prove it by
contradiction. Assume there is no ¢ such that [Pr(b;)]y (statey > 0, i.e., for all 4,

[Pr(b;)] sty = 0, then Zle[[Pr(bi)]]W(swte) = 0. From validsplit(split(by, ..., bx))
by Lem. we know Zle [Pr(b;)]wstatey = 1, which contradicts with Ele [Pr(b:)]w (state) =
1. Therefore, there exists ¢ such that [Pr(b;)]y (stater > 0.

Lemma 66. For all W and t, there exists W' such that W Sw,

Proof. For all W and ¢, by Lem. 61| we know there exists W such that W~ W

It is obvious that #nextsplit(W) = 1V #neaxtsplit(W) > 1. We prove the two
cases respectively.

- case 1: #nextsplit(W) = 1.
There exists b1, ..., b, such that nextsplit(W) = {split(by,...,b;)} and
validsplit(split(by,...,bx)).
By Lem. 65| we know there exists ¢ such that W"'|;, exists. Let W’ Ly bis
from W -5 W, nextsplit(W) = {split(bi,. .., by)}, validsplit(split(by, . .., bx))

and Wy, = W' we know W <5 W".
- case 2: #nextsplit(W) > 1.
From W ~5 W” and #nextsplit(W) > 1 we have W S W Let w4 w”,

then W <& W',

—

5
Lemma 67. For all Wy and ¢, there exists W such that History(Wy, o, W).



Proof. by coinduction. From the definition of Schedule, there ex1sts t and ¢’
such that ¢ = ¢ :: ¢'. By Lem. [66] there exists W; such that Wy < Wi. By

c01nduct10n hypothebls there eixsts W1 such that Hlstory(W1 lb:5 ¢, Wl) From

Wo <5 Wi, (Wo,t = ¢, Wo = W1). Let W < Wy :: W, then

—

History (Wy, ¢, W).

Lemma 68. Forall P,C,Q, if Ea {P}C{Q} and Nosplit(C), then = {P}C{Q}.

Proof. For all P,C,Q such that =4 {P}C{Q} and Nosplit(C), by Lem. [{4] we

know =4/ {P}C{Q}. We need to prove for all ; and ¢ such that y = P and
—

[[Cly (1) = 1, then [C], (1) = Q. By Lem. @We know there exists W such that

— —
History (init(C, u), ¢, W). By Lem. |60| we have Vn. W(n] = Level(C, u, ¢, n).
(Prog)

N
Therefore Vn. Wn] (skip || --- || skip) = Level(C, u, 0,n) ™) (skip ||
- || skip), so
—  (Prog)
lim W] (skip | --- | skip)
= lim Level(C, u, ,n) T (skip || - -- || skip)
n—r00
= lim ), Level(C, u, p,n)(skip || - - - || skip,o”’)
n—00
= lim Y, Eoupulp | (C,0) & (skip | --- || skip,o”)]
n—oo ©
=Y Jim Eovyp| (C.0) 2 (skip | --- | skip,o”)]
= ¥ Egnyllim p | (C0) L7(skip | - - | skip, o)
n— o0 %)
= 2o Bonu[[Cle () (0")]
= 2o Erep{[Cle(0)}(o")
=2 [Clo (1) (o)
= [[Cle(w)]
=1.
— —
From Vn. W(n] = Level(C, p, p,n) we know Yo', n. Wn](skip || --- || skip, o’) =
Level(C, p, o, n)(skip || - - - || skip, o), so
—
lim Wn](skip || --- || skip,o’)
n— oo
=l Level(C, p, i, n)(skip || - | skip, o')
n— oo
= lim E,u[p | (C,0) " (skip | --- || skip, o")]
n—o00 ©
=Eonpl lim p | (C,0) 2 (skip || -~ | skip, o")]
n— oo ©
= Eou[[Cle(0)(0")]
= Eoriu{[Clp (o)} (o)

= [Cle(1)(o")



holds for all ¢”.
Therefore init(C, 1) §, [C]y(p). From g = P and =y {P}C{Q} we know

[Cle(w) = Q-

Lemma 69. For all C,0,C",0’,p, if (RemoveSplit(C),o) & (C',0’), then
there exists unique C"' such that (C, o) 2 (C",¢') A C' = RemoveSplit(C").

Proof. by induction on the structure of C.

- case 1: C' = skip.
RemoveSplit(C) = skip. From (RemoveSplit(C), o) £ (€7, ') we know
C" = skip,o’ = o,p = 1. Let C” def skip, so RemoveSplit(C") = skip =
.
From (skip, o) EN (skip, o) we have (C,0) & (C”,0").
-case2: C=zx:=e.
RemoveSplit(C) = z := e. From (RemoveSplit(C),s) & (C’,0') we
know
C' =skip,0’ = o{x ~ [e]s},p = 1. Let C” def skip, so RemoveSplit(C") =
skip = C".
From (z :=e,0) EN (skip, o{z ~ [e],}) we have (C,o) & (C”,o").
- case 3: C' = C4;Cs.
TH: For all o, ", o, p, if (RemoveSplit(C}), o) 2 (C’,¢"), then there exists
unique C” such that (C1,0) 2 (C”,0') A C' = RemoveSplit(C”).
It is obvious that C7 = skipV ] # skip, we prove the two cases respectively.
* case 3.1: O = skip.
RemoveSplit(C) = RemoveSplit(skip; Cy) = skip; RemoveSplit(Cs).
From (RemoveSplit(C),s) & (C’, ') we know €’ = RemoveSplit(C,), o’ =
o,p=1.
Let C" %' ¢y, so RemoveSplit(C”) = RemoveSplit(Cy) = C".
From (skip; Cs, o) EN (Cy,0) we have (C,0) 2 (C”,d").
* case 3.2: C # skip.
RemoveSplit(C) = RemoveSplit(C}; C2) = RemoveSplit(C}); RemoveSplit(Cy).
From C; # skip we know RemoveSplit(C}) # skip. From (RemoveSplit(C), o) %
(C', o) we know there exists unique C] such that C’ = C7; RemoveSplit(Cs)
and
(RemoveSplit(Cy),0) & (C}, "), by TH there exists unique C} such
that
(C1,0) & (CY,0") A C' = RemoveSplit(CY).
Let " & CY'; Cq, 30 RemoveSplit(C"”) = RemoveSplit(C}); RemoveSplit(Cs) =

C1; RemoveSplit(Cy) = C'.
From (Cy,0) & (C},0’) and C # skip we have (Cy; Cy, 0) 2 (CV'; Ca, 0"),
so (C,0) & (C”,0").



- case 4: C = if (b) then C else Cs.
RemoveSplit(C) = if (b) then RemoveSplit(C;) else RemoveSplit(Cy).

It is obvious that [b], = tt V [b], = ff, we prove the two cases respectively.
* case 4.1: [b], = tt.

From (RemoveSplit(C), o) & (C’,¢’) we know €' = RemoveSplit(C ), o’ =
o,p=1. Let C” def C1, so RemoveSplit(C”) = RemoveSplit(C;) =
C’. From [b], = tt we know (if (b) then C; else Cs,0) EN (C1,0), so
(C,0) L (C”,a").

* case 4.2: [b], = .
From (RemoveSplit(C),0) & (C’, 0’) we know €’ = RemoveSplit(C,), 0’ =
o,p=1. Let C” def C3, so RemoveSplit(C”) = RemoveSplit(Cs) =
C’. From [b], = ff we know (if (b) then C; else Cs,0) = (Ca,0), so
(C,0) L (C”, 0.

- case 5: C'= while (b) do C.
RemoveSplit(C) = while (b)) do RemoveSplit(C).

It is obvious that [b], = tt V [b], = ff, we prove the two cases respectively.
* case 5.1: [b], = tt.

From (RemoveSplit(C),s) & (C’,0’) we know
C’ = RemoveSplit(C;); while (b) do RemoveSplit(C}),0’ = o,p =
1.
Let " %' C1; while (b) do C1, so RemoveSplit(C") =
RemoveSplit(C;); while (b) do RemoveSplit(Cy) = C".
From [b], = tt we know (while (b) do C1, o) EN (Cy; while (b) do C1,0),
so (C,0) & (C”,0").
* case 5.2: [b], =1L
From (RemoveSplit(C), o) kN (C',0’) we know C’ = skip,o’ =0,p =
1.
Let ¢ skip, so RemoveSplit(C") = skip.
From [b], = ff we know (while (b) do C1,0) & (skip, ), so (C, o) 2
(c”,o").
- case 6: C' = (Ch).
RemoveSplit(C) = (C;) = C. From (RemoveSplit(C), o) & (C’,0") we
know C’ = skip. Let C” def skip, then RemoveSplit(C") = skip = C’ and
(C,0) L (C”, 0.
- case 7: C' = (C4) sp.
RemoveSplit(C) = (C}). From (RemoveSplit(C), o) 2 (C’,0") we know
C' = skip,
so ((C1),0) & (skip,o’). Let C” def skip, then RemoveSplit(C") =
skip = C'.
From ((C1),0) & (skip, o’) we know ((C}) sp, o) & (skip,d’), so (C,0) &
(c” o).
- case 8: C'= (C1) ®p (Ca).
RemoveSplit(C) = (C}) @, (C2) = C. From (RemoveSplit(C),s) %



(C',0") we know
C'={C))Ap=p Ao’ =cor C'"=(Co)Ap=1—p' No' =0.
We prove the two cases respectively.
*case 8.1: ' = (C1) Ap=p Ao’ =o0.
Let C” = (C1), then RemoveSplit(C”) = (C;) = C'. From ((C4) &

(Cs),0) 2, ((C1),0) we know (C, o) 2 (C”,0").
*case 8.1: ' =(Co) Ap=1—p No' =o0.
Let C” = (C3), then RemoveSplit(C”) = (C) = C’. From ((C4) &y

(Cs),0) N ((C1), o) we know (C,a) 2 (C”,0").

|

Lemma 70. For all C,0,C", 0, p, if (C,0) 2, (C',0’), then
(RemoveSplit(C), o) £ (RemoveSplit(C’),d’).

Proof. by induction on the derivation of (C, o) £ (C”,0").

-case 1: C =C' =skip,c=0',p=1.
RemoveSplit(C) = RemoveSplit(C’) = skip.
From (skip, o) L (skip, o) we know (RemoveSplit(C),s) £ (RemoveSplit(C’), o").

- case 2: C =z :=e,C’ =skip,0’ =c{z ~ [e],},p=1.

RemoveSplit(C) = x := e. RemoveSplit(C’) = skip.
From (z :=e,0) EN (skip, o{z ~ [e]s}) we know
(RemoveSplit(C), o) £ (RemoveSplit(C’), o).

- case 3: C = skip; 05, 0" =Cy,0 =0',p=1.

RemoveSplit(C) = skip; RemoveSplit(C5). RemoveSplit(C’) = RemoveSplit(Cs).
From (skip; RemoveSplit(C5), o) L (RemoveSplit(Cs), o) we know
(RemoveSplit(C), o) £ (RemoveSplit(C’),d’).

- case 4: C'= C; Ca, Cy # skip, C" = C}; Cy, (C1,0) & (C}, o).

IH: (RemoveSplit(C}), o) & (RemoveSplit(C}), o).

RemoveSplit(C') = RemoveSplit(C}); RemoveSplit(Cs).

RemoveSplit(C’) = RemoveSplit(C}); RemoveSplit(Cs).

From C4 # skip we know RemoveSplit(C;) # skip.

From (RemoveSplit(C)),o) 2 (RemoveSplit(C}), o’) we know

(RemoveSplit(C; ); RemoveSplit(Cs), o) 2 (RemoveSplit(C}); RemoveSplit(Cs), o),
S0

(RemoveSplit(C), o) & (RemoveSplit(C”), o).

- case 5: C = if (b) then C; else Cy, [b], = tt,C' = C1,0' =0,p = 1.
RemoveSplit(C) = if (b) then RemoveSplit(C;) else RemoveSplit(Cy).
RemoveSplit(C’) = RemoveSplit(Ch).

From [[b], = tt we know

(if (b) then RemoveSplit(C}) else RemoveSplit(Cs), o) L (RemoveSplit(Cy), o),
S0

(RemoveSplit(C), o) & (RemoveSplit(C’), o).

- case 6: C = if (b) then Cy else Cs, [b], =ff,C' = Cy,0' =0,p=1.
RemoveSplit(C) = if (b) then RemoveSplit(C}) else RemoveSplit(Cs).



RemoveSplit(C’') = RemoveSplit(Cs).
From [b], = ff we know
(if (b) then RemoveSplit(C}) else RemoveSplit(Cy), o) EN (RemoveSplit(Cs), o),
S0
(RemoveSplit(C), o) & (RemoveSplit(C”), o).
- case 7: C = while (b) do C4,[b], = tt,C’ = Cy;while (b) do Cy,0’ =
o,p=1.
RemoveSplit(C) = while (b) do RemoveSplit(C).
RemoveSplit(C’') = RemoveSplit(C}); while (b) do RemoveSplit(Ch).
From [b], = tt we know
(while (b) do RemoveSplit(C}), o) EN (RemoveSplit(C); while (b) do RemoveSplit(C,), o),
so (RemoveSplit(C), o) & (RemoveSplit(C’), o).
- case 8 C' = while (b) do C1, [b], = ff,C' = skip,0’ =0,p = 1.
RemoveSplit(C) = while (b) do RemoveSplit(C).
RemoveSplit(C’) = skip;.
From [b], = ff we know (while (b) do RemoveSplit(C}),0) EN (skip, o),
so (RemoveSplit(C), o) £ (RemoveSplit(C’), o).
- case 9: C' = (C1),C" = skip.
RemoveSplit(C) = (Cy) = C. RemoveSplit(C’) = skip = C’.
From (C,0) 2 (C’, o) we know (RemoveSplit(C), ) £ (RemoveSplit(C’), o").
- case 10: C = (C}) sp, C" = skip, ((C1),0) & (skip, o’).
RemoveSplit(C) = (C1). RemoveSplit(C’) = skip.
From ((C),0) % (skip, ¢’) we know (RemoveSplit(C),s) % (RemoveSplit(C’), o).
- case 11: C' = (C1) ®p (Ca),C" = (Ch),0 =0",p=7p'.
RemoveSplit(C) = (C1) &, (C2). RemoveSplit(C’) = (C4).

From ((C}) @, (Cy),0) £+ ((C1),0) we know (RemoveSplit(C),o) &
(RemoveSplit(C'), o).

- case 12: C = (Ch) @y (C2),C" = (Cy),0 =o', p=1—p'.
RemoveSplit(C) = (C1) @, (C2). RemoveSplit(C’) = (Cy).

From ((C1) &, (C2),0) N ((C5), ) we know (RemoveSplit(C), o) 2
(RemoveSplit(C’), o’).

Lemma 71. For all t,C,0,C’ o', p, (RemoveSplit(C), o) % (C',0") iff there

exists unique C" such that (C,0) % (C”,0") ANC' = RemoveSplit(C").

Proof. First we prove if (RemoveSplit(C),o) % (C',0’), then there exists
unique C” such that (C,o) % (C",6") N C' = RemoveSplit(C”). By defi-

nition of Prog, there exists unique C1,...,C, such that C = Cy || -+ || Ch,
so RemoveSplit(C) = RemoveSplit(Cy) || --- || RemoveSplit(C,). From
RemoveSplit(Cy) || --- || RemoveSplit(C),) % (C',0") we know there exists
unique C; such that C' = RemoveSplit(Cy) || - - - | RemoveSplit(C;_1) || C; ||

RemoveSplit(Cyy1) | - - - || RemoveSplit(C),) and (RemoveSplit(C;), o) £



(C;,0"). By Lem. we know there exists unique C/ such that (Cy,0) 2

(CV,0") A C! = RemoveSplit(C!'). Let C" < ¢y | -+ | Gy || CF |
Cerr |+ | Cn. From (Cr,0) % (Cf,0") we know (Cy || -+ || Cnyo) 2
C1ll -l Ceer 1CY || Crga | -+ || Cny ), ie., (C0) 25 (C”,0"). From Cf =
RemoveSplit(C"”)
— RemoveSplit(Cy || -+ | Co s || G} || Copa ||+ || Cn)
= RemoveSplit(Cy) || - - - || RemoveSplit(C;_1) || RemoveSplit(C}') ||
RemoveSplit(C}') we know RemoveSplit(Ciy1) || - - - || RemoveSplit(C,,)
= RemoveSplit(C}) || - - - || RemoveSplit(C;_1) || C} ||
RemoveSplit(Ci1) || - - - || RemoveSplit(C,,)
=C.
P

Then we prove if there exists unique C” such that (C, o) > (C"6") A
C’ = RemoveSplit(C”), then (RemoveSplit(C), o) % (C',0"). From (C, 0) %

(C",0") we know there exists C1,...,Cy,C} such that C = Cy || --- || Ch,
C'=Ci |- | Cma | CF || Crga || -+ || G and (C,0) 2> (C,0"). From
C=0C1| - || Cn we know RemoveSplit(C) = RemoveSplit(Cy) || --- ||
RemoveSplit(C,,). From C" = C || -+ || Coe1 | CF || Cega || -+ || Cn we
know RemoveSplit(C”) = RemoveSplit(Cy) | --- || RemoveSplit(C;_1) ||
RemoveSplit(C/') || RemoveSplit(Cii1) || -+ || RemoveSplit(C,,). From

(Ct,0) % (CY,0") by Lem. We have (RemoveSplit(C;), o) &
(RemoveSplit(C}'), '), so (RemoveSplit(C), o) % (RemoveSplit(C"), ¢’).
From C’ = RemoveSplit(C"”) we know (RemoveSplit(C), o) % (C,d").

Lemma 72. For all n,¢,C,0,0’,p, (RemoveSplit(C),o) L "(skip | --- ||
©

skip,0’) <= (C,0) B (skip || --- || skip,o’).
©

Proof. by induction on n.

- base case: n = 0.

(RemoveSplit(C), o) %O(skip Il - | skip, o’)
<= (RemoveSplit(C) =skip | --- || skipAc=0d"Ap=1)V
((RemoveSplit(C) # skip || --- || skip Vo # o') Ap=10)
< (C=skip | ---||skipAoc=0d"Ap=1)V
((C # skip | || skip Vo £ ') Ap = 0)
<~ (C,0) %O(skip | -+ | skip, o’)

- inductive case: n = k + 1. IH: For all ¢, C, o, 0’, p, (RemoveSplit(C), o) 2
©

k(skip || --- || skip,0’) <= (C,0) %k(skip | - || skip, o’).



By definition of Schedule, there exists t and ¢’ that o =t :: ¢'.

(RemoveSplit(C), o) %"(skip | --- | skip, o)
<= (RemoveSplit(C), o) z%ﬁk“(skip | --- | skip, o’)
= p= T lprp2 | (RemoveSPIit(C), o) 25 (C',0") A (€' 0”) 2 (skip | - | skip, ")}
= p=2w ip1-p2|3C". (C, o) 5 (C”,6") AT’ = RemoveSplit(C”) A
(c, ") P2 k(Sklp | --- | skip,o’)} (by Lem. .
= p=2er o ipr-p2 | (C ) = (C”,0") A (RemoveSplit(C"), o) ZQ =2 (skip | -+ || skip, o)}
= p=cnen{prp2 | (C0) 25 (C7,0") A(C",0") 1;2 2k (skip || -- - || skip,o')}  (by IH)
— (C,0) t‘;ﬁkH(Skip [ Sklp, )
< (C,0) =" (skip || - - || skip, o)

©

Lemma 73. For all C,o, [RemoveSplit(C)], (o) = [C],(0).

Proof. For any C, o, we have

[RemoveSplit(C)], (o)
= Ao’. lim p, where Vn. (RemoveSplit(C), o) M>"(skip | --- | skip,o’) (by definition)
= Ao’. lim p, where Vn. (C,0) M>"(skip | --- | skip,o’) (by Lem.
®

= [C],(0) (by definition)
Lemma 74. For all C, 1, [RemoveSplit(C)], (1) = [Cly ().
Proof. For any C, i, we have

[RemoveSplit(C)], (1)
= E,~.{[RemoveSplit(C)], (o)} (by definition)

=Eor{[Cl(0)} (by Lem. [73)
= [C], (1) (by definition)

Lemma 75. Forall P,C,Q, if = {P}RemoveSplit(C){Q}, then = {P}C{Q}.

Proof. For any P, C, Q such that = { P}RemoveSplit(C){Q}, we need to prove

for all v and ¢, if p = P and |[C],(p)| = 1, then [C],(1) = Q. By Lem.
we know [RemoveSplit(C)], (1) = [C], (1), so |[RemoveSplit(C)], (1) =

[[C]y,(p)| = 1. From p1 = P and |= { P}RemoveSplit(C){Q} we have [RemoveSplit(C)],(u) =
Q; so [Clep(p) = Q.

H.3 Proof of Theorem [5.1]

Proof (Proof of Theorem[5.1]). For any P,C, Q such that -, {P}C{Q}, we prove
=4 {P}C{Q} by induction on the derivation of -, {P}C{Q}.



— case (P-cSQ): P = Py, H, {P1}C{Q:1} and Q1 = Q.

From +, {P;}C{Q1} by induction hypothesis we have =, {P;}C{Q1}. From
P = P and @ = Q by Lem. [157| we know =, {P}C{Q}.

— case (BIGCONJ): P=P A AP, Q=Q1 A---ANQp, bo {P1}C{Q1}, ...,
Fa {P.}C{Qn}-

From F, {P1}C{Q1}, ..., Fx {P,}C{Q,} by induction hypothesis we have
= APICQ1}, . on {P2}CT{Qu ). By Lem. [T58 we know =, {P A+ A
Pn}(C{Ql ARERRA Qn}v Le., ):A {P}C{Q}

— case (BIGDIS]): P=P,V---VP,, Q=Q1V -V Qn, Fa {PL}C{Q1}, ...,
Fa {P.}C{Qn}.

From ., {P1}C{Q1}, ..., Fa {P,}C{Q,} by induction hypothesis we have
= APICQ1}, . on {P2}T{Qu ). By Lem. [[59] we know =, {P V-V
P IC{Q1V -V Qu}, ie, Ei {PIC{Q}.

— case (REMOVESPLIT): C' = RemoveSplit(C’), -, {P}C'{Q} and closed(Q).
From F, {P}C’{Q} by induction hypothesis we have =, {P}C'{Q}. From
closed(Q) by Lem. we know =, {P}RemoveSplit(C'){Q}, ie., 4
(PYC{Q}.

— case (LAZYCOIN): k-, {P}lazycoin(C){Q}.

From I, {P}azycoin(C){Q} by Lem.[156we have =, {P}lazycoin(C){Q}.

—case (PAR): C=C1 || -+ | Cp, P= P N APy, Q1 N+ ANQy, = Q,
Rl,Gl,I F st {Pl}Cl{Ql}; PN Rn,Gn,I F st {Pn}C’l{Qn}, Gj = R; for
all i # j, lclosed(]), Iclosed(Q1), ..., lclosed(Q,,). From Ry, G1,1I bFysr
{P1}C1{Q1}, ..., Rn, Gn, I Fysr {Pn}C1{Qy} by Lem. [304|we know Ry, G1, 1 Eysr
{P1}C1{Q@Q1}, ..., RnyGn, I st {Pn}C1{@n}. By Lem. we have =,
{P}azycoin(C){Q}.

The remainder of this section gives the proofs of the lemmas used in the
proof of Theorem

Definition H.8. Given W, ¢, I" such that History,(1, W, ¢, I'). Let s be an in-
finite sequence of natural numbers. We write W |}, p if and only if lim traverse(T’, s,n) (Prog) (skip ||
n—oo

.-+ || skip) = 1 and Vo. lim traverse(I, s,n)(skip || - -- || skip, o) = p(o).
n—oo

Definition H.9. =41 {P}C{Q} iff for all u, if 4 |= P, then for all ¢, s, and
'y if inat(C, ) U3, 1/, then p' = Q.

Lemma 76. For allp, W, p, T, s, if Historyy(p, W, ¢, I'), then History(W, ¢, An.traverse(I’, s,n)).

Proof. by coinduction. For all p, W, ¢, I', s such that History(p, W, ¢, I"), there
are two cases.

—@ =1ty I'="Tree(p,W,Iy,....,I%), W AN W', nextsplit(W,t) = {sp},
splitter(W', sp) = {(Wo,p0), - - -, (Wi, px) } and Vi. History(p-p;, Wi, ¢, I}).
It is obvious that there exists m and s’ such that s = m :: s’ and m < k. From
WL W' and #nextsplit(W,t) > 1 we know W L W, from History(p -



splitter(W, sp) = {(Wls,, [Pr(b) ]y csiee) | 1 < i < k A [PE(B)yy sierer > O}, where sp = split (b, .., bi)

r u= Tree(p, W, Iy, ..., I%) (coinductive)
s n=nus (coinductive)
w, if I' = Tree(p, W, Iy,..., k) An=20
traverse(I', s,n) €of traverse(Iy,, s’ ,n'), if I' = Tree(p,W,Io,....,lkx)As=m:=us An=n"+1Am<k
undefined, if ' = Tree(p, W, Io,...,Ix)As=m:=s An=n"+1Am >k
2€T0S 10 22 zeros
D, if I' = Tree(p, W, Io,...,I[) An=0A s = zeros
det J O, if I' = Tree(p, W, Io,...,I%) Amn=0As# zeros
prob(I,s,n) = )
prob(L,,s',n'), if ' = Tree(p,W,Ip,...,Ix)As=m:=sAn=n"+1Am<k
undefined, if I' = Tree(p, W, Ip,...,Ix)As=m:=s An=n"+1Am>k

W S W' nextsplit(W, t) = {sp} splitter(W', sp) = {(Wo,po), ..., Wk, pr)} Vi. History(p - pi, Wi, o, )

HiStoryT(p, VV7 t: 2 Tree(p, VV7 F07 sy Fk))
WL w #nextsplit(W, t) > 1 History,(p, W', ¢, I

Historyr(p, W,t :: ¢, Tree(p, W, I"))

Fig. 33: Auxiliary Definitions in Def.

Dy Win, @'y I'y,)) by coinduction hypothesis we know History (W,,,, ', An.traverse(I”, s,n)),
thus History(W,t :: ¢/, W :: An.traverse(L,, s',n)). From ¢ =t :: ¢’ and

An.traverse(I', s,n)
= An.traverse(Tree(p, W, Iy, ..., I}),m :: s',n)
W, ifn=0
= \n. ]
traverse(Lm,s',n'), ifn=n"+1

=W :: An.traverse(Iy,, s',n)

we know History (W, ¢, An.traverse(I, s,n)).
—p =t ¢, ' = Tree(p,W,I"), W A W', #nextsplit(W,t) > 1 and
HiStOI‘yT(p, W/a 50/7]1/)'

It is obvious that there exists s’ such that s = 0 :: s'. From W ~>» W' and
#nextsplit(W,t) > 1 we know W <y W', From History(p, W', ¢, I") by
coinduction hypothesis we know History (W', ', An.traverse(I"”, s,n)), thus
History(W,t :: ', W :: An.traverse(I”,s',n)). From ¢ =t :: ¢’ and

An.traverse(I, s,n)
= An.traverse(Tree(p, W, I"),0 :: §',n)
W, ifn=20
= \n. .
traverse(I",s',n'), ifn=n"+1
=W = An.traverse(I”, s',n)



we know History(W, ¢, An.traverse(I, s,n)).
Lemma 77. For all W, ¢, s, pu, of W L5 u, then W U;, .
Proof. For all W, ¢, s, u such that W |2 u, by Def. [H.8| we know there exists I"

such that History,(1, W, p, I'), Jim traverse(T', s,n)T "9 (skip || - - || skip) =

1 and

Vo. nh_)rrgo traverse(I, s,n)(skip || - - - || skip, o) = (o). From History (1, W, ¢, I')

by Lem. 76| we know History (W, ¢, An.traverse(I, s,n)). From lim_ traverse(I, s,n) ™9 (skip |
.-+ |l skip) = 1 and Vo. nh%rrgo traverse(I, s,n)(skip || --- || skip,o) = u(o) we

know W |}, p.

Lemma 78. For all P,C,Q, if Ex {P}C{Q} then E=ar {P}C{Q}.

Proof. For all P,C,Q such that =, {P}C{Q}, we need to prove for all p, if
p = P, then for all ¢, s, and y/, if inat(C, 1) 4, ', then p/ = Q. For all i, ¢, s, i/
such that p = P and init(C, ) |, p', by Lem. we know init(C, ) I, p'.
From =, {P}C{Q} and p = P we know 1/ = Q.

Definition H.10. RemoveSplit(1V) 2o E(c,o)~w {0(RemoveSplit(C),0)}.

Lemma 79. For allWW, RemoveSplit(W) = A\(C, o). d(RemoveSplit(C’))(C)-
W(C', o).

Proof. For all W, we have

RemoveSplit(1V)
= E(¢,o/)~w{6(RemoveSplit(C’), o)}
=AC,0).> ¢, W(C',0") - 5(RemoveSplit(C'), o’)(C, o)
= X(C,0).> ¢ 6(RemoveSplit(C’))(C) - W(CT', o).

Lemma 80. For all C and p, RemoveSplit(init(C, 1)) = init(RemoveSplit(C), u).
Proof. For all C and p,

RemoveSplit(init(C, 1))
= RemoveSplit(46(C) ®@ )
= XNC',0").> v 6(RemoveSplit(C"))(C’)
= \NC,0’).> ¢/ 6(RemoveSplit(C"))(C)
= \C', ¢’). 6(RemoveSplit(C))(C') - u(o’)
= 6(RemoveSplit(C)) ® u
= init(RemoveSplit(C), u).

/

(5(C) @ u)(C",0")  (by Lem.
3(C)(C") - (o)

Lemma 81. For all p, W, ¢, there exists I' such that Historyy(p, W, ¢, I).

Proof. by coinduction. For all p, W, ¢, from the definition of Schedule, there
exists t and ¢’ such that ¢ =t :: ¢'. By Lem. there exists W’ such that

W & W', Tt is obvious that #Hnextsplit(W,t) = 1 or #nextsplit(W,t) > 1, we

prove the two cases respectively.



— Fnextsplit(W,t) = 1.
There exists by, ..., b, such that nextsplit(W) = {split(by,...,bx)} and
validsplit(split(by,...,bx)). By Lem. |65] we know there exists ¢ such that
W'|,, exists. By Lem. [63| we know [Pr(b;)] . (stace) > 0, thus splitter(W’, sp)
is not empty. It is obvious that splitter(WW’, sp) is finite, so there exists
Wo, po, - .., Wi, pr. such that
splitter(W', sp) = {(Wo,po), - - -» (Wi, pr) }-
By coinduction hypothesis there eixsts I, . .., [k such that Vi. History,(p-
Di, Wiv 9017 F’L)
From W -4 W7, nextsplit(W,t) = {sp} and splitter(W’, sp) = {(Wo,p0), - - -, Wk, px)}

we have History.(p, W, t :: ¢/, Tree(p, W, Iy, ..., I})). Let I’ def Tree(p, W, Iy, ..., I%),
then History,(p, W, ¢, I').
— Fnextsplit(W, t) > 1.
By coinduction hypothesis there eixsts I'” such that History(p, W', ¢', I').
From W ~5 W’ and #nextsplit(W,t) > 1 we have History,(p, W,t :

¢, Tree(p, W, I")). Let I" def Tree(p, W, I'"), then History(p, W, , I').

1, if P holds

Definition H.11. Let P be a Prop, x(P) = .
0, otherwise.

ol=b;)-W(C,o
Lemma 82. For all W,b,C 0, W|, = A(C’U)'WM'

Proof. For all W,b,C, o,

Wlp = MC, o). W|xc,o).o6(C,0)
_ W)
= )\((C, U). Pr(C,U)NW[O":b] } lf g l: b
0, otherwise

(c|=b)-W(C,0)
(C,0). 1z’cll‘(c,a)ww[¢7|=b]

A
(c|=b)- W (C,o)

Lemma 83. For all W, sp, if validsplit(sp) and splitter(W, sp) = {(Wo,p0)s - .., (Wi, Dk)},
then Zf:o p; =1 and for all C and o, W(C,0) = Zf:o pi - Wi(C o).

Proof. For all W, sp such that validsplit(sp) and splitter(W, sp) = {(Wo,p0), - - -, Wk, k) },
there exists by, ...,b, such that sp = split(by,...,b,). From validsplit(sp) by
Lem. We know Y"1, [Pr(b;)]yy(statey = 1. From splitter(W, sp) = {(Wo,po), ..., (Wi, pr)}

we know

{W 1, [Pr(bi)]wstare ) | 1 < i < nA[Pr(bi)]yy(statey > 0} = {(Wo,p0),- -, (Wi, pr)},
thus Zf:opi = Zi{[[Pr(bi)]]W(Smte) | 1 < ) < nA [[Pr(bi)]]w(smte) > O} =




S [Pr(b;)]wistaey = 1. For all C and o,

f:o bi- Wz((ca 0)
{HPr(bi)ﬂw(Stcxte) . W|bi (C,0) |1 <i<nA[Pr(b;)]wistaes > 0}

[Pr (b)) stee) - M% | 1< <nA[Pr(b:)]yeme >0} (by Lem.

b)) - W(C,0) |1 <i<nA[Pr(b)]ystaey > 0}

i) o) [1<i<nAPreowlof=b]>0}  (by Lem. [62)
) W(C,0) | 1<i<nA Y (W(C.0) | o b= b} > 0}

i) )1 <i<nAIC,0o.W(C,0) >0A0 b}

) )1<i<nA3IC,0.x(C,o) - W(C,o) >0}

,0) - 21 X(o = bi)

(C,0). (from validsplit(split(by,...,b;)))

Lemma 84. For all p,W, @, I', if Historyy(p, W,p, "), then prob(I,s,0) =
X(s = zeros) - p and traverse(I',s,0) = W for all s.

)

i
Ax(o E
Ax(o Eb) - W(C,
Ax(o E (CU
Ax(o Eb)-W(C, o
-{X(U W(C,o

b;
b;
b;
b;

@
Q

I
= =MMMMIM MM

Proof. For all p, W, ¢, I' such that History(p, W, ¢, I'), there are two cases.
—p=tuy, I =Tree(p,W,Iy,...,I}), W Low, nextsplit(W,t) = {sp},

splitter(W’, sp) = {(Wo,p0), - - ., Wk, pi)} and Vi. History(p-p;, Wi, ¢, I3).
For all s, prob(I, s,0) = prob(Tree(p, W, Iy, ..., Ik),s,0) = x(s = zeros) - p,
and traverse(I, s,0) = traverse(Tree(p, W, Iy, ..., I}),s,0) = W.

- =t ¢, I' = Tree(p, W,I"), W A W', #nextsplit(W,t) > 1 and

History(p, W', ¢, I").
For all s, prob(I, s,0) = prob(Tree(p, W,I"),s,0) = x(s = zeros) - p,
and traverse(I, s,0) = traverse(Tree(p, W, I"),s,0) = W.

Lemma 85. For allW, W' t, if W LW, then RemoveSplit(W) A RemoveSplit(W’).
Proof. For all W, W’ t such that W Lw , we have

MC,0"). > ¢ ,{RemoveSplit(W)(C,o) - p | (C,0) % (C,d")}
C',0"). > c.o 1> cn 6(RemoveSplit(C”))(C) - W(C",0) - p | (C,0) % (C,o")} (by Lem. [79)
C',0"). > ¢ o cni6(RemoveSplit (C”))(C) - W(C",0) - p | (C,0) % (C,0")}

(C,d')
(C,d')
(C,0")
(C, ). ZC,,’U{W((C”, o) -p| (RemoveSplit(C"), o) % (C,d")}
(C,d')
(C,d')
(C,d')
(C,0")

C,0"). Y e AW(C",0) - p|3C. (C",0) % (C,0') AC" = RemoveSplit(C)}  (by Lem.
Co"). 3 coc{W(C o) p|(C",0) % (C,0’") NC' = RemoveSplit(C)}

)

C',0"). > ¢ o cni6(RemoveSplit (C))(C') - W(C",0) - p | (C",0) % (C,0")}
C',0"). > ¢ 6(RemoveSplit(C))(C') - > cn ,{W(C",0) -p| (C",0) % (C,o")}
= XC',0'). > 6(RemoveSplit(C))(C’) - W'(C,o’) (by W & W)

= RemoveSplit(W"). (by Lem.

Q

A
A
A
A
A
A
A

Therefore, RemoveSplit(W) A RemoveSplit(W').



Lemma 86. Foralln, W, Wy,...,Wk,po,...,pk, t, W W§,...,W., if W = X(C, 0). Zf:opi'
W;i(C,0), W5 W' and Vi. W; ~5> W;, then W' = A(C, 5). Zf:opi -W!(C, o).

Proof. For all n,W,Wy,...,Wi,po,...,pk, t, W ,Wg,...,W/ sucht that W =
AC,0). Sk pi - WiC,0), W -5 W’ and Vi. W; ~> W, we have

= MC,0'). 3g AW(C,0) - p | (C,0) 5 (C,0")}
Z)\(C',U’) e A opi WilC,0) - p | (C, 0) 2 (C',0)}
= NC,0"). i pi - T o {Wi(C,0) - p | (C, o) 2 (C',0)}
= AT, o). Zz opi - Wi(C', ')

= \C, o). ZL oPi - W/(C,0o).

— = — —
Lemma 87. Foralln, W, Wq,...,Wg,po,...,0k, 0, W, Wo,...,Wy, if History(W, o, W),
—
W = AC,0). X1y pi - Wi(C,0), Nosplit(W), Vi. History(W;, o, W,) and
— —
Vi. Nosplit(W;), then W[n] = M(C, o). Y pi - Wi[n](C, o).

Proof. by induction on n.

— base case: n = 0. N . .
Forall W, Wy, ..., Wi, D0, -, Pk, 0, W, Wy, ..., Wi such that History (W, o, W),
—

Nosplit(W), W = A(C, o). Zf:o pi - Wi(C, o), Vi. History(W,, ¢, W;) and
Vi. Nosplit(W;),

—
from Hlstory(W ©, W) by Lem. we know W[O] = W. For all i, from
History (W;, ¢, W, ) by Lem. |5 We know W [0] = W,;. From W = X(C, o). Zf:o i
_>
Wi (C, o) we know W[ | = A(C, o). Zl oDi - W4[0](C, o).
— inductive case: n =n’ + 1.
- - — —
IH: for al W, Wy, ..., Wik, Do, - - -, Pk, 0, W, Wy, ..., Wy, if History (W, o, W),
—
Nosplit(W), W = A(C, 0). Zf oPi - Wi(C, o), Vi. History(W;, o, W;) and
Vi. Nosplit(W;), then W[ =
)‘(670)-21 obi- Z[ 'I(C, o).
- = — —
Forall W, Wy, ..., Wi, D0, -, Pk, 0, W, Wy, ..., Wi such that History (W, o, W),
—
Nosplit(W), W = X(C, 0). Zf:o pi - Wi(C, o), Vi. History(W;, ¢, W), and
Vi. Nosplit(W;),
— —/
from History(W, ¢, W) we know there exists t, o, W’ W such that o =t ::

_>/ s

o, W SN W', History (W', ', W ) and W W :: W . From Nosplit(WW)
and W <& W by Lem. we know W ~5 W' by Lem. we know
—

Nosplit(W'). For all 4, from History(W;, o, W) and ¢ =t :: ¢’ we know



—/ —/ —
there exists W/, W, such that W; < W/, History (W/, ¢’ 7W¢) and W,; =

7

W; :: W,. From Nosplit(W;) and W; < W/ by Lem. |4 Iwe know W; ~> W/,

by Lem . 3| we know Nospht(W’) From W = A(C, o). Zzzo pi - Wi(C, o),
W -5 W and Vi. Wi -5 W/ by Lem. [86( we know W' = A(C, o). Zf:opi .

’ N

W!(C, o). From History(W’, ¢ ,IX/ ), Nosplit(W’), . History(W’7 o W)
—/

and Vi. Nospllt(W’) by IH we know W [n'] = MC, o). Zf:o pi- W, [n'](C,0),
Ny

thus Wln] = (W = W )[ 1) = W) = MC,0). Xi_gpi - Wiln'](C,0) =

NC, ). 5 o pi - (Wi s W' +1)(C, o) = NC,0). 5o i - (W) ] (C, ).

— —
Lemma 88. For alln,W,p, W, I',p, if History(RemoveSplit(W), o, W) and

Historyy(p, W, ¢, ), then ﬁ/[n]((c, o)p = > 6(RemoveSplit(C'))(C)->
traverse(I, s,n)(C’, o) for all C and o.

prob(I', s,n)-

S

Proof. by induction on n.

— base case: n = 0.
For all W, o, W I', p such that History(RemoveSplit(W) ®, W) and History(p, W, ¢,

from History(RemoveSplit(W), ¢ ) by Lem. |5 . 0| we know W[ | = RemoveSplit(WW).

From History(p, W, o, I') by Lem [84] we know for all s, traverse(I, s,0) =
W and prob(I,s,0) = x(s = zeros) - p. For all C and o, we have

5
WIoI(C,0) - p

= RemoveSplit(W)(C,0) - p

= E(¢,0/)~w{6(RemoveSplit(C'),o")}(C, o) - p

= o W(C, o) - §(RemoveSplit(C'),o")(C,0) - p

= > = 6(RemoveSplit(C"))(C) -p- W(C', 0)

=Y 0(RemoveSplit(C"))(C) - x(zeros = zeros) - p - traverse(I’, zeros, 0)(C', o)

= > 6(RemoveSplit(C"))(C) - >°_ x(s = zeros) - p - traverse(I, s,0)(C’, o)

= > ¢ 6(RemoveSplit(C"))(C) - >~ prob(I s,0) - traverse(I, s,0)(C, o).

inductive case: n= n + 1.
IH: for all W, o, W, I', p, if History(RemoveSplit(WW), ¢, ) W) and History(p, W, p, '),

then ﬁ/[n’]((c, 0)p = > 6(RemoveSplit(C'))(C)->_, prob(I',s,n’)-traverse(I’, s,n")(C’,

for all C and . .
For all W, o, W, I', p such that History(RemoveSplit(W), p, W) and History(p, W, ¢,

—
from History(RemoveSplit(WW), o, W) we know there exists t, ¢', W such
—/ —
that ¢ =t :: ¢/, RemoveSplit(W) < W, History(W" ¢/, W ) and W =
Ny
RemoveSplit(W) :: W . It is obvious that Nosplit(RemoveSplit(1V)),

from RemoveSplit(W) N by Lem. 49| we know RemoveSplit(1) -
W". From History,(p, W, p, I'), there are two cases.

),

o)
),



o ['=Tree(p,W,Iy,...,I%), W ANA W', nextsplit(W, t) = {sp}, splitter(W’, sp) =

{(W07p0)7 SRR) (kapk)} and Vi. HiStOI‘yT(p * Di, Wia 90/3 Fl)
From W ~& W’ by Lem. [85we know RemoveSplit(WW) A RemoveSplit(W').

From RemoveSplit(W) ~ W by Lem.we know W"” = RemoveSplit(W’).
Ny N

From History(W", ¢, W ) we know History(RemoveSplit(W’'), o', W ).

From nextsplit(W, t) = {sp} we know validsplit(sp). From splitter(W’, sp) =

{(Wo,p0),--., (Wik,pr)} by Lem. we know W' = \(C, o). Z?:opi .
W;(C, o), thus

RemoveSplit(1W')
= MC,0).> ¢ 6(RemoveSplit(C'))(C) - W/(C', 0) (by Lem.
= )\(C o). Z@ §(RemoveSplit(C'))(C) - S5 pi - Wi(CT', o)
AC,0). Zl oPi - ¢ 6(RemoveSplit(C’))(C) - W;(C', o)
A(C, o). ZZ o Pi - RemoveSplit(IV;)(C, o). (by Lem.

)

— —
By Lem. We know for all 4, there exists W; such that History (RemoveSplit(W;), o', W;).

Ny
From W/ = )\(CJ).Z];:Opi- ;(C, o), History(RemoveSplit(W'), o', W ),
Nosplit(RemoveSplit(WW')) and Vi. Nosplit(RemoveSplit(W;)) by
Lem. [87 we know

— k —

W n] = A(C,0). Zi:opi -Wi[n](C, o). R

For all i, from History(RemoveSplit(W;), ', W;) and History,(p -
—

i, Wi, o', I;) by TH we know for all C and o, W;[n'|(C,0) - p-p; =
> 6(RemoveSplit(C"))(C)-> ", prob(I;, s,n’)-traverse(I;, s,n')(C', o).
For all C and o, we have

Winl(€.0)-p /
= (R/emoveSplit(W) W) +1)(C,o) - p
=W n](Co)-p

= Ez opi - Wil')(C.0) - p

= Ez:O > 6(RemoveSplit(C"))(C) - > prob(I5,s,n’) - traverse(I;,s,n’)(C', o)

= >« 6(RemoveSplit(C"))(C) - Zf:o > prob(Iy, s,n’) - traverse(I;, s,n')(C', o)

= > 6(RemoveSplit(C"))(C) - >°, > prob(I',i:: s,n" + 1) - traverse(I',i :: s,n' + 1)(C’, o)
=Y d(RemoveSplit(C"))(C) - >~ prob(I',s,n) - traverse(I’, s,n)(C’, o).

o ['=Tree(p,W,I""), W A W', #nextsplit(W,t) > 1 and History(p, W', o', I'").
From W ~& W’ by Lem Iwe know RemoveSplit(V) A RemoveSplit(W’).
From RemoveSplit(1W) ~ 5 W by Lem .We know W = RemoveSplit(1W").



—/ —
From History (W, ¢, W ) we know History(RemoveSplit(W'), o', W ).
!

/

—
For all C and o, From History (RemoveSplit(W'), ¢', W ) and History(p, W', ', I"")

by TH we know

!
IX/ n'](C,0)-p =3 6(RemoveSplit(C'))(C)-> " prob(I”,s,n)-traverse(I",s,n')(C', o),

thus
5
Wn|(C,0)-p
Ny
(RemoveSpllt( )= W)[n' +1)(C,o)-p
W n'](C,o) - p
= ZC, (RemoveSpht((C N(C) - >, prob(I”,s,n') - traverse(I”, s,n’)(C’,
=Y ¢ d(RemoveSplit(C"))(C) - >~ prob(I',0 :: s,n' + 1) - traverse(I,0 ::
= = 6(RemoveSplit(C"))(C) - >~  prob(I’, s,n) - traverse(I’, s,n)(C’,
Lemma 89. Foralln,p,W, ¢, I, s, o, if History;(p, W, ¢, '), then prob(I', s,n+
1)-traverse(I', s,n+1)(skip || - - - || skip,c) > prob(I, s,n)-traverse(I, s,n)(skip ||
| skip, o).

Proof. by induction on n.

— base case: n = 0.

For all p, W, ¢, I, s, 0 such that History,(p, W, p, I'), there are two cases.
e o=t u¢, I' =Tree(p,W,Iy,...,I}), W A W', nextsplit(W,t) =
{Sp}7 Splitt@T’(W/, sp) = {(WOapO)a R (Wk7pk)} and Vi. HiStOI‘yT(p :

Di, W’L'a 90/71—‘1')'

traverse(I', s,n) = traverse(Tree(p, W, Iy, ..., I}),s,0) = W.
prob(I, s,n) = prob(Tree(p, W, Iy, ..., I%),s,0) = x(s = zeros) - p.

If s # zeros, then prob(I, s,n) = 0, so prob(I, s,n)-traverse(I, s,n)(skip |

- || skip,o) = 0 < prob(I,s,n + 1) - traverse(I',s,n + 1)(skip || - --

skip, o).

o).

o)

s,n’ + 1)(C,0)

Otherwise s = zeros, then prob(I, s,n) = p. From History(p-po, Wo, ¢, 1)

by Lem.we know prob(Iy, zeros,0) = x(zeros = zeros)-p-py =

traverse(Iy, zeros, 0) = Wy, thus traverse(I', s,n+1) = traverse(Tree(p, W, I, ..., I%),0::

zeros, 1) = traverse(Iy, zeros, 0) = Wy.

prob(I', s,n+1) = prob(Tree(p, W, Iy, ..., I}),0 :: zeros, 1) = prob(Iy, zeros,0) =

P Po-

It is obvious that W (79 (skip || - - - || skip) = 0 or W(F9) (skip || - - -

skip) > 0, we prove the two cases respectively.
x WPred) (skip || --- || skip) = 0.

From W(Fro9) (skip || --- || skip) = 0 we know Y. W (skip | ---
skip, o) = 0, thus W (skip || --- || skip,o) = 0 for all o. Therefore
prob(, s,n) - traverse(I', s,n)(skip || --- || skip, o) = prob(I,s,n) -
W (skip || --- || skip,0) = 0 < prob([,s,n + 1) - traverse(I, s,n +

1)(skip [| - - - || skip, ).



x WPred) (skip || --- || skip) > 0.
From W (P79 (skip || - - - || skip) > 0 by Lem. [38|we know nextsplit(W) D
{split(true)}. From nextsplit(W, t) = {sp} we know sp = split(true).
From splitter(W’, sp) = {(Wo,po)---, (Wk,pr)} we know k = 0,
Wo = Wliue = W' and py = [Pr(true)]y (swatey = 1. From W AN

W’ by Lem. we know W'(skip || --- || skip,o) > W (skip ||

-+« || skip, o), thus prob(I,s,n + 1) - traverse(I,s,n + 1)(skip ||

|| skip, @) = p-po - Wo(skip | - || skip, #) = p- V" (skip | - |
skip,o) > p-W(skip || - -- || skip, o) = prob(I, s, n)-traverse(I’, s,n)(skip ||
.-+ || skip, o).

e p=t:u¢, I ="Treelp,W,I"), W L ow, #nextsplit(W,t) > 1 and

History(p, W', ¢, I").

traverse(I', s,n) = traverse(Tree(p, W, I"'),s,0) = W.

prob(I', s,n) = prob(Tree(p, W, I"),s,0) = x(s = zeros) - p.

If s # zeros, then prob(I, s,n) = 0, so prob(I, s,n)-traverse(I, s,n)(skip |

-+ || skip,0) = 0 < prob(I,s,n + 1) - traverse(I',s,n + 1)(skip || --- |

skip, o).

Otherwise s = zeros, then prob(I, s,n) = p. From History(p, W', ¢, I")

by Lem. we know prob(I”, zeros,0) = x(zeros = zeros) - p = p and
traverse(I”, zeros,0) = W', so

traverse(I, s,n+1) = traverse(Tree(p, W, I"),0 :: zeros, 1) = traverse(I”, zeros,0) =

w.

prob(I, s,n+1) = prob(Tree(p, W,I"),0 :: zeros, 1) = prob(I”, zeros,0) =
D.

From W ~5 W’ by Lem. we know W'(skip || --- || skip,o) >
W (skip || - - - || skip, o), thus prob(I, s,n—+1)-traverse(I’, s,n+1)(skip ||
- || skip,o) = p- W'(skip || --- || skip,o) > p- W(skip | --- ||
skip, o) = prob(I', s,n) - traverse(I',s,n)(skip | - -- || skip, o).

— inductive case: n =n’ + 1.

IH: for all p, W, p, I, s,0, if History,(p, W, ,I"), then prob(I,s,n’ + 1) -

traverse(I', s,n’+1)(skip || - - - || skip, o) > prob(I, s,n’)-traverse(I, s,n’)(skip ||

.- | skip, ).

For all p, W, ¢, I', s, 0 such that History(p, W, ¢, '), there are two cases.

e o=t u¢, I' =Tree(p, W, Iy,...,I}), W A W', nextsplit(W,t) =

{Sp}7 splz'tter(W’, sp) = {(WOapO)a cey (Wk7pk)} and Vi. HiStOI‘yT(p :
Di, Wia Solv Fl)
There exists m and s’ such that s =m :: s'.
traverse(I', s,n) = traverse(Tree(p, W, Iy,..., I} ),m = s',n' +1) =
traverse(ILy,, s,n').
prob(I', s,n) = prob(Tree(p, W, Iy, ..., k), m = s',n'+1) = prob(Ly,, s',n’).
traverse(I, s,n + 1) = traverse(Tree(p, W, Iy, ..., I%),m = s',n' +2) =
traverse(Iy,, s,n' +1).
prob(I, s,n+1) = prob(Tree(p, W, Iy, ..., I%),m 8 ,n'+2) = prob(Iy,, s, n’'+
1).



From History,(p - pm, Win, @', I') by TH we know prob(l,,s’,n’ +

1) - traverse(Ly,,s',n’ + 1)(skip || --- || skip,o0) > prob(Il,,,s,n’) -
traverse(Ly,,s',n')(skip || - - - || skip, o), thus prob(I, s,n+1)-traverse(I’, s,n+
1)(skip || --- || skip,0) >

prob(I, s,n) - traverse(I, s,n)(skip || - - - || skip, o).

e p=t:u¢, I =Treelp,W,I"), W A W', #nextsplit(W,t) > 1 and
History(p, W', ¢, I").
There exists m and s’ such that s =m :: s'.
traverse(I', s,n) = traverse(Tree(p, W, I'""),m :: s',n'+1) = traverse(I", s, n’).
prob(I', s,n) = prob(Tree(p, W, I""),m :: s',n’ + 1) = prob(I",s',n’).
traverse(I', s,n+1) = traverse(Tree(p, W, "), m :: s',n'+2) = traverse(I", s,n'+

1).

prob(I, s,n+1) = prob(Tree(p, W, I"),m :: ', n' +2) = prob(I"",s',n' +

1).

From History(p, W', ¢, I'") by IH we know prob(I"”, s’ ,n'+1)-traverse(I"’,s',n'+
1)(skip || --- || skip, o) > prob(I”,s',n') - traverse(I",s',n')(skip || - - - ||

skip, o), thus prob(I', s,n+1)-traverse(I', s,n+1)(skip || - - - || skip, o) >

prob(I, s,n) - traverse(I, s,n)(skip || - - - || skip, o).

Lemma 90. For alln,p, W, ¢, I, if History;(p, W, , ), then ) prob(I’,s,n) =
.

Proof. By induction on n.

— base case: n = 0.
For all p, W, ¢, I" such that History(p, W, ¢, I'), there are two cases.

e p =1ty I' =Treelp,W,Iy,...,I%), W A W', nextsplit(W,t) =
{sp}, splitter(W’, sp) = {(Wo,p0),--., Wk, pr)} and Vi. History(p -
Di, Wia QOI, Fz)
> prob(I',s,0) =" prob(Tree(p, W, I, ..., I}),s,0) = > x(s = zeros)-
p=D.
e o=ty I =Tree(p, W,I"), W ANA W', #nextsplit(W,t) > 1 and
History(p, W', ¢, I").
Yo prob(I',s,0) =" prob(Tree(p, W,I"),s,0) = > x(s = zeros) - p =
p.
— inductive case: n =n' + 1.
IH: for all p, W, ¢, I, if History(p, W, ¢, I"), then > prob(I',s,n’) = p.
For all p, W, ¢, I such that History,(p, W, ¢, I'), there are two cases.
e o=t u¢, I' =Tree(p, W, Iy,...,I}), W A W', nextsplit(W,t) =
{Sp}, SplittGT(W/, Sp) = {(W()apo)a cety (Wkapk)} and Vi. HiStOI‘yT(p :
Di, W’ia 80/7 Fl)
From Vi. History(p-p;, Wi, ¢', I;) by IH we have Vi. »__, prob(I;,s',n') =
P Dpi-
From nextsplit(W, t) = {sp} we know validsplit(sp). From validsplit(sp)



and splitter(W’, sp)
={(Wo,po),..., Wk,pr)} by Lem. We know Zf:opi =1,s0

> s prob(I';s,n)
= > o {prob(Tree(p, W, I, ..., I};),i = s',n' +1) | i < k}
=" o X, prob(I},s',n/)
= Zf:op *Di
=p- Zf:o Di
:p.

e p=1t: ¢, I =Tree(p, W,I"), W 4w, #nextsplit(W,t) > 1 and
HiStOTYT(pv W/a @/? Fl)
From History(p, W', ¢, I"") by IH we have >, prob(I",s',n") = p,

thus
> s prob(I',s,n)
=) o 1prob(Tree(p, W, I"),i:: s',n" +1) [ i < 0}
= Zs’ pTOb(Fiv 8/7 TL/)

Lemma 91. Forall P,C,Q, if Ear {P}C{Q} and closed(Q), then =, { P}RemoveSplit(C){Q}.

Proof. For all P,C, @ such that =47 {P}C{Q} and closed(Q), by Def. we
need to prove for all i, ¢, 1/, if p = P and init(RemoveSplit(C), u) |;, 1/, then
#' = Q. For all p, o, p' such that p = P and init(RemoveSplit(C), 1) {5, 1/,
by Lem. [80| we know RemoveSplit(init(C, 1)) = init(RemoveSplit(C), 11), so
—
RemoveSplit(init(C, u)) |, p'. By Def. there exists W such that

— —  (Prog)
History(RemoveSplit(init(C, u)), ¢, W), li_>m Win| (skip || --- || skip) =

5
1 and for all o, lim Win|(skip || - -- || skip, o) = /(o). By Lem. [81|there exists
n— oo

—

I" such that History (1, W, ¢, I'). From History (RemoveSplit(init(C, 1)), o, W)
—

by Lem. we know for all o and n, W{n](skip || --- || skip, o) =

> ¢ 6(RemoveSplit(C))(skip || - -- || skip)-Y_, prob(I, s,n)-traverse(I, s,n)(C’, o)

= >, prob(I,s,n) - traverse(I,s,n)(skip || - -- || skip,0), i.e.,

o
Vo,n. Win|(skip || - - - || skip, o) = meb(F, s,n)-traverse(I, s,n)(skip || - -- || skip, o).

(H.12)
From History (1, W, ¢, I") by Lem. |89 we know

Vs, n,o.prob(I’, s,n + 1) - traverse(I',s,n + 1)(skip || - - - || skip, o) > (H.13)
prob(I', s, n) - traverse(I, s,n)(skip || - - - || skip, o), ‘
thus

Vs,n.y  prob(I',s,n+1) - traverse(I,s,n + 1)(skip || - - - || skip, o) >
> o prob(I',s,n) - traverse(I',s,n)(skip || - - - || skip, o).



By Monotone Convergence Theorem for Series we know

Vs. lim > > prob(I',s,n) - traverse(I', s,n)(skip || - - - || skip,o) =
U . . (H.14)
D s h_}m Yo prob(I', s,n) - traverse(I', s,n)(skip || - - - || skip, o).
n—oo
Therefore
— _(Prog)
1= lim Win] (skip || --- || skip)
n—oo
—
~ lim ¥, Wnl(skip | --- | skip,o)
= lim Y > prob(I',s,n) - traverse(I’,s,n)(skip || --- || skip, o) (by Eqn. (H.12))
n—oo
= nlgr;() Y s 2y Prob(I, s,n) - traverse(I', s,n)(skip || - - - || skip, o) (by Tonelli’s Theorem)
=, lim > prob(I',s,n) - traverse(I’,s,n)(skip || --- || skip, o) (by Eqn. (H.14))
“ n—oo
=Y, lim prob(I', s,n) - traverse(T, s,n)"? (skip || - - - || skip)
n— oo
=3, lim prob(I, s,n) - lim traverse(I, s,n) "™ (skip || - - - || skip)

From History(1, W, p, ") by Lem. we know ) prob(I,s,n) = 1 for all n.
By Fatou’s Lemma we know Y  lim prob(I,s,n) < lim Y prob(I,s,n) =
n—0o0 n— oo

) (Pros)

lim 1 =1. Thus ), lim prob(I,s,n) - lim traverse(I’,s,n skip || --- ||
n—oQ n— o0

n—o0

skip) > >~ lim prob(I,s,n),so Y lim prob(I,s,n)-(1— lim traverse(I’,s,n
n—o0o n—o00 n—o00

-+ || skip)) < 0.

From Vs, n. traverse(I, s,n)

)P (skip |

(Prog) ( (Prog) (

skip || -+ || skip) < 1 we know lim traverse(l, s,n) skip ||
n—0o0

.-+ || skip) < 1for all s, so 1 — lim traverse(I’, s,n) " (skip || - - || skip) > 0
n—oo
for all s. From Vs,n. prob(I,s,n) > 0 we know lim prob(I,s,n) > 0 for all s,

n—oo
so lim prob(I,s,n) - (1 — lim traverse(I’,s,n) "™ (skip | - - - || skip)) > 0 for

(Prog) (

all s. From )  lim prob(I,s,n) - (1 — lim traverse(I’,s,n) skip || --- ||
n—oo n—oo

skip)) < 0 we know for all s, lim prob(I,s,n)-(1— lim traverse(I, s,n) "9
n—oo

skip ||
n—oo
.-+ || skip)) = 0. Thus

Vs. lim prob(I,s,n) =0V lim traverse(I, s, n)(ng)(skip | --- || skip) = 1.

n— 00 n—o0
(H.15)
From Eqn. (H.13|) by Monotone Convergence Theorem for Series we know

Vo. lim Y prob(I',s,n) - traverse(I', s,n)(skip || - -- || skip, o) =
n—r oo

> lim prob(I',s,n) - traverse(I',s,n)(skip || - - - || skip, o). (H.16)
n—oo



7 def

Let u AV € Dgtate. D, (Ao hm traverse(I, s,n)(skip || --- || skip,0))(v) -

lim prob(I',s,n), then
n—oo

W =0 X, 1) v(0)

=Xo.>., > . 0(Ao. li_>m traverse(I, s,n)(skip || --- || skip, o))(v) - li_>m prob(I, s,n) - v(o)
n oo n o)
= Xo.>, lim prob(I',s,n)- lim traverse(I,s,n)(skip || --- || skip, o)
n—r oo n—oo
=Xo. ), li_>m prob(I, s,n) - traverse(I, s,n)(skip || - - - || skip, o)
= Ao. le > s prob(I'y s,n) - traverse(I', s,n)(skip || - - - || skip, o) (by Eqn. (H.16))
—
= )\i)’. nh_>ngo Win|(skip || - - - || skip, o) (by Eqn. (H.12)
= 'LL .

From " =y and closed(Q), to prove i/ = Q, it suffices to prove for all v €
supp(p”), v |= Q. For all v € supp(p”’), we have ' (v) > 0,1.e., > 6(Ao. lim traverse(I’, s,n)(skip |
- n—00

- || skip,0))(v) - lim prob(I,s,n) > 0, so there exists s such that v =
n—oo

Ao. lim traverse(I', s,n)(skip || --- || skip,o) and lim prob(I,s,n) > 0. From
n—o00 n—r00
Eqn. (H.15) we know lim_ traverse(I, s,n) "™ (skip || --- || skip) = 1. From

History (1, init(C, ), go,f') and v = Ao. lim traverse(l, s,n)(skip | --- |

n—oo
skip, o) we know init(C, ) i, v. From Far {P}C{Q} and p = P we have
vEQ.

Lemma 92 (Soundness of (REMOVESPLIT) Rule). For all P,C,Q, if E.
{P}C{Q} and closed(Q), then =, {P}RemoveSplit(C){Q}.

Proof. For all P,C,Q such that =, {P}C{Q} and closed(Q), by Lem. [44] we
know =, {P}C{Q}. By Lem. |78 we know a1 {P}C{Q}. From closed(Q)
by Lem. [91| we have =, {P}RemoveSplit(C){Q}. By Lem. [44] we know =,
{P}RemoveSplit(C){Q}.

lazycoin(skip) < skip
def
lazycoin(z := ¢) =z:=e
lazycoin(C1; C?) def lazycoin(C1); lazycoin(C3)

) then C; else C5) = g

(b if (b) then lazycoin(C,) else lazycoin(C>)
lazycoin(while (b) do C) Lof

(sk

(

(
lazycoin(if

( = while (b) do lazycoin(C)

(

(

(

lazycoin((C)) &l (@)
lazycoin((C) sp) d:ef. (C) sp
lazycoin({C1) @, (C2)) ' skip; ((C1) @, (C2))

Fig. 34: Definition of lazycoin(C)



Definition H.17. lazycoin(Cy || -+ || ) & lazycoin(Cy) || - - || lazycoin(C,,).
The definition of lazycoin(C) is given in Fig.

Definition H.18. lazycoin(W) ef E(c,o)~w{d(lazycoin(C)) ® 6(c)}.

Definition H.19. lazycoin(n) 2 E(c,o)~nid(lazycoin(C)) ® 6(o)}.
Definition H.20. p € Dgype.

Definition H.21. lazycoin(p) %ef Ec~,{d(lazycoin(C))}.

Definition H.22. py || - || pn = MCy || -+ || C). p1(Ch) -+ pn(Ch).

def

C if O = C; C
Definition H.23. ;s % \(C, ). {”( o), i SRl

0, otherwise

e ) if = 5
Definition H.24. p; Cy & /\C.{p(cl) H0=Ci0y

0, otherwise
3((C1)) ©p 0((C2)), if €= ((C1) ©p (C2))
e , i C = C
Definition H.25. splitAtom(c) 9 § 0(C1) ) ©p 0((Co) sp), if €= ((C1) & (Co)) sp
splitAtom(C4); Co, if C=0Cp;04
(), otherwise
Definition H.26. splitAtom(C;y || --- || Cp) €ef splitAtom(Cy) || --- |

splitAtom(C,,).

Definition H.27. splitAtom(W) % Ec . {splitAtom(C) @ §(c)}.

Definition H.28. splitAtom(n) &ef E(c,0)~n{splitAtom(C) ® 6(0)}.

Definition H.29. splitAtom(p) % E¢.,{splitAtom(C)}.

Definition H.30. W; ~ W5 if and only if lazycoin(W;) = splitAtom(W3).

oy def
Definition H.31. p1 || || pe—1 || 0 || s || -+ Il pu = MCL || -+ |

Ch, ‘7)~ 01(01) ce pt—l(ct—l) : W(Ct, 0) : Pt+1(Ct+1) s pn(Cn)

p, if (C,o) & (C',0")

0, otherwise

Definition H.32. step(C, o) ' \(C”, o). {

Definition H.33. step(Cy || --- || Cp,0,1) e 0(Cy) || -.-0(Ci—q) || step(Ct, o) ||

5(Cra) |-+~ 11 6(C)-

Definition H.34. step(W,t) def E(c,o)~w {step(C, o,1)}.



Definition H.35. step(n) def Ec,o)~nistep(C,0)}.
Lemma 93. For all p,u,Ca, (p@ p); Cy = (p; Ca) ® p.

Proof. For all p, u, Co,

(p@ p); C2
O O
— )\(C,U) (p®u)(cla0)7 if C ?1702
0, otherwise
_AC,0). p(Ch) - (o), if C = ¢1§C2
0, otherwise
p(Ch), i C = CriCy
= XC, o). .
(€, 0)- uo) 0, otherwise
= AC,0). (o) - (p; C2)(C)
= (p; C2) @ pu.

Lemma 94. For all C and u, lazycoin(6(C) ® p) = d(lazycoin(C)) ® u.
Proof. For all C and p, we have

lazycoin(6(C) ® u)
=E(c,,0)~o()9p{d(lazycoin(Cy)) ® 6(0)}
— A0 S o 3(C)(C1) - plo) - D(lazyeoin(Cy))(C) - 5(0) (o)
= \C', ¢’). 6(lazycoin(C))(C') - u(o’)
= ¢(lazycoin(C)) ® p.

Lemma 95. For all C and p, splitAtom(d6(C) ® u) = splitAtom(C) ® u.
Proof. For all C and p, we have

splitAtom(§(C) @ )
= E(c,,0)~s(0)@u{splitAtom(Cy) @ 6(a)}
=MC",0"). 3¢, - 0(C)(Cy) - p(o) - splitAtom(C, )(C') - 6(0)(0")
= \NC', ¢’). splitAtom(C)(C’) - u(o’
= splitAtom(C) ® p.

Lemma 96. For all Cq and Ca, §(C1);Cy = 6(C1;C2).

Proof. For all C; and Cj,

= 6(Cyq; Cy).

/ . TR . , .
3(C1);Cy = NC". {6(01)(01)’ if ¢"=Cy; 0y \C'. {17 if " = C1; 0y

0, otherwise 0, otherwise
Lemma 97. For all C, splitAtom(lazycoin(C)) = é(lazycoin(C)).

Proof. by induction on C.



— C = skip.

splitAtom(lazycoin(C)) = splitAtom(lazycoin(skip)) = splitAtom(skip) =

d(skip) = d(lazycoin(skip)) = J(lazycoin(C)).
- C=zx:=e
splitAtom(lazycoin(C)) = splitAtom(lazycoin(z := e)) = splitAtom(z :=
e) = 60(z :=e) = é(lazycoin(x := ¢)) = §(lazycoin(C)).
- C=(C;Ch.
IH: splitAtom(lazycoin(C,)) = §(lazycoin(Ch)).

splitAtom(lazycoin(C
= splitAtom(lazycoin(C
= splitAtom(lazycoin(C
= splitAtom(lazycoin(C));lazycoin(C5)

( )
( 1
E

= (5(lazyc01ng 1)); lazycoin(Cy) (by IH)
(
(C

)
; C2))
);

1); lazycoin(Cs))

= §(lazycoin(C} );lazycoin(Cy)) (by Lem.
= d(lazycoin(Cy; Cy))
= §(lazycoin(C)).

— C =if (b) then C} else Cs.

splitAtom(lazycoin(C))
= splitAtom(lazycoin(if (b) then C; else C3))
= splitAtom(if (b) then lazycoin(C}) else lazycoin(Cy))
= §(if (b) then lazycoin(C}) else lazycoin(C5))
= ¢(lazycoin(if (b) then C; else C3))
= ¢(lazycoin(C)).

— C = while (b) do C}.

splitAtom(lazycoin(C))
= splitAtom(lazycoin(while (b) do C1))
= splitAtom(while (b) do lazycoin(C}))
= ¢(while (b) do lazycoin(C}))
= ¢(lazycoin(while (b) do C1))
= ¢(lazycoin(C)).

—C=(Cy).

splitAtom(lazycoin(C))
= splitAtom(lazycoin({C})))
splitAtom((C1))
((C1))
= d(lazycoin({C1)))
= d(lazycoin(C)).



— C=(C1) sp.
splitAtom(lazycoin(C))
= splitAtom(lazycoin({C}) sp))
= splitAtom({C;) sp)
=0((Ch) sp)
= d(lazycoin((C1) sp))
= d(lazycoin(C)).

— C = (C1) & (Ca).

splitAtom(lazycoin(C))
= splitAtom(lazycoin((C:) &, (C2)))
splitAtom(skip; ((C1) @, (C2)))
= splitAtom(skip); ((C1) &, (Ca))
— d(skip); {(C1) @y (Co))

d(skip; ((C1) @y (C2)))  (by Lem.
= Elazycoin((Cﬁ @y (C2)))

d(lazycoin(C)).
Lemma 98. For all Cy,...,Cy, 6(C1) || -+ || 6(Cr) =0(Cy || -+ || Cr).--
Proof. For all Cy,...,C,,
6(C) || -+ 11 6(Cn)
=AML+ 11 G- 6(C)(C) -+ 6(Cn)(C)
=AMCL[ - 1C)- 8(Co -+ | Cu)(Cr |-+ (1 C)

=06(Cr -~ 11 Cn)
Lemma 99. For all C, splitAtom(lazycoin(C)) = §(lazycoin(C)).

Proof. For all C, by definition of Prog there exists C1,...,C, such that C =
Coll-- 1l Cn.

splitAtom(lazycoin(C))
= splitAtom(lazycoin(C; || --- || Cy))
= splitAtom(lazycoin(C}) || - - - || lazycoin(C,,))
= splitAtom(lazycoin(Cy)) || - - - || splitAtom(lazycoin(C,,))
= ¢(lazycoin(Ch)) || - - - || é(lazycoin(C},)) (by Lem. [97)
= d(lazycoin(Ch) || - - - || lazycoin(C,,)) (by Lem.
— 5(lazycoin(Cy || - | Cu))

= d(lazycoin(C)).
Lemma 100. For all C and p, init(C, u) ~ init(lazycoin(C), u).
Proof. For all C and p, we have
splitAtom (init(lazycoin(C), y1))

= splitAtom(d(lazycoin(C)) ® u)

= splitAtom(lazycoin(C)) ® u (by Lem.

= ¢(lazycoin(C)) ® p (by Lem. [99))

= lazycoin(§(C) ® p) (by Lem. [94))

= lazycoin(init(C, u)).



Therefore init(C, 1) ~ init(lazycoin(C), u).
Lemma 101. For all C, nestsplit(lazycoin(C)) = nextsplit(C).

Proof. by induction on the structure of C.

— case 1: C' = (C1) sp.
nextsplit(lazycoin(C)) = nextsplit(lazycoin({C1) sp)) = nextsplit((C)1 sp) =
nextsplit(C).
— case 2: C' = Cq;Cs.
IH: nextsplit(lazycoin(Cy)) = nextsplit(C).
nextsplit(lazycoin(C)) = nextsplit(lazycoin(Cy; Cs)) = nextsplit(lazycoin(C); lazycoin(Cy))
= nextsplit(lazycoin(C1)) = nextsplit(Ch).
— othercases.
nextsplit(lazycoin(C')) = {split(true)} = nextsplit(C).

Lemma 102. For all W and t, nextsplit(lazycoin(W),t) = nextsplit(W, t).
Proof. For all W and t,

nextsplit(lazycoin(W), t)

= {nextsplit(Cy) | 3C1,...,Ci—1,Cts1,...,Cn,0. (C1 || -+ || Cn,0) € supp(lazycoin(W))}
= {nextsplit(Cy) | 3C1,...,Ct—1,Ct11,...,Cp, 0. lazycoin(W)(Cy || --- || Cpn,0) > 0}
= {nextsplit(Cy) | 3C1,...,Ct—1,Cts1,...,Cp, 0.
E(cr oy {6(lazyeoin(C)) © 60" }Cy || -+ || Cur ) > 0}
= {neatsplit(C;) | AC1,...,Ci—1,Ct11,...,Ch, 0.
S0 W€, ") - (lazycoin(C))(Cy || - | Ca) - 6(o")(@) > 0}
= {neatsplit(C;) | AC1,...,Ci—1,Cts1,...,Ch, 0.
Yo W(C,0) - é(lazycoin(C'))(Cy || --- || Cpn) > 0}
= {nextsplit(Cy) | 3C4,...,Ci—1,Ctq1,...,Ch,0,C'.
W(C',0) > 0Alazycoin(C') =Cy || --- || Cn}
= {nextsplit(Cy) | 3C4,...,Ci=1,Ciy1,...,Ch,0,C1, ..., Ch.
W(CT |-+ || C%,0) > 0 Alazycoin(Cy || --- || C) = Cy | -+ || Cn}
= {nextsplit(Cy) | 3C4,...,Ct—1,C41,...,Cpn,0,C1,...,CL. W(CT || - || C},0) > 0 A
lazycoin(CY) || - - - || lazycoin(C}) = Cy || --- || Cn}
= {nextsplit(Cy) | 3C1,...,Ct—1,Ct11,...,Cn,0,CL, ..., CL.W(CL | --- || Cl,o) > 0A
lazycoin(Cy) = C; A --- Alazycoin(C),) = Cy, }
= {nextsplit(Cy) | 3CY,...,CL, 0. W(CL || --- || C},,0) > 0 Alazycoin(Cy) = C;}
= {nextsplit(lazycoin(Cy)) | 3C1,...,C{_1,C{,4,...,C,0. W(C] || --- || C},,0) > 0}
= {neatsplit(C}) | 3C1,...,C{_1,Cl11,....Ch0. W(CL || --- || C}y0) >0} (by Lem.
= {nextsplit(C}) | 3C1,...,C{_1,C{,...,C,0. (C1 || -+ || C},,0) € supp(W)}

= nextsplit(W, t).

Lemma 103. For all C and C', if splitAtom(C)(C’) > 0, then nextsplit(C) =
nextsplit(C").

Proof. by induction on the structure of C.



— case 1: C' = ((C1) @, (C2)).
For all ¢’ such that splitAtom(C)(C") > 0, we have 0 < splitAtom(C)(C") =

split Atom(((C1)@,(C2)))(C") = (6({C1))@,0({C2)))(
(1 —p)-6({C2))(C") we know §({C1))(C") > 0 or 6({Cy
(Cy) or C" = (C%), thus nextsplit(C’) = {split(true)}
(C4))) = nextsplit(C).

") =p-s((C1))(C")+
N(C") >0, s0 C' =
= ne mtsplzt(((C'ﬁ Dp

— case 2: C' = ((C1) @, (C2)) sp
For all C’ such that splitAtom(C)(C") > 0, we have 0 < splitAtom(C)(C") =

splitAtom({(C1) @, (C2)) sp)(C") = (6((C1) sp) &p 6((C2)) sp)(C)
p - 6({Cy) sp)(C") 4+ (1 —p) - 6({C))(C" sp) we know §({C1) sp)(C’) >
or §((Ca) sp)(C") >0, s0 C" = (C1) spor C" = (Cs) sp, thus nextsplit(C")
{sp} = nextsplit(((C1) &p (C2)) sp) = nextsplit(C).

ol

— case 3: C' = Cq;Cs.
IH: for all ", if splitAtom(C;)(C"), then nextsplit(Cy) = nextsplit(C").
From 0 < splitAtom(C)(C") = splitAtom(C4; C3)(C") = (splitAtom(Cy); C2)(C”)
we know there exists C] such that C' = C}; Cy and splitAtom(C;)(C}) > 0,
by TH we have nextsplit(Cy) = nextsplit(C}), thus nextsplit(C) = nextsplit(Cy; Cy) =
nextsplit(C) = nextsplit(Cy) =
nextsplit(C1; Cy) = nextsplit(C").

— other cases.
By definition of splitAtom we know splitAtom(C) = §(C). For all C’ such
that
splitAtom(C)(C’) > 0, we have §(C)(C") > 0,s0 C = C’, thus nextsplit(C) =
nextsplit(C").

Lemma 104. For all W and t, nextsplit(splitAtom(W), t) = nextsplit(W,t).



Proof. For all W and t,

nextsplit(splitAtom(W), t)
= {nextsplit(Cy) | 3C1,...,Ct—1,Cts1,...,Cny0. (Cy || -+ || Cpn,0) € supp(splitAtom(WW))}

= {nextsplit(Cy) | 3C1,...,Ct_1,Ct11,...,Ch, 0. splitAtom(W)(Cy || -+ || Cn,0) > 0}
= {nextsplit(Cy) | 3C1,...,Ct—1,Cty1,...,Cp, 0.
E croryon{splitAtom(C’) & 6(a")}(C || - || Co. ) > 0}
= {nextsplit(Cy) | 3C1,...,Ct—1,Cty1,...,Ch, 0.
ZC,’U, W((C’, o) - sphtAtom((C’)(C’l |- |l Cpn)-6(c") (o) > 0}
= {nextsplit(Cy) | 3C1,...,Ct—1,Cty1,...,Cp, 0.
Yo W(C, o) -splitAtom(C')(C, || --- || Cy) > 0}
= {neatsplit(C;) | AC1,...,Ci—1,Ct11,...,Cpn,0,C".
W(C' o) > 0 AsplitAtom(C')(Cy || -+ || Cn) > 0}
= {nextsplit(Cy) | 3C4,...,Ci—1,Ci11,...,Cpn,0,C1, ..., C].
W(C |- Cho) > 0 AsplitAtom(CL | - | CL)(C | || Cu) > 0}
= {nextsplit(Cy) | 3C4,...,Ci—1,Ci41,...,Ch,0,C1, ..., CHL.W(CL | --- || Ch,0) > 0A
[T, splitAtom(C})(C;) > 0}
= {nextsplit(Cy) | 3C1,...,Ci_1,Cq1, ..., Cn, o,Cl, .., CL W -+ || Chyo) >0A
splitAtom(C7)(C1) >0A--- A splitAtom(C;L)(Cn) > 0}
= {nextsplit(Cy) | 3CY1, .. C’ ,0. W(01 Il - || o) > 0 AsplitAtom(C})(Cy) > 0}
= {nextsplit(Ct) | HC’L... ' 1,Cl,...,C 0 W(C{ | ---1 Chyo)>0A
splitAtom(C})(C;) > 0 /\ nextsplzt(C’t) = nextsplit(C})}  (by Lem. [103])
= {nextsplit(C}) | 3C1,...,C{_1,C{4,...,C},0,Co. W(CL || --- || C},,0) > 0A
splitAtom(C})(C}) > 0 A nextsplit(Cy) = nextsplit(Cy)}
= {nextsplit(C}) | 3C1,...,C{_1,C{ ,...,C},o. W(C || --- || C},,0) > 0}
= {nextsplit(C}) | 3C1,...,C{_1,C{ 1,...,C,0. (C1 || -+ || C},,0) € supp(W)}
= nextsplit(W, t).

Lemma 105. For all Wy, Wa, t, if Wy ~ Wa, then nextsplit(W1,t) = nextsplit(Wa, t).

Proof. For all Wy, Wy, t,if Wi ~ Wa, we know lazycoin(WW;) = splitAtom(Ws).
By Lem. we know nextsplit(lazycoin(W),t) = nextsplit(W, t).

By Lem. we know nextsplit(splitAtom (W), t) = nextsplit(W, t).

Thus nextsplit(W1,t) = nextsplit(lazycoin(W), t) = nextsplit(splitAtom(W),t) =
nextsplit(Wa, t).

Lemma 106. For all W, lazycoin(W)5*!®) = yy(State)
Proof. For all W,

lazycoin(W )57
= \o. ) ¢ lazycoin(IW)(C, o)
= X0.) ¢ E, o)~wid(lazycoin(Cy)) ® §(01)}(C, 0)
=A0.> ¢ c,.00 W(Ci,01) - 6(lazycoin(Cy))(C) - 6(01)(0)

= Ao. Z(C W((Cl, 0’)
— W(State )

Lemma 107. For all W, splitAtom ()51 = yy (State)



Proof. For all W,

splitAtom(W)(State)
= Ao. ) ¢ splitAtom(W)(C, o)
= A0 > ¢ Ec,,o)~w{splitAtom(C;) ® 6(01)}(C, 0)
=03 ¢ 2,00 W(Ci,01) - splitAtom(Cy)(C) - 6(a1)(0)
=Xo.> ¢, W(Cy,0)
_ W(States'

Lemma 108. For all Wy, W, if Wi ~ Wa, then W, (5t} — yy,(State)

Proof. For all Wy, Wy such that Wy ~ Wy, we know lazycoin(W;) = splitAtom(Ws).
By Lem. we know lazycoin(Wl)(Sme) = W, 5% By Lem. we know
splitAtom (W) %) = 1, (5%%) Therefore W, 51) = lazycoin(W;) 5" =
splitAtom(Wg)(Smte) = W, (State)

Lemma 109. For all W,t, W', if W -5 W', then W' = step(W, t).
Proof. For all W, t, W' such that W A W', we have

W =MC',0'). Xc o {W(C,0)-p | (C,0) = (C',0")}

=AMCL - Cri0) e e tW(CL - [ Crso) - p |
(Coll -+ | Cuyo) 2> (CL -+ || o)}
=MCL| - Clo). Ee, o AW(CH ||+ ]| Cny0) P | (Chy0) 2 (Cf,0) A
Cl=CiN---NCl_1=C a1 NCly =Copa A---NC), =Ch}
=AMCLI---Chio)- 2y, cno W(CL -+ || Cns0) - step(Cy, 0)(Cy, 07) -
5(C1)(CT) - 0(Ci1)(Ci1) - 6(Cry1)(Cia) - - 6(Cn)(Cr)
=MCL - Chy0"). 00 e W(CL] o | Cryo) -
O(Co) [ -+ [ 6(Cra) || step(Cr, o) [| 6(Crya) [ -+ | 6(C))(C | -+~ | €7, 07)
=MC - Crhia). e, oy e WG] [ Cny0) -
step(C || -+ || Cn, 0, t)(C1 || -+ || €7, 07)

=MC"0").322c,W(C, o) step(C,o,t)(C',0')

= E(c,0)~w{step(C,0o,t)}
= step(W, t).

Lemma 110. For all W,t, W', W L w if and only if W' = step(W,1).

Proof. For all W,t, W', we prove the two directions respectively.

— if W4 W, then W’ = step(W, t).
By Lemma. [109
— it W = step(W,t), then W L w

Let W" € \(C,0"). Yo ,AW(C,0) - p | (C,0) 2 (€', o)}, then W -5 W".
By Lem. [109| we know W = step(W,t), so W A step(W,t).



Lemma 111. For allW, f,t, step(Ec o)~w{f(C,0)},t) = E(c,o)~w{step(f(C,0),1)}.

Proof. For all W, f t, we have

step(E(c,oy~w{f(C,0)}, 1)
= E 0)~Ec.oowifco}{step(C, o’ 1)}
= ]E(C,U)NW{IE(C/’U,)Nf(C’g){step((C’, O"7 t)}} (by Lem.
= ]E((C,U)NW{Step(f(C’ 0)7 t)}

Lemma 112. For allW, f, splitAtom(E ¢ »)~w{f(C,0)}) = Ec,o)~w{splitAtom(f(C,0))}.

Proof. For all W, f, we have

splitAtom(Ec ) ~w{f(C,0)})
= E((C’,a’)N]E(Cy,,)NW{f((C,cr)}{SplitAtom(C/) ® 5(0'/)}
= E(Cyg)NW{E(C/’g/)Nf(C’J){SplitAtom((C/) ® (S(UI)}} (by Lem.
= E¢,o)~w{splitAtom(f(C,0o))}.

Lemma 113. For allW, f, lazycoin(Ec o)~w1{f(C,0)}) = Ec,0)~w {lazycoin(f(C,0))}.
Proof. For all W, f, we have

lazycoin(E(c o, ~w{f(C,0)})
= E (¢ 0)nEc,0 o (€0} {0(lazycoin(C')) @ 6(0”) }
= Ec,o)~wlE( 0/~ f(c,0){10(lazycoin(C’)) @ d(c’) } } (by Lem.
= E(¢,0)~w{lazycoin(f(C,0))}.

Lemma 114. For all p1,...,pt—1,7, Pt+1,-- - Pn, SPlitAtom(py || -+ || pr—1 ||
Nl pesa || -+ |l pn) = splitAtom(py) || - - - || splitAtom(p;—1) || splitAtom(n) ||
splitAtom(ps11) || - - - || splitAtom(p,).

Proof. For all p1,...,0t—1,7, Ptt1y-- - Prs

splitAtom(p1 || -~ || pe—1 | 7 || per || -+~ | pn)
=Ec,o)ymprll-lloe_1llnlloei ]l llon {SPlitAtom(C) ® 6(0)}
=MC, ). e (ol Il pe=1 | n |l pega | -+ || p)(C, o) - splitAtom(C)(C’) - 6(c) (o)
=ACL - 1Ch0"). 2o oo [ T pe=t [ L e - pn)(Co |l -+ || Cny0) -
splitAtom(Cy || --- || Co)(Cy || --- || C) - 6(o) (")
=ACL - 1Chy o). 20, o PLCT) - p—1(Cem1) - 1(C, 0) - p41(Copr) -+ pr(Cn) -

splitAtom(C1)(C1) - - - splitAtom(C,)(C},) - 6(o)(o”)

=AC1 |-+ [ Chy0"). (g, p1(Ch) - splitAtom(C1)(C1)) - -
(Xe,_, pr-1(Cim1) - splitAtom(Ci—1)(Ci1)) - (¢, , 1(Ci, 0) - splitAtom(C1)(CY) - 6(o)(0")) -
(e, Pr+1(Ceya) - splitAtom(Cr11)(Cita)) -+ (g, pn(Cn) - splitAtom(Cr)(Ch))

= (G- Chao). By, {sPlitAtmM(CNCE) B, |~ {splitAtom(Co)}(CYy) -
E(c,,0)~n{splitAtom(C;) ® §(0) }(Ct,0") - By, i mpyir {SPlitAtom(Ciy1) H(Cigr) - - -
Ec, ~p, {splitAtom(C,,)}(Cy,)

=XCL |-+ ]| Ch,0o'). splitAtom(p1)(CY) - - - splitAtom(p:—1)(C;_;) - splitAtom(n)(C}, o) -
splitAtom(pi+1)(Ciy1)(Ciyr) - - - splitAtom(pn)(Cr)(Ch)

= splitAtom(p;) || - - - || splitAtom(p;—1) || splitAtom(n) || splitAtom(p¢11) || --- || splitAtom(py,).



Lemma 115. For all p1,...,pt—1,1, Pt+1,---,Pn, lazycoin(py || ...pi—1 || 7 ||

peer ||+ || pn) = lazycoin(py) | .. lazycoin(p; 1) || lazycoin(n) | lazycoin(pi1) |
- || lazycoin(C,,).

P’I‘OOf. For all Pls--y Pt—15T] Pt+1s- -+ Pns

lazycoin(pi || -« || pe—1 | 0 [l pesa | -+ || pn)
=Ec,o)vprll--llpe_1lnllors -+ Ion 10(1azycoin(C)) @ 6(o) }
=XNC,0"). e (o1 |-l pe=r [0 || pesr | -~ || pu)(C,0) - §(lazycoin(C))(C') - 6(o) (o)
=ACL - 1Ch ")y o0 L o=t Il e |- [l pu)(Co |l -+ || Cy0) -
d(lazycoin(Cy || --- || Cu))(CL || --- || CF) - 6(0) (o)
=AMCL| - 1 Ch0")- ey o PL(C1) - pr—1(Cem1) - 1(Cry 0) - pei1 (Cogr) -+ - pu(Cr) -

d(lazycoin(C1))(C1) - - - §(lazycoin(C,))(Cy,) - §(o )(U/)

= AMC1 | -+ 1 Ch, o). (3¢, p1(Ch) - 6(lazycoin(C1))(C1)) - -
(Xe, , -1(Cim1) - 0(lazycoin(Ce-1))(Ci1)) - (g, 1(Cr, 0) - d(lazycoin(Cy))(Ct) - 6(0)(0”)) -
(e, Pr+1(Ceya) - 6(lazycoin(Cii1))(Citr)) -+ (e, pn(Cr) - 6(lazycoin(Cr))(Cr))

=XC1 |+ || Chy0"). Ecy~py {0(lazyeoin(C1)) HCT) - Ec, _ ~p, —, {0(lazycoin(C: - 1))}(Ct 1)
E(cyoyer{8(1amycoin(C1) © 8(0)}(Ch, 0") - Ecyy1mpes 10(1azycoin(Crs))} (Chin) -
Ec,, ~pn{6(lazycoin(Cy,))}(C})

= ACL I € o). Tazyeoin(pr)(Ch) - Tazycoin(p1)(Ciy) - Tazycoin(n)(Cl, ') -
lazycoin(pi+1)(Ci41)(Ciyr) - - lazycoin(pn ) (C)(Cr)
= lazycoin(p1) || - - - || lazycoin(p:—1) || lazycoin(n) || lazycoin(p:+1) || - - - || lazycoin(p,).

Lemma 116. For all p, u, splitAtom(p ® u) = splitAtom(p) ® pu.
Proof. For all p, u,

splitAtom(p ® p)
= IE(CJ)N,@M{SplitAtom(C) ®6(a)}
=AMC",0"). 3 c.0 p(C) - (o) - splitAtom(C)(C) - 6(0)(0”)
ZXC0"). (e plC) - split Atom(C)(C) - (o)
= X", 0"). Ec~p{splitAtom(C)}(C") - p(o’)
=\, ¢"). splitAtom(p)(C’) - u(c’)
= splitAtom(p) ® u.

Lemma 117. For all p, 1, lazycoin(p ® ) = lazycoin(p) ® p.

Proof. For all p, u,

lazycoin(p ® u)
=Eq, )~p®#{6(lazycoin(0)) ® (o)}
= NC",0"). X0, p(C) - o) - (lazycoin(C))(C") - §(a) (o)
= /\(C' o). (X p(C) - 8(lazycoin(C))(C")) - u(o’)
= X", 0"). Ec~p{d(lazycoin(C))}(C") - u(o’)
=\, ¢"). lazycoin(p)(C”") - u(o”)
= lazycoin(p) ® p.

Lemma 118. For all C, splitAtom(6(C)) = splitAtom(C).



Proof. For all C,
splitAtom(4§(C))
=Ecros C){splltAtom(C”)}
= sphtAtom(C) (by Lem. [17)

Lemma 119. For all C, lazycoin(6(C)) = §(lazycoin(C)).
Proof. For all C,

lazycoin(6(C))
= Ecrs(c){d(lazycoin(C))}
= d(lazycoin(C)). (by Lem.

Lemma 120. For all C and o, step(6(C) @ §(0)) = step(C, o).
Proof. For all C and o,

step(d(C) ® §(0))
=E(cr,0n~s(C)05(0) {SteP(C’, 0") }
= MC",0"). 3 cr 0 6(C)(C) - 6(0)(0") - step(C’, 0")(C", 0")
= \C",0").step(C,a)(C",o").
= step(C, o).

Lemma 121. For all C,0,t, step(6(C) ® 6(0),t) = step(C, o,t).
Proof. For all C,o0,t,
step(0(C) ® §(0), 1)
=E, a/)Na(c)m(U){SteP(C a',t)}
=AC",0"). 3¢ 5 6(C)(C) - 6(0)(0") - step(C’, 0", ¢)(C", 0").

= \C",5").step(C,o)(C",d").
= step(C, o, 1).

Lemma 122. For allni, 12, p, splitAtom(n,@,1n2) = splitAtom(n,)E,splitAtom ().
Proof. For all 1,19, p,

splitAtom(m &, 72)
= E(C,0)~mepns {splitAtom(C) ® §(0)}
= E(c,0)~n, {sPlitAtom(C) ® 6(0)} ©, E(c,5)n, {sPlitAtom(C) ® 6(0) } (by Lem.
= splitAtom(n;) @, splitAtom(7n;).

Lemma 123. For allny, 12, p, lazycoin(n ®,n2) = lazycoin(n; )®,lazycoin(nz).
Proof. For all ny,n9,p,

lazycoin(n, @ 12)
= E(c,0)~m@,n: 10 (lazycoin(C)) ® §(a)}
= E(¢,0)~n; {0(lazycoin(C)) ® §(0)} ©p E(c,0)nn, {d(lazycoin(C)) ® 6(o)} (by Lem.
= lazycoin(n,) @, lazycoin(7s).



Lemma 124. For all n1,1m2,p, step(m B, n2) = step(n1) B, step(n:).

P’I"OOf. For all 1,12, P,

splitAtom(m; &, 72)
= E(c,0)~ma,n, {sPlitAtom(C) @ 6(0)}
= E(¢,0)~n, {sPlitAtom(C) ® 0(0)} @) E(c,0)~n, {sPlitAtom(C) ® d(c)} (by Lem.
= splitAtom(n;) @, splitAtom().

Lemma 125. For all Cy,Cy, 0, if Cy # skip, then step(C; Ca,0) = step(C,0); Ca.

Proof. For all Cq,Cs, 0 such that Cy # skip, we have

step(C1; Cs, 0)
N L if(cl;gz,a)&(c',a')

0, otherwise

p, if (C1,0) 5 (C],0")AC" =C}; Oy
0, otherwise

step(C1,0)(C},0'), if ¢/ =C1;C,

, otherwise

= step(C1,0); Co.

= \C", o).

= (", o).

Lemma 126. For all n, Cs, splitAtom(n; Cs) = splitAtom(n); Cs.

Proof. For all n, Cs,

splitAtom(n; Cs)
= E(0,0)~n:c, {8PlitAtom(C) @ d(0)}
= AC",0"). 3 ¢, (5 C2)(C, 0) - splitAtom(C)(C") - 6()(0")
= ANC",0"). > ¢, - 1(C1,0) - splitAtom(Cy; C2)(C”) - 6(0)(0”)
= ANC",0"). >0, ., 1(C1,0) - (splitAtom(Cy); C2)(C”) - () (0”)
>0, .0 M(C1,0) - splitAtom(C1)(CY) - 6(0)(0”), if C'=C1;0

= \C", ). )
0, otherwise
(o), {EcrmtsplitAtom(C) £ 0(0)} (O o), i€ = C1: s
’ 0, otherwise
N splitAtom(n)(C1,0’), if C’ :.O{;CQ
0, otherwise

= splitAtom(n); Cs.

Lemma 127. For all n,Csy, lazycoin(n; Cs) = lazycoin(n); lazycoin(C3).



Proof.

lazycoin(n; Cs)
= E(¢,0)~n;c, {10(lazycoin(C)) @ 6(0)}
= AC,0"). 3 ¢, (n; C2)(C, 0) - §(lazycoin(C))(C”) - §(o)(0”)
= AC,0"). 3¢, o 1(C1, 0) - 6(lazycoin(Cy; C2))(C') - 6(0)(0")
:)\(C’,a’).zclan C4,0) - 6(lazycoin(Cy );lazycoin(C5))(C") - §(o)(c”)

_ AT o). chgn(Cl, o) - 6(lazycoin(Cy))(Cy) - 6(o)(c’), if C' = Cf;lazycoin(Cs)

0, otherwise
(.00, | B lilazycoin(C) & 8@} (Cho). i C = Chi
o, otherwise
_AC oY) lazycoin(n)(C1,0'), if ¢’ = C1;C4
0, otherwise

= lazycoin(n); Cs.
Lemma 128. For allC, o, splitAtom(step(lazycoin(C), o)) = lazycoin(step(C, o)).
Proof. by induction on C.

— case 1: C = (C4) &, (Ca).

For all o, we have

splitAtom(step(lazycoin(C), o))
= splitAtom(step(lazycoin({C:) &, (C2)),0))
= splitAtom(step(skip; ((C1) @ (C2)),0))
— splitAtom(5(((C1) &, (C2))) @ 8(0)
= splitAtom(5({(C1) @, (C2)))) @ 6(0) (b Le
= splitAtom({(C1) &, (C2))) ® é(0) (by Lem. [118)
= 6((C1)) ®p 0((C2)) ® 0(0)
— (3((C1)) @ 6(0)) Bp (5((C)) @ 8()).  (by Lem. [Fd)

and

lazycoin(step(C, o))
= lazycoin(step((C1) &, (Cs),))
= lazycoin((6((C1 i) ®4 0’;) p (6({C2)) ® 6(0)))

= lazycoin(d((C1)) ® §(0)) @, lazycoin(d((C2)) ® d(0)) (by Lem. [123)
= (lazycoin(6({C1))) ® 6(0)) @p (lazycoin(6({C2))) ® §(c)) (by Lem. [117)
= (larycoini(€1)) (o) 5 (lamycoini(€2)) ©00) (b L. [T
= (6((C1)) ®6(0)) @p (6((C2)) ® 6(0)).

Therefore splitAtom(step(lazycoin(C), o)) = lazycoin(step(C,o)).
— case 2: C'=C1;Cs.
IH: for all o, splitAtom(step(lazycoin(C),0)) = lazycoin(step(C1, 0)).
For all o, we have splitAtom(step(lazycoin(C), o)) = splitAtom(step(lazycoin(C; Cs),0))
= splitAtom(step(lazycoin(C); lazycoin(Cs), 0)). It is obvious that Cy =
skip or C; # skip, we prove the two cases respectively.



e (' = skip.
‘We have

splitAtom(step(lazycoin(C), o))
= splitAtom(step(lazycoin(skip); lazycoin(Cs), o))
= splitAtom(step(skip;lazycoin(Cs), o))
= splitAtom(d(lazycoin(Cs)) ® (o))

(0 o(o
(1
(@

splitAtom(d(lazycoin(Cs))) ® §(o) (by Lem. [116)
= splitAtom(lazycoin(C3)) ® §(0) (by Lem. [118)

= §(lazycoin(C2)) ® §(o) (by Lem.
and
lazycoin(step(C, o))
= lazycoin(step(skip; C2, o))
= lazycoin(§(C3) ® §(0))
= lazycoin(4(Cs)) ® §(0) (by Lem.

= d(lazycoin(Cs)) ® §(0). (by Lem. [119))

Therefore splitAtom(step(lazycoin(C), o)) = lazycoin(step(C, 0)).

e (7 # skip.
From C # skip we know lazycoin(C}) # skip.
By Lem. we know step(C1; Cq,0) = step(C1,0); Co and
step(lazycoin(C}); lazycoin(Cs), o) = step(lazycoin(C}), 0); lazycoin(Cy),
thus

splitAtom(step(lazycoin(C), o)
= splitAtom(step(lazycoin(C}); lazycoin(C3), o))
= splitAtom(step(lazycoin(C}), o); lazycoin(C5))
= splitAtom(step(lazycoin(C}), 0));lazycoin(C>) (by Lem. [126])
= lazycoin(step(C1, 0)); lazycoin(C5) (by IH)
= lazycoin(step(Cy,0); Cs) (by Lem. [127)
= lazycoin(step(Cy; Cs,0))
= lazycoin(step(C, 0)).

— case 3: C = if (b) then C] else Cs.
For all o, it is obvious that o |= b or o [= b. We only prove the case o |= b, the
other case is similar. From o | b we know step(if (b) then C; else Cs) =
5(C1) ® 6(0) and step(if (b) then lazycoin(Ci) else lazycoin(Cs)) =
d(lazycoin(C4)) ® d(o), thus

splitAtom(step(lazycoin(C), o))
= splitAtom(step(lazycoin(if (b) then C; else Cy),0))
= splitAtom(step(if (b) then lazycoin(C,) else lazycoin(Cs), o))
= splitAtom(d(lazycoin(C4)) ® 6(0))
= splitAtom(d(lazycoin(C1))) ® 6(0) (by Lem. [116)
= splitAtom(lazycoin(C})) ® (o) (by Lem. [118))
= ¢(lazycoin(C1)) ® §(o). (by Lem. [97)
= lazycoin(step(C, o))



and

lazycoin(step(C, o))
= lazycoin(step(if (b) then C; else Cs,0))
= lazycoin(6(C1) ® 6(0))
= lazycoin(6(C})) ® (o) (by Lem. [117)
= d(lazycoin(C1)) ® §(0). (by Lem. [119)
)

Therefore splitAtom(step(lazycoin(C), o)) = lazycoin(step(C, o)).
— case 4: C = while (b) do C}.
For all o, it is obvious that o = b or o £ b. We prove the two cases respec-
tively.
e o kb

We have step(while (b) do C,0) = §(Cy; while (b) do C1) ® §(¢) and
step(while (b) do lazycoin(C), o) = §(lazycoin(C}); while (b) do lazycoin(C,))®
0(o), thus

splitAtom(step(lazycoin(C), o))
= splitAtom(step(lazycoin(while (b) do C4),0))
= splitAtom(step(while (b) do lazycoin(C4),0))
= splitAtom(d(lazycoin(C, ); while (b) do lazycoin(C}
= splitAtom(d(lazycoin(C, ); while (b) do lazycoin(C

(

(

(

E ® 6(0))

= splitAtom(lazycoin(C); while (b) do lalzycoin(C’l);1

(1

(¢

(@

(

) ®6(o

) ® (o) (by Lem.
6(o) (by Lem. [118))
5o)  (by Lem. 120
by Lem. [97)

by Lem.

~— —

= splitAtom(lazycoin(C})); while (b) do lazycoin(C}
= d(lazycoin(C1)); while (b) do lazycoin(C;) ® §(o)
= §(lazycoin(Cy); while (b) do lazycoin(C})) ® (o)
= 6(lazycoin(Cy; while (b) do C1)) ® (o)

®
®
(
(

and

lazycoin(step(C, o))
= lazycoin(step(while

(
(s (b) do C1,0))
= lazycoin(d(Cy; while (b
@ (b
(b

do C1) ® 6(0))
do C1)) ®d(0) (by Lem. [117)
do C1)) ® (o) (by Lem. [119)

= lazycoin(§(C;; while
= d(lazycoin(C1; while

Therefore splitAtom(step(lazycoin(C), o)) = lazycoin(step(C, 0)).
o o~ b

We have step(while (b) do C1,0) = §(skip) ® d(0) and

step(while (b) do lazycoin(C4),0) = 6(skip) ® d(o), thus

splitAtom(step(lazycoin(C), o))
= splitAtom(step(lazycoin(while (b) do C1),0))
splitAtom(step(while (b) do lazycoin(C),0))
splitAtom(d(skip) ® §(0))
(6
(
(

= splitAtom(d(skip)) ® (o) (by Lem. [116)
= splitAtom(skip) ® (o) (by Lem. [118)
= J(skip) ® 6(0)



and
lazycoin(step(C, o))
= lazycoin(step(while (b) do C1,0))
= lazycoin(d(skip) ® é(o))
= lazycoin(d(skip)) ® 6(o) (by Lem. [117)
= J(skip) ® 6(0). (by Lem. [119)

Therefore splitAtom (step(lazycoin(C), o)) = lazycoin(step(C, 0)).
— other cases: C' =skip |z :=¢| (C1) | (Cy) sp
We can see lazycoin(C) = C and there exists g such that step(C,o) =
d(skip) ® p, thus

splitAtom(step(lazycoin(C), o))
splitAtom(§(skip) ® p)

= splitAtom(é(skip)) @ . (by Lem. [116])
= splitAtom(skip) ® p. (by Lem. [118)
= 0(skip) @ u

and
lazycoin(step(C, o))
= lazycoin(J(skip) ® p
= lazycoin(d(skip)) ® u (by Lem.
= §(skip) @ p. (by Lem.

Therefore splitAtom(step(lazycoin(C), o)) = lazycoin(step(C, o)).
Lemma 129. For allC,o,t, splitAtom(step(lazycoin(C), o,t)) = lazycoin(step(C, o,t)).

Proof. For all C,o,t, by definition of Prog there exists Ci,...,C,, such that
C=Ci |- Cn.

splitAtom(step(lazycoin(C), o,t))
= splitAtom(step(lazycoin(C || --- || Cn),0,1))
= splitAtom(step(lazycoin(C}) || - - - || lazycoin(Ch,), o,t))
— split Atom(5(lazycoin(C1)) || -+ - || (lazycoin(Ci—1)) | step(lazycoin(C:), o) |
d(lazycoin(Cyy1)) || - - - || 6(lazycoin(Ch)))
= splitAtom(d(lazycoin(C}))) || - || splitAtom(d(lazycoin(Ci—1))) || splitAtom(step(lazycoin(C;), o)) ||
splitAtom(d(lazycoin(Ci+1))) || - - - || splitAtom(d(lazycoin(C,))) (by Lem. [114)
= splitAtom(lazycoin(C})) || - - - || splitAtom(lazycoin(C;—1)) || splitAtom(step(lazycoin(C}), o)) ||
splitAtom(lazycom(C’tH)) || --- || splitAtom(lazycoin(C,)) (by Lem. [118))
= §(lazycoin(C1)) || - - - || 6(lazycoin(C;_1)) || lazycoin(step(Ct, o)) ||
d(lazycoin (Cf+1)) || --- || 6(lazycoin(Cy)) (by Lem. [97] and Lem. [128)
= lazycoin(6(C1)) || - - - || lazycoin(§(Ci—1)) || lazycoin(step(Ct, 0)) ||
lazycoin(6(Cit1)) || - - - || lazycoin(6(Ch)) (by Lem. [119))
—lazycoin(3(C1) || - | 5(Ci-1) | step(Cr, ) | 6(Crs1) | -~ | 6(Cu))  (by Lem. [[T3)
= lazycoin(step(C || - - - || Cn,0,t))
= lazycoin(step(C, o, t)).

Lemma 130. For all W andt, splitAtom(step(lazycoin(W),t)) = lazycoin(step(W,t)).



Proof. For all W and t, we have

splitAtom(step(lazycoin(W),t))
= splitAtom(step(Ec ) ~w{d(lazycoin(C)) ® §(c)}, 1))
= splitAtom(E, U)Nw{step( (lazycoin(C)) ® 6(0),t)}) (by Lem. [L11))
= splitAtom(Ec ). {step(lazycoin(C),s,1)}) (by Lem.
= E(¢,0)~w {splitAtom(step(lazycoin(C), o, t))} (by Lem. [112))
= E(¢,0)~w{lazycoin(step(C, 0,1))} (by Lem. [129))
= lazycoin(Ec,,)~w{step(C, 0,1)}) (by Lem. [113])
= lazycoin(step(W, t)).

Lemma 131. Forall pr,...,pn,ist, (p1 || - | pn)@p=p1 || ... pe—1 || pr@p ||
pesr |-l on-

Proof. For all p1,...,pn, i, t,

(pr -l pn) @ p
=MC1 |-+ || Cny0). p1(C1) -+ pu(Cr) - (o)
=MC1 |-+ || Cpya). p1(Ch) - pt 1(Ce-1) - (pe(Ct) - 11(0)) - pr41(Cry1) -+ pu(Cr)
=AC1 -+ | Cn,0). p1(C’1) pt=1(Ci—1) - (e @ p)(Cr, 0) - prg1(Crpa) -+ - pu(Crn)
=pll-pe—r lpe@pll prga |- |l pn
Lemma 132. For all p1,...,p1—1,7, pei1s-- - pn, step(pr || -+ || pe—1 | 0 ||
prot | L pnst) = pr |-+ | pe—v || step(n) || prsa || -+~ |l pu-

P’I"OOf. For all Pls--y Pt—15T Pt+15- -+ Pns

step(p1 || -~ | pe—1 [ 0 [ pesa || -+ [l pnst)

= Ec.o)mpil-lpeilnllpess |-, {StEP(C,0,8)}

=MC ") e pi - o= ([0 ]l pesa I -+ [ pn)(C,0) - step(C, 0, t)(C, 0")

=MCL -l C;L,U')'ch,__cmg p1(C1) - pi—1(Ci—1) - 0(C,0) - pry1(Ciy1) - pu(Ch) -
step(Cy || -+ || Cn, 0, 0)(CL | -+ || Cpy07)

= )\(Ci || || C;L»UI)~ch,...cn,g pl(Cl) : "Ptfl(ctfl) '77(Ct70) 'Pt+1(Ct+1) : "pn(cn) :
§(C1)(C1) -+ 3(C—1)(Cy_4) - step(Ct, 0)(CF,0") - 6(Crs1)(Chy) -+ - 6(Cn)(C)

=ANCL -1 Cpy0').- 3¢, o P1(CL) -+ pr—1(Ci_y) - n(Ct, 0) - step(Ct, 0)(Cy, 0”) -
pr+1(Ciyr) - pn(Cy)

=ANCL - 1 Cphy0")-p1(C1) -+ pr—1(Ci_1) - O, M(Ct, 0) - step(Cy, o) (Ch,07)) -
pr+1(Cri1) -+ pu(Ch)

=ACLI -1 Cpy0").p1(C1) -+ - pr—1(Ci_1) - E(c, 0)~n{step(Cr, o) HCY, 07) -
pr+1(Ciy1) - pu(Cy)

=MCL - 1 Cpy0").p1(C1) -+ pr—1(Ci_q) - step(n)(Cy, o) - pr41(Chyy) -+~ pu(Cy)

=p1 |- |l pe—r [ step(n) [| pega | == || -

Lemma 133. For all C, splitAtom(splitAtom(C)) = splitAtom(C).

Proof. by induction on C.



— case 1: C' = ((C1) @, (C2)).

splitAtom(splitAtom(C))
= splitAtom(splitAtom({(C1) @, (C2))))
— splitAtom(5((Ch)) @, 8((C))
= splitAtomE ({C1))) @p splitAtom(5((Cs))) (by Lem. [122)

= splitAtom((C1)) &, splitAtom((Cs)) (by Lem. [118)
=6({C1)) By 6({C2))

= splltAtom(<<C’1> @, (C2)))

= splitAtom(C).

— case 2: C' = ((C1) @p (Ca2)) sp

splitAtom(splitAtom(C))
= splitAtom(splitAtom(((C1) &, (C2)) sp))
— splitAtom(5((C1) sp) &, 5((C) sp))
= splitAtom(5((C1) sp)) &, splitAtom(6((C2) sp)) (by Lem. [122)
= splitAtom((C7) sp) @, splitAtom({Cs) sp) (by Lem. [118)
= 0((C1) sp) ®p 6((C2) sp)
= splitAtom(((C1) @p (C2)) sp)
= splitAtom(C).

— case 3: C' = Cq;Cs.

IH: splitAtom(splitAtom(C;)) = splitAtom(CY).
splitAtom(splitAtom
= splitAtom(splitAtom

)
1
splitAtom(splitAtom

( )

( ; Co

( 1); C
= splitAtom(splitAtom(C})

(©

(

(C

);
I

(C
(C1;C2)
(C1); C2
(C1)); Cy
= splitAtom(C}); Cs (by IH)
= splitAtom(Cy; Cs)

).

= splitAtom

— other cases.
We have splitAtom(C) = §(C), thus

splitAtom(splitAtom(C))

= splitAtom(5(C))
= splitAtom(C). (by Lem. [118)

Lemma 134. For all 0,0, p,n, (skip,o) ﬂ)”(skip, o) if and only if o' = o A
p=1loroc #0cAp=0.

Proof. For all o,0’,p,n, we prove by induction on n.

— base case: n = 0. trivial.



— inductive case: n = k + 1.
IH: (skip, o) %*(skip,¢’) if and only if o’ =c Ap=1or o’ # o Ap=D0.

(skip, o) & (skip, o)
> (skip, o) &*+1(skip, o)
=P = cngn-Ap1p2 | (skip, o) 2L 0"y A (C", 0"y Bk (skip, o)}
— (skip, o) £2¥(skip, o”)
<~ (oc'=0Ap=1)V(c'#cAp=0). (by IH)

Lemma 135. For all C,0,0’,p,n such that n > 1, ((C),0) 2" (skip,o’) if and
only if ((C),0) 2 (skip,d’).

Proof. For all C,0,0’,p,n such that n > 1, we have

((C),0) " (skip, ')
= p=3cnoip1 p2| ((C),0) 5 (C",0") A (C",0") 25m 1 (skip, o’)}
—=p=3_Ap1-p2| ((C),0) X (skip,a”) A (skip,0”) 227~ (skip,0’)}
= p=Y1Ap1p2| ((C),0) 2 (skip,o”) Apys =1 Ac” =0’} (by Lem. [[34)

— ((C),0) 2 (skip, o).

Lemma 136. For all C,0,0',p, ((C),0) 2 (skip, ') if and only if there exists
k such that ((C), o) L7 (skip,o’) for all n > k.

Proof. For all C,0,0’,p, we prove the two directions respectively.

— ((C),0) & (skip, o).
Let k %' 1. For all n > k, we know n > 1, by Lem. We have ((C),0) &
" (skip, o).

— there exists k such that ((C), o) 2" (skip,o’) for all n > k.
We know ((C),0) L¥+1(skip,o’). From k +1 > 1 by Lem. we have
(C),0) & (skip, o).

Lemma 137. For all C1,Cy,0, step({{C1) @&, (C2)),0) = step((C1),0) By
step((Ca),0).



Proof. For all Cy,Cs, 0, we have

step({((C1) B, Cg)} o) /
{ if (((Ch) @y (C)), 0) 25 (C", )
0, otherwise
Y, if O = skip A 3k¥n > k.((C1) B, (Co), o) Zsn(skip, o)
0, otherwise
p-p1+ (1 —p)-ps, if C"=skipA3Ik>1.¥n>k.((C1),0) L7 (skip,o’) A
= A", o). ((C2),0) 2"~ (skip, o)
0, otherwise
p-p1+ (1 —p)-py, if C"=skipAIk>1Yn>k—1.((C1),0) L5 (skip,o’) A
=\, ). (Co), o) 257 (skip, o)
0, otherwise
p-pi+ (1—p)-po, if C' =skip A TkVn > k.((C1),0) L7 (skip, ') A
(Co), o) 27 (skip, o)
0, otherwise
p-p1+ (1 —p)-pa, if C"=skip A (3kVn > k.((C1),0) 257 (skip, o)) A
(3kVE.((Cy), o) L2 (skip, 0”))
0, otherwise
AC o). p {pl, if ¢ = skip (3k.¥n > k.((C1), o) L (skip, o))
0, otherwise

1—p) {pg, if € = skip A (Fk.¥n > k.((Ca), o) 227 (skip, o))
)

= \C",0").

= A", o).

0, otherwise
p1, if ((C1),0) o, (c’, o) pa, if ((C3),0) L2, (C',o")
: +(1—-p)- :
0, otherwise 0, otherwise
= A(C",0"). p-step((C1),0)(C",0") + (1 — p) - step((C2), o) (C", 0")
= step((C1), o) ®, step((C2),0).

=", 0'). p (by Lem. [130)

Lemma 138. For all 0,0, sp, step({C) sp,o) = step({C), o).

Proof. For all 0,0, sp, we have

step((C) sp,0)
p, if ((C) sp,0) & (C',0")

= \C", ). )
0, otherwise
MC o) p, if C' =skip A ((C),0) & (skip, 0’)
= ’O— * .
0, otherwise
o [ U0 B o)

0, otherwise
= step((C),0).



Lemma 139. For alln and Cs, if n5'™ (skip) = 0, then step(n; Cy) = step(n); Cs.

Proof. For all  and Cs such that 75 (skip) = 0, we know >__ n(skip, o) = 0,
so n(skip, o) = 0 for all o, thus

step(n; C2)
= E(c.o)mnicp{step(C, o)}
= AC",0"). 20, (1 C2)(C,0) - step(C, o) (C”, o)
=ANC",0"). 3¢, »1(C1,0) - step(Cr; Ca,0)(C', 0”)
o) S (Cr,0) - step(Cri Ca, 0)(C, ') | €1 # skip)
>-0,.0M(C1,0) - step(Cr,0)(C1,0), if C'=C;C

=\, d"). . (by Lem. [125])
0, otherwise

=\, 0"). E(CLU)NU.{Step(Cl,U)}(Ci,o’)’ if " = CY; Cy
0, otherwise

=\, d"). Step(n)(Qi,U)’ if O = C1; Oy
0, otherwise

= SteP(n); Cs.

Lemma 140. For all C, 0, step(splitAtom(C) ® §(0)) = step(C, o).
Proof. by induction on C.

— case 1: C' = ((C1) ®, (C2)).
For all o, we have

) ®6(0))
= step(splitAtom({(C1) @, (C2))) @ §(0))
= step((6((C1)) ®p 0({C2))) © 6(0))
= step((6((Ch)) ® (3)@19 6((Cy >)®<)5( o))
(€
(

step(splitAtom(C
(s
(
( )
:step55(< 1)) ®6(0)) &, step(d((C2)) ® &
(
(

) (by Lem. [14)
(0))  (by Lem. [124)
. [20)

)
= step ),0) ®)p step((Cy), 0) (by L
step(((C1) @, (C2)),0)  (by Lem. [137)
= step(C, o).

— case 2: C' = ((C1) @, (C2)) sp

For all o, we have

step(splitAtom(C) ® §(o))

= step(splitAtom({(C1) &, (C2)) sp) ® §(0))
= step((6((C1) sp) ®p §((C2) sp)) @ (o))
= step((6((C1) sp) @ (0)) @p (6((C2) Spi

<)5( 7)))  (by Lem.[14)

_ ) @olo) (o Lon. 2D
= step((C1) sp, o) B, step((Cz) sp, o) (by Lem.
= step((C1), 0) @, step((Ca),0) (by Lem.

(
(s
((6
((6((C
= stepE(j((Q) sp) ® 6(0)) By Step( (C2
(c
((
((
(C

1),0)
= step({{C1) @, (C2)),0) (by Lem. [137)
= step(((Cy )) Dp <C'z>> sp, o) (by Le
= step(C),



— case 3: C' = Cq;Cs.
IH: for all o, step(splitAtom(C;) ® 6(c)) = step(C1, o).
It is obvious that C; = skip or C; # skip, we prove the two cases respec-
tively.

e (C; = skip.
For all o, we have

step(splitAtom(C) ® §(0))
= step(splitAtom(skip; Cs) ® §(0))
= step((splitAtom(skip); C2) ® 6(0))
— step((5(skip): C5) ® (o))
= step(d(skip; C2) ® 0(0))
= step(skip; Co, 0) (by Lem. [120)
— step(C,0).

e (C; # skip.
For all o, from C; # skip by Lem. we know step(Cy;Cs,0) =

step(C1,0); C>
By Lem. [152|we know splitAtom(Cy) ® §(c)*"™" (skip) = splitAtom(C})(skip) =
6(C1)(skip) = 0, by Lem. [139| we know step((splitAtom(C1)®d(0)); C2) =

step(splitAtom(C) ® §(0)); Ca, thus

step(splitAtom(C) ® 6(0))
= step(splitAtom(Ch; 02) 5(0))
= step((splitAtom(C}); C2) ® §(0))
= step((splitAtom(C}) ® 6(0)); Cs) (by Lem.
= step(sphtAtom(Cl) ®d(0)); Ca
= step(C4,0); Oy (by TH)
= step(Cy;Cy,0)
= step(C,0).

— other cases.
We have splitAtom(C) = §(C), thus

step(splitAtom(C) ® 6(o))
= step(6(C) ® 6(0))
= step(C, o). (by Lem[120))

Lemma 141. For allC, o,t, splitAtom(step(splitAtom(C)®4(c),t)) = splitAtom(step(C, o,t)).



Proof. For all C,o,t, by definition of Prog there exists Ci,...,C), such that

C=Ci|- | Cu
splitAtom(step(splitAtom(C) ® (o), t))
= splitAtom(step(splitAtom(Cy || -+ || Cn) ® 6(0),t))
= splitAtom(step(splitAtom(C) || - - - || splitAtom(C,) ® §(0),t))
= splitAtom(step(splitAtom(C1) || - - - || splitAtom(C;—1) || splitAtom(C;) ® 6(o) ||
splitAtom(Ci41) || - - - || splitAtom(C,) ® 6(0),t)) (by Lem. [131))
= splitAtom(splitAtom(Cy) || - - - || splitAtom(Ci_1) || step(splitAtom(Ct) ® 0(0)) |
splitAtom(Ci41) || - - - || splitAtom(Ch)) (by Lem. [132))
= splitAtom(splitAtom(C1)) || -+ || sphtAtom(sphtAtom(C’t 1)) || splitAtom(step(splitAtom(C;) ® 6(0))) ||
splitAtom(splitAtom(Cy41)) || - - - || splitAtom(splitAtom(C,,)) (by Lem. [114))
= splitAtom(C) || - - - || splitAtom(C;_1) || splitAtom(step(Ct, o)) ||
splitAtom(Cyy1) || - - - || splitAtom(C,,) (by Lem. and Lem. [140)
= splitAtom(Cy || -+ || Ci-1 || step(Ce,o) || Copr || -+ || Cu)  (by Lem. [ITd)
= splitAtom(step(C1 || ...Chn,0,1))
= splitAtom(step(C, o,t)).

Lemma 142. For all W andt, splitAtom(step(splitAtom(W),t)) = splitAtom(step(W,t)).
Proof. For all W and t, we have

splitAtom(step(splitAtom(W),t))
= splitAtom(step(Ec »)~w {split Atom(
= splitAtom(Ec )~ {step(split Atom(
= E(c,0)~w {splitAtom(step(split Atom(
= E(c,0)~w{splitAtom(step(C, o,t))}
= splitAtom(Ec ,).w {step(C,o,%)})
= splitAtom(step(WW,t)).

) ®6(0)},1))
)@ ( )ﬂf)}) (by Lem. [111)
)®6(0), 1))} (by Lem.[112)

by Lem 41
by Lem. [112)

Lemma 143. For all Wy, Wo, W/, if Wy ~ Wy and W, A W/, then there exists
W such that Wy ~> W4 and W ~ Wi,

AAﬁﬁﬁ

Proof. For all Wy, Wy, W/ such that W; ~ Wy and W, 4 Wy, from Wi ~ Wy
we know

lazycoin(W;) = splitAtom(W). From W ~% W/ by Lem. We know W] =
step(W, t). Let W3 def step(W1,t), by Lem. we know W ~& Wi,

lazycoin(W/)
= lazycoin(step(W1,t))
= splitAtom(step(lazycoin(W;),t)) (by Lem. [130))
= splitAtom(step(splitAtom(Ws),t))
= splitAtom(step(Wa,t)) (by Lem. [142)
= splitAtom(W3),

thus Wy ~ Wi.



Lemma 144. For all W and b, if [Pry]y(staey > 0, then lazycoin(W|,) =
lazycoin(W)|,.
Proof. For all W and b such that [Pry]y (siaey > 0, by Lem. |82] we know

_ W (C,o)-x(c=b)
W|b = )\((270).%, thus

lazycoin(W|;)
= E,0)~w|, {0(lazycoin(C)) ® §(o)}

=XNC,0"). 3¢, W(C, 0) - 6(lazycoin(C))(C') - (0)( )
= \(C',0"). ¢, WI(C, 0") - 6(lazycoin(C))(C’) - 6(0)(0”)

=T, o). ZCW §(lazycoin(C))(C') - 6(c) (")

ity X(0 b)Y L W (C,0)-8(lazycoin(C)) (C)-3(c) (o)

SN (o b o lem ) @6} (0"

o ;7 x(o' = E(C.U)NW lazycoin(C))®46(o)}(C,0’

= \C', ). s grgr(z);)ycw(sgate)

_ 1 x(c'=b)lazycoin(W 4

= AT, ). IPr)],, (stare)

— )\((CI7 O'/). X(U ‘— ) lazyconn(W)((C o ) (by Lem. '

IIPr(b)]]lazyconn(W)(State)
= lazycoin(W)|,. (by Lem. [82))

Lemma 145. For all W and b, if [Prs]yy(staey > 0, then splitAtom(W|,) =
splitAtom(W)|;.

Proof. For all W and b such that [Pry]yy(statey > 0, by Lem. [82] we know

- W (C,0)-x(ck=b)
Wlp = \(C,0)-fpriist S os, - thus

splitAtom(W|;)
= Ec,0)~w|, {sPlitAtom(C) ® 6(o)}

= \C,0"). Y., WIs(C,0) - §(splitAtom(C))(C’) - §(o)(o")
=T, o). ch »(C,0’) - splitAtom(C)(C’) - 6(c)(0")
= AT, o). Z«:WM splitAtom(C)(C') - §(o)(0”")
B x(o'Eb)- Y., W(C,0)-split Atom(C)(C’)-5(0)(o”)
SN (0 ) By ey Lo ) B9}

_ 1y xlo (¢,0)~w {sPlitAtom(C)®4 (o ! o’

=T, o). e A[[Pr((b)]])u(ésmte))

_ 1 x(o splitAtom(W)(C’,o’

=T, o). LE0) e

_ )\(C/, OJ). (J’|:b)~sp1itAtom(W)((C/,o") (by Lem. '

[Pr(®)] s 16 atom(w)(State)

= splitAtom(W)|. (by Lem.
Lemma 146. For all Wy, Wy, if Wi ~ Wa and [Pry]yy, stare) > 0, then Wil ~
W2|b,

Proof. For all Wy, Wj such that Wy ~ Wy and [Pry]yy, stare) > 0, from Wy ~ Wy

by Lem. we know W, (Stete) — Wg(St“te), s0 [Pry]yy, stae) = [Pro]lyy, (statey >
0. From Wy ~ W3 we know lazycoin(W;) = splitAtom(W?2). From [Pry]yy, (stae) >

0 by Lem. we know splitAtom(Ws|,) = splitAtom (W) |, thus lazycoin(Wi|,) =

0 by Lem. We know lazycoin(W, ;) = lazycoin(W)|y. From [Pry]yy, (state) >

lazycoin(W7)|, = splitAtom(Ws)|, = splitAtom(Wa|p), so Wiy ~ Walp.



Lemma 147. For all Wy, Wo, W{, if Wy ~ Wy and W1 N W/, then there exists
W3 such that W <4 W4 and W{ ~ W3.

Proof. For all Wy, Wy, W{ such that Wy ~ Wy and W, AN W], there are two
cases.
— nextsplit(Wy) = {split(by,...,bx)}, =Wwj.
From Wy ~ W5 by Lem/|105| we know nextsplzt(Wg, ) = nextsplzt(Wl,t) =
{split(by,...,bx)}. From Wy ~ W5 and W, A W' by Lem. there exists
WY such that Wy ~» WY and W/ ~ W¥. From W/|,, = W! by Lem.
we know [Pr(b;) ]]W//(State) > 0. From W' ~ W} by Lem. we know
W' |, ~ W4l|p,. Let Wi = f W4y, then W{ ~ WJ. From nextsplit(Wa,t) =
{split(be, ..., be)}, Wo~5 WY and WY/, = W} we have Wa < Wi,
— #nextsplit(Wy,t) = 1 and Wy A wy.
From W; ~ W by Lem we know nextsplit(Wa,t) = nextsplit(W1,t), so
#nextsplit(Wa, t) = #neatsplit(Wr,t) = 1. From Wy ~ Wy and W, A wy
by Lem. there exists W} such that Wy ~»> W} and W/ ~ WJ. From

#Hnextsplit(Wa,t) = 1 we know Wh < W3

Lemma 148. For all Wl,Wg,go,Wl,Wg, if Wy ~ Wy and sttory(Wl <p,W1),

then there exists W2 such that History(Wa, ¢, WQ) and Wl[ | ~ Waln] for all
n.

Proof. by comductlon For all Wl,Wg,cp,Wl,Wg such that W; ~ W,y and
History (W1, ¢, Wl) there exists t, ¢’ ,Wl,Wl such that o =t = ¢/, W —

/

— — —/
W/, History(W{,¢',W,) and W; = Wy =: W,. From W; ~ W5 and W} SN
W/ by Lem. there exists W3 such that Wy < W4 and W{ ~ Wj. From

Ny

) Ny

Hlstory(Wl, g@ ) W 1) by coinduction hypothesis there exists W, such that History (W3, ¢, W)
— —/

and Wl[ ] ~ WQ[ | for all n. Let Wa %' Wy« Wy, from Wy <5 W and

7

— ! —
History (W3, ¢, W,) we know History(Ws, t :: o', Wo :: W), i.e., History (Ws, p, Ws).
— —

For all n, it is obvious that n = 0 or n > 0, we prove Wi[n] ~ Wy in the two
cases respectively.

- n=0.
—/ — —/

WL [0] = (Wy = W)[0] = Wi, Wal0] = (Wa : W,)[0] = W. From Wy ~ Ws
we know IXG[O] ~ V_[}g [0].



—n>0.
ﬁ/l[n]j(wl . I?/l)[y}] — Wi — 1). Waln] = (Wa = Wy)[n] = Wy[n — 1].

— — —
From Wy[n — 1] ~ Wy[n — 1] we know W1[n] ~ Ws[n].
Lemma 149. For all C, lazycoin(C) = skip if and only if C' = skip.

Proof. For all C, it is obvious that C = skip or C # skip, we prove the two
cases respectively.

— C = skip.
Both lazycoin(C') = skip and C = skip are true.
— C # skip.
Both lazycoin(C') = skip and C = skip are false.
Lemma 150. For all C, lazycoin(C) = skip || --- || skip if and only if C =
skip || - || skip.
Proof. For all C, there exists Cy,...,C, such that C=C4 || --- || Cp.
lazycoin(C) = skip || - - - || skip
<= lazycoin(C, || --- || Cy,) = skip || - -- || skip
<= lazycoin(Cy) || - -- || lazycoin(C,,) = skip || - - - || skip

<= lazycoin(C;) = skip A - - - A lazycoin(C,,) = skip
< Cy =skipA---ANC,, =skip (by Lem. [149)

= C || || Cn=skip | --- | skip

<= C =skip || --- || skip.
Lemma 151. For allW and o, lazycoin(W)(skip || - - - || skip,o) = W (skip ||
- || skip, o).

Proof. For all W and o,

lazycoin(W)(skip || - - - || skip, o)
= E¢,o)~w{d(lazycoin(W)) @ 6(o1)}(skip || - - - || skip, o)
= Zcm W(C,o1) - 6(lazycoin(C))(skip || - - - || skip) - d(o1)(0)
= > W(C,0) - é(lazycoin(C))(skip || - - || skip)
= > {W(C,0) | lazycoin(C) = skip || - - - || skip}
S {W(Clo) |C = skip || || skip}  (by Lem.
— W(skip | - - || skip, ).

Lemma 152. For all C, splitAtom(C)(skip) = 6(C)(skip).

Proof. For all C, it is obvious that C = skip or C # skip, we prove the two
cases respectively.

— C = skip.

splitAtom(C)(skip) = splitAtom(skip)(skip) = §(skip)(skip) = 6(C)(skip).
— C # skip.

splitAtom(C)(skip) = 0 = §(C)(skip).



Lemma 153. For all C, splitAtom(C)(skip || --- || skip) = 6(C)(skip || --- ||
skip).

Proof. For all C, there exists Cy,...,C, such that C=C4 || --- || Cp.
splitAtom (C)(skip || - - - || skip)
= splitAtom(C || --- || Cp,)(skip || - - - || skip)
= (splitAtom(Cy) || - - - || splitAtom(C,,))(skip || - - || skip)

splitAtom(C1)(skip) * - - - x splitAtom(C,,) (skip)
= §(C4)(skip) * - - - x §(C,,)(skip) (by Lem. [152))

= (0(C1) || - || 8(C.)(skip | --- | skip)

=06(Cy |-~ || Cn)(skip || --- | skip)  (by Lem.[98)

= 0(C)(skip || --- || skip).
Lemma 154. For allW and o, splitAtom(W)(skip || - -- || skip,o) = W (skip ||
- || skip, o).

Proof. For all W and o,

splitAtom(W)(skip || --- || skip, o)

= E¢,0)~w{splitAtom(WW) ® d(c1)}(skip || - - - || skip, o)

= .0, W(C,01) - splitAtom(C)(skip || - - - || skip) - 6(o1)(0)

= > W(C,o0) - splitAtom(C)(skip || --- || skip)

=>cW(C,o) 6(C)(skip || --- || skip) (by Lem.

= W(skip || --- || skip, o).
Lemma 155. For all Wy and Wy, if Wy ~ Wy, then Wi (skip || - - - || skip,o) =
Wo(skip || - || skip,o) for all o.

Proof. For all Wy and Wy such that W; ~ Was, we know lazycoin(W;) =
splitAtom(W5). For all o, we have

Wi (skip || --- || skip,0)
= lazycoin(W;)(skip || - - - || skip, o) (by Lem. [151))
= splitAtom(Ws)(skip || - - - || skip, o)
= Wa(skip || - - || skip, o). (by Lem.

Lemma 156 (Soundness of (LAZYCOIN) Rule). For all P,C,Q, if Ea
{P}azycoin(C){Q}, then =, {P}C{Q}.

Proof. For all P,C,Q such that =, {P}azycoin(C){Q}, by Lem. [44] we have
E. {P}Hazycoin(C){Q} and we need to prove =, {P}C{Q}. By Def. we
need to prove for all p, o, p/, if p = P and init(C, ) |, ¢/, then p' = Q. For

all p, ¢, ' such that p = P and init(C, p) 5, p'. from init(C, p) |5, " we know
— — — (Prog)

there exists W such that History (init(C, ), o, W), lim W(n| (skip || -~ ||

n—0o0

—
skip) = 1 and Vo. lim Win|(skip || --- || skip,o) = p/(0). By Lem. [100| we
n—oo



—
know init(C, p) ~ mzt(lazycom((C) w). From History (W, ¢, W) by Lem
we know there exists W such that Hlstory(mzt(lazycom((C), 1", e, W) and

— —/ —/
Win] ~ W [n] for all n. For all n, from W[ ] ~ W [n] by Lem. [155( we know
— —/
Win|(skip || --- || skip,o) = W [n](skip || --- || skip,o) for all o, thus
—  (Prog) —
Win]  (skip || --- || skip) = >_, Win|(skip || --- || skip,0) = Z W [n](skip ||
— 1 (Prog) (Prog)
- |l skip, o) = W [n] (skip || - - - || skip). Therefore hm W [n] (skip ||
—  (Prog)
- |l skip) = lim W[n) (skip || --- || skip) = 1 and
n—o0
—/ —

lim W [n](skip || --- || skip,o) = lim Win|(skip || --- || skip,0) = ¢/(o) for
n—oo n— oo

all o, so init(lazycoin(C), u) |;, p'. From [z {P}lazycoin(C){Q} and p = P
we know ' = Q.

Lemma 157 (Soundness of (P-csQ) rule). For all P, P;,C,Q1,Q, if P =
P, Fa {P1}C{Q1}, and Q1 = Q, then =, {P}C{Q}.

Proof. For all P,P;,C,Q1,Q such that P = P;, ., {P1}C{Q1}, and Q; =
Q, to prove =, {P}C{Q}, we need to prove for all u, o, W, if u = P and
init(C, p) b, W, then WState) = Q. For all u,, W such that u = P and
init(C,p) o W, from o = P and P = P, we know pu = P;. From |=,
{Pl}(C{Ql} and init(C, ) §, W we know W) = Q. From Q; = Q we
know W (State) = (.

Lemma 158 (Soundness of (BIGCONJ) rule). ForallC, Py,..., Py, Q1,...,Qn,
if Ea {PLC{Q1}, - .., Ea {P}C{Qn}, then =4 {PiA-- AP }C{Q1 N - AQy }.

Proof. ForallC, Py,..., Py, Q1,...,Qnsuch that =, {P1}C{Q1}, ..., Ear {Pn}C{Qn},
to prove =5 {PL A+ AP }C{Q1 A -+ - A @y}, we need to prove for all u, p, W,
if o = PLA -+ AP, and init(C, p) |}, W, then W5t = Q) A -+ A Q,,. For all
p, @, W such that p = PyA- - -AP,, and init(C, p) |, W, from p = PyA---AP,, we
know pu = Py, ..., p = P,. For alli € {1,...,n}, from =, {P;}C{Q;}, n = P;
and init(C, p) I, W we know W(St¢) = ;. Therefore W (5tat) |= Q A---AQ,,.

Lemma 159 (Soundness of (BIGDISJ) rule). For allC, Py,..., Py, Q1,...,Qn,
if Ea {P1}C{Q1}, ..., Ea {Pu}C{Qn}, then |=s {P1V--- VP, }C{Q1V---VQy}.

Proof. ForallC, Py,...,P,,Q1,...,Q,such that =, {P1}C{Q1}, ..., Es {P.}C{Qn},
to prove =, {PLV -V P }C{Q1 V-V Q,}, we need to prove for all u, ¢, W,

if p|= Py V-V P, and init(C, p) I, W, then WSt = Qy v - v Q,,. For all
i, o, W such that p = Py V---V P, and init(C, ) J, W, from pp = P, V---V P,

we know there exists ¢ such that p = P;. From =, {P}C{Q:}, p = P; and
init(C, p) I}, W we know WState) .= ;. Therefore W(51¢) = Q1 v --- Vv Q,,.

Definition H.36. W =" (I,Q) is inductively defined as follows: W =

(I, Q) always holds; W $:>"+1 (I,Q) holds if and and only if the following are
true:



1. W(State) ': I

if W (Pro9) (skip || - - - i : . (State) :
2.1 W (Sklp H || Sklp) >0, then W|Sk1p\|~~-|\sk1p ': Q7
3. for all W, if W < W, then W’ =" (I, Q).

Here W skip||...|skip = WIA(C,0).C=skip]|---||skip-

Definition H.37. I Eang {P}C{Q} iff for all u, if u |= IAP, then init(C, p) =
(I,Q) for all ¢ and n.

Definition H.38. Let W € Dpyogn x State, Where Prog" means “programs with n

threads”. We define m; (W) e MC,a"). Pry . cn,o)w[Ci = C Ao = 0d'].

Lemma 160. For all W € Dppogr x state and i, m;(W) = A(C;, 0). ZCl,.‘.,CFLCHl,.“,Cn wW(C ||
|| Cns o).

Proof. For all W € D progn x State and 1,

(W) = A(C,0"). Pr(c,. nc wlCi =CNo = 0’|
= A(C,0). Z oW (CL |- [ Cnyo) [ Ci = CNo =0’}
SNC.). T e e e WO [ Cot [ O o ||+ | G )
= \C;,0). Z iCin CirnrnCn W(CL |+ || Crs0).
Lemma 161. For all Cy,...,Cy, pu, i, mi(init(Cy || -+ || Cnyp)) = nit(Cy, p)
for all i.

Proof. For all Cy,...,Cy, u,1,

i (nit(Cy || -- - || G, 1))
=mi(0(Cy [ -~ CH) 1)
=MC0)- 20 o oryyn e, OO 1 Cr) @ u)(Cr | -+ || Cy0) (by Lem. [160)
=AMC0)- 20 o onyyncon OCL- L C)(CL - 1 CF) - ( )
=ACi0)- 20 ; e, OC) [ FO(C)(C |+ 1 CL) - (o) (by Lem. [98)
=AC10)- gttt SO+ 0(C(C) o)
= \(C,0). 8(C)(C)) - plo)
= nit(Cy, p).

Lemma 162. For all W € Dprogn x State and 4, wi(W)(Smte) — T/ (State)

Proof. For all W € D progn x State and 1,

m (W) = X6 S m(W)(C, 0)
= Ao. Zci Ecl,‘..,ct,l,cprl,..‘,cn W(Cr ||| Cn,o) (by Lem. [160)
=203, W(CL| || Cn,0)

=Xo.> W(C, o)
_ W(State)'



Lemma 163. For all W € Dpyogn  state and i, wi(W)(Stm)(skip) > W Pre9) (skip ||
-+ || skip).

Proof. For all W € D pyogn x State and 1,

(W) (skip)

>, mi(W)(skip, o)

Yo Yt ConiComnnncn W(C | | Comy || sKip | Crgr || -+ || Cuyo)  (by Lem. [I60)
W

W

(skip || --- [ skip, o)
Prog)(skip || - -- | skip).
Lemma 164. For allW, if W(F™9) (skip || - - || skip) > 0, then W |sgip|/... | skip =

X(C=ship| || skip)-W (skip| - skip.c)
AC,o0). W (P7o9) (skipl -] skip) :

Proof. For all W such that W9 (skip || --- || skip) > 0,

Wlskip|-—skip = MC, 7). W[x(C,0).c=skip|-|skip(C; )

W(Co) £C = skip | - | ski
_AC,0). {Pr(c,a)~w[(c_5kip|"'|Skip]’ if C=skip | ---[| skip

otherwise

b

(C,0) x(C=skip||---||skip) -n(skip||---||skip,o)
Vo Pr(c,o)~w[C=skip||---[skip]

(C,0) x(C=skip||---|Iskip)-n(skip||---||skip,o)

I W (Prog) (skip||---[|skip) ’

Lemma 165. For alln, if n5"™ (skip) > 0, then n|skip = A(C, U).X(C;S;’fffg'(zgciﬁ;p"j)

Proof. For all 7 such that (5% (skip) > 0,

Nlskip = MC, 7). 1|x(C,0).c=skip(C; )

n(C,0) : — oki
= \C, o). {Pnc,a)w[C—skip]’ if ¢ = skip

, otherwise
_ (C=skip)-n(skip,o)
- )‘(Cv U)' XPr(C,U)fn[C]':skri)p]
C'=skip)-n(skip,o
= MC,0). X=gipynadp.0),
Lemma 166. For all W € Dpyogn x state and 4, if WProg) (skip || --- || skip) >
0,
s s
then Supp(W|skipH--~Hskip( tate)) - Supp(ﬂ'i(wﬂskip( tate))'



Proof. For all W € D ppogn x state and ¢ such that W(ng)(skip II - |l skip) > 0,

by Lem. we know ﬂi(W)(Stmt) (skip) > W9 (skip || - - - || skip) > 0, thus
SUPP(W|skipH---Hski;géftjt;))

= {U ‘ W‘skip\|~-~Hskip (U) > 0}
= {o | > Wlskip]|-.|skip(C, o) > 0}

(C=skip||---||skip)-W (skip||---||skip,o)

=SKIp||-*||SKIpP)" SKIp|| -+ ||SK1p,0

={o| Y% ‘l,)v(pmg>(:kip||“,usiip) 22 > 0} (by Lem. [164)
= {o | W(skip || --- || skip, o) > 0}
Slol e cinCinnnc, WECLI- || Cica [ sKip || Ciga || -+ || Cny0) > 0}
= {o | m;(W)(skip, o) > 0} (by Lem. [160])

C=skip)-m; (W) (skip,o
= {0 | Zo B E T g > 0}

={o| X m(W)lskip(C,0) >0} (by Lem.

= SUPP(Wi(W)\skip(State))-

Definition H.39. ¥ € P((Prog x State) x (Prog x State)).
Definition H.40. w(State) < (5 /) | 3C, €. ((C,0), (T, o)) € ¥}.

Definition H.41. Let ¥ € P((Prog" x State) x (Prog" x State)), we define

m(0) € {(Cy,0),(CLo")) | 3Ch, ..., Co1,Ciiy e, Cry Clye o Ch 1, Clyy o Ol (C ||
[ CR) (CL - |1 ) € P}

Lemma 167. For all W,W' € Dpyogn x state; ¥ € P((Prog" x State) x (Prog" x State))

and t, if W L Woand v = {((C,0),(C",d") | W(C,o) > 0A (C,o0) %

(T, 0") Ap > 0}, then m (W) ~» (W(State) m (W')).

Proof. For all W, W' € Dpyognx state, ¥ € P((Prog" x State) x (Prog" x State))

and ¢ such that W ~5 W’ and ¥ = {((C,0), (C', ")) | W(C,0) > 0 A (C,0) %
(C',0’) Ap > 0}, we have

Wt(W//)

= MC",0"). Prgyjicy.am~wrlC = C']

=MC0") Yoo o o AW (CL - (1 Gy 0”) | Cp = C'}

=NC",0"). Yogy....on o1 AW(C,0) - p | (C0) 2 (CF || -+ || Oy 0"} | Cf = C'}

=MC"0") 20 onon0rCu e AW(CL - [ Cryo) - p [ Cr=C A AC = Cly A
Ciy1=Cl A ANCy=ClA(Cryo) D (Cl0") NC) = C"}

= NC"0"). ey W(CL] - | Cay0) - p | (Cry0) 2 (C7,0")}

=XNC" ). Yo crcn A W(CL| || Crio) - p [ (Cr0") B (CT0") NCy=C Ao =0"}

= NC",0"). X odX e W(CL] -+ | Cayo) | Ce=C Ao =0"} - p| (Co0") & (C',0")}

=XNC",0"). Y o APT(Cy O [Ce = C N =0"] - p | (C,0") & (C',0")}

= NC",0"). g g {me(W) -p | (C,0") % (C',0")}



and

Lp(State)

={(o,0’) | 3C,C". ((C,0),(C',0")) € ¥}

={(0,0") | IC,C". W(C,0) > 0A (C,0) % (C,0")yAp >0}

={(0,0")|3C1,...,Cp,C". W(CL | - || Cnyo) > 0A(Cpy0) B (C',0") Ap> 0}

={(o,0') | 3C1,...,Cn,C",C,0". Co =CNo=c" AW, |- || Cn,o) >0A
(C,0) 2 (C",0’) Ap >0}

={(o,0') | 3C,C". (3C,...,Ch,0". Co =CANa=c"ANW(Cy ||+ || Cn,o) >0) A
(C,0) 2 (C",0’)Ap >0}

={(0,0") [3C,C". Y20, oW (CL | - || Cryo) | Ct=CN0" =0} >0A

(C,0) 5 (C',0") Ap > 0}
{(o,0") | 3C,C". Pr(cy|j...jcp,oy~w[Ct = C No" = a] > 0N (C,0) 2 (¢’ 0') Ap >0}
= {(0,0") | 3C,C". m;(W)(C,a) > 0 A (C,0) 2 (C',0') Ap > 0},

thus m (W) & (@(State) (W),

Lemma 168. For all W, W' € Dpyogn x state; ¥ € P((Prog" x State) x (Prog" x State))
and t, if W LW oand o= {((C,0),(C',d") | W(C,0) > 0A (C,o) 2

(C',0") Ap > 0}, then for all i # t, dom(m;(¥)) = supp(m;(W)), range(m;(¥))
supp(m;(W')) and ¥((Ci,0),(C,0")) € mi(¥). Cf = Ci A (0,0") € w51t

[

Proof. For all W, W' &€ Dpyognx state, ¥ € P((Prog" x State) x (Prog" x State))
and t such that W -5 W’ and ¥ = {((C,0),(C",d")) | W(C,0) >0A(C,0) %
(C',0") Ap > 0}, for all i # t, we have

dom(m;(¥))
={(Ci,0) | 3C}, 0" ((Ci,0),(CF0")) € mi(¥)}
= {(CMO') | E'Ch. . .,Cifl,CiJrl, . .7Cn,Ci, .. .,C;L,CT,.
((Cr - Cryo), (CL -+ [ €Ly 07)) € W}
= {(CZ,O'> | 3017...,Ci,1,0i+1,...,Cn,C{,...,C;”O'I. W(Cl || H Cn,O') >0A
(Crll++- Il Cuyo) > (C || -+ || Cpy0”) Ap > 0}
= (Ciao) | 3017'"7Ci7170’£+17"'7cn' W(Cl || || CTL?U) > 0}
(071?0-) | ch,...,ci71,0i+1 ..... Ch W(Cl || e || Cn,U) > 0}

Ci,0) | m;(W)(C;,0) > 0} (by Lem. [160))
upp(mi(W)).



range(m;(¥))
={(C},0") | 3Ci,0. ((Ci,0),(Ci,0") € m(¥)}
—{(C!,6")|3Cy,...,Cn,Cly. . CL 1 Clity ., Cl 0

((Co--- 1 Cns0), (CL| - || €y 07)) € W}
={(C},0") | 3C,...,C,,CL,...,Ci_1,Ciq,...,CLo. W(CL || -+ || Cnyo) >0A
Crll -] Cuyo) 2 (CL |-+ || C0) Ap > 0}
={(C},0") | ZC' s, L+1’ .,C ch cn,g{W(Cl | <[ Cnyo) p]
(Crll -+l Cuyo) > (C || -+ || €y 0"} > 0}
={(CLA) | Zeycr vty WCL - [ Chio’) > 0} (from W -5 W)
= {(CLo") | m(W(Clo’) >0} (by Lem. [[60)
= supp(mi(W’)).
For all C;, 0, CY, o’ such that ((C;,0),(Cl,0')) € m;(¥), there exists Cy, ..., Ci_1, Cey1,
. aCnaCi7 s >Ct/717 tl+17 s ’C;z such that ((Cl || e || Cn70)a (Ci || T ||
C!,0")) € ¥, thus (o,0') € w5t and (C || --- || Cp, 0) % <l c, o).

From i # ¢t we know C! = C;. Therefore, V((C;,0),(Cl,0")) € m(¥). C! =
C; A (0’, (T/) € W(St“te).

Lemma 169. For all W,W’' € Dprogn x State and b, 1, if W, = W', then m;(W)|, =
Wi(W/).
Proof. For all W, W' € Dpyognx state and b, i such that W1, = W', by Lem.

we know W' = A(CJ).WM, by Lem. [63| we know [Pr(b)]yy(state) >

0. By Lem. we know m;(W)(51) = yy(State)  thyg [Pr®)],, s =
[Pr(b)]yw (state) > 0, sO
(Wl (o=b)-mi (W)(Ci,0)
. ) x(oE=b)-mi (W 0,0
7)\(0“0—) [Pr(b)] =, (W) (State)
X(oF=b)- Ciyeens Cy_1,C4q1sms

cn W(Cll-+[|Cnso)

=\, 0). LT0) v (by Lem. [T60)
_ (o=b)- W (Ch||---[|Cn o)

=XC,0). 30, Cr1.CosrrnCo [[Pr(b)]]Wl(smte)

= A(C,0). ch, Ci—1,Ces1,,Ch W' Cr |- Cn,o) (by Lem. [160)
= m(W').

Lemma 170. For all W € Dppogn x state and t, nextsplit(W, t) = nextsplit(m,(W)).
Proof. For all W € D prognx State and t,

nextsplit(W, t)
= {nextsplit(Cy) | 3C1,...,Ct—1,Cts1,...,Cn 0. (Cy || -+ || Cp,0) € supp(W)}
= {nextsplit(Cy) | 3C1,...,Ci—1,Ct11,...,Cn,0. W(CL || -+ || Cpn,o) > 0}
= {nextsplit(Cy) | 30,C1,...,Ci—1,Cy1,...,Cp. W(Cy || -+ || Cn,0) > 0}
= {nextsplit(Ct) | 30. 3¢, v 1 CvirrnCno W(CL] -+ || Cyo) > 0}
= {nextsplit(Cy) | Jo. m(W)(Cy, 0) > 0} (by Lem. [160))
= {nextsplit(Cy) | Jo. (Cy,0) € supp(m(W))}

= nextsplit(m(W)).



Lemma 171. For alln, n|ywe = 7.

Proof. For all 0, n]true = N|x(C.0).0true = NA(C,0).true = W. The last step is by
Lem. Bl

Lemma 172. For all Ry,...,R,,G1,...,Gy, if G = R; for all i and j such
that i # j, then for all k,¢ and W € Dprognx state, if (mi(W), R, I) =
(G, Q;) for all i, then W I:>fp (L,Q1 A AQy).

Proof. For all Ry,...,R,,G1,...,Gy such that G; = R; for all 4+ and j such
that ¢ # j, we prove by induction on k.

— base case: k = 0. trivial.
— inductive case: k = k' + 1.
IH: for all ¢ and W € Dpogn x state, if (m:(W), Ri, I) ==k (G4, Q;) for all
i, then W =K (I,Q1 A+ A Qn).
For all ¢ and W € D pyognx state Such that (m; (W), Ri, I) =541 (Gy, Q)
for all 4, by definition of Schedule there exists t and ¢’ such that p =t :: ¢'.
To prove W t:>g+1 (L,Q1 A ANQy), le., W .:)sz,l (L,Q1 A ANQy),
we need to prove
° W(State) ): I
From (m (W), Ry, 1) ="+ (G1, Q1) we know m (W) = I By
Lem. we know m; (W)!51e49) = yy7(State) | thyg 1y (State) (= .
o if W(Prog) (Skip || e || Skip) > 0, then W|skip|\~~||skip(smm) ’: Ql ARERVA
For all i, by Lem.we know ﬂi(W)(Stmt)(skip) > W Prog) (skip || -- - ||
skip) > 0. From (m;(W), R;, I) =51 (G, Qi) we know 70, (W) |siap ™) =
Q;. By Lem. we know supp(W\SkipH__.Hskip(State)) - supp(m(W)|skip(Smte)).
From scl(Q;) we know
W lskip| - fskip - = Qi Therefore Wlggp|.fskip' " F Q1 A+ A

n-

o for all W', if W <5 W, then W' =k (I, Q1 A+~ A Q).
For all W’ such that W <% W’ , there are two cases.

* there exists W’ ,bq,...,by,1 such that W A W' nextsplit(W,t) =

split(by,...,b;) and W"|,, = W'.

Let 7 £ {((C.0). (C',0")) | W(C.0) > 0A(C.0) > (C'.0")Ap > 0},
From W ~5> W" by Lem. we know my (W) o (@(State) m, (W),
By Lem. we know nextsplit(m(W))

= nextsplit(W, t) = split(by,...,bx). From W"|,, = W’ by Lem. m
we know m,(W")|p,

= 7 (W). From m (W) ~& (&(State) ., (W')) and nextsplit(m(W)) =
split(by, ..., by) we know m (W) <> (@(5tat€) (W), From (m (W), Ry, I) E=k+1



(G4, Q) we know w(State) € [G,], my (W) ') = I and (m, (W), Ry, I) =,
(Gta Qt)
For all i # t, by Lem. we know dom(m;(¥)) = supp(m;(W)),
range(;(¥)) = supp(mi(W")) and V((Cy, 0), (C], 0")) € m(¥). Cf =
CiN(o,0’) € w(State) From i # t we know Gy = R;, thus G; C [R;].
From ¥(State) C [G,] we know ¥(5tte) C R, thus V((C;, o), (Cl,0")) €
(). Cl = C; A (0,0") = R;. From dom(m;(¥)) = supp(m;(W))
and range(m;(¥)) = supp(m;(W")) we know 7; (W) & m(W"). From
W"|,, = W’ by Lem. [169 we know m;(W")|,, = m;(W’). By Lem. [162]
n (State) __ /(State) __ 1\ (State) 1\ (State)
we know m;(W") =W =m (W) . From 7y (W") =
I we have 7 (W) 5 = T From m; (W) &% m;(W") and 7y (W")

b; =
m(W') we know mi(W) ’% 7(W). From (mi(W), R, I) =k
(Gi, Qi) we know m; (W), Ri, I /=t (Gi, Q). ,

From 7Tit(I/V/)v Rt; I l:>”1\€151~ (Gt7 Qt) and W;(W/)a Riv I ':>§ST (le Ql)
for all i # t we know m;(W'), R;, I =k (G;,Q;) for all i. By IH
we have W’ lz)f, (L, Q1N AQy).

W -4 W’ and [nextsplit(W)| > 1.

Let 7 % {((C,0), (T, 0")) | W(C,0) > 0A(C, o) % (C,0')Ap > 0}.
From W ~& W' by Lem. [167 we know my (W) 5 (w(State) ., (W1)).
By Lem. [170] we know neaxtsplit(m,(W))

= nextsplit(W, 1), thus #nextsplit(m,(W)) = #nextsplit(W,t) > 1,
therefore (W) <4 (w(State) 7, (W")). From (m (W), Ry, I) =kt1

(G, Q1) we know w(Stte) C [G,],

Wt(W')(State) 1 and (m(W'), Ry, I) —=h (G Q).

For all i # ¢, from W ~5> W’ by Lem. we know dom(m;(¥)) =
supp(mi(W)), range(i(¥)) = supp(mi(W)) and V((Cy, 0), (Ci, 0")) €
m(¥). Cl = C; A (0,0") € W5t From i # t we know G; = R;,
thus G; C [R;]. From w(Stete) C [G,] we know w(State) C R,
thus V((C;,0),(Cl0")) € m(¥). C! = C; A (0,0") = R;. From
dom(m;(¥)) = supp(m;i(W)) and_range(m;(¥)) = supp(mi(W')) we
know m; (W) & m;(W'). By Lem. We know 7;(W')|true = m(W').

By Lem. we know 7_‘_i(VV/)(Sta,te) _ W/(State) _ ﬂ_t(W/)(State).

From (W) = T we have m; (W) = I. From m;(W) &

m(W') and (W) |grue = mi (W) we know (W) f} 7:(W"). From

(ﬂ'i(W), Ri, I) iﬁﬁ;tl (Gl, Ql> we know 7'f'i(VV/)7 Ri, I F:>§;T (Gl, Qz)
From m(W'), Ry, I =%, (Gy,Q¢) and my(W'), Ry, I =k, (G4, Qy)
for all i # t we know m;(W’), R;, I == (G;,Q;) for all i. By IH
we have W’ t:>’:9/ L,Q1 A AQp).



Lemma 173. FO’I“G,ZZCl,...,On,Pl,...,Pn,Ql,...,Q»,“Rl,...,Rn,Gl,...,Gn,I,
if Ri, Gi, I FExer {Pi}Ci{ Q) for alli and Gj = R, for alli and j such thati # j,
then I }:ANL {Pl /\-~~/\Pn}01 || || Cn{Ql/\/\Qn}

Proof. For all Cy,...,Cy, P1,..., Py, Q1,...,Qn,R1,..., Ry, G1,...,Gp, I such
that R;, Gy, I [=nse {Pi}Ci{Q;} for all i and G; = R, for all ¢ and j such that
i # j, we need to prove for all p, @, k, if u =T AP A--- A Py, then init(Cy ||
|| Chy ) l:ﬂ; (I1,Q). For all u, @,k such that u = I APy A--+ A P, from
Ri,Gi,I ':NST {PZ}O,L{Q,} for all ¢ we know (zmt(CZ,,u),Rl,I) ¢:>QST (G“Qz)
for all i. By Lem. [161] we know m;(init(Cy || -+ || Cn, p)) = init(Cj, p) for all 4,
thus (m;(ingt(Cy || -+ || Cn, 1)), Ri, I) =5 (G, Q) for all i. From G; = R;
for all ¢ and j such that i # j by Lem. we know init(Cy || -+ || Cn, p) =5
(I,Ql /\"'/\Qn)'
— —

Lemma 174. For all n,W,W,¢, if History(W,o, W) and W ="' (I,Q),

— (State) — (Prog) —
then Wn) = I and if W(n] (skip || - -- || skip) > 0, then W[n]|skip|...|| skip

Q.

(State)

Proof. by induction on n.

— base case: n= 0. .
For all W, W, ¢ such that History (W, ¢, W) and W t:>30 (I,Q), by Def.[H.36
we know W (State) L [ and if (P9 (skip || - - - || skip) > 0 then W |qjeip...jskip - =

Q.
— — — (State)
From History (W, ¢, W) by Lem. We know W[0] = W, thus W|0] =
o (Prog) . . N (State)
I and if W|0] (skip || - -- || skip) > 0 then W[0]|skip||-.. jskip EQ.

— inductive case: n = k + 1.

— — — _(State)

IH: for all W, W, ¢, if History (W, ¢, W) and W ;:)’;Jrl (I,Q), then Wk] =
= (Prog) . . — (State)

I and if W[k| (skip || -~ || skip) > 0, then W[k]|skip).. |skip EQ

— —
For all W, W, ¢ such that History(W, o, W) and W =""" (I,Q), from
—

Ny
History (W, ¢, W) there exists ¢, ', W/, W such that ¢ = ¢ :: ¢/, W N w’,

—/ — —/
History(W', o', W )and W =W :: W . From W l:ﬂ;H (I,Q)and p =t ::
¢’ we know W =711 (I,Q). From W L W' we know W' =0 (1,Q), ie.,

tip
! _,1 (State)

W' ==k (1,Q). From History (W, ¢/, W ) by TH we have W' [k] =T

_y1 (Prog) Ny (State)
and if W [k] (skip || - - - || skip) > 0, then W [E]|skip]|... |skip E Q.

N s Ny — (State)
From Win] = (W = W)[k + 1] = W [k] we know W{n] E I and if
N (Prog) . . — (State)
Win] (skip || - -~ [| skip) > 0, then W [n]|skip|.||skip



Lemma 175. For allW, if W9 (skip | - - - || skip) = 1, then Wl skipl|... || skip =
w.

Proof. For all W such that W (729 (skip || - - - || skip) = 1, we have Pr(c ;) [C =
skip | --- || skip] = 1. By Lem. 4 we know W|x(c,o).c=skip|.--|skip = W, i.e.,
W|skip\|~»-|\skip =W.

Lemma 176. For allC,P,Q, I, if I Eant {P}C{Q}, lclosed(I) and lclosed(Q),
then =, {I A P}C{I A Q}.

Proof. For all C, P,Q, I such that I =4n1 {P}C{Q}, lclosed(I) and Iclosed(Q),
we need to prove for all p, ¢, W such that p = I A P and nit(C, p) |, W, then
W (State) = [ A Q. For all u, p, W such that u = I AP and init(C, p) 4, W, from
I'Eant {P}C{Q} and p = I A P we know init(C, ) =4 (I, Q) for all n. From

— —
init(C, ) I}, W we know there exists W such that History(init(C, u), ¢, W),

— —
lim W = W and W (P79 (skip || - - - || skip) = 1. From History(init(C, 1), o, W)
— (State)

and init(C, u) =7 (I, Q) for all n by Lem. we know for all n, W[n] =T
Prog) . . — (State)

(skip || --- || skip) > 0, then W{n]|skip||...|skip E Q.

— — (Prog) — (State)
From lim W = W by Lem. [7| we know lim W = W P9 and lim W =
—s (State) — (State) — (State)
WState)  From lim W = W(State) 1y [n] = Win] = I for all
— (Prog)
n, and lclosed(I) we have W(Ste) = [ From lim W = WFro9) by
— _(Prog)

Lem. |6| we know lim Win] (skip || --- || skip) = 1. By definition of

n—oo

—
and if W{n]

—  (Prog)
limit, then there exists N such that |W(n] (skip || --- || skip) — 1] < 1
—  (Prog)
for all n > N, so Win| (skip || --- || skip) > 0 for all n > N, thus
N (State) N
Wn + Nl|skip|--||skip E Q for all n. From limW = W by Lem we
(Prog)

— —
know lim(An. Wn 4+ NJ]) = W. From Wn] (skip || --- || skip) > 0 for all

n > N we know Pr — (C = skip || --- || skip) > 0 for all n. From
(C,a)~Win+N] .

History (init(C, u), p, W) by Lem. We know Wn+1](skip || - - || skip, o) >
N N (Prog)

Win](skip || --- || skip,o) for all n and o. From li_>m Wn] (skip || --- |

skip) = 1 we know lim Pr [C = skip || --- || skip] = 1. From

n—00 (C,a)wﬁ/[n-&-N]

lim(An. ﬁ/[n—i— N]) = W, Pr (C = skip || --- || skip) > 0 for

R (c,a)Nv?[nJrN]_)

all n, Win + 1](skip || --- || skip,o) > Win]|(skip || --- || skip,o) for all

n and o, and nh_)rr;o Pr(C,O)NW[7L+N][C = skip || --- || skip] = 1 by Lem.|§|
—

we know lim (An. Wn + NJ)|skip|--.|skip = W |skip||-.-|skip- By Lem. We know

(State)

. — o (State) .
lim (An. Wn + NJ)|skip]|-..||skip = W/skip|---||skip ;

ie.,



) — (State) (State)
lim ( An. W(n + N]|skip|---||skip = Wlskip|--|Iskip - From Iclosed(Q)

— (State)
and W[n + N]|skip|--||skip = Q for all n we know

W|skip”m”skip(5tat6) = Q. From W9 (skip || - - - || skip) = 1 by Lem. we
know W(S) = W gion aip 9 = Q. From W(State) = T and W(Stete) 1=
we have W (State) = [ A Q.

Lemma 177 (Soundness of (PAR) rule). ForallCy,...,Cp, P,Q,I,Py,..., Py, Q1,...,Qn, Ry,...,
R, G1,...,Gp, if P = INPIA-- APy, INQ1A- - -ANQ,p, = Q, Iclosed(]), Iclosed(Q), . . ., Iclosed(Q,),
Ri,Gi, I Enst {Pi}Ci{Q;} for alli, and Gj = R; for all i and j such that i # j,

then o {PYCL || -+ || Crf{ @}

Proof. ForallCy,...,C, P,Q,I,Py,...,Py,Q1,...,Qn,R1,....,Ry,G1,...,Gp,
such that P = TAP A+ APy, INQ1A- - AQy, = Q, Iclosed (), lclosed(Q), .. ., 1closed(Q,,),
R;,Gi, I Ensr {P}C:{Q;} for all i, and G; = R, for all ¢ and j such that ¢ # j,
from R;, G;, I =xer {Pi}Ci{Q;} for all ¢, and G; = R, for all ¢ and j such that

i # j by Lem. [[73|we know I =y {PLA- - APICL || -+ || Co{ Q1A+ AQu}.
From Iclosed(Q1), . . .,lclosed(Q,) we know lclosed(Q1 A+ - -AQy,). By Lem. [176]
we know =, {IAPLA---APCy || -+ || CodI AQ1 A+ A Qp}. From

P=IANP AN ANP,and INQ1 A---NQ, = Q by Lem. [I57] we know
Fa AP - | Ca{ @)

Definition H.42. y(State) ¥ (5 5/ | 30, C". ((C,0),(C",0")) € P}

Lemma 178. For all R,n, 1/, if n 5 1, then n(State) K ,y(State),

Proof. For all R,n,n’ such that n it 7, there exists ¢ such that dom(y) =
supp(n), range(y) = supp(n’) and for all ((C,0),(C’,0")) € ¥, C" = C and
(0,0") = R, thus (5% = {(5,¢') | 3C,C". ((C,0),(C",0")) € ¥} C {(0,0") |
(0,0') = R} = [R],

dom(w(smte)) — {J | Jo'. (0,’ 0_/) c w(State)}
={o|3',C,C". ((C,0),(C’",0")) € ¥}
={o | 3C. (C,0) € dom(v))}
= {0 [3C. (C,0) € supp(n)}
={o|3C. n(C,o) > 0}
={o| X cn(C, o) >0}
= {o [ n*")(0) > 0}
= {o | o € supp(n5'*t)}
= supp(n'State)),



and
mnge(w(smm)) — {0_/ | Jo. (0_’ 0_/) c ¢(State)}

={o' | Jo,C,C". ((C,0),(C",0") € ¥}
={o' | 3C". (C',0’) € range(y))}
= {0’ |3C". (C",0") € supp(n’)}
={o'|3C". v (C",0’) > 0}
={o" | X' (C',0") > 0}
= {o' | ¥ (o) > 0}
= {0’ | o' € supp(n’**))}
= supp(n/*'*'),

therefore n(State) [ ,y(State)

Lemma 179. FordlR,I1,G,Q,n,n, if (n,R,I) =% (G,Q), then (n, R, I) =%
(G.Q).

Proof. For all R,1,G,Q,n, we prove for all n, if (n,R,I) =% (G,Q), then
(n, R, I) =" (G,Q) by induction on n.

— base case: n = 0. trivial.
— inductive case: n = k + 1.
IH: for all n, if (n, R, I) ==F. (G, Q), then (n, R, 1) =F (G, Q).
For all i such that (n, R, I) =k (G, Q), to prove (n, R, I) =F1l (G, Q),
we need to prove
o if (5t (skip) > 0, then 77|skip(smte) E Q.
From (1, R, I) ==k (G, Q) we know if (5™ (skip) > 0, then n]gep " =

Q.
. T](State) ': I.
From (1, R, I) =L+ (G, Q) we know n(5tete) = T

e for all 7/, if n >§> 7', then (7', R, I) =k (G,Q).

For all n’ such that n % 7', from (n, R, 1) =51 (G,Q) we know

(', R, 1) ="+ (G,Q). By IH we have (7, R,I) =F.. (G,Q).

o forall@and 7/, ifn < (6,7'), then 6 C [G], ’*"™) \= I and (y/, R, I) =%,
(G,Q).
For all § and 0’ such that n < (6,7), from (n, R, I) =E! (G, Q) we
know 0 C [G], "9 = T and (v, R, T) =F, (G,Q). By TH we have
(', R, 1) = (G, Q).

Lemma 180 (Soundness of (sT-NST) rule). For allC,R,G,I,P,Q, if R,G, I Fsr
{P}C{Q}, then R,G, I Fxse {P}C{Q}.

Proof. Forall C, R,G, I, P,Q such that R, G, I s {P}C{Q}, to prove R, G, I Fysr
{P}C{Q}, we need to prove for all p, if p = I A P, then (init(C, u), R, I) =T,
(G, Q) for all n. For all u and n such that u = I AP, from R, G, I F¢r {P}C{Q}
we know (init(C,u), R, I) =" (G, Q).



Lemma 181. For all R, I,G,Q,R1,G1,Q1,n,m, if R=R1, G1 = G, @1 = Q
and (anlaI) ':’J[l] (Gth): then (ana [) ':’J&I (Ga Q)

Proof. For all R, I,G,Q,Ry,G1,Q1,n such that R = Ry, G; = G, Q1 = Q,
we prove for all n, if (n,Ry,I) =7 (G1,Q1), then (n,R,I) =0 (G,Q) by
induction on n.

— base case: n = 0. trivial.
— inductive case: n =k + 1.
IH: for all n, if (n, R1,I) =5 (G1,Q1), then (n, R, I) =F (G, Q).
For all 5 such that (n,Ri,I) =" (G1,Q1), to prove (n, R, I) =}
(G,Q), we need to prove
e (when 00 = s1) (5t (skip) = 0 or 3™ (skip) = 1.
From (1, Ry, I) ==k (G4, Q1) we know (5™ (skip) = 0 or (5" (skip) =
1.
o if (59 (skip) > 0, then nlskip "™ = Q.
From (1, Ry, I) =5 (G1, Q1) and n5t™ (skip) > 0 we know Nlskip 1 =
Q:. From Q; = Q we know n\skip(smte) E Q.
. n(State) ): I
From (1, Ry, 1) =5 (G1, Q1) we know n(State) = 1.

R
e foralln/, if n - ', then (0, R, I) ==F (G, Q).

R
For all n’ such that n - 7', from (n, Ry,1) i:>]f:’|+1 (G1,Q1) we know

(77'7R1,I) t:}lé (Glan)' By IH we have (n/aRaI) t:>IE] (GaQ)

e forall @ and 1, ifp < (6,7), then 6 C [G], n’ %" |= Iand (n/, R, T) =k,
(€.Q).
For all ¢ and 7’ such that n < (6,7), from (1, Ri,I) =5 (G1,Q1)
we know 0 C [G1], 7" = I and (o, Ry, 1) =k (G1,Q1). From
6 C [G1] and Gy = G we know 6 C [G1] C [G]. From (v, R1,I) =F
(G1,@Q1) by IH we know By IH we have (1, R, I) =F (G, Q).

Lemma 182 (Soundness of (csQ) rule). ForallC,I,R,G,P,Q, R1,G1, P1,Q1,
ZfP = Pl, R = Rl, G1 = G, Ql = Q and RhGl,I ):D {Pl}C{Ql}, then
R,G,I o {P}C{Q}.

Proof. For all C, I, R,G, P,Q, Ry,G1, Pr, Q1 such that P = P,, R = Ry, Gy =
G, Q1 = Q and Ry,G1,I o {P1}C{Q1}, to prove R,G,I =0 {P}C{Q}, we
need to prove for all p, if p |= P, then (init(C, u), R, I) =1 (G, Q) for all n. For
all ;1 and n such that u = P, from P = P; we know p = P;. From R;,G1, I En
{P1}C{Q1} we know (init(C, ), Ry, I) = (G1,Q1). From R = Ry, G1 = G
and @1 = @ by Lem. we know (init(C, ), R, 1) =0 (G, Q).

Lemma 183 (Soundness of (DI1sJ) rule). For all C,R,G,I, Py, P»,Q1,Q2,
Zf R,G, 1 |:[] {Pl}C{Ql} and R,G, 1 ‘:D {PQ}C{QQ}, then R,G, 1 ':D {Pl V
P,}C{Q1 V P}.



Proof. For all C,R,G,I, Py, Ps,Q1,Q2 such that R,G,I Eg {P,}C{Q:1} and
R,G,I =g {P}C{Q2}, to prove R,G,I =g {P1 V P,}C{Q1 V Py}, we need to
prove for all p, if p =1 A (P V Py), then (init(C, n), R, I) =1 (G, Q1 V Q2).
For all v such that u = I A (PyV Py), we know =TI APy or pl=1A Py We
prove the two cases respectively.

—case l: p =1 APy

From p |= IANP; and R, G, I =g {P1}C{Q1} we know (init(C, p), R, I) =1
(G,Q1). From Q1 = @1 V Q2 by Lem. we know (init(C, u), R, I) 4

(G,Q1V Q2).

— case 2: p =1 A Py.
From p |= INP; and R, G, I =g {P}C{Q2} we know (init(C, p), R, I) =14
(G,Q2). From Q2 = @1 V Q2 by Lem. we know (init(C, u), R, I
(G,Q1V Q2).

Lemma 184. ForallR,I,G,Q1,Q2,n,1n,if (n, R, 1) =1 (G, Q1) and (0, R, I) =04

(G7 Q2)7 then (777 R7 I) ‘:>% (Gv Ql A QQ)

Proof. For all R, I,G,Q1,Q2,n, we prove for all n, if (n, R, I) = (G,Q1) and
(n, R, I) =7 (G,Q2), then (n, R,I) =1 (G, Q1 A Q2) by induction on n.

— base case: n = 0. trivial.
— inductive case: n =k + 1.
IH: for all n, if (n,R,I) =F (G,Q1) and (n,R,I) =P (G,Q2), then
(n, R, 1) =8 (G,Q1 A Q2).
For all n such that (n,R,I) =5 (G,Q1) and (n, R, I) =75 (G,Q2), to
prove (n, R, I) tz}é“ (G, Q1 N Q2), we need to prove
e (when O = s1) (5t (skip) = 0 or 559 (skip) = 1.

From (1, R, I) =E+1 (G, Q1) we know (5% (skip) = 0 or (5™ (skip) =

1.

o if n(5t™%) (skip) > 0, then 77|Skip(5tate) EQ1AQs.
From (1, R, I) =5 (G, Q1) and 75" (skip) > 0 we know Nlskip " =

1. From R, I) =kt (G, Q,) and n(5t)(skip) > 0 we know

Q (777 9 O 9 77 p
Tl\skip(smte) = Qs. Therefore n|skip(5t“te) E Q1 AQ-.

° n(State) ): I
From (n, R, I) Iz)’Erl (G, Q1) we know nState) = T,

e for all 7/, if n >§> n', then (', R, I) = (G, Q).

For all ' such that 7 % ', from (n,R,I) =5 (G, Q1) we know

(0, R, I) =5 (G,Q1). From (n, R, I) =" (G, Q2) we know (1, R, I) =K

(G,Q2). By TH we have
(77,7 Ra I) ’:>]EI (Gv Ql A QQ)
e forall @ and 7/, ifn < (6,7), then 6 C [G], n’**™® &= I and (1, R, ) =

<G7 Ql A QQ)
For all  and 7’ such that n < (6,7'), from (n, R, I) t:ﬂg'l (G,Q1)



we know 0 C [G], /**™ & I and (v,R,I) =F (G,Q1). From
(0, R, 1) =5 (@, Ql) we know (1, R,I) =F (G,Q2). By TH we
have (7', R, I) =E (G, Q1 A Q).

Lemma 185 (Soundness of (CONJ) rule). For all C,R,G, 1, P, P3,Q1,Q2,
Zf R,G,I ':D {PI}C{Ql} and Rval ):D {PQ}C{Q2}7 then RaGaI ':El {Pl N
Pg}C{Ql /\Pg}.

Proof. For all C,R,G,I, P, P>,Q1,Q2 such that R,G,I g {P1}C{Q1} and
R,G,I =g {P2}C{Q2}, to prove R,G,I =g {P1 A P2}C{Q1 A P2}, we need to
prove for all p, if p |= I A (P1 A Py), then (init(C, n), R, I) =1 (G, Q1 A Q2).
For all p such that p = I A(PyV Py), we know = IA Py and p |= I A Py. From
pEINP and R, G, I =g {P1}C{Q1} we know (init(C, n), R, I) =7 (G, Q1).
From p = I APy, and R,G,I =g {P2}C{Q2} we know (init(C,u), R,I) =04
(G,Q2). By Lem. We know (init(C, ), R, 1) =1 (G, Q1 N Q2)

Lemma 186. For all Q,R,I,n,7’, if Sta(Q, R, I), n(5'¢) |= TAQ and n >§> 7,
then /"9 = T A Q.

Proof. For all Q, R, I,7n,n such that Sta(Q, R, I), n(5') =T AQ and 7 >§> 7,

R
from 7 — 1’ there exists 7" and b such that 5 kit ', 0"y =n" and n’(smte) EI

1n(

From n &% 5" by Lem. we know p(State) S pr(5tete) pyom pr), = o by
(State)) C

Lem. 20| we have supp(n’) C supp(n’). By Lem. . we know supp(n’
supp(n”(smm)) From 7(Stte) = T ¢ /(State) E I and n(sme) n”(smte) we have

p(State) >§> ') From Sta(Q, R, T) and n(5*t) = Q we have n/*"? = Q.

Lemma 187. For all R,n,n’, ifn RiS 7', then supp(n’(smt))

— supp(n(stmt) ) .

Proof. For all R,n,n’ such that n RiS 7, there exists ¢ such that dom(y) =

supp(n), range(y)) = supp(n’) and for all ((C,0),(C’,0")) € ¥, C' = C and
(0,0") = R, thus

,(Stmt)) = dom(supp(n')) (by Lem.
= dom(range(1)))
= {C" | 30’ (C",0") € range(1))}

supp(n

={C"[30",C,0. ((C,0),(C",0")) € ¥}
={C"|30',C,0. ((C,0),(C",0") ep NC" =C}
—{C|30".C".0. ((C,0).(C",0")) € ¥}
—{C| 3. (C.0) € dom(1)}

= dom(dom(d)))

= dom(supp(n))

= supp(nStmi). (by Lem. 21))



(n/(Stmt) ) (Stmt) ).

R
Lemma 188. For all R, I, 0,7, if - 7', then supp C supp(n

R
Proof. For all R, I,n,n’ such that n - 7', there exists "’ and b such that 7 LS n”,

/(State) 11(Stmt) ) —

7"y =1 and n E I. From n it 1" by Lem. We know supp(n =

supp(nSt™). From 7’|, = ' by Lem. 20| we know supp(n’) C supp(n”). By

Lem.we know supp(n’(Stm)) C supp(n” Stmt)), thus supp(n’(s )) C supp(n(Stmi).

Lemma 189. For alln and Cy, nS*™) = §(C1) if and only if V(C, o) € supp(n). C =
Ch.

Proof. For all n and Cq, we have

77(Stmzt) _ 5(01)
<« supp(nSt™) = {C1} (by Lem. [26)
< dom(supp(n)) = {C1} (by Lem. [21))
<= {C|30. (C,0) € supp(n)} = {C1}
<= {C|30. (C,0) € supp(n)} € {C1}
<~ VY(C,0) € supp(n). C = Ci.

Lemma 190. For alln and Cy, if nSt™) = §(C}), then nextsplit(n) = {nextsplit(C1)}.

Proof. For all  and C} such that (5™ = §(C}),

nextsplit(n)
= {netsplit(C) | Jo. (C,0) € supp(n)}
= {nextsplit(C) | Jo. (C,0) € supp(n) NC = C1} (by Lem. [189)
= {nextsplit(Cy) | Jo. (C,0) € supp(n) NC =C4}
= {nextsplit(C1)}.

Lemma 191. For all n and 7/, if nextsplit(n) 2 {split(true)}, then n ~ n' if
and only if n — 7.

Proof. For all n and n’ such that nextsplit(n) 2 {split(true)}, we prove the two
directions respectively.

— if p~ 7/, from nextsplit(n) 2 {split(true)} we know nextsplit(n) = {split(true)}
or
nextsplit(n) O {split(true)}. We prove the two cases respectively.
o nextsplit(n) = {split(true)}.
By Lem.[171]we know 7/ |true = 7. From n ~ 1/, neatsplit(n) = {split(true)}
and 7' |true = 1" we have n — 7.
o neatsplit(W,t) O {split(true)}.
#nextsplit(W,t) > 1, s0 W < W

— if n — 7/, there are two cases.



e case 1: there exists 0 by, ..., bk, 4 such that n ~ n”, nextsplit(n) =
{split(by,...,bx)} and "]y, = 7/'.
From nextsplit(n) O {split(true)} we know k = i = 1, by = true. By
Lem. we know n|yue = 1”7, SO "o, = 1 true = 1", From
n~n" we have n~ 7.

e case 2: #nextsplit(n) > 1 and 1~ n'. trivial.

Lemma 192. For alln, if nS") = §(skip), thenn ~ ({(0,0) | o € supp(n5t9)}, §(skip)®
(State)
U )-

Proof. For all ) such that n(3™) = §(skip), by Lem. we know C = skip
for all (C,0) € supp(n), thus

(C.0) 5 (C",0")}

(¢’,0") o) p|
= A(C/,U')-ch,{ﬂ( 0) p|(C o) € supp(n) A (C,0) & (C',0")}
=\NC",0"). 3 o{n(C,0) - p| (C,0) € supp(n) A C = skip A (C,0) & (C’,0”)}
= \NC",0"). 3 {5t (0) - p | o € supp(nState)) A (skip, o) 2 (¢, o)}
= MNC",0"). 3 {nS19) (0) | o € supp(n'Stat9)) A C" = skip A o’ = o}
= \NC",0"). 3 {n'S19) (0) | ' = skip A o’ = 7}
= \(C’,d"). 8(skip)(C") - n{State) (o)
_ (5(skip) ® n(State)
and
{(c,0") | 3C,C". n(C,0) > 0A(C,0) & (C',0") Ap > 0}
={(o,0") | 3C,C". (C, )Gsupp(n)/\(C’,J)ﬁ)(C”,a’)/\p>0}
= {(o,0") | 3C,C". (C,0) € supp(n) A (C = skip) A (C,0) & (C",0') Ap > 0}
={(o,0") |0 € supp(n(smte YA 3C'. (skip,o) 2 (C',0') Ap >0}
= {(0,0") | o € supp(n'Stat)) AIC'. C" = skip A o’ = o}
= {(0,0) | o € supp(n(st*))}

Therefore 7~ ({(0,0) | o0 € Supp(n(smte))},é(skip) ® n(State)).

Lemma 193. For all 77701777179277727 an ~ (913771) and n -~ (927772); then
01 =02 and m = na.

Proof. For all n,01,m,02,7m2 such that n ~ (61,m) and n ~ (02,72), from

~ (61,m) we know 1 = )\(C’,a’).zcva{n(C,o) -p | (C,o) 2 (', 0"}
and 6, = {(0,0’) | 3C,C". (C,0) & (C',0') Ap > 0}. From 1 ~ (6a,72) we
know 7 = MC',0"). Yo (n(Cr0) - p | (Co0) B (C'0")} and 65 = {(0,0") |
3C,C". (C,0) & (C',0') Ap > 0}. Therfore 6; = 6y and 171 = 5.

Lemma 194. For allQ,R,G, I, if Sta(Q, R,I) and Id = G, then for alln and
0, if 95D = 6(skip) and n'S*') {= T AQ, then (1, R, I) =2 (G, Q).

Proof. For all Q, R,G, 1, if Sta(Q, R,I) and Id = G, we prove by induction on
n.



— base case: n = 0. trivial.
— inductive case: n = k + 1.
IH: for all n, if 5 = §(skip) and n(5***®) |= T A Q, then (n, R, I) =X,
(G,Q).
For all 77 such that (5" = §(skip) and n(5t**) = TAQ, to prove (), R, I) E=F41
(G, Q), by Def. [F.1] we need to prove
o 75t (skip) = 0 or (5t (skip) = 1.
by assumption we know 75 (skip) = 1.
o if n(5t™)(skip) > 0, then 55t = Q.
From n(5tm(skip) = 1 we know Pr(c ,).,[C = skip] = 1. By Lem.
we know 7lskip = N|x(C.0).c=skip = 1. From n(5t%®) = I A Q we know
(State)
n‘skip ): Q
. T](State) ': I
From 7(5tt¢) = T A Q we know n(Stete) |= T,

R
e foralln/, if n - 7', then (1, R, I) =% (G, Q).

R
For all #' such that 7 - 7', by Lem. we know supp(n’(Stmt)) C
Supp(n(stmt)). From n(Stmt) — 5(Sk1p) by Lem. we know n/(Stmt) _
R
§(skip). From Sta(Q, R, I), %) =T A Q and 7 - 1’ by Lem.

we have 1/®*™® = T A Q. From /"™ = §(skip) by IH we have

(', R, 1) =4 (G, Q).
o forall@and 7/, ifn = (0,7'), then 6 C [G], 7' = T and (f, R, I) ==k

(€.Q).

For all # and n’ such that n <= (6,1, from n5*™ = §(skip) by

Lem 0 [190] we have nextsplit(n) = {nextsplit(skip)} = {split(true)}. From

y Lem. ﬁ 191) we know 1 ~ (6,7'). From 55 = §(skip)

by Lem h we know n ~ ({(0,0) | o € supp(n'St*e))}, 5(skip) ®

ntState)). From 1 ~» (0,7') by Lem.we know 6 = {(o,0) | 0 €
supp(r](smte))} and 7/ = §(skip) ® (5% thus @ C [Id] C [G]. From
7 = o(skip) ® et by Lem. and Lem. we know /™ =
§(skip) and /(%" = y(State) = T A Q. By IH we have (i, R, I) ==k,
.Q)

Lemma 195 (Soundness of (SKIP) rule). For all Q,R,G, I, if Sta(Q, R, I)
and Id = G, then R, G, I s {Q}skip{Q}.

Proof. For all Q, R, G, I such that Sta(Q, R, I) and Id = G, by Def.|F.2| -We need
to prove for all p, if u = I A Q, then for all n, (init(skip, u) R, I) =1 (G,Q).
For all i such that p = TAQ, by Lem. We know (46(skip) ® ,u)(Stmt) = 6(sk1p).
From Sta(Q, R,I) and Id = G by Lem. [194] we have (init(skip, y1), R, I) =
(G, Q) for all n.

Lemma 196. For alln and b, n5t®) \= [b] if and only if V(C, o) € supp(n). o =
b.



Proof. For all n and b, by Lem. We know supp(n(5t*)) = range(supp(n)), thus

n(State) ': H)‘|
<= VYo € supp(n'State)). o = b
<= Yo € range(supp(n)). o =b
<= VY(C,0) € supp(n). o =b.

Lemma 197. For all n,b,Cy,Cy, if n5™) = §(if (b) then C, else Cy) and
ntState) 1= [b], then n~ ({(o,0) | o € supp(n(State))}, §(C) @ ntState)).

Proof. For all n,b,Cy,Cy such that n(5™) = §(if (b) then C; else C5) and
n(State) 1= [p], by Lem. [189] and Lem. [196| we know C = if (b) then C; else C
and o b for all (C, o) € supp(n), thus

(C,0) & (C.0")}
(C,0) € SUPP(U) N (C,a) % (C',0)}

A C =if (b) then Cy else Cy A
cEbA(C o)
Z {n(State)(
b) then C; else Cy,0) & (C7,0')}

|

|

|
C’,a’)}
). ) -
if (
/) Z {n(State)( ) | oc Supp(n(smf’e)) Ao ): bAC = Cl Ao = U}
)-
)-

p| o€ supp(nSt?I) Ao f=b A

’ Z {n(State)( ) | C = el Ao = 0_}

— (Cl) ® n(S’tate).

{(0,0") | 3C,C". n(C,0) >0 A (C,0) & (C",0") Ap > 0}
={(0,0") | 3C,C". (C,0) € supp(n) A (C,o) 2 (C",0") Ap > 0}
{(o,0") | 3C,C". (C,0) € supp(n) A (C =if (b) then C; else Cs) A
cEbA(C o) (C0') Ap >0}
o) | o € supp(nSt@t)) Ao k= b A 3C". (if (b) then O else Cy,0) 2 (C’,0') Ap > 0}

( )
,0') | o € supp(nStty AIC!. C' = CL Ao’ =0}
(State))}.

(
(

(0,0) | o € supp(n

g
g

{
={
{

Therefore §~ ({(o,0) | o € supp(n(smte))},d(cl) ® n(State)).

Lemma 198. For all 1,b,Cy,Cs, if nS™™) = 4f (b) then C, else Cy and
ntState) 1= [=b], then n~ ({(0,0) | o € supp(n'Stat)} §(Cy) @ nlState)),

Proof. For all n,b,Cy,Cy such that (5™ = §(if (b) then C; else C3) and
n(State) = [=b], by Lem. [189) and Lem. [196 we know C = if (b) then C; else Cs



and o = - for all (C, o) € supp(n), thus

MC',0"). 3 An(C,0) - p | (Coo) = (C',0")}
MC',0"). Yo An(C.0) - p | (C,0) € supp(n) A (C,0) = (C',0")}
A(C, o). Zc,g{n(C, o)-p|(C,o) € supp(n) A C = if (b) then C; else Cy A
0|:b/\(C’ o) L (')}
= \(C",0"). P () - p | o € supp(n**I) Ao = b A
( f (b) then C) else Cy,0) & (C,0')}
Z\C, ). S 05 (0) | & € supp(nS“) Ao = =bACT = Cy Ao = o}
=\NC", ). L {09 (0) | O" = Cy No' =0}
= MC",0"). 6(Ca)(C") -5 (o)
— 5(02) ®U(State)

{(0,0") | 3C,C". n(C,0) > 0A(C,0) L (C',0") Ap > 0}

= {(o,0") | 3C,C". (C,0) € supp(n) A (C,0) 2 (C",0") Ap > 0}
{(o,0") | 3C,C". (C,0) € supp(n) A (C = if (b) then C; else C3) A
ocE=bA(C0) 5 (C o) Ap >0}

{
{(U; 0") | = Supp(n(state)) AJC. O = Cy Ao’ = U}
{(0,0) | o € supp(n(Stete))},

Therefore n ~ ({(c,0) | o € supp(n'***9)}, 5(C2) @ nStet)).

Lemma 199. For all W, if W9 (skip || --- || skip) = 1, then Wl skipl|..- || skip =
w.

Proof. For all  such that 75" (skip) = 1, we have Pr(c ,)~,[C = skip] = 1.
By Lem. [ we know 1| x(c.0).c=skip = 71s -, 7|skip = 1.

Lemma 200 (Soundness of (COND) rule). Forallb,Cy,Cs, R, G, I, P, Py, Q,
ifsta(P1VP2,R, I), P = [b], P = |——\b-|, Id= G, R,G,I ':D {Pl}Cl{Q} and
R,G,I Eg {P}C2{Q}, then R,G, I =g {Py Vv Pa}if (b) then C; else Co{Q}.

Proof. For all b,C1,Co, R,G, I, P, Py, Q such that Sta(P,V P2, R, I), P, = [b],
Py, = |V_'b-‘, Id = G, R,G,I ':D {Pl}C’l{Q} and R,G,I ':D {PQ}OQ{Q}, we

(0,0") | o € supp(nSt@t) A o |= —b A IC". (if (b) then C; else Cy,0) & (C7, 0

)Ap >0}

need to prove for all u, if p = IAN(PyV Pz), then (init(if (b) then C; else Co, ), R, I) =1,

(G,Q) for all n. For all p such that u = I A (P, V P), by Lem. |18 we know
init(if (b) then C else Cy, 1) 5™ = (5(if (b) then C, else Cy) ® p) 5™ =
o(if (b) then C; else C3). To prove (init(if (b) then C; else Co, ), R, I) =1,

(G, Q) for all n, it suffices to prove for all n and 7, if n(5¥™) = §(if (b) then C, else Cs)

and nState) = T A (Py V Py), then (1, R, I) ==L (G, Q). We prove by induction
on n.

— base case: n = 0. trivial.



— inductive case: n = k + 1.
IH: for all 5, if p(5t™) = §(if (b) then C; else Cy) and n(51%t®) = TA(P,V Py),
then (1, B, 1) =, (G,Q).
For all 7 such that 7(5%™) = §(if (b) then C; else Cy) and n(State) =
IA(PyV Py), to prove (n, R, I) =k (G, Q), we need to prove
o 75 (skip) = 0 or (5™ (skip) = 1.
From n(5t™) = §(if (b) then C; else Cy) we have
(St (skip) = 6(if (b) then C; else Cy)(skip) = 0.
o if (5™ (skip) > 0, then 7syip " "
(St (skip) > 0 contradicts with n(smt)(sklp) =0.
° n(State) ): I.

From n(State) ': IA (Pl V; PZ) we have n(State) ': 1.
o forall 7/, if 7 ? ', then (', R, 1) =k, (G, Q).

(n/(Stmt) ) C

R
For all i’ such that n - 7', by Lem. we know supp

supp(nSt™). From 75 = §(if (b) then C) else Cy) by Lem. 27| we
know 7'*"™) = §(if (b) then C, else C,). From Sta(P, V Py, R, I),

R
ntState) = T A (P, V Py) and 7 - n’ by Lem. we have »/(5tate) =

I A (PyV Py). From 1/ ®"™") = §(if (b) then C; else Cy) by IH we have
(', R.I) =4 (G, Q).
o forall @ and 7/, ifn < (6,7), then 6 C [G], n’**) &= I and (1, R, I) ==F.

(.Q).

For all @ and 7/ such that n < (0, 7'), from (5™ = §(if (b) then C; else Cy)

by Lem.[190] we have nextsplit(n) = {nextsplit(if (b) then C; else Cy)} =

{split(true)}. From n < (6,7’) by Lem. [191] we know 1 ~» (6,7’). From

ntState) = I A (Py V Py) we know n(State) |= T A Py or n(State) |= [ A P;.

We prove the two cases respectively.

* case 1: p(State) = [ A Py,
From P; = [b] we know 7(5**¢) |= [b]. By Lem. - we know 1 ~»
({(0,0 o € supp(n )}, 6(Ch) @ n(sm“’)) From 7 ~ (6,7) by
Lem. we have 6 = {(0,0) | o € supp(n'5t)} and o' = §(Cy) ®
n(State) thus ¢ C [Id] C [G] and o/ = p(State) = T From
R,G, I o {P}Ci{Q}, 7 = 6(C1) @759 = init(Cy,n(5")) and
ntState) = I A Py we have (', R, I) =F (G, Q).
* case 2: n(State) = [ A P,

From P, = [—b] we know n(5¢) |= [=b]. By Lem. We know 7 ~»
({(0,0) | 0 € supp(n'5*t9)},6(Ca) @ nS'a)). From i~ (6,7) b
Lem. We have 0 = {(0,0) | o € supp(n*@t))} and o' = §(Cy) ®
n(Stete) thus @ C [Id] C [G] and o/ = p(State) = T From
R,G,I =0 {P2}02{Q}, ' = §(Ca) @n'5tate) = ingt(Cy, n(State)) and
n(State) |= T A Py we have (', R, I) ==K (G, Q).

Lemma 201. For all n, Cy, n; Cy (5149 = p(State)



Proof. For all n, Cs,

n; C2(State) = Ao. Zc n; C2(C, 0)
=A0.> ¢, 1;,C2(C1; Ca,0)

=A0.> 0, n(C1,0)
_ n(Stute).

Lemma 202. For all n,Co, 7/, if ' = XC,0). n(C;Cs,0) and for all C €
supp(n St | there exists Cy such that C = Cy; Cy, then n'; Cy = 1.

Proof. For all n,Cs,n" such that ' = A(C, o). n(C;Cs,0) and for all C €
supp(n(s””t)), there exists C7 such that C = C4; Csy, we have for all C, if there is
no C; such that C' = Cy; Cy, then C ¢ supp(nS™)), i.e., n(C,o) = 0 for all o.

7' (C1,0), if C=C1;Co

' Cy = MO, o).
e (o) 0, otherwise
:)\(070_) 77(01;02,0’), ifO:.C&;CQ
0, otherwise
N n(C, o), 1fC:.C1;CQ
n(C,o), otherwise
= 77.

Lemma 203. For all R,n,Cs, 1, if n; Cy kit 7', then there exists n” such that

n il 7 and ' =n";Cs.

Proof. Forall R,n,Cy,n' such that n; Co it 7', there exists 1 such that dom(y) =

supp(n; C2), range(yp) = supp(n’) and for all ((C,0),(C",0')) € ¥, C' =
and (0,0') E R. From n;Cs A % by Lem. we know supp(n’(smt))

supp(n; Ca (Stmt)) thus for all C € n’(Stmt), we have 1; Co*™) > 0, so there

exists C such that C = Cy;Cs. Let 0" = L MC,0). 7 (C;Cy,0), by Lem.
we know 7' = 7”;Cs. For all ((C,0),(C",0")) € 9, we have ' = C and

(C,o) € dom(w) = supp(n; Cs), so there exists C; such that C' = C = Cy; Cs.
def

Let o' = {((C,0),(C",0") | ((C;C4,0),(C’";Cq,0")) € ¢}, we have
dom(y') = {(C.0) | 30' " ((C,0),(C",0")) €'}

={(C,0)|3C", 0’ ((C Cy,0), (C Cs,0')) € ¥}
={(C,0) | 3C",0". ((C;Cy,0),(C",0")) € ¥}
={(C,0) | (C; CQ,U) € dom(v)}
= {(07 U) | (C Ca, ) € SUPP(W)}
={(C,0) | (;C2)(C;C2,0) > 0}
={(C,o) | n(C,0) > 0}
= supp(n),



(

| 3C, 0. ((C,0),(C",0")) € ¥’}

| 3C, 0. ((C; O, )7(0702, ") € v}
| 3C, 0. ((C,0),(C";C2,0")) € Y}
I E ' Cq,0") € dom(v)}
|’
|n

"0y, 0") € supp(n’)}
(C’ Cy,0’) > 0}
//(C/ /) > 0}

and for all ((C,U),(C’,O—’)) c 1,[1,, we have ((C;CQ,O'),(C/;CQ,OJ)) € 9, so
C';C0y = C;Cy and (0,0") E R, thus ¢’ = C and (0,0’) = R.

Lemma 204. For all ) and b, [Pr(b)], st = Prc,q)nlo = b].

Proof. For all n and b, by Lem. 3| Iwe know [Pr(b)],(statey = Pr oy (stare) [0 = b] =
Prc,o)~ylo = ).
Lemma 205. For alln and b, n|, exists if and only if [Pr(b)], (state) > 0.

Proof. For all n and b, by definition of 7|, we know 7|, exists if and only

if Nlx(c,0). o=b exists. By Def. we know n|x(c,0). op exists if and only if
Prc.o)~wlo = b] > 0. By Lem. we know Prc o)ylo = b] > 0 if and only

if [Pr(b)],(statey > 0. Therefore, nf, exists if and only if [Pr(b)],(statey > 0.

Lemma 206. For all 1) and b, if [Pr(b)], (s > 0, then ntStetd)|, = nly 51t
Proof. For all  and b, if [Pr(D)], (statey > 0,

n(State) |b
p(State) (o) .
o d PO sy HOFED
0, otherwise
> n(Co) :
- \o. [[P!‘(Cb)]]n(sme) , ifo=b
0, otherwise
n(C,o) 3
oy PO 7D
-2.c .
0, otherwise
=Xo. > cnl(C,o)
o (State)
=1l :

Lemma 207. For alln andb, if [Pr(b)],(stae) > 0, thenn|, = A(C, o). WM.

Proof. For all n,b such that [Pr(b)], st > 0, we have Prc »)~wlo = b >0,
thus

77|b = 77|A(C,0).0\=b

- W@
= A(Oa U) { Pr(c,a)Nw[UI:b]? if o ': b

, otherwise

* Pric,o)~w o]

(C, o). Mo W(Co) by Lem. R04)

)\(C, 0.) x(ol=b)-W(C,o)
A L 0) e



Lemma 208. For all n,b, Cy, if [Pr(b)], statey > 0, then (1n;C2)[y = nlp; Ca-

Proof. For all 1, b, Cy such that [Pr(b)],statey > 0, by Lem.we know n; Cp (St —
n(5tt) thus [Pr(b)],.c, st > 0. By Lem. We know both (n; C2)|, and 7l

exists.

e
C ifC =0C;:C.

—\(C,0). e(Cr,0), i Ci: s
0, otherwise
x(@Eb)1(C1,0) e — oL O

= )\(C’7 (j), IIPr(b)]]T,(State) ) 15 L2 (by Lem. B07)
0, otherwise -
_n(Ca) e

= \(C,0). { PO, Gtare)” if C=Ci;Cono =D
0, otherwise

=\, o). [Pr(®)], o, (state) ’ itC=C1;;CoN0 =D
0, otherwise

=\, o). [Pr®)],, o, (state) * ifol=b
0, otherwise

= (n; Ca)lp-

R
Lemma 209. For all R, I,m,Co,7’, if n1;Co - 7', then there exists ] such

R
that m — ny and n' = n}; Cs.

R
Proof. For all R,I,n,Cs,n' such that n;;Cs - 7', there exists " and b such
that 71; Cs i 7,0 =17, n’(smte) E I. From 7);Cy il 7" by Lem. there

exists n]’ such that n RiS ny and " = n}; Cy. From 7" |, = ' by Lem. we know

[Pr(b)],(sterey > 0. By Lem. we know ni’(smte) =nl; C,(State) — pu(State)
thus [[Pr(b)]]n/l/(State) > 0. By Lem. we know 7' = 0", = (075 C2)|p = 0} |s; Ca.

R
Let 0} < /|y, then ' = 1;; Cs. From 7 5 0 and Y], = n; we know - -

Lemma 210. For all n,Ca, 0,1, if nS™™) = §(skip), then 1;Cy ~ ({(0,0) |
oc Supp(n(State))},
5(02) ® n(State)).



Proof. For all 7 such that (5™ = §(skip), by Lem. we know C' = skip
for all (C, o) € supp(n), thus

AC',0"). Y0 oAm: Ca(Cr0) - p | (Cr0) & (C,0')}
= XC",0"). 3¢, An(Cr,0) - p| (Ch,0) € supp(n) A (Cy; Ca,0) & (C',0")}
=MNC",0"). 3¢, o{n(C1,0) - p | (C1,0) € supp(n) A Cy = skip A (C1;Ca,0) &5 (C',0")}
=\NC",0"). 3 {nS) (o) - p | o € supp(n'S'a)) A (skip; Ca,0) & (C',07)}
_XC o). S (o) |7 € supp(u®) NC' = Gy o’ = o}
O ). Sy (q) | O = Ca no’ = a)
= \(C,0"). 8(C)(C) - nState) (o)
_ 5(02) ® n(State)
and
{(a,a’)|EICC’ 7:C5(C,0) > 0A (C,0) & (C",0") Ap > 0}
{(Oa OJ) | 3017 (Cla ) S Supp( ) (01702’ ) P (C/’OJ) ANp> O}
= {(0,0") | 3C1,C". (C1,0) € supp(n) A (Cr = Sklp) (C1;Ca,0) = (C',0") Ap > 0}
={(0,0') |0 € supp(n(smte)) A3C". (skip; Cy,0) & (C', ') Ap > 0}
= {(0,0") | o € supp(nStet)y A3C'. C' = Cy Ao’ = o}
= {(0,0) | o € supp(n(St=e))}.

Therefore 7~ ({(0’, 0‘) | o€ supp(n(smte))}’ 5(02) ® T](State)).

Lemma 211. ForallR,G,1,Q,n,n, if (n,R,I) = "‘H (G,Q), then (n, R, I) =1
(G, Q).
Proof. For all R,G,1,Q, we prove for all n,n, if (n,R,I) lz}%“ (G,Q), then
(n,R,I) =7 (G, Q) by induction on n.
— base case: n = 0. trivial.
— inductive case: n =k + 1.
IH: for all n, if (n, R, I) =5 (G, Q), then (n, R, I) =F (G, Q).
For all 5 such that (7, R, I) =0 (G, Q), to prove (n, R, I) =1 (G, Q),
ie, (n,R,I) = k'H (G,Q), we need to prove
o (when O = ST) nStm) (skip) = 1 or 75 (skip) = 0.
From (n, R, I) = (G, Q) we know (™™ (skip) = 1 or (™) (skip) =
0.
o if n(5tm!) (skip) > 0, then 7]siip' " ™ = Q.
From (n, R, I) =t (G, Q) we know if (5™ (skip) > 0, then n]si; ip tate)

Q.
° T](State) ': I
From (n, R,I) =5 (G, Q) we know p(State) = 1.
R
e for all 7/, if n - ', then (', R, I) =F (G, Q).
For all i’ such that n % ', from (n,R,I) =74 (G,Q) we know

n,R,I) =" (G,Q), ie, (,R,I) =F+ (G,Q). By IH we have
O O
(', R, 1) =4 (G, Q).



o forall @ and 1/, if < (0,7), then 6 C [G], ¥ |= Tand (1, R, T) ==k,
(G,Q).
For all 6 and n’ such that n < (6,7), from (n, R,I) = (G, Q) we
know 6 C [G], /") = I and (n/, R1) =1 (G,Q), thus (0, R, I) =K1
(G,Q). By IH we have (1, R, I) =}, (G, Q).

Lemma 212. For alln and Cy, n5"™(C1) = 0 if and only if ¥(C, o) € supp(n). C #

Ch.

Proof. For all n and Cq, we have

Lemma 213. For all n1,Cs,60,7', if m

then

77(Stmt)(cl) =0
= C1 ¢ supp(nS™)
<= C1 ¢ dom(supp(n))  (by Lem.
— C, ¢ {C | To. (C,0) € supp(n)}
<= VY(C,0) € supp(n). C # Ci.
(Stmd) (skip) = 0 and ny;Cay ~ (0,7),
there exists 1, such that o' = n}; C2 and m ~ (0,17).

Proof. For all 71,Cy,0,n" such that 559 (skip) = 0 and 71;Cy ~ (6,7),
from n(5t™ (skip) = 0 by Lem. we know V(C, o) € supp(n). C # Cj. Let

i ENC,0). oo Am(C,o) - p | (C,0) L (C7,0")}. From ny; Co ~ (6,7) we

have

'

thus

NC',0"). Y0 o m; Ca(Cro) -p | (Cro) = (C”,0")}
AT, a"). ch,g{nl(cha) p| (C1,0) € supp(n) A (Cy; Ca,0) 2 (C",0")}
A(C",0").

) Y0, o Am(Cr0) -p | (Cry0) & (Cf,0)}, if €' =C1;Ch
0, otherwise
m(C,0'), i C" =010,
0, otherwise

{(0,0") | 3C,C". n1;Co(C,0) >0 A (C,0) & (C',0") Ap > 0}
{(0,0") | 3C1,C". N (C1,0) > 0A (Cy;Coy0) B (C',0") Ap > 0}
{(0,0") | 3C1,C". (Cy1,0) € supp(m) A (C1; Ca,0) & (C',0") Ap > 0}

{(o,0") | 3C,,C". (C1,0) € supp(n1) A Cy # skip A (C1;Ca,0) 2 (C7,0") Ap > 0}
{(0,0") | 3C1, C}. mi(Cr,0) > 0 A (Cr,0) 2 (Ch,0') Ap > 0},

m~ (0,m)).

Lemma 214. For all n and Oy, nextsplit(n; Co) = nextsplit(n).

10'). 30, oAm(C1,0) - p | (Cr,0) € supp(n) A Cy # skip A (Ch; Ca,0) = (C',07)}



Proof. For all n and Cy, we have

nextsplit(n; C2) = {nextsplit(C) | Jo. (C,0) € supp(n; Ca)}
= {nextsplit(C) | o. (n; C2)(C,0) > 0}
= {nextsplit(C) | Jo,Cy. C = C1;C2 An(Cy,0) > 0}
= {nextsplit(Cy; Cs) | Jo. n(C1,0) > 0}
= {neatsplit(Cy; Cz) | Jo. (Cl, o) € supp(n)}
= nextsplit(n).

Lemma 215. For all ny,Co,0,7, if 115" (skip) = 0 and n1;Co — (0,7),
then there exists nj such that ' = n};Co and m — (6,n}).

Proof. For all 11, Cy, 0, such that n(5t™9 (skip) = 0 and 7;; Cy < (0, 7'), there
are two cases.

— there exists 1", b1,...,bg, ¢ such that ny;Co ~ (0,7"), nextsplit(n;; Ca) =
split(by,...,bx) and 0|, = 7.
From 7, 5% (skip) = 0 and 7;;Cy ~ (6,7") by Lem. we know there
exists ny such that n” = nY;Cy and m ~ (0,n{). From n"|,, = 7 by
Lem.ﬁwe know [Pr(b;)],(state) > 0. By Lem. we know ny; Co (State) _

n,,(State thus [[PI‘( )ﬂ 1(State) = [[PI'( )]] " Cz(Smte) = [Pr< l)]]n”(s“‘“e) > 0.

By Lem. . we know nf{|,, exists. Let n} €of 1Y |v;, from [[Pr(bi)]]n,l,(mte) >0
by Lem. we know 71;Co = nf[,;Co = (771702) b = n"le, = n'. By
Lem. We know nemtsplit(m) = nextsplit(n; Co) = split(by, ..., bg). From
m ~ (0,n7) and 0y, = ny we know ny < (6,77).

— n1;Co ~ (0,7) and #neatsplit(n; Ca) > 1.
From 7,5 (skip) = 0 and 7;;Cy ~» (6,7') by Lem. - we know there
exists 7] such that ' = n};Cs and 9 ~ (6,n]). By Lem. we know
nextsplit(ny) = nextsplit(ny; Ca), thus #nextsplit(n,) = #nextsplz't(m; Cy) >
1. From 1y ~ (0, 71}) we know 11 < (0,n}).

Lemma 216. For all R,G,I,P,Q,Cs,n, if Id = G and (6(C2) @u, R
(G,Q) for all p such that p = I A P, then for all n, if (n,R,I) =% (G, P),
then (n;Cs, R, I) =1 (G, Q).

Proof. For all R,G, 1, P,Q,Cs,n such that Id = G and (6(C2) ® i, R, I) =1
(G, Q) for all u such that p |= I A P, we prove for all n, if (9, R, I) =", (G, P),
then (1; Cs, R, I) =1 (G, Q) by induction on n.

T~
S~—
Os

— base case: n = 0. trivial.
— inductive case: n =k + 1.
IH: for all n, if (n, R, I) =% (G, P), then (n;C, R, I) =k, (G,Q).
For all i such that (n, R, I) ==k+1 (G, P), we need to prove
e (when [0 = sT) 1; C,5" (skip) = 1 or n; C, "™ (skip) = 0.
n; G50 (skip) = 32, (1; C») (skip, o) = 0.
o if 7; O, 5™ (skip) > 0, then 7; C’2|skip(5mte) E Q.
; Cp(Stmt) (skip) > 0 contradicts with 7; C, (5t — g,



° n;CQ(State) ): T.
From (1, R, I) == (G, P) we know n(5t¢) = . By Lem. [201| we
know 7; Cp(Stte) — y(State) EI

R
e for all 7/, if n; Co — ', then (n/, R, I) =F (G, Q).
R
For all 5’ such that 7;Cs — 7', by Lem. [209| there exists 7 such

R
that 7 - 7" and ' = n;Cy. From (n,R,I) =k (G, P) we know

(n",R,I) =k (G, P). By IH we have (n";C2, R, I) = (G, Q). From
n =1n";Cy we know (0, R, I) I:ﬂé (G, Q).

o for all 6 and 7/, if ;Cy < (6,7), then 6 C [G], "™ = I and
(77/7 R, I) ':>]&I (G7 Q)
For all § and 7’ such that n; Cy < (0,7), from (n, R, I) =kt (G, P)
we know 1(5t™ (skip)
=1 or 5™ (skip) = 0. We prove the two cases respectively.

x 7St (skip) = 1.
By Lem. we know n(5™™") = §(skip). By Lem. we know
nextsplit(n) = {nextsplit(skip)} = {split(true)}. From n;Cy —
(0,7') by Lem. we know 7; Co ~ (0,1). From n(5t™) = §(skip)
by Lem. we know 7;Cy ~ ({(0,0) | 0 € supp(n)},d(Ca) ®
nt5tate)) From n; Cy ~» (6,1') by Lem. we know 0 = {(o,0
o € supp(n)} C [Id] C [G] and 1’ = §(C2) ® n(S*t). By Lem.
we know /(91 = p(State) = T From (n, R,I) ==F+1 (G, P) and
n(5tm) (skip) = 1 > 0 we know nskip'""™*® = P. By Lem. we
know 7|skip = 7, thus 75 |= I A P. From (§(Cs) ® u, R, I) =2,
(G, Q) for all yu such that pu = TAP we know (6(C2)@n9t4) R, T) =1
(G,Q), ie., (0,R,I) Iz)’Erl (G,Q). By Lem. we know
(n, R, 1) =f (G, Q).

x 75t (skip) = 0.
From 7;Cy < (6,1') by Lem. there exists " such that o' =
n";Cqy and n — (0,7"). From (n, R, I) =E+! (G, P) we know 6
[G], 7" = I and (1, R,I) =k, (G, P). From ' = n""; C and
Lem. we know p/(State) — . oy (State) - u(State) = I. From
(', R, I) =¥ (G, P) by IH we have (n; Cs, R, I) ==F, (G, Q), i.e.,
(', R, 1) =4 (G, Q).

N

Lemma 217. For all Cy, Cs, p, init(Cy; Co, 1) = init(C1, p); Co.



Proof. For all Cy,Cs, u,

im’t(Cl ) CQ y u)

=4(C1;C2) @ u
=\, o). (o), ifC= ?1;62
0, otherwise
_A(C0). {9C(C) o), 1O =CiC
0, otherwise
= (0(C1) ® p); Co
= init(Cy, p); Ca.

Lemma 218 (Soundness of (SEQ-ST) rule). For allC1,Cy, R, G,I,P,M,Q,
if R,G,I Eor {P}C1{M}, R,G,I Eq {M}C2{Q} andId = G, then R, G, I =
{P}C1; C2{Q}-

Proof. Forall C1,Cs, R,G,I,P,M,Q suchthat R,G,I =« {P}C1{M}, R,G,I =g
{M}C2{Q} and Id = G, we need to prove for all p, if 4 = I A P, then
(init(C1; Ca, ), R, 1) =1 (G, Q) for all n. For all n, from R, G, I = {P}C1{M}
and p | I AP we know (init(Cq,p),R,I) =2 (G,P). From R,G,I g
{M}C2{Q} we know (6(Co) ® p, R, I) =1 (G,Q) for all p such that u =

I A P. From (init(Ch,p),R,I) =3 (G,P) and Id = G by Lem. we
know (init(C1, p); Ca2, R, I) =1 (G, Q). By Lem. We know init(Cy; Ca, 1) =
zmt(Cl,u), CQ, thus (zmt(Cl,Cg,u),R, I) F:>% (G,Q)

Lemma 219. For all n,b,C, if n5*™) = §(while (b) do C) and n5*) |= [b],
then 11~ ({(0,) | 7 € supp(n*4%9)}, 5(C; whle (b) do C) & 7(549).

Proof. For all n,b,C such that n(5™" = §(while (b) do C) and 7(5**) = [b],
by Lem. and Lem. we know C; = while (b) do C and o = b for all
(C1,0) € supp(n), thus

Il
> >
Q

pl(
p | (C1,0) € supp(n) A (C1,0) B (C',0")}
p | (C

: (
NC'.0). S, o I0(Cr.o
(Ch 1,0) € supp(n) A Ch = while (b) do C A

= AC",0"). 30, o0
ol=bA(Ch,0) ﬂ> (

=NC",0). 3, {0 (0) - p| o € supp(n***') Ao = b A
(while (b) do C,0) & (C',0")}
=\C",0"). 3 {nStat) (o) | o E supp(nSte) Ao = b A C' = C;while (b) do C Ao’ =0}
= \C",0"). 3 {n'State) (g) | ¢ = C; while (b) do C Ao’ = 0o}
— NC'"). 5(C: while (b) do O)(C) - 7fS19) (o)
= §(C; while (b) do C) ® 7 Smt@



{(0,0") | 3C1,C". n(C1,0) > 0A (C1,0) B (C',0") Ap > 0}
= {(0,0") | 3C1,C". (C1,0) € supp(n) A (C1,0) & (C",0") Ap > 0}
{(o,0") | 3C1,C". (C1,0) € supp(n) A (C1 = while (b) do C) A
o EbA(Cr0) 5 (C ) Ap >0}
= {(0,0") | o € supp(nSt*)) Ao = bA3C". (while (b) do C,0) & (C',0") Ap > 0}
= {(0,0") | o € supp(nSt**)) AIC’". ' = C;while (b) do C Ao’ = o}
={(0,0) | o € supp(n's***))}.

Therefore n ~ ({(0,0) | o € supp(n'5t*e))}, 5(C; while (b) do C) ® n(State)),

Lemma 220. For all n,b,C, if n5*™) = §(while (b) do C) and n5**¢) |= [b],
then n~ ({(0,0) | o € supp(n5**))}, §(skip) © n'5'ate)).

Proof. For all 9,b, C such that n(5") = §(while (b) do C) and n(5t*¢) |= [-b],

by Lem. and Lem. we know C7 = while (b) do C and ¢ = —b for all

(017 0) € SUPP(W)v thus

( 30—/ ZCl U{W(Cl»a) p (Cla 0) £> (Cla OJ)}

)‘( /) ZCl 0{77(017 ) p (Clv ) S Supp(n) A (0170) ﬂ) (C/,O'/)}

AT, ). ch U{r](C’l, o) -pl(Cy,0) € supp(n) A C; = while (b) do C' A
o ): —b A (017 ) (0/7 )}

= NC",0"). L A5 (o) - p | o € supp(n3*9) Ao f= =b A

(C',0")}

(wh1le (b) do C,0) &
= )\(C”, N3 St (o) | o € supp(nStatd)y Ao = b A C' =skip Ao’ =0}
= NC,0"). 3 {n'5") (o) | C" = skip Ao’ = 0}
A(C/ a'). §(skip)(C’) - nSt) (o)
(5(Sk1p) ® n(State)

{(o,0") | 3C1,C". n(Cy,0) >0 A (Cr,0) 2 (C',0') Ap > 0}
{(0,0") | 3C,C". (Cy,0) € supp(n) A (C1,0) L (C',0') Ap > 0}
{(o,0") | 3C1,C". (C1,0) € supp(n) A (C1 = while (b) do C) A
o= -bA(C1,0) 5 (C0") Ap >0}
{(0,0") | o € supp(nSt*)) A o = =b A 3C". (while (b) do C, o) & (C",0') Ap > 0}
{(0,0") | o € supp(n'Stet)) AIC. C" = skip Ao’ = o}
{(0,0) | o € supp(nState))}.

Therefore n ~ ({(0,0) | o € supp(n'St*e))}, 5(skip) ® n(State)).

Lemma 221 (Soundness of (WHILE-ST) rule). For allb,C, R,G,I, P, P, Q,
if Sta(P, V Py, R, 1), Sta(Q.R.I), P, = [b], P» = [-b] AQ, Id = G and
fi7 G,I ):ST {Pl}C{Pl V PQ}, then R, G,I ):ST {P1 V Pg}'whzle (b) do C{Q}



Proof. For all b,C, R, G, I, Py, P>, Q such that Sta(P, V P>, R, I), Sta(Q, R, I),

P = |Vb-|, P, = ["b-‘ A Q, Id = G and R,G,I ':ST {Pl}O{Pl \/PQ}7 we
need to prove for all u, if u = I A P, then (init(while (b) do C, ), R, I) =1,
(G, Q) for all n. For all u such that p = I A (P1V P,), by Lem. [18 we know
init(while (b) do C, )™ = (5(while (b) do C) ® p)*"™" = §(while (b) do C).
To prove (init(while (b) do C, u), R, I) =7, (G, Q) for all n, it suffices to prove
for all n and 7, if n5*™) = §(while (b) do C) and n(5*¢) |= T A (P, V P,), then

(n, R, I) =1 (G, Q). We prove by induction on n.

— base case: n = 0. trivial.
— inductive case: n = k + 1.
IH: for all 5, if n(5™™) = §(while (b) do C) and n(5%®) = [ A (P, V Py),
then (n, R, I) =*. (G, Q).
For all 77 such that n(5%") = §(while (b) do C) and n(St®) |= T A (P, V Py),
to prove (n, R,I) =L (G, Q), we need to prove
o 15 (skip) = 0 or (5™ (skip) = 1.
From 75 = §(while (b) do C)) we have (5™ (skip) = §(while (b) do C)(skip) =
0.
o if (5t (skip) > 0, then 7lskip )
7St (skip) > 0 contradicts with 75" (skip) = 0.
° n(State) ): I.
From n(5tete) = T A (Py V Py) we have n(Stete) = T,

e for all 7/, if n >§> 7', then (7', R, I) =k (G,Q).

(State)

n/(Stmt) ) C

R
For all i’ such that 7 - 7', by Lem. we know supp(

supp(nSt™). From (5™ = §(while (b) do C) by Lem. we know
/5™ = §(while (b) do C). From Sta(Py V Py, R, I), (514¢) |= [ A

(P, V Py) and n >§> n' by Lem. vve have 7/ %' = T A (P, v Py). From

i) = §(while (b) do C) by IH we have (7, R, I) =%, (G, Q).
e forall @ and 7/, ifn < (6,7), then 6 C [G], " **™) = I and (1, R, I) ==F.

Q).

For all # and 7’ such that n < (8,7), from (5" = §(while (b) do C)

by Lem. we have nextsplit(n) = {nextsplit(while (b) do C)} =

{split(true)}. From n < (6,7’) by Lem. [191] we know 1 ~» (6,7’). From

nState) = T A (Py V Py) we know n(State) |= T A Py or n(State) |= [ A P;.

We prove the two cases respectively.

* case 1: n(State) = T A Py,

From P; = [b] we know (5% = [b]. By Lem. we know 7 ~»
({(0,0) | o € supp(n'St*))}, §(C; while (b) do C) @ n(St*e)). From
n ~ (0,1') by Lem. we have 0 = {(0,0) | 0 € supp(n(St@t®)}
and 7/ = §(C;while (b) do C) ® n(5%¢) thus 6 C [Id] C [G] and
g (Stte) — p(State) = T From R,G,I f=g {P}C{P V Py} we know
ntState) = [ A Py we have (init(C, p), R, I) =%, (G, P, V Py). From
IH we know (§(while (b) do C)®pu, R, I) =~ (G, Q) for all u such



that u = IA(PyV Py). From (init(C, p), R, I) =% (G, P,V P2) and
Id = G by Lem. [216|we know (init(C, p); while (b) do C, R, I) =1,
(G,Q). By Lem. We know 1’ = §(C; while (b) do C) @n(State) =
init(C; while (b) do C,nStt)) = ingt(C,n(Stt)); while (b) do C,
thus (7, R, I) =k, (G, Q).
* case 2: (5t9t0) = [\ Py,

From P, = [-b] A Q we know 55t = [=b] A Q. By Lem. [220
we know 7~ ({(0,0) | o € supp(n'State))}, §(skip) @ n5**)). From
n~ (0,n") by Lem.we have § = {(0,0) | o € supp(n(5t**))} and
' = §(skip) ® (St thus ¢ C [Id] C [G], n’ "™ = §(skip) and
n’(smte) = p(State) = T A Q. From Sta(Q,R,I), Id = G, T]'(S“"'t) =
5(skip) and o5 |= I A Q by Lem. we know (1, R, I) ==k,
@.Q)

Lemma 222. For all n,b,C, if n (Stmt) = 5((C)), then n ~ ({(0,0") | o €
supp(n(State)) Ao’ € supp([C] (o))}, 5(3]“1)) ® [[CH(U(State)))-

Proof. For all n,b,C such that n(5t™) = §((C)) and n(St@*) |= [-b], by Lem.
and Lem. [196 we know Cy = (C) for all (Cy,0) € supp(n), thus

MNC",0"). 3¢, o n(Cri0) -p | (Cr0) & (C',0)}
= MC",0"). 20, 0{n(Cr,0) - p | (C1,0) € Supp( ) A (Cry0) % (C',0')}
= MC",0"). T, o {n(C1,0) -p | (C1,0) € supp(n) A C1 = (C) A (C1,0) = (C',0")}
= \(C", ). 3, {0 (0) - p | ((C),0) & (C',0")}
= \(C",0"). 3(skip)(C") - 1o {n'*"*) (o) - p | 3k.¥n > k. (C,0) 5" (skip, o)}
= XC",0"). §(skip)(C") - 35, 115" () - [[ [(o)(c”)
= A(C",0"). 6(skip)(C") - Ey .y starer { [C](0) } (o)
= X", 0"). §(skip)(C") - [C](n ")) (o)
= d(skip) ® [C](n5*)
and
{(o,0") | 3C1,C". n(C1,0) > 0A (Cy,0) 5 (C’ 7 o) Ap >0}
={(0,0") | 3C1,C". (C1,0) € supp(n) A (C1,0) = (C",0") Ap > 0}
={(0,0") [ 3C1,C". (C1,0) € supp(n) A (Cy = <C>) (C1,0) % (C',0') Ap > 0}
={(0,0") o € Supp(n(smte)) A3C". ((C),0) = (C',0') Ap >0}
= {(0,0") | o € supp(n'Stat)) A Ik.¥n > k. (C,0) " (skip,o’) Ap > 0}
={(0,0) | o € supp(n**)) A [C](0)(c”) > 0}
={(0,0) | o € supp(n***)) N o" € supp([C](a))}.

Therefore n ~ ({(0,0") | o € supp(n'St®)) A o’ € supp([C](0))},(skip) ®
(1St

Lemma 223 (Soundness of (AToM) rule). ForallC,R,G, I, P,Q, if Sta(P, R, I),
Sta(Q,R,I), G Esq {INP}C{INQ} andId = G, then R, G, I = {PHCO){Q}.



Proof. For all C,R,G, I, P,Q such that Sta(P, R,I), Sta(Q,R,I), G Esq {I A
P}C{I AQ} and Id = G, to prove R,G,I ¢ {P}HC){Q}, we need to prove
for all u, if u = I A P, then (init((C), n), R, I)

=2 (G,Q) for all n. For all p such that p = I A P, by Lem. |18] we know
init((C), 1) > = (3((C)) ® )™ = 6((C)). To prove (inif((C), ), B, T) =1,
(G,Q) for all n, it suffices to prove for all n and 7, if (5™ = §((C)) and
nState) = [ A P, then (n, R, I) =7, (G, Q). We prove by induction on n.

— base case: n = 0. trivial.
— inductive case: n = k + 1.
IH: for all , if n5#™) = §((C)) and n(St**) |= I A P, then (n, R, I) =X,
(G.Q).
For all 7 such that 75 = §((C)) and n(5***¢) |= I A P, we need to prove
o 75 (skip) = 1 or (5™ (skip) = 0.
From n(5t™) = §((C)) we know n(5t™) (skip) = §((C))(skip) = 0.
o if 7(5tm1) (skip) > 0, then 7]swip' " ™ = Q.
7S5 (skip) > 0 contradicts with 759 (skip) = 0.
° n(State) ’: I
From 7(5%t®) = T A P we know n(5t@€) |= T

e forall 7/, if n >§> n', then (', R, I) = (G, Q).

N

R
For all n' such that 7 - n', by Lem. we know Supp(n/(stmt))

supp(n(S™9). From n(Sm0 = 5((C)) by Lem. 27] we know /") =
5((C)). From Sta(P, R, 1), ¥ |= I A P and 5 = 1 by Lem.

we have 1% = I A P. From 5/*"™ = 5((C)) by IH we have
(', R, 1) =4 (G, Q).

o forall @ and 7/, ifn < (6,7), then 6 C [G], n’**™) &= I and (v, R, I) =k
(G,Q).
For all  and 7’ such that i < (8,7'), from 55 = §((C)) by Lem. [190)
we have nextsplit(n) = {nextsplit((C))} = {split(true)}. From n —
(6,m") by Lem. ﬂwe know 1 ~ (6,7'). From n(5™) = §((C)) by
Lem.we know 7~ ({(0,0") | o € supp(n'StsNAa’ € supp([C](o))}, (skip)®
[C](nt5tt))). From 1~ (6,7') by Lem.we know 6 = {(0,0") | 0 €
supp(n' > A o' € supp([C[(0))} and 5" = d(skip) ® [C](n%*)).
By Lem. [18] and Lem. [19| we know 5'®™ = §(skip) and /(5" =
[CT(n(Stat)). From | ™| = 1 we know |[C](n(5***))| = 1. From
Fsq {INPYC{IAQ} and n(5tt®) |= [ A P we know [C](n(5*t)) = TAQ
and (0,0") |= G for all 0 € supp(n'5t®) and o’ € supp([C](c)), thus § =
{(0.0") | o € supp(n'¥“)) Ao’ € supp([C](0))} C [G] and o' =
[C](n(State)) = I A Q. From Sta(Q, R, 1), Id = G, /*"™ = §(skip)
and 1'% = I A Q by Lem. [194| we know (n, R, I) =" (G, Q).

Lemma 224. For all n,b,C, if n5t™ = §((C) split(by,...,by)), then n ~»
({(0,0") | o € supp(n'S'®'9) Ao’ € supp([C](0))}, 6(skip) @ [C](nS*2t))).



Proof. For all n, b, C such that n(5%™) = §((C)) and 5(Ste*) |= [=b], by Lem.
and Lem. [196 we know C; = (C) for all (C1,0) € supp(n), thus

1,0"). X0, o A(Cr,0) - p | (Cr,0) 5 (C',0")}
= )‘(Clﬂal)‘ZCl,g{n(Clv o) p|(Ci,0) € supp( ) A (Cr, ) (C",0")}
=ANC"0"). 320, -An(C1,0) - p | (C1,0) € supp(n) A

Cy = (C) split(by,...,bx) A (C1,0) & (C,0")}

= MC",0"). 2, {09 (a) - p | ((C) split (b, ..., br), o) = (C',0")}
= A(C",0"). é(skip)(C”) - ZU{TI(SM“)( )-p | ((C),0) = (skip, o)}
= N(C",0"). (skip)(C") - 3, {n'5") (o) - p | Ik.¥n > k. (C,0) 5" (skip,0’)}
= MC",0"). (skip)(C") - 3=, 05 (o) - [C](0)(o")
= A(C',0"). 6(skip)(C”) - Emnwmte){ﬂcﬂ( o)}Ho')
= X(C",0"). 8(skip)(C) - [C](n'5**) (o)
= (skip) ® [C](n(5*))
and

{(o,0") | 3C1,C". n(Cy,0) > 0A (Cr,0) & (C',0') Ap > 0}
= {(0,0") | 3C1,C". (Cy,0) € supp(n) A (C1,0) & (C', ') Ap > 0}
={(0,0") [ 3C1,C". (C1,0) € supp(n) A (C1 = (C) split(by, ..., b)) A

(C1,0) & (C' 0" Ap > 0}

) | o € supp(ntStete)y A3C". ((C) split(by,...,by),0) & (C',0') Ap > 0}
') | o € supp(nS*)) A ((C),0) = (skip,a’) Ap > 0}

) | o € supp(nSt) A 3k.Yn > k. (C,0) L7 (skip,o’) Ap > 0}

) | o € supp(n'Stat)) A [CT(o)(0!) > 0}

) | o € supp(nS9) Ao’ € supp([C](0))}-

%ﬂefefé’fe ). ({(0:0) | o € supp(nS9) A o' € supp([C](0))},S(skip) ©
n ate .

Lemma 225. For all p,Q1,...,Qn, if p E Q1 @ -+ ® Q,,, then there exists
[ e oy fny Py - - s P Such that = Ao. py-pi(0) + - +pn - pn(o) and p; = Q;
for all i such that p; > 0.

Proof. by induction on k.

— base case: n = 1. ot
For all z and Q; such that pu = Qi, let uy = g and p; = 1, we have

p=2Ao.p1-pi(o) and p; = Q1.
— inductive case: n = k + 1.

IH: for all u, Q1,...,Qk,if u |E Q1D - -®Qk, then there exists w1, . . ., ik, P1, - - -

such that g = Ao. p1 - p1(o) 4+ -+ pi - px(0) and p; | Q; for all ¢ such that
p; > 0. For all i, Q1,...,Qpr+1 such that u = Q1 @ -+ - ® Qp41, there exists
p such that p = (Q1 @ - ® Qk) ®p Qr+1. There are three cases.
ep=land pu EF Q1D D Q.
From p = Q1 @ -+ ® Qr by IH there exists p1,..., g, p1,-- .,k such

» Pk



that g = Ao. p1 - p1(o) + -+ + pg - p(o) and p; = Q; for all i such
that p; > 0. Let i1 be any state distribution and pg4; def 0, we have
pw=MAo.p1- (o) + -+ pry1 - prr1(o) and p; = Q; for all 4 such that

p; > 0.
e p=0and pu = Qry1.
Let pr41 = 1, pik41 = p, p1r = -+ = pp = 0 and g, ..., be any

state distributions, we have = Ao. p1 - u1(0) + -+ - + Pry1 - pt1(0) and
i = Q; for all i such that p; > 0.

e 0 < p <1 and there exists p and p” p such that p = p/ &, p’, 1 =
Qi@ - ®Qand p = Qri1-
From p/ = Q1 & --- & Qi by IH there exists 1, ..., tg, i, - - ., D} such
that = Ao. p} - pi(o) + - +p}, - p(0) and p; = Q; for all ¢ such that

P> 0. Let pr € ppl, .o pe E ppl, prrs = L-p and pysr & 47, then
p=p @pp" =ro.p-p'(0)+(1=p)-p’(0) = Ao. p- (py - pa (o) +- - +pj-
1k (0))+(1=p)- 1" (0) = Ao p1-p1 (o) +- - +pg- i (0) +Prt1-fix+1(0). For
all ¢ such that p; > 0, we have i < kAp, > 0ori=k+1.If i < kAp, > 0,
we know p; = Q. Otherwise i = k + 1, we know p; = pgy; = ¢’ and
Qi = Qr+1, from p”" = Qp41 we have ; = Q.

Lemma 226. For all p and b, p = [b] if and only if [Pr(b)], = 1.
Proof. For all y and b, we have

[Pr(b)], =1
s Provulo ] = Iy
= X o) | o = b} = %, (o)
= Yo{nlo) | o € supp(u) Ao = b} =3 {ulo) | o € supp(p)}
= S5 u(0) | o € supp(p) Ao = b} = So{u(o) | o € suppls) Ao = B}+
S {u(o) | o € suppl) Ao I b}
=, {i0) | o € supplys) Ao B b} =0
< {o| o€ supp(p) No b} =10
<= Po € supp(p). o b
<= Vo € supp(p). o =b

— pkE .
Lemma 227. For all i and b, p = [-b] if and only if [Pr(b)], = 0.
Proof. For all p and b, we have

(Pr(3)], = 0
= Prooufo =10 = [u
= Yo {ulo) | o = b} =0
— S1u(0) | o € supp() A = b} =0
< {o|o€supp(p) No Eb} =10
<= flo € supp(p). o = b
< Vo € supp(p). o = b

=k [-b].



Lemma 228. For all p and b, if p = [b], then p(o) = 0 for all o such that
o £ b.

Proof. For all 1 and b such that u = [b], by Lem. we know [Pr(b)], =
From [Pr(5)], = Provulo V) = 3, {u(0) | o = b} and 1= [u] = ¥, (o)
> o) | 0 b= B+ pi(0) | o K B we know S, {ju(0) | o = b} = 5 {1(0)
o kbt + >  {ulo) | o = b}, thus Y°_{u(o) | o = b} = 0. Therefore p(o) =
for all o such that o [~ b.

Lemma 229. For all i, 41, -5 iy Ply - - > Pky D15 -« -5 bk, if 8 = Ao. p1 - p1(o) +
<4 pr - (o), i = b for all i such that p; > 0, and o = —(b; Ab;) for all
0,1,j such that i # j, then p; =0 or p;(c) =0 for all i, j, 0 such that i # j and

U':bz

Proof. For all p, 1, .., bk, P1y-- - > Pky D1, - - -, b such that p = Ao. p1 - pui(o) +
<4 pr - pk(0), i = [b;] for all ¢ such that p; > 0, and o = =(b; A b;) for all
0,1,7 such that ¢ # j. For all 4, j, 0 such that ¢ # j and o = b;, from i # j we
have o = —(b; A bj), i.e., =(c = bi Ao = bj). From o |= b; we know o - b;.
It is obvious that p; = 0 or p; > 0. To prove p; = 0 or p;(0) = 0, we need to
prove if p; > 0 then p;(0) = 0. From p; > 0 we know p; = [b;]. From o = b,
by Lem. we have (o) = 0.

Lemma 230. For all p, 11, ..., by P1y -+ Pk D1, -« -, bi, if o = Ao. p1 - pa (o) +
<4 pg - (o), i = Tb] for all i such that p; > 0, and o = —(b; Abj) for all
0,1, such that i # j, then p; = 0 or [Pr(b;)],;, =0 for all i,j such that i # j.

Proof. For all p, p1,..., g, P1,- -+, Pk, b1, .., b such that u = Ao. p1 - p1(0)

<+ pr - pr(o), pi | [b] for all 4 such that p; > 0, and o = —(b; A bj)
for all o,i,j such that i # j. For all 7 and j such that i # j, by Lem. 229
we know p; = 0 or p;(o) = 0 for all o such that ¢ = b;, thus p; = 0 or

[Pr(b:)]u; = Prowy,lo = bil = > ,{u;(0) [ o = bi} = 0.

Lemma 231. For all pu, 41, -5 fbiey Ply - - > Pk D1y -« -5 bk, if 8 = Ao. p1 - pa(o) +
<4 pg - (o), i = b for all i such that p; > 0, and o = —(b; Ab;) for all
0,1,7 such that i # j, then ply, = p; for all i such that [Pr(b;)], > 0.

Proof. For all p, gy, ..., fbks D1y -+, Py b1, -« ., by such that u = Ao. p1 - py(o) +
< 4 pi - (o), i = [b;] for all i such that p; > 0, and o = =(b; A b;) for all
0,1, such that ¢ # j. for all ¢ such that [Pr(b;)], > 0, by Lem. 230| we know
p;j = 0 or [Pr(b;)],,; = 0 for all j such that i # j, thus

[[Pr(bi)ﬂu
= Pr,,[o = b
= Au(o) | o = bi}
= oAp1 (o) + - +pi - pr(o) [ o =i}
=p1- 2 tm(o) o Eb}+ - +pk- D {u(o) | o = bi}
=p1 - [Pr(bi)]u, + - +pr - [Pr(b:)],
=pi - [Pr(b;)],,-



From [Pr(b;)], > 0 we know p; > 0, thus y; = [b;]. Therefore,

(o) .
pilp, = Ao P, o] oD
1 ) otherwise
p1-p1 (o)t +pr-pr (o) . )
= \o. Pr:)]. , ifoEb
0, otherwise
_pipil)  p b
— o 4 moterGoL e o b (by Lem. [229)
0, otherwise
wi(o), ifolE=b;
= )\o. by Lem. [226)
7 0, otherwise (by

Mi(g)7 if o ': b;

= Ao. .
wi(o), otherwise

(by Lem. [228)

= /’Li'

Lemma 232 (Soundness of (ATOM-SPLIT) rule). For allC,R,G,I,P,Q, if
Sta(P,R,I), Sta(Q,R,I), G Esq {INPYC{(INQATOL])®---® (I AQA[bL])}
and Id = G,

then R, G, I =gr {P}(C) split(by,...,0){Q}.

Proof. For all C,R,G, I, P,Q such that Sta(P, R, I), Sta(Q,R,I), G Esq {I A
PIC{IANQA[1])® - (T ANQAI[bc])} and Id = G, to prove R,G, I g
{P}(C) split(by,...,br){Q}, we need to prove for all u, if u = I A P, then
(init((C) split(by, ..., br), p), R, I) = (G, Q) for all n. For all p such that u =
INP, by Lem.

0((C) split(b,...,bx)).

To prove (init((C) split(by,...,bx),p), R, 1) =" (G, Q) for all n, it suffices to
prove for all n and 7, if (5 = §((C) split(by,...,by)) and n(5tete) = T A P,
then (n, R, I) =% (G, Q). We prove by induction on n.

— base case: n = 0. trivial.
— inductive case: n =k + 1.
IH: for all n, if (5™ = §((C) split(by,...,bs)) and (5t |= [ A P, then
(n.R.I) =%, (G.Q).
For all  such that n(5™ = §((C) split(by,...,by)) and (5t = T A P,
we need to prove
o 75 (skip) = 1 or (5t (skip) = 0.
From n(5t™) = §((C) split(b1,...,by)) we know
nStmi) (skip) = 6((C) split(by, ..., by))(skip) = 0.
o if (5t (skip) > 0, then 77|skip(swte) )
7St (skip) > 0 contradicts with 75" (skip) = 0.
° n(State) ): I
From 7(5t%¢) = T A P we know n(5t#¢) |= T

e for all 7/, if n >§> n', then (', R, I) =5 (G, Q).

R
For all i’ such that n - 7', by Lem. ﬁ we know supp(n’(smt)) -

we know init((C) split(br, ..., bg), 1) 5™ = (5((C) split(by, . ..

b)) @ )5 =



supp(n(St™). From 55t = §((C) split(by, ..., b)) by Lem. 27 we
know 7™ = 5((C) spﬁu, ...,b)). From Sta(P, R, I), n(State) =
8

R
IAP and 1 — 1 by Lem. |186| we have /5t = [ A P. From n/ 5™ =

5((C) split(by, ..., b)) by IH we have (0, R, I) =k, (G, Q).
o forall @ and 7/, if < (0,7), then 6 C [G], n’*"® |= Tand (1, R, T) ==k,

(G, Q).

For all § and 7’ such that n < (8, 7), from n(5*™ = §((C) split (b1, . . ., by))

by Lem. we have neztsplit(n) = {nextsplit((C) split(by,...,bx))} =

{split(by,...,bx)}. From n — (6,n') we know there exists " and 4 such
that n~ (0,1") "y, = n'. From n(5™) = §((C) split(by,. .., b))
by Lem. [222|we know 1 ~ ({(0,0") | & € supp(nS*®* Ao’ € supp([C](c))},(skip)®
[C](n'St%))). From i~ (8,1") by Lem. We know 6 = {(c,0") | o €
supp(n3®9) Ao’ € supp([C](0))} and 1" = d(skip) @ [C](n 5 )).
By Lem. (18] and Lem. |19 we know n”(Stmt) = §(skip) and n”(smte) =
[C](n'Stte)). From |77”(State)| = 1 we know |[C](n'5*®)| = 1. From
Fsa {IAPYC{IAQA[bi]) ® - @ (I AQAT[b])} and n¥t) =
I AP we know [C](nSt)) = TAQA[b1])®--- @ I AQA [b])
and (0,0") | G for all 0 € supp(n®*®) and o' € supp([C](o)),
thus 0 = {(0,6") | & € supp(n®9) Ao’ € supp([CY(@))} € [G]
and %) = [C)(n ) f= (TAQAT0]) @ - & (I AQ A [by]),
By Lem. 225] we know so there exists p, ..., ik, p1,- ..,k such that
7" = Ao pr g (0) + o e (o) and gy = TAQA[b]
for all j. From n”|,, = n by Lem. we know [Pr(b;)], (s >
0. By Lem. we know 7/ — 77"|bi(State) = n”(smte)\bi. From
validsplit(split(bi, ..., b;)) we know o = =(b; A b;) for all o,4,j such
that i # j. From 11" = Ao py 11 (o) + -+ pi - 1 (0), pj [= [b;] for

all j, and [Pr(b;)],(state) > 0 by Lem.@we know n,,(State) b, = pi, thus
n,(State):n//( —/iz':-[/\Q/\I_ -| _—77 byLem

we know supp(n’) C supp( "), thus dom(supp(n’)) C dom(supp(n”)). By
Lem. [21] we know supp(n ’(Stm)) = dom(supp(n’)) € dom(supp(n’”)) =
supp(n” ™). From 7" ®"™" = §(skip) by Lem. [27| we know 7/ =
o(skip). From Sta(Q, R,I), Id = G, n’(StW) = §(skip) and n'(smte) =
I ANQ by Lem. wc know (1, R, I) =F, (G, Q).

Lemma 233. For allC,R,G,I,P,Q, if R,G, I Fer {P}C{Q}, then R, G, I Eur
{Pic{Q}.

Proof. Forall C,R,G, I, P,Q such that R, G, I ¢ {P}C{Q}, we prove R, G, I Eur
{P}C{Q} by induction on the derivation of R, G, I ¢ {P}C{Q}.

—case (DISJ): P = PLV P, Q = Q1V Qa, RG, I Fsr {P1}C{Q1} and
R,G,I g {P2}C{Q2}.
From R, G, I F¢r {P1}C{Q1} by induction hypothesis we know R, G, I Egr
{P1}C{Q1}. From R, G, I g {P2}C{Q2} by induction hypothesis we know



R,G,I ¢ {P2}C{Q2}. By Lem. [183|we know R, G, I F¢r {P1V P}C{Q1V
Q2}, ie., R, G, I g {P}C{Q}.

case (CONJ)Z P =P A PQ, Q = Ql A QQ, R,G,I For {Pl}C{Ql} and
R, G, I For [P)C{Q2).

From R, G, I F¢r {P1}C{Q1} by induction hypothesis we know R, G, I Egr
{P1}C{Q1}. From R, G, I g {P2}C{Q2} by induction hypothesis we know
R, G, 1 ':ST {PQ}C{QQ} By Lem. 185 we know ]’%7 G,I FST {Pl /\PQ}C{Ql A
Q2}7 i'e~7 Ra GaI Fer {P}C{Q}

case (0sQ): P = P, R = Ry, Gy = G, Q1 = Q and Ry,G1,1 by
{P}C{@1}-

From Ry, G1, I bgr {P1}C{Q1} by induction hypothesis we know Ry, G1, I Esr
{P}C{@Q1}. From P = P;, R = R;, G; = G and Q1 = @ by Lem. we
know R, G, I = {P}C{Q}.

case (SKIP): P =Q, G =1d, Sta(Q, R, I).

From Sta(Q, R, I) and G = Id by Lem.[195|we have R, G, I |=¢: {Q}skip{Q},
ie, R,G,I ¢ {P}skip{Q}.

case (ATOM): C' = (C4), Sta(P, R, I), Sta(Q, R,I) and G Fsq {IAP}C1{IA
Q).

From G Fsq {I A PYC1{I A Q} by Lem. 367 we know G f=sq {I A P}C1{I A
Q}. From Sta(P, R,I) and Sta(Q, R,I) by Lem. we know R, G, kg,
{PHC1){Q}, ie., R,G, I F¢q {P}C{Q}.

case (ATOM-SPLIT): C' = (C) split(by,...,b;), Sta(P, R, I), Sta(Q,R,I)
and G g {IANPICL{IAQA O] ® - (T AQA [bi])}

From G bgq {IAPYCL{(IAQA[b1])®- - - DI AQA[br])} by Lem.[367 we know
G o {INPICL{IAQATDL])®-- - ®(IAQA[bi])}. From Sta(P, R, I) and
Sta(Q, R, I) by Lem. 232 we know R, G, I Fsq {P}C1) split(by,. .., b){Q},
ie., R,G,IFg {P}C{Q}.

case (SEQ-ST): C = C1;C2, R, G, I F¢r {P}C1{M} and R, G, I For {M}C2{Q}.
From R,G,I F¢r {P}C1{M} by induction hypothesis we have R, G, I g
{P}C1{M}. From R,G,I 5, {M}C1{Q} by induction hypothesis we have
Ra Ga I ':ST {M}Cl{Q} By Lem. we know Ra Ga I ):ST {P}Olv C2{Q}a
ie, R,G,I Esr {P}C{Q}.

case (COND): C' = if (b) then C; else Cy, P = P, V Py, Sta(P, V Py, R, ),
P = |—b-‘, P = |——\b-|7 R,G,I Fgr {Pl}C’l{Q} and R, G, I Fgy; {PQ}Cl{Q}
From R,G,I g {P1}C1{Q} by induction hypothesis we know R, G, I g
{P1}C1{Q}. From R, G, I ¢ {P}C1{Q} by induction hypothesis we know
R,G,I ':ST {PQ}CQ{Q} From Sta(P1 V PQ,R, 1)7 P = |—b~| and P, = |—_|b.|
by Lem. 200 we know R, G, I =g {P1 V P,}if (b) then C else C2{Q}, i.e.,
R,G, I ':ST {P}C{Q}

case (WHILE-ST): C' = while (b) do Cy, P = P, V Py, Sta(P, V Py, R, 1),
Sta(Q,R, I), P = “ﬂ, P, = ("b—l AN Q, R7G,I Fer {Pl}Cl{Pl \Y PQ}
From R, G, I b4 {P1}C1{P1VP,} by induction hypothesis we know R, G, I }=gr
{PYCL{P,V P,}. From Sta(P, V Py, R, 1), Sta(Q, R, I), P, = [b] and Py =
[-b] A Q by Lem. we know R, G, I =g {P1 V Py}while (b) do C1{Q},
ie, R,G, I E4 {P}C{Q}.



Lemma 234. For allny,n2,p, if 115" (skip) = 0 and (7, ©, ng)(smt)(skip) >
0,

then (m ©p 12)|skip = 12| skip-

Proof. For all 11, n2, p such that 1, (5% (skip) = 0 and (1, ®p 772)(5””0 (skip) >
0,

from 7
o, thus

(Stm) (skip) = 0 we know >__ 1 (skip, o) = 0, so ;(skip, o) = 0 for all

(m ©p 12)|skip

= A(C,0) X e (by Lem. [169)

)

= A(C, U)’X(C:Skip)'(ﬂlEBsz)(SkiPaU) (by Lem.
)
)-

(1 (StmB) @,y (Stm) ) (skip)
=\C,o x(C=skip)-(p-n1 (skip,o)+(1—p)-n2(skip,o))
3 p-n1 (5tmt) (skip)+(1—p)-n2 (Stmb) (skip)

X(C=skip)-ns (skip.o

N2 (Stmt) (Sklp
= Nlskip-  (by Lem. [165)
Lemma 235. For all n1,m2,p, R, 7, if 0 <p <1 and m &p 12 il n', then there

exists ny,n, P’ such that 0 <p’ <1, n=mn] Sy 15, Mm it 1y and 1y it 5.

Proof. For all 1, m2,p, R,n’ such that 0 < p < 1 and 71,12 kit 7, there exists v
such that dom(1)) = supp(m ®pn2), range(y) = supp(n’) and ¥((C, o), (C',0")) €
Y. C' = CA(0,0') F R Let 0 = {((C,0),(C",0") | (C,0) € supp(m) A
((C10), (C",0") € $}, 02 E {((C,0),(C",0") | (C,0) € supp(n2) A((C,0), (C",0")) €
b}, p ’def05 and

n'(C,o), if (C,0) € range(1p1) N range(tps)

771 e MNC,0). 421 (C,o), if (C,0) € range(y)1) — range(12)
0, otherwise

n'(C,o), if (C,0) € range(ip1) N range(ths)

tef AC,0).< 21/ (Cyo), if (C,0) € range(ip2) — range(th1)
0, otherwise

From 0 < p < 1 by Lem. we know supp(n) = supp(m @p n2) = supp(m) U
supp(nz), thus

1 Uhg
={((C,0),(C",0")) | (C,0) € supp(m) A ((C,0),(C",0")) €} U

{((C,0),(C",0")) | (C,0) € supp(n2) A ((C,0),(C",0")) € P}
={((C,0),(C",0")) | ((C,o) € supp(m) V (C,0) € Supp(m)) ((C 0),(C",0")) € ¥}
={((C,0),(C",a") | ((C,0) € supp(m) U sumo(nz)) ((Cy0),(C",0") € 1/)}
={((C,0),(C",0")) | (C,0) € supp(n) A ((C, ) (C",0")) € ¥}
={((C,0),(C",0")) | (C,0) € dom(¢)) A ((C, o), (C" /)) €}
={((C,0),(C",0")) | ((C.0),(C",0")) € ¥}

[
&



so range(t1) U range(vs) = range(ipy Ue) = range(v)). Therefore,

m ®p 1y = ANC,0). p' -1 (C,0) + (1= p) - n5(C0)
= XC,0). 0.5 (Cyo)+0.5-n5(C, o)

7'(C,0), if (C,0) € range(p1) N range(hs)
Gy, 1€ i (C0) € rangelun) = range(v)
’ n'(C,0), if (C,0) € range(y2) — range(y)2)
0, if (C,0) ¢ range()1) U range(v2)
\Co n'(C,o), if (C,o) € range(y)
(€,0) 0, if (C,0) ¢ range(v))
\C.o n'(C,o), if (C,o) € supp(n’)
©2 00, o) ¢ sumt)
= 77/.
dom(y1) = {(C,0) | 3C",0". ((C,0),(C",0")) € Y1}
={(C,0) | (C,0) € supp(m) A3C",0". ((C,0),(C',0")) € )}
={(C,0) | (C,0) € supp(m) A (C,0) € dom())}
={(C,0) | (C,0) € supp(m) A (C,0) € supp(n)}
={(C,0) | (C,0) € supp(m) N supp(n)}
={(C,0) | (C,0) € supp(m) N (supp(n) U supp(n2))}
={(C,0) [ (C,0) € supp(m)}
= supp(m)-
supp(n;)
={(C,0) [ m(C,0) > 0}
={(C,0) | (n'(C,0) > 0N (C,0) € range(yr) N range(y2)) V
(2-7(C,0) >0A(C,0) € range(1h1) — range()2))}
={(C,0) | 7 (C,0) >0A ((C,0) € range(tp1) N range(w2) V (C, o) € range(w1) — range(1h2))}
={(C,0) [ (C,0) > 0N (C,0) € (range(y1) N range(yo)) U (range(yr) — range(s))}
={(C,0) | (C,0) € supp(n') A (C, o) € range(y1)}
= supp(n’) N range(y)

range(y) N range(1)

(range(y1) U range(tp2)) N range(yr)

— range(ir).

From ¢ = 41 U1y D 91 and V((C,0),(C",0")) € . C' = C A (0,0') = R we

know V((C,0),(C",0")) € 1. C' = C A (0,0") = R. From dom(v1) = supp(n1)
’ R / . . R ’

and range(¢) = supp(n}) we know n; — nj. Similarly, we can prove ngy = 75.

Lemma 236. For all n1,n2,p, R, 0y, n5, 0, if 0 <p <1, m it 71, 12 kit 15 and

0<p <1, then m @y 12 V5 0} Sy 11b.

Proof. For all n1,m2,p, R,n},n5,p such that 0 < p < 1, kil 1, Mo kil 7% and

0<p <1, frommn it 1y we know there exists ¥ such that dom(y1) = supp(m),



range(y1) = supp(ny) and V((C,0),(C’",0")) € 1. C' = C A (0,0") E R. From
2 i 15 we know there exists 1o such that dom(vs) = supp(nz), range(ys) =
supp(nh) and V((C, o), (C",0")) € 1. C' = CA(0,0") = R. Let ¢ = 11 Utby, then
dom(p) = dom(i1) U dom(ip2) = supp(n) U supp(n2), range(y) = range(y1) U
range(2) = supp(n})Usupp(nh) and V((C, o), (C',0")) € . C' = CA(o,0’) E R.
FromO0<p<land0<p' <1by Lem.we know supp(m Spn2) = supp(n)U
supp(n2) and supp (1) @y 1) = supp(ny)Usupp(1)). thus dom(p) = supp(m &pm)
and range(y) = supp(ny @, n5). Therefore, n1 B, 12 ks Ny Dy -

Lemma 237. For all &, py, p2, p, [E]pn@ppe =0 [E] + (1 —p) - [§] -

Proof. For all &, juy, po, p, we prove [E] @, = P[] + (1 —p) - [€],. by
induction on the structure of €.

— case £ = .
[Elmepns = [rlmepm =r=p- 7+ 0 =p) - r=p-[rlp, + (1 —p) [rlu =
[[5]]#1 + (1 _p) : [[6]]/12'

— case £ = E(e).
[[5]]”1@1)”2 = [[E(e)]]ul@puz
= EdN#l@puz [Te]s]
=p-Eonp[le]o] + (1 = p) - Eoop, (€] o] (by Lem.
=D [[E(e)ﬂﬂfl + (1 - p) ) [[E(e)]]ﬂz
=p- [€lu + 1 =p) - [€] .-
— case £ = Pr(q).

[[5]}#16%#2 = [[Pr(q)ﬂ,ul@p/m
= PrUNNlGBp,U«z [O- ): CI]
=2 o{(1 ®p p2)(0) | 0 =a}
=2 o{p- (o) + (1 =p)-p2(o) | o = a}
=p- 2 Amlo)lo=at+ (1 —p)- > {n(o)|o=a}
=p-Provyfol=a+ (1 —p) - Provy,lo = q
=p - [Pr(q)l, + (1 —p) - [Pr(q)].
=p- [[£HH1 + (1 _p) ' [[g]]uz'

— case £ = &1 + &

Hgﬂ/u@puz
= [&1 + &l
= Hglﬂul@pﬂz + [[§2ﬂul@pll«2
=p-[&lp + (A =p) - [&lw +p- [€2]u + (1 =p)-[§2],  (by induction hypothesis)
=p- (Hflﬂul + [[gQ]]Hl) + (1 _p) ' ([[glﬂﬂz + [[EQH}w)
=p- [51 + 52}]#4 + (1 _p) : [[51 + 52]]112
=p-[flp + X —=p) - [€]p-

Similarly, we can prove the case £ = &5 — & and the case £ = &; * &s.



Lemma 238. For allni,n2,p,b, if 0 < p < 1, [Pr(b)],, statey = p1, and [Pr(b)],,, (stare) =
My ®___ee Moy, ifpr >0ApP2 >0

p-p1+(1—p)-p2

, ] >0Ap, =0

pa, then (771 B, 772)|b _ 771|b Z‘fpl D2
N2l ifpr=0Aps >0
undefined, otherwise.

Proof. For all 1,2, p,bsuch that 0 < p < 1, [Pr(D)],, statey = p1, and [Pr(b)],,, (state) =
p2, we prove the four cases respectively.

—p1>0Ap2 > 0.

By Lem.and Lem.Wwe know [[Pr(b)]](m@pm)wMtE) = [[Pr(b)]]m(smm@p,w(smm) =
p- [Pr(b)],, statey + (1 = p) - [Pr(b)],,cstarey = p-p1 + (1 —p) - p2 > 0, thus

n S 772)|<b\ b)- (1 @p12)(Cr0)
Xx(o=b)-(n1Spn2 N
R 20) P—r——— (by Lem. [207)
X(ob)-(p-n1 (Cyo)+(1—=p)-n2(C,0))
p-p1+(1—p)-p2

C,o)
C,o)
C,o) P-p1 _x(oéb)-m(cyo)_k (1=p)p2 x(oFb)n2(C,o)
C,o)
C,o)

* ppi+(1—p)p2 P1 p-p1+(1—p)-p2 P2

pp1 . x(o=b)m(Cio) (1— p-p1 ) - X(ofb)-n2(C,0)
* pp1+(1—p)-p2 [[Pl‘(b)]]m(smte) p-p1+(1—p)-p2 lIPr(b)]]nz(State)
e M(C ) + (1= grdtyg) - ml(Co) (by Lem. 207)

b@®__ »p1  Malp.

p-p1+(1—p) p2

—p1 >0Ap =0.
By Lem.and Lem.we know [Pr(b)] 5 n,(staer = [Pr(b)],), (state g,y (state) =
p-[Pr(b)],, stetey + (1 —p) - [Pr(b)],,(state) =p-p1+(1—p)-p2=p-p1 >0.
From 0 = py = [Pr(b)],,starey = Pr,, (stae[0 | 0] = Prico)un,lo F
b = >0 ,{n(C,0) | o = b} we know o [£ b for all C' and o such that
n2(C, o) > 0, thus

(m Sp m2)

(0=b)-(m ®pn2)(C,0)
NC.0). YR el Gl (by Lo, BT
A ). x(eEb)-(p-m (Cr0)+(1—p)-n2(C,0))

— \(C.0), XeErm©s)”
MC, o)
n

X(oEb)m(Co)
’ [[P"(b)]]nl(smte)

=n1p. (by Lem. [207))

—p1 =0Ap2 > 0.
By Lem.and Lem.we know [Pr(b)] 5 n,(staer = [Pr(b)],), (stater g,y (state) =
p-[[PI‘(b)m(smm)+(1—p)~[Pr(b)]]n2(smte) = p-p1+(1—p)-p2 = (l—p)-pg > 0.
From 0 = p; = [[Pr(b)]],,h(State) = Pr, ., (state) [0 E b = Prcoyonlo F
b = EO,U{m(C, o) | o = b} we know o [~ b for all C' and o such that



m(C,o) > 0, thus

(m ©p m2) b

X(oE=b)-(m ®pn2)(C,0)
O, e (Y Tem- 207)

 X(eEb)-(pm1 (C.o)+(1=p) s (C.0)

)

) (I—p)-p2
— \(C, o). XeEDUn m(Co)

)

(1-p)-p2
x(o[=b)-n2(C\o)
’ IIPr(b)]]nz(Stu,te)
= 1ap. (by Lem. [207))
—p1=0Apy=0.
By Lem.and Lem.we know [[Pr(b)]](m@pnz)wmte) = [[Pr(b)]]m(swe>@pn2<sme> =
p - [Pr(b)],, sty + (1 = p) - [Pr(b)],,(starey = p-p1 + (1 —p)-pa = 0. By
Lem. we know (11 @p, 72)|p = undefined.

Definition H.43. Nosplit(n) if and only if Nosplit(C) for all C' € supp(n(5t™).

Lemma 239. Foralln andn/, ifsupp(n’(‘gtmt)) C supp(nt™) and Nosplit(n),
then Nosplit(n').

Proof. For all n and 7’ such that supp(n’(Stmt)) - supp(n(smt)) and Nosplit(n),
to prove Nosplit(n’), we need to prove Nosplit(C) for all C' € supp(n’(smt)),

For all C € supp(n’(StMt)), from supp(n’(smt)) C supp(nSt™) we know C €
supp(n3t™). From Nosplit(n) we know Nosplit(C).

Lemma 240. For all R, p, 1/, C, if p it ', then 6(Co) @ il 0(Co) ®

Proof. For all R, u,u',C such that p it 1, there exists 6 such that dom(6) =
{((Co,0),(Co,0")) |

def

supp(w), range(6) supp(p’) and 6 C [R]. Let v =

(o,0") € 0}, then

dom(y) = {(C,0) | 30’ " ((C,0),(C",0")) € ¥}
={(Co,0) | Jo'. (0,0") € 0}
={(Co,0) | o€ d0m( )}
={(Co,0) | o € supp(p)}
= {(Co,0) | u(o) > 0}

= {(Co,0) [ (6(C) ® p)(C,0) > 0}
= supp(6(Co) @ p)
and

range(y) = {(C’,0") | 3C, 0. ((C,0),(C',0")) € ¥}
= {(Co,0’) | Fo. (0,0") € 0}
={(Cy,0’) | o' € mnge(@)}
={(Cy,0") |0’ € suzop(u )}
= {(Co,0') | W (o) > 0}
= {(Co,0") | (6(C) @ p')(C,0") > 0}
= supp(6(Co) ® ').



For all ((C,0),(C’,0")) € ¥, we have ¢! = C = Cy and (0,0’) € 0. From 6 C [R]
we know (o,0’) € [R], thus (o,0") = R. Therefore, 6(Cy) ® 1 it 0(Co) @ .

Lemma 241. For all R,I,G,Q,n, if (n,R,I) =%, (G, Q) for all n, then the
following are true:

— if nSt™) (skip) > 0, then n|skip(5tate) = Q.
_ n(State) ': I.

— foralln, ifn % 7', then (', R, I) =% (G, Q) for all n.

— forall® andn, ifn — (0,1'), then® C [G], n /(State) ETand(n,R,I) =T
(G, Q) for all n.

Proof. For all R, I,G,Q,n such that (n, R, I) =7, (G, Q) for all n, we need to

prove

— if p(5tm) (skip) > 0, then nlskip "™ = Q.
From (n, R, I) =", (G, Q) for all n we know (n, R, I) =1, (G,Q). From

n(Stm) (skip) > 0 we know 7lskip """ = Q.
_ n(State) |: I

From (n, R,I) =", (G, Q) for all n we know (n, R, I) =1, (G,Q), thus
n(Stats) ': I

A—Eraﬂnﬁﬁn>?nﬁtMm(#,RJ) =7 (G, Q) for all n.

For all " and n such that n % ', from (n, R, I) =14 (G,Q) we know
(', R, 1) =sr (G Q).

— forall@and 1/, ifn = (6,7), then 6 C [G], /" = Iand (, R, T) =",
(G, Q) for all n. For all 6,7/, n such that n < (6,7), from (n, R, I) =13}
(G, Q) we know 0 C [G], " = I and (1, R, I) =", (G, Q).

Lemma 242. For all p and p, if [Pr(b)], > 0, then (p @ p)|s = p @ pp-

Proof. For all p and p such that [Pr(b)], > 0, by Lem.we know (p ® u)(St“te) =
p, thus [Pr(b)](,eu) = [Pr(b)], > 0. By Lem. We have

@®Mm(|b o)
e X<| Mwagf (0)
MG W“W/;<)
_ x(ol=b)-p(o
= MC,0). p(C) -y 1700
= NC,0). p(C) - plp(0)
=p® plp-

Lemma 243. For allni, n2,p, if 0 < p < 1, then nextsplit(n ®pn2) = nextsplit(n )U
nextsplit(ns).



Proof. For all 1,12, p such that 0 < p < 1, by Lem. We have supp(m ®pn2) =
supp(n1) U supp(n2), thus

nextsplit(n Sp 12)
= {nextsplit(C) | Jo. (C,0) € supp(m Sp n2)}
= {nextsplit(C) | Jo. (C,0) € supp(n1) U supp(n2)}
7) (
(

(©) )
= {neatsplit(C) | Jo. (C,0) € supp(m )V (C,0) € supp(n2)}
— {neatsplit(C) | (30- (C,0) € supp(m)) V (0. (C,0) € supp(n2))}

)13 ) € supp(m )} U {nea:tsplzt( )| Jo. (C,0) € supp(n2)}
= nextsplit(n1) U nextsplit(nz).

C
C
= {nextsplit(C) | Jo. (C, 0
Lemma 244. For all n, if Nosplit(n), then nextsplit(n) = {split(true)}.

Proof. For all 1) such that Nosplit(), we know Nosplit(C) for all C' € supp(n(5tmD),
thus

nextsplit(n)

— {(neatsplit(C)) | 3o (C.0) € supp(m)}
= {(nextsplit(C)) | Io. 77(0 o) >0}
= {(nextsplit(C) | >°_n(C,o) > 0}
= {(nextsplit(C) | n(Sfm')( ) > 0}
= {(nextsplit(C) | C € supp(n'S*™?

= {(nextsplit(C) | C € supp(n®*™) A Nosplit(C)}
= {(nextsplit(C) | C € supp(nS*™) A Nosplit(C) A nextsplit(C) = split(true)} (by Lem.
= {split(true)}.

Lemma 245. For all n1,1m2,p,0,7', if 0 < p <1 and (m &p 1n2) ~ (0,7), then
there exists 01,62,m1, 1% such that = 6, U b, 0/ =0} @, nh, m ~ (01,17) and
2~ (02,1m5).

Proof. For all n1,m2,p,0,n" such that 0 < p < 1 and (1 ®p 1n2) ~ (0,7), let
/ def )\(Cl /)

Ec,g{m(C,U)'p | (C.o) B (0"}, 00 & {(0,0") | 3C.C". i(C.o) > O A
(C,0) (O 0"y Ap > 0}, 1 LN, 0"). Yy in2(Cr0) -p | (Cr0) B (C7,0"))
and 0y & {(0,0") | 3C,C". 12(C,0) > 0 A (Co) & (C',0") Ap > 0}, we
have m; ~ (01,7]) and 1y ~ (02,7%). From 0 < p < 1 by Lem. we know

(m @®pn2) ~ (61 Ub2,n] &, n5). From (1 ®,n2) ~ (0,7') by Lem. we have
0 =0, U0 and ' =n| O, nh.

Lemma 246. For all 77177727])791’92777/1?77/2) ZfO < p < 17 m ~ (91777/1) and
12~ (02,13), then (m1 @p 12) ~ (61 U b2, m] ©p 13).

Proof. For all ny,nm2,p,01,02,m1,m5 such that 0 < p < 1, n; ~ (61,7]) and
m2 ~ (62,75), we have nj = A(C',0"). Y ,{m(C,o) - p | (C,0) & (C",0")},
01 = {(o,0") | 3C,C". m(C,o0) > 0 A (C,o0) TN (C",o'y Ap > 0}, nh =



NC",0"). > ot (Cro)p | (Cro) 2y (¢, o)} and By = {(0,0") | 3C,C". n2(C, o) >
0A(C,0) 2 (C",0") Ap > 0}, thus
@z = AC, ). p-m(C0) + (1= p) - 15(C", o)
= \NC",0"). p- Yo Am(C,0) ' | (C.o) = (C',0")} +
(1=p)- 20 1m(C,0)

p ’
PICo B
= N(C0)- X0 m(Cro) + (1= 1) - ma(C.0) -9 | (C.0) 25 (')}

=AM, 0"). Yo {(m @pm2)(Cr0) - p' | (C,0) = (C7,0")}.

From 0 < p < 1 by Lem. 275| we know supp(m @, n2) = supp(m) U supp(nz),
thus

/

= {(0,0") | 3C,C". m(C,0) >0 (C,0) L5 (C',0') Ap' > 0} U

)
{(0,0") | 3C,C". 12(C,0) > O A (C,0) Es (C',0") Ap/ > 0}
={(0,0") | 3C,C". ((C,0) & supp(m) V (C, o) € supp(n2)) A (C, o) L5 (C'0") Ay > 0}
={(0,0") | 3C,C". (C,0) € supp(m ) U supp(nz) A (C,/O’) LN (C", o) NP >0}
= {(0,0") | 3C,C". (C,0) € supp(m ®pm2) A (C,0) L5 (C',0") Ap' > 0}.

Therefore, (1 ©p 112) ~ (61U b2, 71 & 1)
Lemma 247. For all 1, if 0 < n(5"™ (skip) < 1, then there exists 01 and 13
such that n = 11 O, (smo) (skip) 125 m S (skip) = 1 and 0,5 (skip) = 0.

Proof. For all  such that 0 < n(5t™% (skip) < 1, let m & /\(C' o). X(C=skip)n(C.0)

7 (5tm?) (skip)
and 7 de )\(C' o). %ﬁ&;—m, then

M1 Dyy(stmd) (skip) 112
= \(C, o). nSt™)) (skip) - 1 (C, o) 4 (1 — n(5t™) (skip)) - 172 (C, o)

= M(C,0). n5m) (skip) - XOZEREES) 4 (1— 00 (skip)) - NEZERIAES)
= A(C, o). x(C = skip) - n(C, o) + x(C # skip) - n(C, 0)

= MC,0). n(C,0)

=,

n, (540 (skip) = >, m(skip,o)
=3 X (skip=skip)-n(skip,o)
o T,(Stmt) (Skip)
_ >, n(skip,o)
- n(Stmt)(skip)
f— 17

and
1 (540 (skip) = >, n2(skip, o)
=3 X (skip#skip)-n(skip,o)
1—n(Stmt) (skip)
=0.




Lemma 248. For all n1,12,p, Ca, (1 ®p 1m2); C2 = n1;C2 &, 12; Ca.

Proof. For all 1,12, p, Cy,

(m ©p 12); C2
(771 @PHQ)(OlaO—)v lfO:OhCQ

=\, 0). .
0, otherwise
= \C, o). p-m(Ci,0) + (1 =p) -n(Cr1,0), ifC Ql,Cz
0, otherwise
if C = Cy; O =0
— \C,0). p m(Cy,0), ifC _01’02 (1) n2(Cy,0), if C .01702
) otherwise 0, otherwise

= NC,0). p- (m;C2)(C,0) + (1 —p) - (n2; C2)(C, 0)
= 11; C2 Dy 12; Co.

We use VS € P(PVar) to denote the set of program variables.

Definition H.44. o|yg Lz e vs. o(x).

Definition H.45. u|yg L\6 e VSR, Yooin(o) | olvs =}

Lemma 249. For alln,0,n', VS, if n~ (0,1') and o’ (x) = o(x) for all x,0,0’
such that x € VS and (0,0") € 0, then n'(smm)|vg = p(State)| g,

Proof. For all n,0,n', VS such that n ~ (8,7') and o'(x) = o(z) for all z, 0,0’

such that € VSand (0,0') € 0, fromn ~ (0,1') we know " = \(C',0"). > {n(C,0):

p|(C,0) 5 (C',0')} and 6 = {(0,0") | n(C,0) > OA(C,0) & (C",0") Ap > 0}.

From o'(z) = o(z) for all z,0,0’ such that z € VS and (o,0’) € 6 we have for

all (0,0') €6, 0'|vs=Ax € VS. o/(x) = Az € VS. o(x) = o] ys, thus

nl(StatE)‘VS

=25 € VSR {0 (o) | 0’| vs = &}

=AM e VSR, o {n(C0') [ o' |vs =6}

=AM € VSR o coin(Cio)-p| (Co) & (C'0") Ao'|ys = 6}

=X € VSR Y v coln(Cio) pn(Co) > 0N (Coo) B (C0") Ap>0Ad|ys =6}

=X € VS=R.Y e co{n(Cro) - p|n(C,0) > 0N (C,o) & (C',0") A
p>0A(0,0")€O0NT|ys =05}

=X € VS R.Y v co{n(Cio) -p|n(C,0) > 0N (C,0) & (C',0") A
p>0A(0,0")€ONT|vs =6}

=X € VS=R.Y . cr oo in(Ca) pl(Coo) % (c "YNolys=d}

=26 € VS = R. Y0, {n(C.0) - Yo o Ap | (C.0) % (C,0")} [ olvs = 6}

=X € VS R. Yo {n(C,0) | olvs =5}

=X € VS = R.Y_{n5t9) (o) | oys =6}
— (State)|
=n VS



Lemma 250. For all py, pi2,p, VS, (11 ®p p2)|vs = 1l vs ®p p2|vs-

Proof. For all pq, ps,p, VS, we have

(1 ®p p2)|vs
=X € VS— R Y {(1 &p p2)(0) | olvs =6}
=X € VS R.Y Ap- (o) + (1 —p)-p2(o) [o|lvs =5}
=AeVS—=R.p-> {wmlo)|olvs=d}+(1—p)- > {p(0)|olvs =7}
=X e VS—=R. p-m|vs(6)+ (1 —p) - palvs(o)
= u1lvs ®p 2| vs.

Lemma 251. For all VS, VS, 01,09, if VS C VS and o1|vs = o3|vs, then
o1lvs = o2lve -

Proof. For all VS, VS',o1,09 such that VS C VS and o1|vs = 02|vs, to prove
o1lyvs = 02|vs, we need to prove o1|yg (z) = o3|ys(z) for all z € VS For
all x € VS, from VS C VS we know z € VS, thus o1|ys(z) = o1(VS) =
o1lvs(z) = oa|vs(x) = o2l vs.

Lemma 252. For all e,01,09, if 01|s(e) = 02| fu(e), then [e]o, = [e]o,-
Proof. by induction on e.

— case n.
For all 01,09 such that o1|sy() = 02| fu(n), We have [n]y, =n = [n]s,.

— case .
For all 01,03 such that o1|sym) = 02|fu(e), thus 1] @) () = 02| fu@) (2)-
From 2 € fv(x) = {x} we know 01| fy(z) () = 01(x) and 02|y (2 (7) = 02(2),
thus o1 (x) = o2(x). Therefore [z],, = o1(z) = o2(z) = [2]0,-

— case e + es.
IH1: for all o1, 09, if 01]fy(e,) = 02| fu(ey), then [e1]s, = [e1]o,-
IH2: for all g1,02, if Ul|fv(ez) = O'2|fv(62), then [[62]]01 = [[62]]02.
For all 01,02 such that o1|fye,4es) = 02|fv(eites), from fu(er + e2) =
fo(er)Ufv(ez) we know fu(e1) C fo(er+ez). From o1 p(e; yen) = 02| fu(er <en)
by Lem. We know o1|fy(e;) = 02|fu(e;)- By IH1 we have [e1]o, = [e1]o,-
Similarly we can prove [es],, = [e2]s,. Therefore [e1 + e2]s, = [e1]o, +
[e2]o, = [ex]o, + [e2]0n = [e1 < €2]os-

— case €1 — ea.
Similar to the case e; + es.

— case e * eg.
Similar to the case e; + es.

Lemma 253. For all b,01,02, if 01| fu) = 02| o), then [b]o, = [b]s, -
Proof. by induction on b.

— case true.
For all 01,09 such that o1|y(true) = 02| fv(true), We have [true],, = tt =
[true]e,.



— case false.
For all 01,09 such that o1ty (faise) = 02| fo(false), We have [false],, = ff =
[false],, .

— case e] < es.
For all 01,09 such that o1]fy(e,<es) = 02| fu(er<es), from fu(er < ez) =
Ju(er)Ufv(ez) weknow fu(er) C fu(er < e2). From o1 sy(e,<en) = 02| fo(er <es)
by Lem. we know o1 fy(e,) = 02| fu(e,)- By Lem. we have [e1],, =

[e1]s,. Similarly we can prove [es]s, = [ez2]s,. Therefore [e; < es]s, =
tt, if ﬂel]]gl < [[62]]01 tt, if [[61]]02 < [[62]]02
. = . - Hel < 62H02~
ff, otherwise ff, otherwise

— case e; = ea.
Similar to the case e; < es.
— case e; < es.
Similar to the case e; < es.
— case —b.
IH: for all g1,02, if Ul'fv(b) = U2|fv(b)a then Hb]]gl = [b]]o,z.
For all 01,02 such that o1]fy(-p) = 02|fu(-p), from fo(=b) = fu(b) we
know o1 fy5) = 02|y By IH we have [b]5, = [b]s,. Therefore [-0],, =
ff, if [b]s, = tt ff, if [b)s, = tt [-4]
tt, otherwise N tt, otherwise - e
— case by A bs.
IH1: for all J1,02, if Jl|fv(b1) = U2|fv(b1)a then Hbl]]gl = [[bl]](m.
TH2: for all J1,02, if Jl|fv(b2) = U2|fv(b2)u then [[bg]]o-l = [[bg]]a-z.
For all o1, 0 such that o1 |y (5, Aby) = 2 fu(by Abe)» from fo(biAbs) = fu(by)U
Ju(b2) we know fu(b1) C fu(bi A ba). From o1y, nbs) = 02| fu(binbs) DY
Lem.we have 01 fv(6,) = 02| v(s,)- By IH1 we have [b1]o, = [b1]5,. Simi-

larly we can prove [b2]», = [b2]s,- Therefore [b1Abs]s, = &  otherwi
, otherwise

tt, if [b1]e, = tt and [b2],, = tt
_ )t it [, and [b2]o, = [b1 A ba]lo,-
ff, otherwise
— case by V bs.

Similar to the case b; A bs.

Lemma 254. For all VS, X,r, 01,00, ifo01|vs—{x} = 02| vs—{x}, then o1{X ~ r}|vs =
O'Q{X > ’l"}| VS-

Proof. Forall VS, X, 7,01, 09 such that 01| ys_{x} = 02| vs—{x}, to prove o1{X ~ r}|ys =

o2{X ~ 1}|vs, we need to prove o1{X ~» r} vs(x) = 02{X ~ r}|vs(z) for all
x € VS. For all € VS, we need to prove 01{X ~ r}(x) = 02{X ~ r}(x). If
z =X, then 01{X ~ r}(z) =r = 02{X ~ r}(z). fx # X, then z € V§S—{X},
thus 01{X ~ r}(z) = o01(z) = o1|lvs—{x}(x) = o2|lvs—{x}(x) = o2(x) =
09{X ~ r}(z).

Lemma 255. For all q,01,09, if 01|fu(q) = 02|fu(q), then o1 = q if and only
if o2 = q.

tt, if [b1]s, = tt and [bo],, = tt



Proof. by induction on q. We only prove one direction (if o; = q then o2 = q)
in each case. The other direction is similar.

— case b.
For all 01,05 such that o1, = 02| ) and o1 |= b, we know [b],, = tt.
From o1|fy5) = 02|fup) by Lem. we know [b],, = [b],, = tt, thus
g9 ): b.

— IH: for all 01,09, if 01 fy(q) = 02| fu(q), then o1 = q iff 02 = q.
For all 01,09 such that o1|y(~q) = 02|fu(~q) and o1 = =q, from fv(-q) =
fv(q) we know o1 f(q) = 02| fu(q)- From o1 = —~q we know 0y = q does not
hold. By IH we know o2 |= q does not hold, thus o9 = —q.

— case q1 N\ qa.
IH1: for all 01,09, if 01]fu(q,) = 02| fu(qy)» then o1 = qu iff 02 = qi.
IH2: for all 01,02, if 01]fy(qs) = 02| fu(qs)» then o1 = q2 iff 02 = qo.
For all 01,09 such that O'1|fv(q1/\q2) = O'2|fv(q1/\q2) and o1 E q1 A Qz, we
know o1 = q;1 and o2 E qa. From fv(q: A q2) = fo(qr) U fv(gz) we know
fo(ar) € fo(aiAgz). From o1 fy(qiaqs) = 2] fo(qings) Y Lem.we know
01l fo(q) = 02| fu(qr)- From o1 = qp by IH1 we have oo = q;. Similarly we
can prove oy = qa, thus o9 = q1 A qa.

— case q1 V q2.
IH1: for all g1,02, if Ul|fv(q1) = O'Q‘f,u(ql), then 01 ': q1 iff 02 ): qi-
TH2: for all Jg1,02, if Ul|fv(q2) = O—Q‘fv(qz), then g1 ': q2 iff g2 ): q2.
For all 1,02 such that o1|fy(qyvas) = 72| fu(qivas) and o1 = qi1 V gz, we
know o1 = q; or 01 = 2. We only prove the case o1 = q;1. The other case is
similar. From fv(q; Vaqz2) = fo(q1)U fo(qa) we know fu(qi) C fo(qr Vaz).
From 1|y (qyvas) = 02l fu(a1vaz) by Lem. 262 we know o1y (q,) = 02 fu(ay)-
From o1 E qi by IH1 we have o5 = q, thus o2 E q1 V qa.

— case VX.q.
IH: for all 01, 42, if 01|fv(q) = 02|fv(q)v then g1 ': q iff g2 ': q.
For all 01,09 such that o1|f,(vx.q) = 02|fu(vx.q and o1 | VX.q, from
fo(VX.q) = fo(q) — {X} we know o1]fy(q)—{x} = 02|fv(q)—{x}- To prove
o2 = VX.q, we need to prove oo{X ~ r} = q for all r. For all r, from
o1 | VX.q we know 01{X ~ r} = q. From o1]fyq)—{x1 = 02|fuo(q)—{x}
by Lem. we have 01{X ~ 1}|ty(q) = 02{X ~ 7} f4(q)- From o1{X ~
r} = q by IH we have 02{X ~ 1} E q.

— case 1X.q.
IH: for all o1, 09, if 01|y(q) = 02| fu(q), then o1 = q iff 02 = q.
For all o1, 09 such that o1]f,3x.q) = 2|fu(3x.q and o1 F 3X.q, we know
there exists r such that o1{X ~ r} = q. From fo(VX.q) = fv(q) — {X} we
know gl|fv(q)—{X} = 02|fv(q)—{X}~ By Lem.we have O’l{X ~ r}|f’u(q) =
02{ X ~ 1} fu(q)- From o01{X ~ r} = q by IH we have 02{X ~ r} = q,
thus o9 = 3X.q.

6(x), ifzeVS

Definition H.46. Let 6 € VS — R, we define pad(5) 2 \z. L
0, otherwise

Lemma 256. For all VS and 6 € VS — R, (pad(6))|vs = 6.



Proof. For all VS and 6 € VS — R, to prove (pad(6))|vs = &, we need to prove
(pad(6))|vs(z) = &(x) for all x € VS. For all x € VS, we have (pad(5))|vs(z) =

pad(5)(z) = ().
Lemma 257. For all e and o, [€]pad(o|;,.,) = [€]o-

Proof. For all e and o, we know o|sy) € fv(e) = R. By Lem. we know
(Pad(o| fv(e)))| fu(e)

= 0| fu(e)- By Lem. [252| we have [€] pua(o|;,.,) = [e]o-

Lemma 258. For all q and o, pad(c|t.,q)) = q if and only if o = q.

Proof. For all q and o, we know o|f,q) € fv(q) — R. By Lem. we know

(pad(o| o)) ro(a)
= 0|fu(q)- By Lem. we have pad(c|ty(q)) F q if and only if o = q.

Lemma 259. For all 57/”‘17#’27 Zf /u1|fv(§) = MQ‘f’U(fﬁ then [[g]]l»tl = [[5]]#2'
Proof. by induction on &.

— case 1.
For all yu1, pip such that p1| sy = p2|fo(r), we have [r],, =7 = [r],,.

— case E(e).
For all pu1, pg such that | fyme)) = palfoE(e)), from fo(E(e)) = fu(e) we
have fi1]y(e) = p2] fo(e)- We have

[[E(e)]]lil
= Eorpui [[€]o]
=25 h1(0) - [e]s
=2 H1(0) “ [€] pad(o] 0 () (by Lem. [257)
= EU E&Efv(e)ﬁ]R{ul( o) [M]pad |a|fv(e =4}
= Z&Efv(e)—)R[[e]]pad(&) : Za{ﬂl( ) | U|fv(e = }
&Efv(e)ﬁR[[e]]pad(&) ’ /’Ll|fv(e)~

Similarly we can prove [E(e)]., = > scpu(e)mrlelpeacs) - H2lfue)- From
11l fo(e) = H2lfu(e) We have [E(e)],, = [E(e)]y,-
— case Pr(q).

For all pu1, pio such that gy pr(q)) = K2l foPr(q)), from fu(Pr(q)) = fv(q)
we have 1]y (q) = t2|fu(q)- We have

=2 o{m(o) | o Fa}

> oim(o) | pad(olfyq)) Ea}  (by Lem. [258)
= Z defu(e)—ﬂR{/ufl( o) | J|fv(q) = 6 A pad(6) = q}
_Zaefve R{pad( )):q} Z {0|fv(q = }

= Y scfole)oriPad(0) = at - pilfu(q)

Similarly we can prove [Pr(q)].. = > sctp(e)mripadd) E a} - p2lfu)-
From Ml‘fv(q) = U2|fv(q) we have [[Pr(q)]]ul = [[Pr(q)]]lw'



— case & + &s.
IH1: For all pua, pa, if pa]po(ey) = Halpo(e,)s then [&i], = [€1]4,-
IHL: For all pur, pa, i pun| o(ea) = B2l fo(en)» then [Eoluy = [€2]-
For all pu1,po such that puy]puie,4e0) = Holfoe,+¢), from fo(€ + &) =
fo(§)Ufvu(€2) weknow fu(€1) C fo(§1+&2). From pi|fue, +6,) = Halfo(e, +£2)
by Lem. We know f1] fv(e,) = M2l foey)- By TH1 we have [€1],, = [§1] .-
Similarly we can prove [§2],, = [€2]u,. Therefore [&1 + &2]u = [l +
[[521]#1 = [[511]#2 + [[52]]#2 = [[€1 + 521]#2'

— case & — &s.
Similar to the case &; + &o.

— case & * &s.
Similar to the case & + &.

Lemma 260. For all VS, VS, o, if VS C VS, then (o|vs)|vs = o|vg -

Proof. For all VS, VS, o such that VS C VS, to prove (o|ys)|vs = o|vg, we
need to prove (o|ys)|ve (z) = o|yg(z) for all x € VS. For all x € VS, from
VS C VS we know z € VS, thus (o|vs)|vs (z) = o|vs(z) = o(z) = o] vy (7).

Lemma 261. For all VS, VS, p, if VS C VS, then (u|vs)|vs = plvs

Proof. For all VS, VS, i such that VS C VS, by Lem.we know (o|vs)|ve =
o|yg for all o, thus

(ulvs)lvs

Ao e VS =Ry cvsriplvs(a) | olvs =6}

=X € VS 2Ry ooy w{3,{n(0) [ olvs =} | olvs =6}
=X eVS R Y, > sevsor{o) [ olvs =0 Nalvy =6}
o VS SR An() | (@lvs)lvs = 6}

= X6 € VS 5 RS (o) | olvs = )

— v

Lemma 262. For all VS, VS, py,po, if VS C VS and pui|vs = ps2|vs, then
pilvs = palvs -

Proof. For all VS, VIS, u1, s such that VS C VS and pi|yvs = pz2|vs, by
Lem. we know p1|vs = (p1|vs)|ve = (H2]vs)lvs = pa|vs.

Lemma 263. Forall VS, X,r,0,if X € VS, then o{X ~ r}|vs = o|ys_{x}{X ~
r}.

Proof. Forall VS, X, 7,0 such that X € VS, toprove o{X ~ r}|ys = o|ys_x1{X ~
r}, we need to prove o{X ~ r}|vs(z) = o|vs—{x}{X ~ r}(z) for all x €

VS. For all x € VS, if x = X, then o{X ~ r}|yvs(z) = o{X ~ r}(x) =

r = olys—(x}{X ~ 7}(z). Otherwise z # X, then z € VS — {X}, thus
X > )lis(e) = (X~ 1)(o) = ole) = olvs-ne) = ol (X ~
rH(x).



Lemma 264. Forall VS, X,r, p, if X € VS, then up{X ~ r}|vs = plvs_{x1{X ~
r}.

Proof. From X € VS by Lem. We know o {X ~ r}|vs = o|ys_x3{X ~ 7}
for all o, thus

p{X ~ r}vs
=X VS=R.Y {{X~r}o)|olvs=0a}
=X VSR {3, Au@) | {X ~r}=0}|o|lvs =6}
=X VS— R ZG’J,{M(U’) |o'{X ~r}=0A0o|lys=75}
=Xe VS—=R.> _{u(d)|oc{X~r}vs=7a}
=X c VS—=R.Y Au(d)|o|lvs—x{X ~r} =5}
=X € VI R.Y 0 Y sevsoxpnorluld) | olvs—xy =o Ao{X ~r} =5}
=X € VS R. Y cvsxpor{o{n(o) | o'lvs—(xy = o} | o{X ~ r} =6}
=X € VSR> cvs—xporlblvs—x1(0) | o{X ~ 1} =6}
= plys_(x{X ~r}.

Lemma 265. For all VS, X,r,0, if X ¢ VS, then o{X ~ r}|yvs = o|vs.

Proof. For all VS, X,r, o such that X ¢ VS, to prove 0{X ~» r}|ys = o|vs, we
need to prove o{X ~» r}|ys(z) = o|vs(z) for all x € VS. For all x € VS, from
X ¢ VS we know z # X, thus o{X ~ r}|vs(z) = o{X ~ r}(z) = o(z) =
U‘ Vs(l‘).

Lemma 266. For all VS, X,r,u, if X ¢ VS, then u{X ~ r}|vs = plvs.
Proof. From X ¢ VS by Lem. we know o{X ~» r}|ys = o|yg for all o, thus

p{X ~ r}lvs
=X VS=R.Y {{X ~r}o)|olvs=6}
=Ac e VS=R Y {5, {u0)| o {X~r}=o0}|olvs =05}
=X e VSR Y Aud) | od'{X~rt=0n0lvs=05}
=X € VSRS Au(cd’) | o'{X ~ r}|vs = 6}
=Xe VS—=R. Y Aud)]|od|vs=0}
= plvs.

Lemma 267. For all VS, X,r, 1, pi2, if 1| vs—{xy = pe|vs—ixy, then p{X ~ r}|ys =
p2{X ~ r}lvs.

Proof. For all VS, X,r, 01,0, such that u|ys_;xy = p2|vs—{x}, there are two
cases: X € VSor X ¢ VS. We prove the two cases respectively.

- XeVs
From X € VS by Lem. we have 1 {X ~ r}|vs = p1|vs—(x{X ~r} =
palvs—{x{X ~ 1} = pa{X ~ r}|vs.

- X ¢ Vs
We have VS —{X} = VS. From u1|vs—{x} = p2|vs—{x} we know pi|ys =
t2|vs. From X ¢ VS by Lem. we have p{X ~ r}lys = pilvs =
p2|vs = pa{X ~ r}lvs.



Lemma 268. For all p, p1, o, 1/, VS, if (p1 ®p p2)|vs = 1| vs, then there ex-
ists py and ph such that ' = py @y ph, palvs = pilvs and pslvs = whlvs.

Proof. For all p, pi1, pio, 1/, V.S such that (11 &, p2)|vs = /| vs, by Lem. we
know (p1 &y p2)|vs
pilvs(o|vs)-u' (o)

= p1|vs®phiz|vs, thus p'| vs = pn|vs®pz|vs. Let py = Ao wlvselvs) .
0, otherwise

p2lvs(olvs)-u (o) : ’
and uhH = Ao. %7 if W'|vs(olvs) >0
) otherwise
I _ 12 ’ )
we need to prove u'(c) = p- py(o) + (1 —p) - ps(o) for all o. For all o, if
1| vs(e|vs) > 0, then

p-pa(o) + (1 —p) - (o)

=p- il\:,sl(‘fsl(\/jl)vvsi)(ff) +(1—p)- pzlvs(olvs)-p' (o)

_ pplvs(olvs)+(1—p)-pa|vs(alvs) /#/‘VS(UWS)
: (/»bl\vs@puzu\/\‘/;‘/)s(%all\g) / i (U)
R i

= Wlvstalvs) 1)

(o).

. To prove p' = pf @, uh,

Otherwise /| vs(a|vs) = 0, then py(0) = py(0) = 0. From 0 = p'|vs(alvs) =
>, A1 (0") | o' vs = lvs} > (o) we know (o) = 0, thus 4(0) = p- (o) +
(1 — p) - ph(o). From Vo. p/|ys(o|vs) > (o) we know Vo. p/(0) > 0 =
t'|vs(olvs) > 0, thus

il vs
=X VS—=R.Y {pi(o)]|olvs=5}
=)o € VS%R.ZU{M | olvs =6 A p'|vs(olvs) > 0}

w'lvs(o|vs

=\6 € VS%R.ZU{M|a|vs=f7/\u’|vs(0|vs) > 0}

w'|vs(6)
=26 € VSR sl 57 (10(0) | olvs =6 A | vs(o]vs) > 0}
=25 € VS RSB 5 (10(0) | olvs =6 Ap'lvs(olvs) > 0 A w' (o) > 0}
= X6 € VS RS- {1 (0) | olvs = & A () > 0}
=6 € VS R L@ .57 (1/(0) | ofvs = 6}

= A6 € VS — R Alvs@ ) q(5)

wlvs(o)

= \6 € VS R. puy|vs(6)

= 1| vs-

Similarly we can prove pb|yvs = pa|vs.

Definition H.47. Let V € Dp,,,., we define V|vs © A\ € Dysoe. 3, {V (1) |
plvs = fi}.

Lemma 269. For all V € Dp,,,, and VS, Vlys =6 € VS 5 R.> V(v)-
v|ys(6).

,if p'|vs(olvs) >0



Proof. For all V € Dp,,,. and VS, we have

V\ngA&e VS—)R.ZU{V( )|0’vs=6’}
=X e VSR Y AV(©) v(o)|olvs=05}
=XeVS—=R.Y V() > {vlo)]|olvs=0d}
=X VS—-RY V() v 5(&)

Definition H.48. zoom(u, i/, VS) & Ao el lyvstolvs)

ulvs(olvs)

Lemma 270. For all p, 1/, VS, zoom(u, ', VS)|vs = 1| vs.
Proof. For all u, u’, VS, we have

soom(ju, i, V8)|vs
=X € VS—=R.Y {zoom(p,p')(o) | olvs =0}

= X6 € VS5 R. Y, {#lotlsloles) | oo = 5}

,ulvs alvs)

—XeVS—RY, {wwm_a}

wlvs(6)

=o€ VSR L@ s~ 1(5) | o|ys =6}

1l vs(8)

=X € VSR LlEla) ) o(5)

ulvs(o)
=X e VS—>R ,u/|vs(0')

= i|vs-

Lemma 271. For all V € Dy, and VS, if Vlys = plvs, then there exists
V' € Dpy,,,. such that p=V" and V|ys=V'|ys.

Proof. Forall V € Dp,,,,. and VSsuch that V|ys = u|vg, let V! = L. > AV(v) |
zoom(u,v) = '}, then

Vi=Xo.}, V() V(o)
=Xo.> > AV (v) -V (o) | zoom(p,v) =1v'}
=Xo.y., V(v) - zoom(u,v)(o)
=0y, V(v) - Mo tlys(olvs)
= \o. % 2., V() -vlvs(olvs)

= \o. WZ‘)VS) Vlvs(o|vs)  (by Lem.[269)
= AC0. MIVZ(Z\)VS) - plvs(olvs)
= p

and

V/| vs = AU € Dyg_r. Zy,{vl(l//) | V/|VS = ﬁ}
=X €Dyssr. >, 2 V()| zoom(u, v) =V AV |ys =1}
= A0 € Dygr. 30, {V(¥) | zoom(u, v)|vs =D}
=\ € Dyssr. ) V()| vlvs =1} (by Lem. [270))
=Vl]vs.



Lemma 272. For all Q, ju1, po, if p1] fo(Q) = M2l fu(q), then pi = Q if and only
if p2 = Q.

Proof. by induction on Q. We only prove one direction (if u1 = Q then us E Q)
in each case. The other direction is similar.

— case [q].
For all y11, 12 such that 1]y (1q1) = M2l fu(rq]) and p1 = [q], from fo([q]) =
fv(q) we have u1|fy(q) = H2|fo(q)- To prove us |= [q], we need to prove
o |=q for all o € supp(us). For all o € supp(pz), we have ps(o) > 0, thus
12l fo(a) (@l fu@) = 2o in2(0’) | o'[fo@ = olfo@} = pa(o) > 0. From
talo(a) = K2l poa) we know 0 < pu1] po(q) (9l fu(@)) = 2o {11(07) | 'l fua) =
0| fo(q)}s SO there exists o’ such that p1(0’) > 0 and 0’| fy(q) = 0|fu(q), thus
o’ € supp(p1). From py = [q] we know o’ |= q. From o'|f,(q) = 0] fu(q) DY
Lem. we have o = q.

— case & < &o.
For all py,p2 such that N1|fv(§1<§2) = M2‘fv(§1<€2) and 11 | & < &,
from fu(& < &) = fo(&) U fu(&) we know fo(&1) C fo(&§ < &2). From
,Ul‘fv §1<€2) — 'u‘2|fv(51<€2) by Lem. we know 'u‘1|fv(§1) = 'u‘2|fv(51)' By
Lem. we have [&1],, = [€1],,. Similarly we can prove [€2],, = [€2]lus-
From H1 ': §1 < 52 we know [[51]]#1 < [[52]]#17 thus Hglﬂ/m = Hglﬂﬂl < [[gQHIM =
[[52]]#02'

— case & = &o.
Similar to the case & < &s.

— case {1 < &.
Similar to the case & < &s.

— case Q.
IH: for all p1, pro, if p1] (@) = 2l fo(@), then py = Q iff pp = Q.
For all pu1, pio such that pi1] ¢~y = H2|fo(-@) and p1 | —Q, from fv(-Q) =
Ju(Q) we know p1]sy(qQ) = H2lfu(@). From py = =Q we know p1 = @ does
not hold. By IH we know ps = @ does not hold, thus pe = —Q.

— case Q1 A Q.
IH1: for all pu1, pa, if pa|fu(Q.) = H2lfo(@y), then py = Qq iff po = Q1.
TH2: for all M1, (12, if H1|fv(Q2) = ,u2|fv(Q2)7 then M1 ': Qg iff 125) ): QQ.
For all i1, p2 such that puiffu@ing.) = H2lfo(@ing,) and 1 | Q1 A Q2,
we know p1 = Q1 and ps | Q2. From fo(Q1 A Q2) = fu(Q1) U fu(Q2) we
know fo(Q1) C fu(Q1AQ2). From ji1] 5y, AQ.) = H2lfu(@irq,) by Lem.
we know f1fv(Q,) = H2lfo(@q)- From py | Q1 by IH1 we have puy = Q1.
Similarly we can prove us = Q2, thus ps = Q1 A Qa.

— case Q1 V Q.
IH1: for all pu1, pa, if g1l fu(Q.) = H2lfo(@y), then py = Qq iff po = Q1.
TH2: for all M1, 12, if H1|fv(Q2) = ,u2|fv(Q2)7 then M1 ': Qg iff 125) ): QQ.
For all M1, 42 such that Ml'fv(leQg) = .u2|fv(Q1\/Q2) and H1 ': Ql \Y QQ, we
know p1 = Q1 or p1 = Q2. We only prove the case 1 = Q1. The other case
is similar. From fv(Q1VQ2) = fv(Q1)U fv(Q2) we know fv(Q1) C fo(Q1V
@2). From Ml'fU(leQz) = /”L2|fU(Q1VQ2) by Lem. we know Ml‘f’u(Ql) =
H2| fo(q,)- From py = Q1 by TH1 we have p = Q1, thus ps = Q1 V Qo.



— case VX.Q.
IH: for all pq, po, if .u1|fv(Q) = ,u2|fv(Q)? then p; | Q iff ps E Q.
For all py,po such that pi|r,vx.Q) = p2lfovx.g) and p1 F VX.Q, from
fo(VX.Q) = fo(Q) — {X} we know p1|ru(Q)—{x} = H2lfu(@)—{x}- To prove
a2 = VX.Q, we need to prove pa{X ~ r} E Q for all r. For all r, from
w1 VYX.Q we know pi{X ~ r} | Q. From p1|sy@)—x3 = K2l fo@)—{x}
by Lem. We have (11 {X ~ 1} ¢y@) = H2{X ~ 1} so(@)- From pi{X ~
r} |E @ by IH we have po{X ~ r} E Q.
— case 3X.Q.
IH: for all pq, po, if U1|fv(Q) = u2|fv(Q)7 then ': Q iff po ': Q.
For all y1, po such that pi]sy3x.0) = M2l fuEx.@) and p = 3X.Q, we know
there exists r such that u1{X ~ r} = Q. From fo(VX.Q) = fv(Q)—{X} we
know 1251 |fU(Q)7{X} = MZ‘fv(Q)f{X]w By Lem.we have MI{X ~> T‘}|fv(Q) =
p2{X ~ 1} ro(q)- From pi{X ~ r} |= Q by IH we have pp{X ~ r} |= Q,
thus s E 3X.Q.
— case Q1 B, Q2.
IH1: for all pu1, pa, if palfoQ.) = H2lfo(Qy), then py = Q1 iff po = Q1.
TH2: for all M1, (12, if H1|fv(Q2) = ,u2|fv(Q2)7 then M1 ': Q2 iff 125) ): QQ.
For all s W2 such that .ul|fU(Q169pQ2) = ,u'2|fv(Q1€BpQ2) and H1 ': Ql @p
Q2, from fo(Q1 A Q2) = fv(Q1) U fo(Q2) we know pilpy(Qi)ufu(Qe) =
B2 fo(Q1)Ufu(Qs)- From pu1 = Q1 @, Q2 we know there are three cases. We
prove the three cases respectively.
ep=1and pu Q.
From fi1] 1o(0,)Ufo(Qa) = M2l fo(Q1)Ufu(@s) and fu(Q1) C fu(Q1)Ufv(Q2)
by Lem. we Know fi1y(Q,) = M2l fu(q,)- From puy = Q1 by THI1 we
have pio = Q1. From p = 1 we know po = Q1 ) Q2.
e p=0and u; = Q>.
From 1] 1o(Q1)Ufu(@2) = H2lfo(@1)ufu(@s) and fu(Q2) C fu(Q1)Ufv(Q2)
by Lem. we Know 111 ,(Q,) = M2l fu(@.)- From p1 = Q2 by TH1 we
have pg = Q2. From p = 0 we know ps = Q1 @ Q2.
e 0 < p < 1 and there exists pui;; and p12 such that u = pi1 ©p pi2,
H11 ': Q1 and K12 ': Q>.
From 1] 0(@)uso(@2) = M2l ru(@i)usvo(@z) We know (p @p p12)| ro@iyuso@s) =
M2|fv(Q1)ufv(Q2)- By Lem. there exists o1 and poo such that ps =
p21@phaz, 1] fo(Quyufu(@z) = K2tlfu@iuse(@s) and Mzl fu@uusu(@z) =
H22| fo(@)Ufo(@2)- FTOM L1 f0(@1)ufo(@2) =
pi21 fo(@u)ufu(@y) and fo(Q1) € fo(Q1) U fo(Q2) by Lem. 262 we know
ttlpo(@r) = Ha1lfo(@y)- From pir = Q1 by TH1 we have pig; = Q1. Sim-
ilarly we can prove pgg = Q2. From 0 < p < 1 and pg = o1 @) po2 we
know po = Q1 ) Q2.
— case Q1 P Q.
IH1: for all M1, U2, if ,u1|fv(Q1) = ,LL2|fv(Q1)7 then M1 ': Ql iff U2 ): Q1~
IH2: for all M1, 12, if /‘L1|fU(Q2) = /‘L2|fU(Q2)7 then 1250 ': QQ if U2 }: QQ.
For all pu1, p2 such that pi|ry(0.@0.) = M2lfo(@ie.) and u1 F Q1 @ Q2,
we know there exists p such that u; = Q1 @, Q2. From fu(Q1 @ Q2) =
fo(@1) U fo(Q2) we know pafpu@uyufu(@s) = H2lfu@i)uru(@s)- To prove



Ho = Q1 @ Q2, it suffices to prove ps = Q1 &, Q2. The rest of the proof is
the same as the case Q1 @, Q2.

— case P Q.
IH: for all py, po, if H1|fU(Q) = ,u2|fv(Q), then p; | Q iff ps E Q.
For all i1, pp such that pi|ru@q) = H2lfo@q) and p1 F @ Q, from
v Q) = fv(Q) we know pi|ruQ) = H2lfo(@).- From p1 = @ Q we
know there exists V; € Dpg,, such that gy = Vi and v | Q for all
S SUPP(V1) From p1]fo(@) = H2lru(q) we have Vil @) = p2lfu@)- By
Lem. |2 there exists Vo € Dpg,,,. such that uo = Vs, and V1|fv(Q) V2|fU(Q).
To prove s = P Q, it suffices to prove v = Q for all v € supp(Va). For
all v € supp(V2), we have Va(v) > 0, thus Va|ru ) (V| fu@) = 22, {V2(1) |
,u|fU(Q) = V|fv(Q)} > VQ(V) > 0. From V1|fv(Q) = ‘/Q‘fv(Q) we know 0 <
Valro@ Wl ru@) = Vilro@ Wlro@) = 22,AVilw) | plru@) = vlsu@}, s0
there exists p such that Vi(p) > 0 and |0y = V|fv(q), thus u € supp(V1).
From v |= @Q for all v € supp(V1) we know p = Q. From psyq) = V| fu(@)
by IH we have v = Q.

Lemma 273. For alln and R, if Id = R, then n 5 1.

Proof. For all n and R such that Id = R, let ¢ &f {((C,0),(C,0)) | (C,0o) €

supp(n)}. then dom()) = {(C,) | (C,) € supp(n)} = supp(n) and range(sy) =
{(C,0) | (C,0) € supp(n)} = supp(n). For all ((C,0),(C",0")) € ¢, we have
C’" = C and ¢’ = o, thus (0,0’) = Id. From Id = R we know (0,0’) = R.

Lemma 274. For all n,0,7',R, if n ~ (0,7') and 0 C [R], then §(Co) ®
n(State) ,g 5(Co) ® n/(StatE)~

Proof. For all n,6,n', R such that n ~ (0,7") and 8 C [R], we know n/ =
NC',0"). Y0 o {n(Cr0)p | (C,0) % (C,0')} and 0 = {(0,0") | 3C,C". 7(C,0) >

A(Coo) B (Cyo") Ap > 0}. Let & & {((Co,0),(Co,0)) | 3C,C". n(C,0) >
0A(C,0) 2 (C",0") Ap > 0}, then

dom(y)

C,o) [ 3C, ’((00)( o')) € ¥}

Co,0) | 3C,C", 0. n(C, a) >0A(C,0) 5 (C,0') Ap > 0}
Co,0) | 3C. (C,0) € supp(n)}

Co,0) | o€ mngd%pp(n))}

{(

{( |

{( | 3C

{( |

}ECO, o) I € supp(n***)}  (by Lem.
{( |

{( |

g
g

n(State ( ) > 0}

8(Co)(Co) - 'S (o) > 0}
(6(Co) ® n(smte))(co o) >0}

pp(3(Co) @ n5tet)

o)
00,0')
o)



range(y) = {(C”,a") | 3C,0. ((C,0),(C",0")) € ¥}
={(Cy,0") | 3C,C", 0. n(C,a) >0A(C,0) 2 (C,0)Ap > 0}
= {(Co,0") | 3C". 2, {n(C,0) - p | (C,0) % (C. ")} > 0
={(Co,0") | 3C" 4/ (C", ") > 0}
= {(Co,0") | 3C". (C’ ") € supp(n')}
= {(Co,0") | o € range(supp(y'))}
= {(Co,0") | o € supp(n (Smte))} (by Lem.
= {(Co. ) | ") (0") > 0}
= {(Co. ") | 8(Co)(Co) - /' () > 0}
— {(Con") | (5(Co) & 7/ 9)(Cp, ") > 0)
— () 71579,

For all ((C,0),(C",
such that 7(C,0) > 0A (C,0) & (C,0
6 C [R] we know (o,0’) C [R], thus (o,0”)

(5(C0) ® n/(State) ]

Lemma 275. For all set A and py,ps €
supp(p1) U supp(iz)-

o)) € ¥, we have C' =

C = Cp and there exists C,C’
)Ap > 0, thus (0,0’) C 6. From
= R. Therefore, §(Cy) ® n(State) 5

]D)A;p € (031)7 Supp(,ul Sy NQ) =

Proof. For all set A and p1, e € Da,p € (0,1), we have

supp(p1 Sp p12)

={a| (1 ®p p2)(a) > 0}
={a|p-pi(a)+ (1 —p)- p2(a) >0}
={a|p(a) >0V pu(a) >0}
={a|p(a) >0} U{a|p2(a) >0}
= supp(p1) U supp(piz2).

Lemma 276. For all set A and p1, o € Da, E € A — Prop, if Pro,,[E

(a)] >

0, Proy,[E(a)] > 0 and supp(u1) C supp(pz2), then supp(pi|e) C supp(pz|e)-

Proof. For all set A and 1,2 € Da, E € A — Prop such that Pro,, [E(a)] >

0, Provy, [E(a)] > 0 and supp(su1) C suppliiz), we have

supp(m|e) = {a | p|e(a) > 0}

— (o] il o
= {a| E(a) A i (a) > 0}
={a| E(a) Na € supp(u1)}
C{al| E(a) Aa € supp(pa)}
= {a| E(a) A pz(a) > 0}
= {a | gECLEG > 0}

— {a| pa|p(a) > 0}
= supp(p2| k).



Lemma 277. For all ny,m2, if 75" (skip) > 0, 05" (skip) > 0 and
supp(mi) C supp(nz), then supp(n|skip) € supp(n2|skip)-

Proof. For all 771,772, if n, (5t (skip) > 0, ng(s"m)(skip) > 0 and supp(m) C
supp(n)2), by Lem. 2 and we know Pr(c o)y, [C = skip] = Prg,, (st [C =
skip] = 75 (skip) > 0 and Pr(c ), [C’ skip] = PrCN ,(state) [C' =
skip] = 7,5 (skip) > 0. From supp(n1) C supp(n2) by Lem. we have
supp(n |>\(C o). C= sklp) - SUPP(%\A(C o). C= sklp) Le. Supp(n1|sklp) = supp(n2|skip)-

Lemma 278. For all set A and i, po € Da,p € [0,1], 111 ®p po = p12 B1—p f11-

Proof. For all set A and p1,p2 € Da,p € [0,1], p1 ®p 2 = Aa. p- p1(a) + (1 —
p) - p2(a) = Aa. (1 —p) - p2(a) +p- pa(a) = pe G1—p pu-

Lemma 279. For all set A and p1, po, pis € Da,p,p’ € (0,1), (1t1Bphta)Bpr ft3 =
1 Sppr (B2 @p »0-p) H3)-

1—p-p’

Proof. For all set A and p, o, u3 € Da,p,p’ € (0,1),

(//Ll EBp ,U/Q) @p’ M3

= Aa. p' - (1 @p p2)(a) + (1 = p)us(a)

=Aa. p"- (p-pi(a) + (1 = p) - pa(a)) + (1 = p')ps(a)
=Aa.p-p' - ma) +p'(1=p)- uz(q) (1 =p")uz(a)
=Xa.p-p'-pa(a) + (1 —p-p)- (pl/(_l,,,’}) na(a) + 75 - pia(a)
=Xa.p-p - pa(a)+ (1L —p-p) (BB pp(a) + (1 — BB ig(a))
=Aa.p-p' - p(a) + (L—p-p)- (u2®p yap 13)(a)

= M1 ®PP (:UQ @p(l p) ,U,3)

1—p-p’

Lemma 280. For all C and p, if Nosplit(C), then Nosplit(d(C) @ p).

Proof. For all C and p such that Nosplit(C'), by Lem. We know supp(6(C) ® H(Stmt)) =

supp(5(C)) = {C}. For all C’ € supp(5(C) @ ™), we have €' = C. From
Nosplit(C) we know Nosplit(C").

Lemma 281. For alln,0,n, if Nosplit(n) and n~ (0,7), then Nosplit(r’).

Proof. For all n,0,n" such that Nosplit(n) and n ~ (0,7'), we have ' =

/\(0/70,)~ ZC,U{T](C7U) .p | (C,0) B (C',0)}. For all ¢’ € supp(n’(Stmt)),

by Lem. [22| we know supp(n ’(Stmt))

mnge(supp( ")), thus C" € range(supp(n’)), so there exists o’ such that (C’,0") €
supp(n'), i.e., ZC’J{n(C, o)-pl(C,o) EN (C',0)} > 0, thus there exists C' and
o such that 7(C o) -p > 0 and (C,0) & (C’,0). From 7(C,0) > 0 we know
(C,0) € supp(n), so C € range(supp(n)). By Lem. 22] we know range(supp(n)) =
supp(nSt™), thus C' € supp(nSt™). From Nosplit(n) we know Nosplit(C).
From (C,0) & (C’,0) by Lem. we have Nosplit(C").



Definition H.49. disablesplit(Q,n) if and only if disablesplit(Q,C) for all
C € supp(nSt™)).

Lemma 282. For alln and Q, if Nosplit(n), then disablesplit(Q,n).

Proof. For all 7 and @ such that Nosplit(n), for all C' € supp(n5*™), we have
Nosplit(C), thus disablesplit(Q, C).

Lemma 283. For allni,n2,p, if Nosplit(n:) and Nosplit(n.), then Nosplit(n:$,
12)-

Proof. For all ny,n2,p such that Nosplit(n;) and Nosplit(1z), there are three
cases: p=10,p=1or 0 < p < 1. We prove the three cases respectively.

- p=0.

m @®p n2 = n2. From Nosplit(nz) we know Nosplit(n; &, n2).
- p=1

1M @p n2 = n1. From Nosplit(n;) we know Nosplit(n; &, 12).
- 0<p<l.

By Lem.we know 1)y @, 025t = 5y (St gy (S48 From 0 < p < 1 we

know supp((m ©p 12)™™) = supp(im S @, 0y () = supp(ny (570) U
supp(nzS™). For all C € supp((m @, 12) ™), we have C € supp(n; (Sm))U
supp(no S thus C' € supp(n 5™0) or C € supp(ne3™)). If C' € supp(n, 5™),
from Nosplit(n;) we know Nosplit(C). If C' € supp(n:5¥™"), from Nosplit (1)
we know Nosplit(C).

Lemma 284 (Soundness of (SEQ-NST) rule). For allC1,Co, R,G1,G2, 1, P, M, Q,
ZfR\/ GQ,Gl,I ':NST {P}Cl{M}, R, Gg, true ):NST {M}CQ{Q}, NOSplit(Og),
closed(Q), Id = R, Id = G3, scl(M) and Vz € fu(I). Gy = Inv(z), then
R,G1V Gy, 1 ':NST {P}Ch CZ{Q}

Proof. Forall C,Ca, R,G1,Ga, I, P, M,Q such that RVGa, Gy, 1 Eysr {P}YC1{M},
R, G, true f=ner {M}C2{Q}, Nosplit(Cs), closed(Q) and Vz € fo(I).Gy =
Inv(z), to prove R, Gy V Ga,I Eysr {P}C1;C2{Q}, we need to prove for all
w, if w = I AP, then (init(Cr;Co,p), R, I) =1, {P}C1;C2{Q} for all n.
For all p such that p = I A P, from RV Ga,G1,I fEysr {PYC1{M} we know
(init(Cy, 1), RVGy, I) =1t (G1, M) for all m. By Lem. 217 we know init(Cy; Ca, p) =
init(C1, p); Ca. For all n, to prove (init(Cy;Ca, ), R, 1) =1 {P}C1;C2{Q},

it suffices to prove for all n, if there exists 71 such that n = n;;Cy and (1, RV
G, I) =%, (G1, M) for all m, or there exists 1y, 72, p such that n = (191; C2) @,
N2, 0 < p <1, (n2, R, true) =7, (G2,Q), Nosplit(nz) and (1 &, (6(skip) ®
no St RV Gy, I) =", (G1, M) for all m, or (1, R,true) =", (G2,Q),
ntState) = I and Nosplit(n), then (n, R, I) =1, (G1 V G2, Q). We prove it by
induction on n.

— base case: n = 0. trivial.



— inductive case: n =k + 1.
IH: for all n, if there exists 71 such that n = n;; Ce and (1, RV Ga, I) =12
(G1, M) for all m, or there exists 71,m2,p such that n = (n:1;Cs) &) 2,
0 <p <1, (n2, R, true) =7 (G2,Q), Nosplit(ne) and (1 &, (6(skip) ®
no(State)) RvV G, I) =12 (G, M) for all m, or (n, R, true) =F_ (Ga, Q),
ntState) = I and Nosplit(n), then (n, R, I) =k (G1 V G2, Q).
For all  such that there exists 7y such that n = 7;; C2 and (91, RVGa, I) =Tk,
(G1, M) for all m, or there exists 71,m2,p such that n = (n:1;Cs) &) 2,
0<p <1, (n2 R, true) =L (Go, Q), Nosplit (1) and (11 @, (§(skip) ®
no(State)) RV G, I) =" (G, M) for all m, or (1, R, true) ==*11 (G, Q),
n(State) = T and Nosplit(n), we prove the three cases respectively.
e there exists 77 such that n = n1;Cy and (1, RV Go,I) =0 (G1, M)
for all m.
To prove (n, R, I) =*1! (G Vv Go, Q) We need to prove
% if (St (skip) > 0, then nlskip " ™% = Q.
7St (skip) = ny; Co 5™ (skip) = >, m; Ca2(skip, o) = 0, which
contradicts with 75" (skip) > 0.
% n(State) |: I

From (m,R V Ga,I) =74 (G1,M) for all m by Lem. we

know 7, (5%} = [. By Lem. we have p(State) = p, . 0, (State) —

nl(State) ): TI.

R
x for all o/, if n - 7', then (7', R, I) =k (G1 V G2, Q).
R R
For all o’ such that 7 - 7', from n = n1; Co we have ny; Ca — 7.

R
By Lem. there exists 1 such that n’ = n};Cy and — 7.

From (n1, RV Ga,I) =1L, (G1, M) for all m by Lem. We know

(m, RV G2, I) =7 (G1, M) for all m. From n' = n};Cy by IH we

have (77/3 R’ I) ‘:>§ST (Gl v G2a Q)

« for all 0 and 7/, if n = (0,7'), then 0 C [G1 V Gs], /") = I and

(77/7 R, I) t:>IN€ST (Gl V Gy, Q)

For all # and ' such that n — (0,7n'), from n = n;;Cy we have

n1; Cy < (6,7'). There are three cases: n; (5™ (skip) = 1, ; 5™ (skip) =

0 or 0 < n; (5™ (skip) < 1. We prove the three cases respectlvely

(Stmt)(sklp) — 1.

By Lem. [25we know 1, (540 = §(skip). From 11; Co < (6,7') by
Lem. [210/and Lem. [193|we know 8 = {(0,0) | o € supp(m(smte)
[Id] C [G1 V G2]. and o = §(Cy) ® 7 (5**). By Lem.
we know 7%t = 5 (State) L T From (g1, RV Ga,1) l:>NmST
(G1, M) for all m and 13" (skip) = 1 > 0 by Lem. [241] we
know 71 |skip "' = M. From 759 (skip) = 1 by Lem. [199

we know milskip = 71, thus np (State) = M skip (State) = M.
From R, Gy, true |=ysr {M}C2{Q} and 0’ = §(Cy) @ ny (State) =
init(Cy, 01 (519€)) we have (17, R, true) ==F. . (G2, Q). From Nosplit(Cs)
by Lem.we know Nosplit(6(02)®m(5tat€)), i.e., Nosplit(n}).



From (1, R, true) =*_ (Gs,Q), /"' = I and Nosplit(r})
by IH we have (', R, I) =% (G1 V G2, Q).
- 1 (8t (skip) = 0.

From 17;;Cy < (6,7') by Lem. there exists 7] such that
17 =n;Ceand n; — (6,7)). From (1, RVGa, I) =14 (G1, M)
for all m by Lem.nwe have 0 C [G1] € [G1VGa], 1,5 = 1
and (n}, RV Ga,I) =7, (G1, M) for all m. By Lem. we
know n/(State) _ 170 (State) _ Th(State) ': 7. From 77/ _ 77/1702
and (n], RV Ga,I) =1, (G1, M) for all m by IH we have
(77/7 R, I) ':>§ST (Gl \ GQ; Q)

- 0 < 1 9t (skip) < 1.

Let p & n, (5 (skip), then 0 < p < 1. By Lem. there exists
71 and 712 such that m = 911 &, M2, n1q (5tm) (skip) = 1 and
2t (skip) = 0. From nll(Stmf) skip) = 1 by Lem. . we
have 71, (5™ = §(skip). By Lem. [190| we know neztsplzt(nn)
{nextsplit(skip)} = {split(true)}. From 0 <p<1by Lem. 2
we know nextsplit(n;)

= neatsplit(n1Dpm2) = neatsplit(ni1)Unextsplit(ni2) 2 neatsplit(nii) =
{split(true)}. By Lem. 214 we know nextsplit(n:; C2) = nextsplit(n;) 2
{split(true)}. From n;; Co < (0, 7') by Lem. [191] we have 15 Co ~

(07 77’). By Lem.we know n1;Cy = (7711@;;7712); Cy = (7711; Cg)@p
(ma2; C2), thus (m11;C2) ®p (mi2;C2) ~ (0,7'). From 0 < p < 1

by Lem. there exists 01, 62,1;,75 such that 0 = 1} &, nh,

0 = 01 U6z, mi;Cy ~ (01,17) and n12;Cy ~ (62,75). From
1) (skip) = 1 by Lem.we know 711 = 6(skip)®n;; (5tet¢).
By Lem. . we have 7, (5™ = §(skip). From n,1; Cy < (01,7))

by Lem.[210|and Lem. [193 -we know 0 = {(0,0) | o € supp(ni; 1))} C
[Id] C [G; V Gs]. and i’ = 6(Cy) @ my15te%). From 1712,02

(62,15) by Lem. 215 there exists 5, such that n} = 1, Cs and

Ma = (02,15,). From 1y, 5 = §(skip) by Lem. [192| we know

m1 ~ ({(o,0) | o € sup]z)(nn(s’mte )}, (skip) ® n11 mte)), ie.,
mi1~ ({(o,0) | o € SUPP(UH (State))} ). From mig < (62,75)

and 0 < p < 1 by Lem. [246| we know 111 &, m2 ~ ({(0,0) |

o € supp(im ")} U 9277711 @p 151, P01~ ({(0,0) | o €
supp(ni1 1)) Yo, 1111, ). From nextsplit(n;) 2 {split(true)}
by Lem. we know 7, — ({(0,0) | 0 € supp(n15*9)} U
92,7]11 Dy /1). From (7’]1,R vV GQ,I) t:>N§T (Gl, ) for all m

by Lem. We have {(0,0) | o € supp(n151*9)} U 02 C [Ga],

(7711 EBp 7]/21)(State) }: I and (7711 @pnéla RVG27 ) NST (G17 )

for all m, thus 6, C [G1] C [G;1 V G2]. From 6; C [[G1 V Gs]

we have9—91U92 C [G1V Gs]. From 0 = n] @&p ny_=
(6(C2) @115 @, (nhy; Ca) by Lem. 12 . Lem.|1 and Lem 201]

we know 7’ (State) (0(C2) ® 7711(State))(5tate)@ (Mh1; Ca )(State) =

ate State State State
SO, 5 = (1 @, ) From (i @y ) =



I we have n/*"") 1= T From ' = (8(C2)@m11 514, (nfyy; Co)

by Lem. we know 7 = (1413 Cs) ©1_, (5(C) @ nyy Btate)).

From 0 < p < 1 we have 0 < 1 —p < 1. From (n,R V

Go, 1) == (G1,M) for all m and 7,5 (skip) > 0 by

Lem. we have 171|Skip(5tate) = M. From n; = 11 $p m2 by

Lem. we know 71 = 112 @1 n11. From 1355 (skip) = 0

and (12 ®1_p m11) "™ (skip) = n; (59 (skip) > 0 by Lem.

we have 11 |skip = (712 ®1-p M11)|skip = M1|skip- From 711 59 (skip) =

1 by Lem. we know 11 |skip = 711, thus m1|skip = M1|skip =

n11. From nl\skip(smte) = M we have 7;;(5%) = M. From

R, G, true sy {M}C2{Q} we know (§(Cy)@n11(51€) | R, true) =k,

(G2, Q). From Nosplit(C>) by Lem.[280| we have Nosplit(5(Cs)®

n15tete)). By Lem. we know n11 ®p 75 = 74 P1—p M1

From (m1 ®p n51, RV Go, I) =14 (G1, M) for all m and ny; =
5(skip) ® 711 (5% we know (nh; @1, (6(skip) @ 11 (5%49)) RV
Go, I) =T (Gh, M) for all m. From 1/ = (§(Cy) @1 (5t @,
(7751;02)7 0<1-p<1, (5(02> ® nll(smte)7R7 true) ':>§ST
(G2, Q), Nosplit(5(Cy) @ 111 5t%)) and (nh; ©1-, (5(skip) ®
m1 Gt RV Go, I) =1 (G1, M) for all m by IH we have
(77/’ R, I) ':>§ST (Gl V Go, Q)

e there exists 11,72, p such that n = (1; C2)®pna, 0 < p < 1, (12, R, true) =kE!
(Ga,Q), Nosplit(n) and (1 @, (5(skip) @ 72(5199)), RV Go, I) =12,
(G1, M) for all m, to prove (n, R,I) =rE1 (G V Ga,Q), we need to
prove

% if n(5tmd) (skip) > 0, then 7lgiip' " ™9 = Q.
m; Co 3 (skip) = 3, mi; Ca(skip, o) = 0, thus (5" (skip) =
(3 Ca @y, m2) 5™ (skip) = pn; Co 5™ (skip) +(1—p) -y (5™ (skip) =
(1—p)-no 5 (skip). From 15" (skip) > 0 we know 7,59 (skip) >
0. From (1, R, true) =FE! (G, Q) we know n2|skip(sme) E Q.
From 77;; Co "™ (skip) = 0 by Lem. 234 we know nlsip = (m; Co ©p 172) |stcip =
(State)
772|skip7 thus nlskip ): Q
* n(State) ': I.
From (1 &, (3(skip) @ 1p5"19)), RV G, I) =1, (G1, M) for all
m we know

. State
(11 @y (5(skip) @ ny(State) )12

E I. From

i Stat
(m @p (0(skip) ® nQ(State)))( ate)

= (State) g (5(skip) ® n,(State))
50 g 5 (by L.
= m; CQ(State) @p ,’72(State) (by Lem. 201)

= ((m:C2) ®p nz)(smm) (by Lem.
— n(State)

(State)

(by Lem.

we know n(Stete) |= T,



x for all o/, if n >§> 7', then (7', R, 1) =% (G1 V G2, Q).
For all  such that 7 % 7, there exists n”” and b such that n S n"”,
0|, =1 and g (State) E 1. From (11;Ca) @, 12 H o and 0 < p <1
we know there exists n{,n5,p” such that n;;Cs it ', n2 kit 0y,
0<p” <landn’ =n{ @y ny. From n; Cy it ny by Lem. [203|there
exists nf; such that n{ = n{}; Cy and m RS nYi, thus o' = 0|, =

def
(0 @y 1)l = (3 Ca @y i)l Lt pi % [Pr(B)] o and

Do def [[Pr(b)]]né/(state), by Lem. we know n{; C’Q(St“te) = ni’(smt@),

thus [[Pr(b)]]n,l,l;cz<smte> = [[Pr(b)]]nﬁ(sme) = p;. By Lem. we
know [[Pl‘(b)]]nu(smte) = HPr(b)]]nll/e;p”ng(State) = p” : [[Pr(b)]]n
(1=p") - [Pr(d)],ycsaer = p” - pr+ (1 = p') - p2. From "], =0’ by
Lem. [205(we know [Pr(b)],(statey > 0, thus p”-p1 + (1 —p’) -pa > 0.
There are three cases: py = 0Apy > 0, py > 0Apy =0, or p; >
0 A pa > 0. We prove the three cases respectively.
- p1r=0Ap2 > 0.
FI‘Om [[Pr(b)ﬂnill;cz(state) = D1, [[Pr(b)]]né/(State) = P2 and O < p// <

11 (State) +
1

1 by Lem. 238 we know ' = (11/; Cy @y 1)y = 15 From 1,
R

N4 we know 1 o n'. From (g, R, true) =41 (Ga, Q) we have
rue

R
(', R, true) == (Ga, Q). From 1 ot n' by Lem. 188 we know

supp(n’S™) C supp(nySt™). From Nosplit(nz) by Lem.
we know Nosplit(7'). From (7', R, true) =F_. (G2, Q), gy (Stmt =
I and Nosplit(n') by IH we have (', R, I) =% (G V G2,Q).

- p1>0Ap=0.
From [[Pr(b)]]nill;c2(state) = p1, [[Pr(b)]],’]é/(sm.te) = P2 and 0 <

p" < 1 by Lem. 238 we know 1’ = (nf'; Ca @y 1)l = s Cals.
From [[Pr(b)]]nﬁ(swm = p1 > 0 by Lem. [208| we know n{; Ca|p =
1Y |p; Ca, thus n' = nY|p; Co. From 9 kit 14 by Lem. We know
,'72(State) £> né/(State)_ By Lem. We know 5(Skip) ®n2(5tate) g

§(skip) @ 77" From m <5 5/,, 0 <p<land 0 < p” < 1 by

Lem. we know 1 @, (3(skip) @ny (State)) K 1, @ (8(skip)®

State
né’(smte)). By Lem. we know (d(skip) ®n’2’(5tate))( )

State
1) thus [Pr(0)] 5 asipy g ey s = [PEO)] sty =
pa = 0. From [Pr(b)]]n,l,l(Smte) =p >0and 0 < p’ < 1 by

Lem. we know (n}; &, (6(skip) @ SN, = . By



Lem. we know n’1’1|b(smte) =

(773/1‘175 02)(Stat€) _ nl(State) ): I. From nl@p(a(skip)@)?h(state)) »E)

1y @ (3(skip) @ 15 3), (il @y (8(skip) @ )y =
R

' |, and 771’1|b(smte) E I we know 71 @, (6(skip) ® n2(State)) )7

1] From (1 @, (6(skip) @1 (5)), RV Gz, I) =1ty (G, M)
for all m by Lem. 241] we know (n{[p, RV G2, 1) =1, (G1, M)
for all m. From o' = n},|y;C2 by IH we have (n,R,I) =k _

(Gl V G2a Q)
- p1 >0Apy > 0.
Let p/ d:ef m, then 0 < p/ < 1. From [[Pr(b)ﬂnﬁ;CQ(smze) =

p1, [Pr(b)], sty = po and 0 < p” < 1 by Lem. we know

0 = (nfy; Ca @pr m5)le = (113 C2)lp ©pr 15 ]p- By Lem. we
know (n71;C2)le = nf1lp; C, thus ' = (n71; Co)le ©p m5 | =

1 |o: Co®p |- From ny V5 1l by Lem. |178| we know ny(State)

54 By Tem. we know 6(skip) @ (5t} & §(skip) ®

né’(sme). From kit N, 0 < p < land 0 < p’ < 1 by

Lem. 236w know 1y @, (3(skip) &%) 5 1y &, (5(skip)

State
') By Lem. we know (d(skip) ®77’2’(State))( b

State
’175( ), thus HPr(b)H(6(skip)®7]’2’(smte))(Smm> = [[Pr(b)]]né’(St“te) =
pe2 > 0. From [[Pr(b)]]n,l/l(swte) =pp >0and 0 < p’ < 1 by

Lem. [238] we know (nfy &y (8(skip) @ 0§ *")))|, = 0y, &y
(5(skip) ® n ¥**)|,. From [Pr(b)], (st = p2 > 0 by Lem.
and Lem.\;/te ?now (8(skip) ® ny 51|, = 5§fljip)®ﬁé/(8tate) b =
3(skip)eng]s ™", thus (nf; @, (5(skip) @ 15 ***)))], = nf; s,
(6(skip) ® n§’|b(smt6)). By Lem. [19| and Lem. we know
7 S(ski 111 (State) State) 7 (State)
(i1l ®p (6(skip) ®7Z%g|b : ) M1l Dy
ate tate ate ate
(3(skip) @ [y ) " = (i o Co) 1 @y ], =
(771'1\1); Cy By né/|b)(5tate) _ n/(State) ': 1. From 1, @, (5(Skip) ®
ate R . State
np(510t)) Sty @0 (8(skip) @ ny ),
. State .
(nffy @y (8(skip) @y "), = o, (3(skip) @75,
and

State))

7/ . 1 (State) (State) .
(M1 ls ©p (5(skip) @ 155 ) = I we know 1@, (6(skip)®

R . ate .
mo (S1910) = |y, (8 (skip) &g |y ). From (b, (8(skip)®
na(Stte)) RV Go, I) =1 (G1, M) for all m by Lem. we
know (11| @, (3(skip) @ 0], ****)), RV Ga, T) =1, (G, M)



R R
for all m. From g — 74 we know 2 o 04|y From (n2, R, true) =-F11
rue

R
(G2, Q) we know (n4]s, R, true) ==>F_ (G2, Q). From 7 o 7% p
by Lem. we know
supp(n ], C supp(n2 ™). From Nosplit () by Lem. [239)
we know Nosplit(n4 |5). From 5’ = 0/} [5; Ca®prnily |, (04 |p, R, true) =k
(G2, Q), Nosplit(n3]y) and (nf ] ®, (3(skip) @5 Jy ™)), Rv
Go,I) =" (Gy, M) for all m by IH we have (', R, I) =F,.
(Gl \ G27 Q)

« for all @ and 7, if n < (6,7'), then 6 C [G1 V G5, /%" = I and
(77/7 R, I) ':>IN€ST (Gl v Go, Q)
For all § and 7’ such that n < (6,7'), by Lem. [243] and Lem. 214] we
know we have nextsplit(n) = nextsplit(ny; Cadnz) = nextsplit(n;; C2)U
nextsplit(nz) = nextsplit(ni) U nextsplit(nz) 2 nextsplit(ne). From
Nosplit(nz) by Lem. we know nextsplit(n:) = {split(true)},
thus nextsplit(n) 2 nextsplit(ny) = {split(true)}. From n < (6,7)
by Lem. we know 7 ~ (0,7), thus n1;Cs ®, 12 ~ (0,7'), by
Lem. we know there exists 7,15, 01, 02 such that 0 = n} &, 05,
0 = 6,Uby, n1; Co ~ (01,7n7) and ng ~ (02,15). There are three cases:
m ) (skip) = 1, 5 (skip) = 0, or 0 < 5, 5 (skip) < 1.
We prove the three cases respectively.
- (8t (skip) = 1.

By Lem. [13[ we know 7, = d(skip) @ 7, (5%%%®). By Lem. [18] we

know ;5" = §(skip). From 7y;Cy ~» (61,7}) by Lem.

and Lem. [193{ we know 0, = {(0,0) | o € supp(n;, t7*))} C [1d]

and 7, = 0(Co) @11 (5**) . By Lem. we know 01 ~ ({(o,0) |

o € supp(m Stete))}, §(skip) @1 (51)) ie., 1 ~ (01,11). From

(771 Dp (5(Sk1p) ® nQ(State)), RV G27 I) ’:>LnST (le M) for all m

by Lem. we know

(1 @y (6(skip) @ 1 (57)))

we know Ul(State)@pﬂ2(State) _ (771 @p ((5(Skip) ® nZ(State))) ':

I. From Nosplit(n2) by Lem. we know nextsplit(ne) = {split(true)}.

From 1y ~ (62,75) by Lem. we have 1o < (02,75). From

(2, R, true) =F11 (Go, Q) we know 0y C [G2] and (1}, R, true) =k

(GQ,Q), thus 6 = 6, U Oy, C [[Idﬂ U H:GQH = [[GQH - [[Gl vV

G2]. From 6, C [G2] and Vz € fo(I). G2 = Inv(z) we know

Ve € fo(l),(o,0") € 0. o'(z) = o(x). From n2 ~ (62,75) by

Lem. we know n’Q(State)|fU(I) = np(tt)| . ;). From 7/ =

n ®p b = (6(C2) @ m 51)) @, nh by Lem. [12{and Lem. [19| we

know n/(smt@) — (5(02) ® nl(State))(State) @pné(smt@) — nl(State)@p

15 1) By Lem. 250]we know 1/ "™ 1y = (m512%9) @, %) 1,1

State
m S ey @pmh 3 oy = S8 |y 12 (519 oy =
nl(State) @p UQ(State))va(I)- From nl(State) @p nQ(State) ': I by

(State) = I. By Lem. [12|and Lem.

(State

—~



Lem.we know 1/ %" = I. From (1 @, (5(skip)®n,(5t@)), Rv
Go,I) =1 (G, M) for all m by Lem. [241| we have

(m @(skip) © 1259 )) | qaip ) |= M. From 0 < p < 1 by

Lem. we know supp(n; @y (5(sk1p) @12 (5tat9))) = supp(n) U
supp(6(skip) @ no54)) O supp(n1). By Lem. and Lem

we know supp(771|skip(smte)) C

. N State . State
supp((m @ (5(skip) ® 7259 eip' ). From (11 @, (5(skip) @ 725199 geip

= M and scl(M) we know 71 |siip ' = M. From n (5™ (skip) =
1 by Lem.we know 11 |skip = 71, thus n; (514 = \Skip(smm)
M. From R, Gy, true Fysr {M}YC2{Q} we know (6(Cy)@mn; (5t%) | R, true) =E, .
(G2, Q). From Nosplit(C3) by Lem.[280| we know Nosplit(5(C5)®
m (State)). By Lem. We know disablesplit(true, §(Cy) @, (State)).
From Nosplit(n2) and 72 ~ (62,75) by Lem. 281] we know
Nospllt(772) By Lem. 282 we know disablesplit(true, 7}). From
( (02) ®m (State) R, true) ':’>NBT (G27Q) (7727R true) ':>§5T
(G2, Q), closed(Q) disablesplit (true, §(Cy) @ n; (State)),
disablesplit(true,n}) and 0 < p < 1 by Lem. 298 we know
((5(02) ® nl(State)) Dp néaRv true) ':’>NST (G27Q) From 77/ =
(5(62) ® nl(State)) @p 775 we know (77/3 R I) NST (GQ Q) From
Nosplit(§(Cy)®mn; (3t**)) and Nosplit(15) by Lem. [283|we know
Nosplit((5(Co)@m St @,,,n5), i-e., Nosplit(n'). From (n/, R, I) =k,
(G2, Q), /5t = T and Nosplit(n') by IH we have (1, R, I) =F_,
(G1 V Ga, Q).
- 7 57 (skip) = 0.
From 7,5 (skip) = 0 and 71;Cy ~» (61,7}) by Lem.
and we know there exists 1}, such that n; = n{;;Cs and 7 ~
(01,711), thus ' = Spnh = 1}1; C2®p15. By Lem. [192) we know
5(skip) @ no(Stete) ~ ({(0,0) | o € supp(neStete))}, §(skip) ®
no(5tat€))  From 7, ~» (61,7);) and 0 < p < 1 by Lem.
we know (1, @, (6(skip) ® 72(51)) ~ (6, U {(0,0) | 0 €
supp(ng(smte))}m'n &, (5(skip) ® ne(5tt9))). From 0 < p < 1
by Lem. and Lem. we know nextsplit(m @, (6(skip) ®
1o (State) )) = ne:ctsplzt(m)Une:ctsplzt(5(skip)®772(State)) D nextsplit(5(skip)®
(Smte)) nextsplit(skip) = {spht(true)} From (1@, (4(skip)®
1)~ (6,0{(0.0) | & € supp(m5™)}, 7ty By (3(skip) @
19 (5ta19))) by Lem. we know (171 @, (6(skip) ® 12 (51919))) —
(91 U{(0,0) | o € supp(1p 5" ')}, 11y @, (5(skip) © 1p(599))).
From (11 @, (§(skip) @12 (5t%4)), RV G, I) =T (G4, M) for all
m by Lem.we know 6,U{(c,0) | o € supp(na(5t*))} C [G1],
(1) ® (8(skip) @ o)) ™" = I and (nf, @, (3(skip)
na(St)) RV Go, I) =" (Gy, M) for all m, thus 6; C 6, U
{(a o) | o € supp(nz(5tat)} C [G4]. By Lem. .and Lem. lwe
know nu(sm)@pn (State) — (711 ©p (0(skip) @ 12 (State)))(smm)
I. From Nosplit(n;) by Lem. [244]we know nextsplit(n) = {split(true)}.



From 7y ~ (62,75) by Lem. we have 12 < (02,75). From
(2, R, true) =FE1 (Ga, Q) we know 0y C [G2] and (1, R, true) =k
(GQ,Q), thus 0 = 01 U 02 Q [[Gl]] U [[GQ]] = HGI V GQH From
0y C [G2] and Vz € fo(I). G2 = Inv(z) we know Vz €
fu(I),(o,0") € 6. d'(x) = o(x). From 1y ~ (62,15) by Lem.
we know né(smte)|fv(1) = ng(smte)“v(l). From n' = n};;Co &) 1

by Lem. [12{ and Lem. we know 751 = gt . 0, (Stete) ®p
né(State) _ / (State)69 / State) By /(State)|fv(

Lem. [250|we know n

(State)@ 77 State)) (State)

(n11 |fv(l) = | fo(r) ©p 1 tate)|fu(1) =
7]11(State)|fv(l @, nz(State)|fU(I) — (nll(smte) By 12 (State)>|fv(1).
From 7}, ¥ @, 0, (State) = I by Lem. we know /(51 =
I. From Id = RV G5 by Lem. WC know ), "5 nf,. From

12 ~ (02,m5) and 6y _iGQ]] C [RV G2] by Lem. we know
7

M2 Ry nb. By Lem. [178 we know n,(State) RYS> né(smm)' By

Lem. we know §(skip) @ 1 (State) fyGiz 5(skip) ® nj,t5").
From n}, Ris ny; and 0 < p < 1 by Lem. we know (n}; ®p
(8(skip)@n,(State))) & gyt @, (3 (skip)@nh ")), By Lem. We

State
know (7’]11 @p (6(Sklp) ® T]/ (State)))( ) — "7/ (State)@ /(State)

/St = . By Lem.we know (17, @, (6(skip) ® 15 (State))) true =
0y @y (3(skip) @174 7). From (], @, (5(skip) @, (State)))
and

nh1 @y (3(skip) @ 5 7*))

, / (State) (State) , .
(n}y By (6(sk1p) ®1h ) = I we have (1)}, ®, (6(skip)®
np(State))) 7’ 1 &y (8(skip) @5 ). From (y;, &, (5(skip) ®

no(Ste)) RV Go, I) =1 (G1, M) for all m by Lem. we
have (1}, @, (3(skip) @ 15 ™), R v Go, I) =1, (G1, M)
for all m. From Nosplit(n2) and 72 ~ (62,75) by Lem.
we know Nosplit(n). From ' = n{};Co &, 15, 0 < p1 < 1,
(1, R, true) =%, . (G, Q), Nosplit(n) and (n}s &, (3(skip)
0, S R Ga, I) == (G, M) for all m by IH we have
(77/7 R, I) ':>§ST (Gl V Go, Q)

- 0 < 9t (skip) < 1.

Let p/ & m (580 (skip), then 0 < p’ < 1. By Lem. there
exists 711,12 such that 9, = 911 @y Mo, 11 (skip) = 1
and 7,55 (skip) = 0, by Lem. we know 71; Co = (11 By
Mm2); Co = n11; Co &y Mi2; Co. From n1; Cy ~ (61, 1)) we know
M1;Co @y m2; Ca ~ (01,11). From 0 < p’ < 1 by Lem.
there exists 011,612,711, 7}2 such that 0] = iy By nie, b =
011 U bh2, 7115 C2 ~> (011,71,) and mi2;C2 ~ (612,775). From



m1 5t (skip) = 1 by Lem. [13|we know 711 = d(skip)®@n;; (5t#te),
By Lem. . we know 71 (5t =

= d(skip). From n;1; C2 ~ (611,m1,)

by Lem. [210|and Lem. 193 -vve know 01, = {(0,0) | o € supp(n1;5tet))} C

[Id] and 7}, = §(C2) ® n115%%®). By Lem. [192| we know 713 ~»
({(o,0) | o € supp(m15"9)}, 6(skip) @ n1, 5)), ie., iy ~
(011,m11). From 11557 (skip) = 0 and 712; Co ~ (012,7,5) by
Lem. and we know there exists 1}, such that nj, = 771’2; Cy
and 112 ~ (012,7n75). From 111 ~ (011,m11) and 0 < p' < 1
by Lem. 246] we know 711 Gy 12 ~ (011 U b2, m11 ©p 1), e,

m ~ (01,1711 S, 0}5). By Lem. [192{ we know §(skip) @7, (5t4%¢) ~»
({(0,0) | o € supp(ns'$*9))}, 5(skip) © 1o "*)). From 1 ~
(61,m1 Bp MY5) and 0 < p < 1 by Lem. we know (1 @)
(8(skip) @ (519))) o (0,U{(0,0) | o € supp(na' @)}, (111 @y
ns) ©p (8(skip) @ n2(51))). From 0 < p < 1 by Lem.
and Lem. we know nextsplit(n @, (6(skip) ® np(S1et9))) =
nextsplit(n, ) U neatsplit(5(skip) @1y (514€)) D neatsplit(5(skip) ®

12 (5t9t€)) = nextsplit(skip) = {split(true)}. From (1@, (5 (skip)®

120574))) ~ (61 U {(0,0) | o € supp(n25*))}, (111 @y ) @)
( (sklp) ® nz(5t))) by Lem. we know (71 @, (6(skip) ®
23))) = (01U {(0,0) | o € supp(ma ")}, (1 @ 0fy) S

(G, M) for all m by Lem. [241] we know 6; U {(0,0) | 0 €
supp(n23*')} C [G],

((m1 @pr 1) @p (8(skip) @ 1 (574)))
i) @y (3(skip) @ o (S1e1)),

RV Ga,I) =7, (G1, M) for all m, thus 6; C 6, U {(o,0) |
o€ supp(ng(smte))} C [G4]. By Lem. n and Lem. lwe know
(nll(state) @ n (State)) @ nQ(State) —

((7711 Dy 7712) ®p (5(skip) ® nQ(State)))
by Lem. 244 we know nextsplit(r) = {split(true)}. From 7, ~

State
B T and (g @y

(State)

( (sklp) @n2(5t9te))). From (1, @, (5(skip)@ne (5t49)), RVGy, I) =T,
(

= I. From Nosplit(7)

(02,m5) by Lem.we have 7y < (62, 715). From (12, R, true) =F+1

(G2, Q) we know 65 C [Ga] and (nh, R, true) =F_ (G2, Q), thus
0 =60,U6; C [[G]_]]U[[GQH = [[Gl\/GQ]]. From 65 C [[GQ]] and Vx €
fo(I). G2 = Inv(xz) we know Yz € fu(l),(c,0') € 0. ¢'(x) =
o(z). From ng ~ (62,n5) by Lem. M we know né(smte)|fv(1) =
125 oy From ' = my ®p my = (11 By niz) By 1) =
(((6(C2) @ muyState)) @, n12,C’2) &, 15) by Lem. we know

i (510 — (g (State) gy, i (State)y gy -y (State) g e [250] we

State ate State State
known’( H)| o(I) ((7711(5”)69 771/2( tt))@ 5 g (Stat Nio(r) =

ate State a ate
((nll(St te) By Nl ( tat ))|fv @pﬁ St te)|fv(1) ((Tln(St te) O
(State ‘f 0 = ((ml(State) By n// (State)) B 12 State))|f - From
( (State) By ' (State)) Op M2 (State) =1 by Lem. we know
,(State) = From Id = RV G5 by Lem. [273| we know i Sp

// (State) ) ‘

Fo(H)Pp



iy T2 iy @y il From my ~ (62,m5) and 6, C [Ga] C

[R Vv G2] by Lem. we know 7 25 ). By Lem. [178 we

know np(State) VG2 (State) By Tem, we know §(skip) ®

na(State) TYC2 6 (skip) @ 5 "), From nuy @y nffy RS m11

7Yy and 0 < p < 1 by Lem. we know ((m11 ®p M12) Dp

. G . ate
(5(sk1p)®n2(5tate))) RYGa (m1 @p,n’l’Q)Gap(é(sklp)@n’Q(St t )). By

. (State)
Lem. we know ((m11 @p 1Y) Bp (6(skip) ® TA) =
(1 (State) By ni/Q(State)) Sp né(State) - n/(State) = I. By Lem. [171
we know (1 @y 1{3) ®p (5(skip) ® 15" ))irue = (11 By

1) @y (3(skip) ® 75 %)), From ((n11 @ m12) ®p (5(skip) ®

c . ate
1o (State))) RyGa (m1 Sy 1) ®p (6(skip) @ 77/2(St ! )) and

. ate (State)
(11 @y 0y) ©p (8(skip) @ s ")) = I we have (711,
) RVG .
M2) ®p (5(skip) @ no(State))) 7’2 (M1 ®p 1) ®p (6(skip) ®

1551 )) From ((n11 By 1ll) @, (5(skip)@na (S919), RVGy, I) ==,

(G1, M) for all m by Lem. we have (111 ©p 1) ®p (6(skip) @ np(51919))) |skip(smt6)
M and ((m1 ®p 1) ®p (8(skip) @ 75 5“), RV Ga, I) =10,

(G1, M) for all m. From 0 < p <1 and 0 < p’ < 1 by Lem. 275

we know supp((111 @y 0iz) Bp (3(skip) @12 (514))) = supp(i11) U

E

supp(nty) U supp(3(skip) @ 1o(5%%))) D supp(n11). By Lem.

and Lem [24 we know Supp(nll‘skip(state)) c

supp(((m1 @y 0ffz) By (3(skip) @ na ) i ) From

((m1 ®p ns) ®p (6(skip) ® UQ(State)))lskip(State) = M and scl(M)

we know 111 \Skip(‘%ate) = M. From 7, 5™ (skip) = 1 by Lem.
we know 111 |skip = M1, thus 7y, (599 = 7711|skip(Stat6) E M.
From R, Gy, true FEysr {M}Co{Q} we know (5(Co)@m11 5% | R, true)
=k (G2, Q). Let pr = p- (1—p/) and pp = 2.
0<p<land 0<p <1lweknowO<p; <1landO<ps <1.

By Lem. and Lem. We know 1’ = (((6(Cy)@m11 5199 @,

1Ma; C2) ©p m5) = (023 C2 @1y (8(C2) © ")) @, mp) =

My; Co ©py ((6(Co) @ n115499)) @, nb). From Nosplit(Cy) by

Lem. we know Nosplit(5(Co) @ 111 5t**)). By Lem. we

know disablesplit(true, §(Cy) @ 11, 5%%%)). From Nosplit ()

and 7z ~ (62, 7%) by Lem. 281]we know Nosplit(r}). By Lem. [282]

we know disablesplit(true,75). From (§(Cy)@n;, t9%)| R true) =k,
(Gg(, Q),)(n'z, R, true) =k (G, Q), closed(Q), disablesplit(true, §(C)®
N1 State )7

disablesplit(true,n}) and 0 < p2 < 1 by Lem. we know
(3(Co)om 519 )y, . R, true) =, (G, Q). From Nosplit(6(Cy)e

(State)
ip

From



111 5%%9)) and Nosplit(n5}) by Lem. -We know Nosplit((6(Ca)®
171 (5tat)) @,,, 15). From n1y = 6(skip) @ n11 949 we know

(1 @y 1) ©p (8(skip) @ 7y 5")

= ((6(skip) ® m1) ®p niy) ®p (d(skip) ® 75
= (0, ®1_p (5(skip) @ m11)) ®, (5(skip) @ 755 *)  (by Lem.
— il @y (3(skip) ® 71 51919) @, (8(skip) @ 75 @) (by Lem. 79
= 'y ®p, (8(skip) @ (115" @y, (State))) (by Lem[14)
(
(

s (State) )

ate) (State) ate
= nlly ©p, (8(skip) ® ((6(C2) @ my <St £e)) s 7% )  (by Lem.
(54D " (by Lem.[12)

= 1> Dy, (8(skip) ® ((6(C2) @ i1 59)) @, )
From ((m1 @y nis) ®p (6(skip) @ 1 Smm)) RV Go,I) =1L,
(G1, M) for all m we know (11{5@,, (6(skip)@((8(C2) ® 11 5*9)) @, 115)
G2, I) =1, (G1, M) for all m. From n' = n{y; Co @, ((6(C2) @
nll(smte))@pzné)v 0< P < 1’ ((5(02)®n11(8tat6))®1)2né7 Ra true) t:>>§ST
(G2, Q) and Nosplit((§(Cs) ® n115tt)) @, 1) by IH we have
(7’}’, R, I) i:>§ST (Gl V Ga, Q)
o (1, R, true) ==FE1 (Go, Q), n(5*9*¢) |= T and Nosplit(n).
To prove (1, R, I) |:>§;FT1 (G1 V G2, Q), we need to prove
* if n(5tm) (skip) > 0, then n\skip(smm) E Q.
From (1, R, true) =FE! (G2, Q) and o5 (skip) > 0 we know
(State)
Nlskip FQ.
% n(State) ': I
By assumption.

x for all o/, if n % 7', then (7', R, 1) =% (G1 V G2, Q).
For all o such that 7 % 7, there exists n”” and b such that n i n”,
7’|, = 1" and 5’ %" = I, thus n t;;»e 7. From (n, R, true) ==~11
(G2,Q) we know (1, R,true) =F_ (G2,Q). From 7 >§> n' by

Lem. we know n’(Stmt) C n(5t _ From Nosplit(n) by Lem. [239
we know Nosplit(/). From (1, R, true) =% (G, Q), y/*"™) =T
and Nosplit(n') by IH we have (', R, I) =k (G1 V G2, Q).

« for all @ and 1/, if n = (0,7'), then 0 C [G1 V Go], 7/**™) |= T and
(77/7 R, I) ':>II\CIST (Gl V Ga, Q)
For all § and 7’ such that n — (0,7'), from (n, R,true) ==kt!
(G27 Q) we know 6 C HGZ]] - HGl \ G2H> (77/7 Ra true) t:>>§ST (G27 Q)
From Nosplit(n) by Lem. we know nextsplit(n) = {split(true)}.
From n < (0,7’) by Lem. we have n ~ (6,7"). From 0 C [G4]
and Vz € fu(I). Gy = Inv(x) we know Vz € fu(l),(o,0') €
0. o'(z) = o(x). By Lem. 249 we know n’(smte)|fv(1) = n(State)| . .
From n(5t#t¢) = T by Lem. [272|we know n'(smte) = I. From Nosplit(n)



and n~ (0,7") by Lem. we know Nosplit(7/). From (7', R, true) ==%_,
(G2, Q), "% = I and Nosplit(r) by IH we have (1, R, I) =*__
(Gl \ GQ; Q)
Lemma 285. For all n, if 0 < [Pr(b)], statey < 1, then there exists m1 and 12
such that n =m @ﬂpr(b)]]n(State) na, m (5t) = [b] and ny(Stete) = [-b].
def ok=b)- o
Proof. For all ) such that 0 < [Pr(b)], stae) < 1, let 1 = A(C, U).Wm
def kb
and ny = MC,0).1= E[P%(b))]] ((Sml) then
N OPr®)], (srare) 12
= /\(C’ 7). [Pr(b)], stae - 11 (C,0) + (1 = [Pr(b)],cstate) ) - m2(C, 0)

okE=b C,o olEb) n(C,o
< 0). [Pr(b)],swer - Fogrice) ’z;m} - <1 ~ [Pr(5)]ysime) - P s
(07 o). n(C o)

=

State)) (State))

Forallo € supp(m( , by Lem. We know supp(m

= range(supp(m)),
Xx(oE=b)-n(C,o)

thus o € range(supp(n)), so there exists C such that n, (C, o) > 0, i.e., TPrO1, (seare)

0, so o [= b. Therefore 1, (5tt¢) |= [b].
For all o € supp(nz(5t9t9), by Lem. [22|we know supp(n25t%*)) = range(supp(nz)),
thus o € range(supp(nz)), so there exists C' such that 72 (C, o) > 0, i.e. X(o}#b) 1(C.0)

* T-[Pr(®)], (state)
0,50 0 £ b, i.e., o = —b. Therefore ny(51%¢) |= [b].

Lemma 286. For allQ,C, i, if disablesplit(Q, C), then disablesplit(Q, §(C)®
).

Proof. For all @, C, i1 such that disablesplit(Q, C'), To prove disablesplit(Q, 6(C)®
), we need to prove disablesplit(Q, C’) for all C" € supp((6(C) ® u)(smte)). For

all ¢’ € supp((5(C) @ p)*™), by Lem. [18] we know (5(C) @ p)*™" = §(C),
thus C" € supp(6(C)) = {C}, so C' = C. From disablesplit(Q,C) we have
disablesplit(Q, C").

Lemma 287. For all n and b, n|skip exists if and only if n5t™ (skip) > 0.

Proof. For all 7, by definition of 7|skip we know n|skip exists if and only if
Nx(c,0). c=skip exists. By Eqn. We know 7[x(c,0). c=skip exists if and only if
Prco)~w[C = skip] > 0, i.e., 73 (skip) > 0. Therefore, 1|skip exists if and
only if (5™ (skip) > 0.

Lemma 288. Foralln,nz,p, if 0 < p < 1, 5™ (skip) = py, and 1,5 (skip) =

nllskzp @7 772|skipa Zbfpl >0 /\Pz >0
p-p1+(1—p)p
ips % >0Ap2 =0
p2, then (M ®p n2)]|skip = | skip fpl b2
12| skip ifpr=0Ap2 >0

undefined, otherwise.



Proof. For all 1,12, p, bsuch that 0 < p < 1, 7, 59 (skip) = p; and 1, (5t (skip) =
pa2, we prove the four cases respectively.

—p1>0Apy > 0.
By Lem.we know (1 @, 72) "™ (skip) = (S0 @, 7, (S5m0 (skip) =

p-mS™I(skip) + (1 — p) - 125" (skip) = p- p1 + (1 = p) - p2 > 0, thus
(m ©p 772)|(sé<ipk . (ekino)

_ x(C=skip)- (11 ®pn2)(skip,o

= \C, o). (1 0y m2) 5 (skip) (by Lem. [165))

=A(C,0) x(C=skip)-(p-n: (skip,0)+(1—p)-n2(skip,0))
L P L Sy lipo) | (1-p) (C=skip)-1s (skip.0)

_ p-p1 . x(C=skip)-n: (skip,o —p)-p2 . x(C=skip)-na(skip,o

= AC,0) pp1+(1—p)p2 . D1 . + p-p1+(1—p)p2 P2 .

= \C,0). p-p1 . X(C=skip)-n (skip,o) +(1— pp1 ) X(C=skip) 15 (skip.o)
’ pp1+(1-p)p2 n1 (5t (skip) _pprt+(1—p)p2 n1 (5t (skip)

= )\(C,O’) m . 771|Skip(c, U) + (1 - m) . 771|Skip(c, U) (by Lem. 165

= 11 |skip @m 2 |skip-

— p1>0Apy=0.
By Lem.we know (7]1 By nQ)(Stmt)(skip) _ (m(Stmt) Dy 772(Stmt))(skip) —
p-m 5 (skip) + (1 — p) - 725 (skip) = p-p1 + (1= p) -p2 = p-p1 > 0.
From 0 = py = 75 (skip) = 3°, n2(skip, o) we know 7 (skip,o) = 0
for all o, thus

(nl @p n2)|skip . .
= \(C, o). XEKip) (n&pna)(skipo) (1o, [T65)

)- HPr(b)]](nlEDpng)(State)
=\, o). x(C=skip)-(p-n (skip,o)+(1—p)-n2 (skip,o))
= )\(C 0—) X(C:Skip).p.nl(skig’gi
= AC, o). X(C:Skips):%(Skipﬁ)

n1 (Stmt) (Skip
= 11 |skip- (by Lem. [165)

- p1= 0Apy > 0.
By Lem. [12|we know (111 @, 7o) > (skip) = (11 50 &, (570 (skip) =
p-m S (skip) + (1 —p)- 725 (skip) = p-p1+(1—p)-p2 = (1—p)-p2 > 0.
From 0 = p; = 1, 5" (skip) = 3°_ n: (skip, 0) we know 7, (skip,o) = 0
for all o, thus

(7]1 @p 772) |skip
X

_ (C:Skip)'(n1®pn2)(5kip’g)
= A(C,0) [Pr®)](,, 5, np)(State) (by Lem. [165])
=\, o). x(C=skip)-(p-n1 (skip,o)+(1—p) -n2(skip,o))
=\C,0) (C=skip)-(1—p)-ns(skip,o)

7 . . (1_17)'1{2
= )\(C’ 0—). x(C=skip)-n2(skip,o)

72 (Stmt) (Skip
= 7)2skip- (by Lem. [165)

— pP1 = 0A Do = 0.
By Lem. [12| we know (n; @, n2)*"™? (skip) = (1 (5™ @, 0, (5tm9)(skip) =
p - m5m I (skip) + (1 — p) - 5™ (skip) = p - p1 + (1 — p) - ps = 0. By
Lem. we know (11 @, 12)|skip = undefined.



Lemma 289. For all n, R, q, if n =5 ', 5t = [q] and sta(q, R), then
7 (= Tal.
Proof. For all n, R,n',q such that 7 it 7', ntStete) = [q] and sta(q, R), from

State) Fpr(State) o, there exists @ such that

7 RS 7’ by Lem. ﬁ we know 7'
d0m<6) — n(State)7 ,',.ange(e) — ,),II(State) and 6 g [[R]] To prove n,(State) IZ I—q~|’

77/(State)) 77/(State))

we need to prove for all o/ € supp( , 0 = q. For all ¢’ € supp(

1(State)

from range() = 7 we have ¢’ € range(d), thus there exists o such that
(0,0") € 6, so o € supp(h). From dom(#) = n(5t**) we know o € 1(5t¢). From
nState) = [q] we have o |= q. From (0,0’) € § and 0 C [R] we know (0, 0’) |= R.
From o = q and sta(q, R) we have ¢/ = q.

Lemma 290. ForallQ,n,n’, if disablesplit(Q,n) and supp(n’(smt)) C supp(n(Stmd),

then disablesplit(Q,n’).

Proof. For all Q,n,n’ such that disablesplit(Q,n) and supp(n’(smt)) C supp(n(Stmd),

to prove disablesplit(Q,n’), we need to prove disablesplit(Q,C) for all C' €

supp(n’(Stmt)). For all C € supp(n’(smﬁ)7 from supp(n’(Stmt)) C supp(nSt™)) we

know C € supp(nS*™). From disablesplit(Q,n) we know disablesplit(Q, C).
Lemma 291. For all Q,n,0,7, if disablesplit(Q,n) and n(5*) = Q, then
n~(6,7") if and only if n = (6,7').

Proof. For all Q,n,0,n such that disablesplit(Q,) and 1(5t¢) |= Q, there are

two cases: nextsplit(n) = {split(by,...,bg)} or #nextsplit(n) > 1. we prove the
two cases respectively.

— neatsplit(n) = {split(by,...,bx)}.

There exists C and o such that (C, o) € supp(n) and nextsplit(C) = {split(by, ...

From (C,0) € supp(n) we know C € dom(supp(n)), by Lem. [21| we know
dom(supp(n)) = supp(nSt™), so C' € supp(nS™)). From disablesplit(Q, 1)
we know disablesplit(Q, C). From nextsplit(C) = {split(by,...,bx)} we
know disablesplit(Q, split(by, ..., b)), thus there exists ¢ such that Q =
[b;]. From 7/ %" = Q we know /"' = [b,]. To prove n ~ (6,7') if and
only if n < (6,7n), we prove the two directions respectively.
e if 5~ 1, from /%" = Q By Lem. we know 7'|true = 7. From
1~ 1, nextsplit(n) = {split(true)} and n’'|true =1’ we have n < 7.
o nextsplit(n) O {split(true)}.
#nextsplit(n) > 1, son N 7.
— if n < 7/, there are two cases.
e case 1: there exists 0" by, ..., bk, 4 such that n ~ n”, nextsplit(n) =
{split(by,...,bx)} and n"|p, = 7/'.
From nextsplit(n) O {split(true)} we know k = i = 1, b = true. By
Lem. we know 7 |yrue = 0”7, 50 ' = 05, = 7' |true = 0. From
n~n" we have n~ 7.

NI



e case 2: #nextsplit(n) > 1 and 1~ n'. trivial.

Lemma 292. ForallQ,C,o,p,C’, o', ifdisablesplit(Q, C) and (C,0) & (C',0"),
then disablesplit(Q,C").

),

Proof. Forall Q,C, o, p,C’, o’ such that disablesplit(Q, C') and (C, a) 2 (c,
(c’, o).

we prove disablesplit(Q, C’) by induction on the derivation of (C, o) >

—case 1: C =C' =skip,c =0',p=1.
From disablesplit(Q, skip) we know disablesplit(Q, C").
—case 2: C =x:=¢,C" =skip,0’ = o{z~ [e],},p=1.
From disablesplit(Q, skip) we know disablesplit(Q, C").
— case 3: C =skip; 05, "' =Cy,0 =0',p=1.
From disablesplit(Q, C) we know disablesplit(Q, Cs), i.e., disablesplit(Q, C").
— case 4: C' = Cy; Cy, Oy # skip, C' = C;Cs, (C1,0) B (¢}, 0").
IH: if disablesplit(Q, C;) then disablesplit(Q, C7).
From disablesplit(Q, C) we know disablesplit(Q, Cy) and disablesplit(Q, Cs).
From disablesplit(Q, C;) by IH we have disablesplit(Q, C}). From disablesplit(Q, Cs)
we have disablesplit(Q, C7; Cs), i.e., disablesplit(Q, C").
— case 5: C =if (b) then C; else Cs, [b], = tt,C" = Cy,0' =0,p=1.
From disablesplit(Q, C') we know disablesplit(Q, C}), i.e., disablesplit(Q, C").
— case 6: C = if (b) then C; else Cs, [b], =f1,C' = Cy,0' =0,p=1.
From disablesplit(Q, C) we know disablesplit(Q, C5), i.e., disablesplit(Q, C").
— case 7: C' = while (b) do Cy,[b], = tt,C" = Cy;while (b) do Cy,0" =
o,p=1.
From disablesplit(Q, C) we know disablesplit(Q, C1), thus disablesplit(Q, C;; while (b) do C1),
i.e., disablesplit(Q, C").
— case 8 C' = while (b) do C1, [b], = ff,C" = skip,0’ = o,p = 1.
From disablesplit(Q, skip) we know disablesplit(Q, C").
— case 9: C = (C4),C" = skip.
From disablesplit(Q, skip) we know disablesplit(Q, C’).
— case 10: C' = (C}) sp,C" = skip, ((C1),0) & (skip, o).
From disablesplit(Q, skip) we know disablesplit(Q, ).
— case 11: C' = (C1) @y (Co),C" = (Ch),0 =0',p=7'.
From disablesplit(Q, (C1)) we know disablesplit(Q, C”).
— case 12: C' = <C’1>@p< 2),C"={(Ca),c=0",p=1—-17p.
From disablesplit(Q, (Cs)) we know disablesplit(Q, C").

Lemma 293. For all Q,n,0,n, if disablesplit(Q,n) and n ~ (0,7n'), then
disablesplit(Q,n’).

Proof. For all @Q,n,0,n" such that disablesplit(Q,n) and 1 ~ (6,7n’), to prove

disablesplit(Q, n’), we need to prove disablesplit(Q, C’) for all C’ € supp(n’ (Stm)).
By Lem.we know supp(n’(smt)) = dom(supp( )). Forall C" € supp(n’(Stm))
we have C' € dom(supp(n)), so there exists o’ such that (C’,0") € supp(n’),

Le, n'(C",0') > 0. From n ~ (0,7') we know n'(C’,0") = > {n(C,0) - p |

)



(C,o) & (C’,0")} > 0, thus there exists C' and o such that 5(C,o) > 0,
p > 0and (C,0) & (C’,¢'). From n(C,0) > 0 we know (C,0) € supp(n),
so C € dom(supp(n)). By Lem. 21| we know dom(supp(n)) = supp(nSt™), thus
C € supp(n>*™). From disablesplit(Q, 1) we know disablesplit(Q, C). From
(C,0) 2 (C',0") by Lem. We have disablesplit(Q,C").

Lemma 294. For all Q,n,Cs, if disablesplit(Q,n) and disablesplit(Q, Cs),
then disablesplit(Q,n; Cs).

Proof. For all Q,n,Cs such that disablesplit(Q,n) and disablesplit(C5), to
prove disablesplit(Q,n; C2), we need to prove disablesplit(Q, C) for all C' €
supp(n;Cg(Stmt)). By Lem. we know supp(n;Cg(Stmt)) = dom(supp(n; Ca))
and supp(nS™M) = dom(supp(n)). For all C' € supp(n; Co5™), we have C €
dom(supp(n; C2)), so there exists o such that (C, o) € supp(n; Ca), i.e.,n; C2(C, o) >
0, thus there exists C; such that C = C1;Cy and n(Cq,0) > 0, ie., (C1,0) €
supp(n), so C1 € dom(supp(n)). From supp(nSt™)) = dom(supp(n)) we know
C, € supp(nS™). From disablesplit(Q, ) we know disablesplit(Q, C1). From
disablesplit(Q, C3) we have disablesplit(Q, C1; Cs), i.e., disablesplit(Q, C).

Lemma 295. For all @, n1, 19, p, if disablesplit(Q,n;) and disablesplit(Q, 72),
then disablesplit(Q,m &p 1n2).

Proof. For all Q,n1,n2, p such that disablesplit(Q, n;) and disablesplit(Q, n2),
there are three cases: p = 0, p = 1 or 0 < p < 1. We prove the three cases
respectively.

-p=0.
M Bpn2 = M1 Don2 = 2. From disablesplit(Q), 2) we know disablesplit(Q, 71 @,
n2)-

-—p=1
MmPBpn2 = M1@112 = n1. From disablesplit((Q), 1) we know disablesplit(Q, 714,
n2)-

-0<p<l1.
To prove disablesplit(Q, 71 ®,72), we need to prove disablesplit(Q, C) for
all C € supp((m Pp 172) ™). From 0 < p < 1 by Lem. u and Lem. ﬁwe
know supp((m @y 112) ™) = supp(n 0 @, 0o (9 = supp(m 50) U
supp(n, (5t For all C' € supp((n; ©, ng)(smt)), we have C' € supp(n; (50U
supp(m 5. There are two cases: C' € supp(n; 5™ or C' € supp(ne5t™).
If C € supp(n (5™)), from disablesplit(Q, 771) we know disablesplit(Q, C).
If C € supp(ny(5™Y), from disablesplit(Q, 772) we know disablesplit(Q, C).

Lemma 296. For alln, there exists 8 and n' such that n~ (0,7).

Proof. For all 7, let n/ ef MC'0"). 3¢ o An(Cro) -p | (C,0) 2 (C',6")} and
0={(c,0")|3C,C". n(C,0) >0A(C,0) L (C",0’) Ap > 0}, then n~» (6,7).



Lemma 297' FOT a'll Ra Ga q, Qa n,n,n2,p, Zfo < p < 1) (nl@pn27 Ra [q]) ':))IT\ILST
(G,Q), sta(q, R), scl(Q), Id = R and disablesplit([q], m©,n2), then (n2, R, [q]) =g,
(G, Q).

Proof. For all R, G, q,Q,n such that sta(q, R), scl(Q) and Id = R, we prove for
all gy, m2,p,if0 < p <1, (m®p12, R, [q]) =, (G, Q) and disablesplit([q],m )
n2), then (n2, R, [q]) =% (G, Q) by induction on n.

— base case: n = 0. trivial.
— inductive case: n = k + 1.

IH: for all n1,me,p, if 0 < p < 1, (m ®p 2, R, [q]) =, (G,Q) and

disablesplit([cﬂ » T ®p 772)7 then (7727 Rv [Cﬂ) ':>IN€ST (G’ Q)

For all n1,7m2,p such that 0 < p < 1, (m @, 2, R, [q]) =4l (G, Q)

and disablesplit([q],m @, 12), from 0 < p < 1 by Lem. we know

supp(m @p12) = supp(m)Usupp(nz), thus supp(n:) C supp(n) and supp(nz) C

supp(n). To prove (02, R, [q]) =FE! (G, Q), we need to prove

o if 1,5t (skip) > 0, then 7o|siip " ™ = Q.
From p < 1 we have 1—p > 0. By Lem. We know (m &, ng)(Stmt) (skip) =
(579 @,z (570 (skip) = p-m (5 (skip) + (1 —p) -9z (5™ (skip) >
0. From (m @, 12, R, [q]) =1 (G, Q) we have (1 §, n2)|skip(5t‘”e) -
Q. From supp(n2) < supp(1n®pn2), n2 5™ (skip) > 0 and (11 @y 12)
0 by Lem. 277 we know supp(nz|siip) € supp((m1 @ n2)|skip)- By Lem.
we have Supp<772|skip(3tat6)) g Supp((m EBp 772)‘skip(Stat6)) State) |:
Q@ and scl(Q) we have 772|skip(smte) E Q.
o pp(Stete) = [q].

From (771 @p 772»R7 [q—l) :>ZST (G7 Q) we know (771 @p 772) .
From supp(nz) C supp(n @, n2) by Lem. [24] we know supp(ns(State)) C
supp((m  12) "),
From (11 @, n2)**) |= [q] and sel([q]) we have n,(5) = [qf].

o for all nh, if o F% nh, then (%, R, [q]) =F, (G, Q). For all 5, such
q

(Stmt) (Skip) >

. From 72 |skip

(State)

R . " B o o
that 7 fH) 1%, there exists n4 and b such that n — n4, n5|, = n} and
q

%) = [q]. From Id = R by Lem. we know 7, +5 n1. From

0<p<1andn it 7y by Lem. We have 11 @, 12 kit m Bp 1.

Let pi = [Pr(b)],,, e and py = [Pr(b)],csiese). From nfly = 1 by
Lem. [205| we know py = [[Pr(b)]]ng(mm > 0. There are two cases: p; > 0
or p; = 0. We prove the two cases respectively.

* p; > 0.
Letp’dgm.ﬁom0<p<l,pl>Oandp2>0we
know p’ > 0. From 0 < p < 1, [Pr(b)],, (statey = p1 > 0 and
[[Pr(b)]]né,@me) =py > 0by Lem.we know (m1 @ 15) |6 = M |p®p

M5 ls = Mo ©p m5- By Lem. [20] we know supp(mils) € supp(m) C



supp(m@pna). By Lem. R4]we know supp(m|, **9)  supp((m @, 1) 5.

From (1 @, 72) ™™ = [q] and sel([q]) we know n,' % |=

[q]. From 7, = [q] and closed([q]) we know n],"5"? @,

n’z(smte) E [q]. By Lem. We know (11|, By %)(Smte) = n1|b(5t“te) Dy
State R
7,5 = [q]. From m1 @, 12 V5 1 @1, (11 @ 1)]s = m1lo @y 7

/

ate R
and (91]p ©pr 772)(St ) = [q] we know 11 @, 12 >;]’ M |p ©pr 5. From
(m @p 12, R, [d]) =48 (G, Q) we know (m1]y @ 15, R, [a]) =Ker

R
(G, Q)- From m @12 7 1 [ppr; by Lem. We know supp((m1|o ©p 15
supp((m ®p ng)(Stm)). From disablesplit(n &, 12) by Lem. M
we have disablesplit (1], @, 75). From 0 < p’ < 1 and (n1p ©p
M, B, [a]) =3, (G, Q) by TH we have (15, R, [q]) ==Y, (G, Q).
* p1 = 0.
From 0 < p < 1, [[Pr(b)]]m(smze) = p1 = 0 and [[Pr(b)]]né/(state) =
p2 > 0 by Lem. we know (m @, n5)|s = 15 s = 15. From n1 &,

R Stat
e S @y s (m @y )l = 1y and 7 = [q] we know

)(St’lnt)) C

R
m @pnz r . From (m ®p ma, R [al) =EEL (G, Q) we know

(5, R, [a]) =er (G, Q).

o for all Oo,7, if 73 = (02,n}), then 62 C [G], 0, |= [q] and
(5, R, [a]) =1er (G, Q).
For all 63,75 such that ne — (02,75), from supp(nz) C supp(m &,
12) by Lem. 23| we know supp(neS™) C supp((m @, 112) %™, From
disablesplit([q], 71 $,n2) by Lem. we know disablesplit([q], n2).
From 75 < (#a,75) and np(5**¢) = Tq] by Lem. we know 1y ~>
(02,m5). By Lem. there exists 6 and n] such that n; ~ (01,7)).
From 0 < p < 1 and 12 ~ (62,75) by Lem. we know my @, 12 ~
(6,UB5, 1, &,1m5). From disablesplit(n;&,12) and (1 &, 72) 5" = [q]
by Lem. we know ny @, n2 — (61 U 02,m) &, 15). From (1 @,
2, R, [a]) =15 (G, Q) we know 01065 € [G], (n] &y 7)™ = [al]
and (7] ©p 1, R, [q]) =F, (G,Q), thus 62 C 0; Uy C [G]. From
0 < p < 1by Lem. we know supp(ni @, 15) = supp(ni) U supp(nh) 2
supp(nb). By Lem. 24 we know supp(ip ™) € supp((n] @, np) ™).
From (n} &, 1) = [q] and scl([q]) we have n5*"**”) = [q]. From
disablesplit(n @, 72) and 71 @, 12 ~ (01 U 02,1 &, 15) by Lem.
we know disablesplit(n] @, n5). From (n] @, n5) =%, (G,Q) by IH
we have (15, R, [q]) =i, (G, Q)

Lemma 298. Forall R,G,Q,q,n,m1,m2,p, if (01, R, [4]) =T (G, Q) (2, R, [a]) m={er
(G,Q), closed(Q), 0 < p < 1, disablesplit([q],n1) and disablesplit([q],n2),
then (m ©p 2, R, [4]) = (G, Q).



Proof. For all R,G,Q,q,n such that closed(Q), we prove for all ny,n,p, if

(m, R, [a]) = (G, Q), (2, R, [a]) =={isr (G, Q),0 < p <1, disablesplit([q], 1)
and disablesplit([q],72), then (91 ©, 12, R, [q]) =1 (G, Q) by induction on

n.

— base case: n = 0. trivial.

— inductive case: n = k + 1.
IH: for all 11,72, p, if (1, R, [d]) ==l (G, Q), (2, R, [d]) =4 (G, Q)
0 < p < 1, disablesplit([q],7) and disablesplit([q],n2), then (1 @,
7727R’ |—q-|) ':>§ST (G7 Q)
For all 71,m2,p such that (n1, R, [q]) =E&" (G, Q), (2, R, [q]) =
(G,Q), 0 < p< 1, disablesplit([q],n:) and disablesplit([q],72), to prove
(771 EBLD 12, Ra (q]) ':>IN€;":F1 (G7 Q)v we need to prove

o if (1 By ng)(Stmt) (skip) > 0, then (1 @, 772)|Skip(smte) E Q.
Let p; % n (5 (skip) and po def o5 (skip). By Lem. [12| we know
(m @p12) ™" (skip) = (1 50 @, 59 (skip) = p-p, ) (skip) +
(1=p) 25" (skip) = p-p1+(1—p)-pa. From (1 @, np) > (skip) > 0
we know there are three cases: p; > 0 Aps > 0, p1 > 0Apy =0, or
p1 =0 A ps > 0. We prove the three cases respectively.
* pp > 0Ape > 0.
From (91, R,[q]) =4l (G, Q) and 7,5 (skip) = p; > 0 we
know 1 siip > = Q. From (ns, R, [a]) =55 (G, Q) and (5™ (skip) =
p2 > 0 we know n2|skip(smte) E Q. Let p/ def p.plf('fpipm. From
0<p<l,p>0andpy>0weknow 0 <p <1.From0<p<1,
715 (skip) = p; > 0 and 755%™ (skip) = py > 0 by Lem. [234] we
know (771 @p 772)|skip = 771|skip @p’ 772|skip- From 771|skip(smt6) ): Qa
772|Skip(State) ': Q and ClOSGd(Q) we have m ‘Skip(State) @p/ s |Skip(5tate) ':
Q.
* pp >0Apy=0.
From (91, R,[q]) =4l (G, Q) and 7, 5 (skip) = p; > 0 we
know 771|Skip(smm) E Q. From 0 < p < 1, 5" (skip) = p; > 0
and 1,5 (skip) = py = 0 by Lem. [234] we know (11 @, 172)|skip =
Mlskip = Q-
* pp =0Ap2 >0.
From (12, R, [q]) =58 (G, Q) and 75" (skip) = ps > 0 we
know 772|Skip(smte) = Q. From 0 < p < 1, n,(5*)(skip) = p; = 0
and 17,5t (skip) = py > 0 by Lem. we know (71 ®p 12)|skip =
772|skip = Q.
o (m @ 1) = [q].
From (1, R, [q]) =55 (G, Q) we know , (5%%) = [q]. From (s, R, [q]) =44
(G, Q) we know 12(5%%) = [q]. From closed([q]) we have n; (%) @,
no(Stte) = [q]. By Lem. we have (1 @, 772)(5“”6) = g (State) g
m50 = q].



R
o for all 7/, if 1 @y 12 - ', then (7, R, [q]) =F (G, Q).
R
For all 7 such that 11 &, 12 — 7', there exists n” and b such that m &,

2 R n', 0"y =1’ and n,(State) E [q]. From 0 < p < 1 and 71 @, it 7"’

by Lem. [235] there exists 7,74, p” such that 0 < p” < 1, 0" = n{ &y 15,
R R def def

m 1y and n = 0y Let pr = [Pr(b)],, state) and py = [Pr(b)],,, (state) -

From |, = ' by Lem. we know [Pr(b)],(sweie) > 0. By Lem. [12/and

Lem. 237 we know [Pr(b)],,(stare) = [[Pr(b)]](ni/@png)wmte) = [Pr(b)]

p- [Pr(b ]]ni/(State) +(1—-p)- [[Pr(b)]]né,(sme) =p-p1 +(1—p)-p2>0.
There are three cases: p1 > 0Aps > 0, p; > 0Aps =0o0r po =0Aps > 0.
We prove the three cases respectively.

,r){/ (State) @png (State) —

* pp > 0Ape > 0.
def .
Let p/ = W.From0<p” <1, pr > 0 and p; >
0 we know 0 < p’ < 1. From 0 < p” < 1, [Pr(D)],, state
p1 > 0 and [Pr(b)],,stetey = p2 > 0 by Lem. we know 1’ =
W'l = (3 @y )l = 1 1s By 715~ By Lem. [ we know 5/ 51519) =
ni’|b(5t“te) By n§’|b(5mt6). From 0 < p’ < 1 by Lem. we know
/(State)y __ /11 (State) 111 (State) 111 (State)
supp(n ) = supp(n{ |o JUsupp(ny [ ) 2 supp(n{ | )-
From n’(smte) E [q] and scl([q]) we know ni’|b(smw) E [q]. From

R R
m — nf we have n = n{]y. From (m, R, [q]) =4 (G,Q) we

R
know (n}]y, R, [q]) =, (G, Q). From ﬁ) nY|p by Lem. [188| we
q

q b(Stmt) ) (Stmt) )

. From disablesplit([q],n:)

know supp(n C supp(m

by Lem. 290] we have
disablesplit([q],n}|). Similarly we can prove (15 |,, R, [q]) =F,
(G,Q) and
disablesplit([q], 7§ 1,). From (1{ s, R, [a]) —=.r (G2 Q) (115, R, [a]) —=>ur
(G,Q),0 < p" < 1, disablesplit([q], n{|») and disablesplit([q], 75 |s)
by IH we have (n{ &pn3, R, [a]) =1 (G, Q). 1e., (0, R, [a]) =i
(©.Q).

* pp >0Apy=0.
From 0 < p” < 1, [Pr(D)],, statey = p1 > 0 and [Pr(b)],,(stare) =
p2 = 0 by Lem. I we know 1 — 1"}y = (1 @y 1)ls = 1 . From

R

m v 0l il = o' and 7’ £ [q] we have > 1. From
(m, R, [q]) =44 (G, Q) we know (0, R, [q]) =i, (G, Q).

* p1 =0Apy > 0.
From 0 < p” < 1, [Pr(d)],, sty = p1 = 0 and [Pr(b)],,(state) =
p2 > 0 by Lem. 238 we know o/ = 0|y, = (1 @pr 14)|s = 1 |s. From

e v, iy = i and /" = [q] we have n, % 7. From
(12, R, [a]) =48 (G, Q) we know (77, R, [q]) =4, (G, Q).



o for all § and 1/, if (1 ®p n2) < (6,7), then 6 C [G], "**™ = [q] and
(', R, [a]) ==, (G, Q)
For all § and 7' such that (m1 &, n2) — (6,7), from 0 < p < 1,
disablesplit([q],71) and disablesplit([q],n2) by Lem. we have
disablesplit([a],m @, ). From (i &, 1) ™" = [a] and (m &
n2) — (6,7') we know (m @p nm2) ~ (0,7). From 0 < p < 1 by
Lem. there exists 01, 602,17, 75 such that § = 0; U 02, ' = 0} &, b,
m ~ (01,m}) and 1y ~ (62, 75). From disablesplit([q], 1), m (5t =
[q] and m ~ (01,77) by Lem. |291) we know 71 — (61,77). From
(m, R, [a]) =48 (G,Q) we know 6 C [G], ™™ | [q] and
(1, R, [q]) ==k, (G, Q). Similarly we can prove 6, C [G], np*""” |=
[q] and (3, R, [q]) =k, (G, Q). thus § = §;U6, C [G]. By Lem.|12|we
have n/(State) _ (17,1 Sp né)(State) _ n/l(State) Sp né(State)' From ni(State ':
[al, """ |= [q] and closed([q]) we have 7'‘*** &= [q]. From
disablesplit([q],7;) and n; ~ (61, 7}) by Lem.[293|we have disablesplit([q],7}).
Similarly we can prove disablesplit([q], 7). From (7}, R, [q]) =,
(G,Q). (n3. R, [d]) = (G,Q), 0 <p <1, disablesplit([q], ;) and
disablesplit([q],75) by IH we have (7] @, n3, R, [q]) =1, (G,Q),
ie, (', R [q]) = (G, Q)

Lemma 299. FOT Gll Ra Ga Ia P7 Q) q, 027 n,n, Zf (777 R7 |—q-|) ':?I(ILST (G’ P)7 disablesplit( |_q-| ’ T/)f
disablesplit([q], Cs), sta(q, R), closed(Q), scl(P), Id = R, Id = G and

(6(C2) @ u, R, [ql)

F=tsr (G, Q) for all p such that i = [q] AP, then (1;C2, R, [q]) F={s; (G, Q).

Proof. Forall R,G, I, P,Q,q,Cy,nsuch that sta(q, R), closed(Q), disablesplit([q], Cs),
scl(P), Id = R and Id = G, we prove for all n, if (n, R, [q]) =¥ (G, P),
disablesplit([q],n) and (6(C2) ® i, R, [d]) =% (G, Q) for all p such that

w = [d] A P, then (n;Cq, R, [q]) =2, (G, Q) by induction on n.

— base case: n = 0.
— inductive case: n =k + 1.
IH: for all 0, if (n, R, [q]) ==X, (G, P), disablesplit([q],n1) and (§(Cs) ®
1, R, [q]) =3, (G, Q) for all psuch that v = [q] AP, then (1; Ca, R, [q]) ={s;
(G, Q).
For all ) such that (n, R, [q]) =%1! (G, P), disablesplit([q],n) and (§(C2)®
w R, [q]) =4 (G, Q) for all p such that u = [q] A P, by Lem. we
know (§(Co) ® p, R, [q]) =F., (G, Q) for all p such that pu = [q] A P. To
prove (n; Oy, R, [q]) =41 (G, Q), we need to prove
o if ;055" (skip) > 0, then 7; C2|Skip(smte) E Q.
n; Co 5t (skip) = > 1: C2(skip, o) = 0, which contradicts with 7; C, 5™ (skip) >
0.
o 7;C1) = [q].
From (1, R, [q]) =L (G, P) we know n(5*) |= [q]. By Lem. We
know 7p; C 51419 = py(State) | [q].



o for all o, if n; Co % 7', then (0, R, [q]) =F., (G, Q).
For all ' such that n;Cs % 7', by Lem. [209| there exists 1" such
that ' = 7";Cy and n % 7’ From (n,R,[q]) =34 (G, P) we
have (n”, R, [q]) =%, (G, P). From 7 % n” by Lem. we know

supp(n”"*"™) C supp(nSt™). From disablesplit([q],n) by Lem.

we have disablesplit([q],7”). From (7", R, [q]) =£,, (G, P), disablesplit([q],n")

and (6(C2) @, R, [q]) =F,, (G, Q) for all p such that u = [q] A P by

IH we have (n";C2, R, [q])

':>§ST (G’ Q)’ i'e'7 (77/’ R’ [q—l) ’:JNCST (G7 Q)'

e for all § and 7/, if n;Cy — (6,7'), then 6 C [G], /5t = Iq] and

(', R, [q]) = (G, Q).

For all # and 7’ such that 7; Co — (8, 7), from disablesplit([q],7) and

disablesplit([q]) by Lem. we know disablesplit([q],n; C2). From

n;Cy — (0,7') and 7; C,51® |= [q] by Lem. we have n; Cy ~»

(0,7'). There are three cases: 75" (skip) = 1, (5™ (skip) = 0, or

0 < n(5t™) (skip) < 1.

x 7St (skip) = 1.

From 75" (skip) = 1 by Lem. [13|we know 7 = §(skip) @ n(5tete).
By Lem. |18 we have n(5*™) = §(skip). From (n;Cs) ~ (6,1') by
Lem. and Lem. we know 0 = {(0,0) | o € supp(n'State))} C
[1d] € [G] and #f = 5(C5) © 7). From (1, R, [q]) =E8 (G, P)
we know 7(5t%) |= [q]. By Lem. [19] we know g (Stete) — p(State) =
[q]. From (™% (skip) = 1 by Lem. we have 1 = 1|skip, thus
,’7(State) _ 77|skip(State) ': P. From n(State) ': [q‘l we have n(State) ':
[q] A P. From (§(C2) ® i, R, [q]) =F,, (G, Q) for all u such that
p = [q] A P we know (6(Cy) @ ntSt) R [q]) =E.. (G,Q), i.e.,
O R, [a]) =,y (G, Q).

* From (n; Co) ~ (6,1) and n5™" (skip) = 0 by Lem.there exists
7" such that ' = 7"; Cy and n~ (6,7"). From disablesplit([q], )
and n(Stete) = [q] by Lem. [291|we have < (6,7"). From (0, R, [q]) ==Ft1
(G P) we know 6 C [G], """ |= [q] and (1", R.[q]) =ker
(G, P). From disablesplit([q],n) and 5 ~ (6,1") by Lem. 293
we know disablesplit([q],7”). From (7", R, [q]) =F,. (G, P) and
(5(Co) @ p, R, [q]) =F,, (G, Q) for all pu such that u = [q] A P
by IH we have (775; Co, R, ’—q“) ’:>]1\CIST (Gv Q)v Le., (77/7R7 |—q‘|) ':>§ST
(€.Q).

* 0 < 7S (skip) < 1.

Let p def 75t (skip), then 0 < p < 1. By Lem. there ex-
ists 71 and 7o such that n = n @, 72, m ™ (skip) = 1 and
1795t (skip) = 0. By Lem. we know 7; Cy = (01 @y 12); Co =
(113 C2)@p(n2; C2). From n; Oy ~ (0, ') we know (913 C2)By (n2; C2) ~
(6,7"). From 0 < p < 1 by Lem. there exists 61,62, 1}, n, such



that 0 = 01U02, 0 = @15, (11;C2) ~ (01,1m1), (12; C2) ~ (02, 153).
From 7, (5™ (skip) = 1 by Lem.we know 7, = &(skip)®n, (State),
By Lem. |18 we have 1, (5% = §(skip). From (11; C) ~ (61,7}) by
Lem. and Lem. we know 61 = {(0,0) | o € supp(n; 5t}
and 7] = 6(Cq) ® 1, 5% From 1, (5™ (skip) = 1 by Lem. we
know 11 ~ ({(0,0) | o € supp(n; (51*))}, §(skip) @ n; (5tete)) e,
m ~ (61,m). From (1123 C2) ~ (6, 75) and (%) (skip) = 0 by
Lem. there exists ny such that n, = nf;Cy and ny ~ (02,75),
thus 7' = 1} @, 0 = (5(C2) @ n, 5149) @, 772,02 From 0 < p < 1,
m ~ (01,m1) and 12 ~ (02,75) by Lem. we know 11 @p 02 ~
(01U02,m &p 1y ), e, n~ (6,m1 ®p15). From disablesplit([q},n)
and 7(Stt) = [q] by Lem. we have n < (6,171 @, n%). From

(n, R, [q]) =k (G, P) we know 6 C [G], (m @, ,72)<State) ]
and (771 697’ n/Q/’R’ |—q~|) ':JI\CIST (va) By Lem. Lem. (19| and
(State)

Lem. [201] we know n/**™) = ((8(C2) @, (5)) &, né’; )21 =
(5(02) ®m (State))(State) Dy (7] C, )(State) m (State) Dp 7 //(State) o

(m @y 7). From (i @, ) ™" |= [q] we have 50 |
[q]. From (1, R, [q]) ==L (G, P) and 55" (skip) > 0 we know
n|skip(smte) E P. From 0 < p < 1 by Lem. we know supp(n) =
supp(m @yn2) = supp(ni)Usupp(n2) 2 supp(i). From 559 (skip) >
0 and 7; 5" (skip) = 1 > 0 by Lem. we know supp(n1|skip)

supp(n|skip)- By Lem. ﬁwe know supp(m |Skip(5mte)) C supp(n|skip

(State))
F (State) (State)
rom 7|skip E P and scl(P) we know 71|skip E P
From 7, (5™ (skip) = 1 by Lem. we have 11 = 11]skip, thus

m ) = ilaap ™™ = P. From (n, R, [q]) =L (G, P) we

know 7(5tt¢) |= [q]. From supp(n;) C supp(n) by Lem. 24| we know

supp(n, (State)) C supp(n(smte)). From n(Stet) = [q] and scl([q]) we

know 7, (9%t = [q]. From 771 (State) = P we have i, (5%9t¢) = [q -|/\P

From (§(Co)®u, R, [q]) =F., (G, Q) for all psuch that u = [q]AP

we know (8(Co) @ m ) R, [q]) F=F,, (G, Q). From supp(m) C

supp(n) by Lem. 23| we know supp(n, SD) C supp(n(5*™). From
disablesplit([q],7) by Lem.[290| we have disablesplit([q], 7;). Sim-

ilarly we can prove disablesplit([q],n2). From ns ~ (62,75) by

Lem. we know disablesplit([q],n%). From disablesplit([q],71)

by Le we know disablesplit([q],m @, 75 ). From 0 < p < 1,

(m ©p 15, R, [q]) =k, (G, P), sta(q, R), scl(P) and Id = R by
Lem.we have (75, R, [q]) =, (G, Q). From disablesplit([q],n%)

and (6(C2)®@p, R, [q]) =k, (G, Q) for all p such that 1 = [q] AP

by IH we have (n%; C2, R, [q]) =X, (G, Q). From disablesplit([q], C2)

by Lem. we know disablesplit([q],5(Cy) @n; (5%t)). From 0 <

p<l1, (6(02)®n1(smte)a R, ((ﬂ) r:>§ST (Gv Q)» (77§/§ Cy, R, ((ﬂ) ':>§ST

(G,Q), closed(Q) dlsablespllt(f 1, C2) and disablesplit([q],

5(Cz)®m (8tate)) by Lem. [298|we know ((6(C2)@m )@ ,n5; Co, R, [d]) F=Ker
(G.Q), i, (1 R, [a]) =Ty (G, Q).



Lemma 300. For all R,G,q,P,Q,b,C, if R,G,[q] Exsr {P A [0]}C{P}, P A
[-b] = Q, closed(Q), Sta(P, R, true), Sta(Q, R, true), sta(q, R), disablesplit([q], C),
scl(P), Id = R and Id = G, then R,G, [q] FEysr {P}while (b) do C{Q}.

Proof. For all R,G,q, P,Q,b,C such that R,G,[q] Exsr {P A [b]}C{P}, P A

[-b] = Q, closed(Q), Sta(P, R, true), Sta(Q, R, true), sta(q, R), disablesplit([q], C),
scl(P), Id = R, Id = G, to prove R, G, [q] Exsr {P}while (b) do C{Q}, we

need to prove for all p and n, if 4 = [q] A P, then (§(while (b) do C,pu) ®

w, R, [q]) =T (G, Q). For all p and n such that u = [q] A P, by Lem.

and Lem. [19[ we know é(while (b) do C) ®M(Stmt) = §(while (b) do C') and
§(while (b) do C) ® ') = ;i |= [q] A P. To prove (5(while (b) do C, ) ®

u, R, [q]) =1, (G, Q), it suffices to prove for all , if n(5™") = §(while (b) do C))

and n(5tt®) = [q] A P, then (9, R, [q]) =2, (G, Q). We prove it by induction

on n.

— base case: n = 0. trivial.
— inductive case: n =k + 1.
IH: for all 5, if 75" = §(while (b) do C) and n(5*¢) = [q] A P, then
(1, R, [a]) =k (G, Q).
For all 7 such that (5™ = §(while (b) do C) and 7% |= [q] A P, to
prove (n, R, [q]) =k%! (G, Q), we need to prove
o if (59 (skip) > 0, then nlakip "™ = Q.
n(Stm) (skip) = §(while (b) do C)(skip) = 0, which contradicts with
n(Stmt)(skip) > 0.

n(State) = [q].
From 7(5%9t¢) = [q] A P we know n(5t¢) |= [q].

e for all 7/, if n % 7', then (7', R, [q]) =F (G, Q).
a

For all 7" such that 7 %’ 7', by Lem. [188 we know supp(n'*™) C

q
supp(nSt™). From 55" = §(while (b) do C) by Lem. 27| we know
AR d(while (b) do C). From Sta(P, R, true) we know Sta(P, R, [q]).

From n(5t¢) \= [q]AP and n % n' by Lem.we have i/ 5" = [q] A
q

P. From 1/®"™" = §(while (b) do C) by IH we have (1, R, [q]) =,
(G, Q).
e for all § and 7/, if n — (6,7), then 0 C [G], r]’(smte) E [q] and
(', R, [a]) =5 (G, Q).
For all § and 7’ such that n < (,7'), from n(5*™) = §(while (b) do C)
by Lem. we know nextsplit(n) = {nextsplit(while (b) do C)} =
{split(true)}. From n < (6,n") by Lem. we have n ~ (6,7).
There are three cases: n(St@) |= [b], n(State) = [—b] or n(Stete) £
[b] A n(State) LL [p]. We prove the three cases respectively.
% n(State) ': fb-‘
From 55" = §(while (b) do C), nt*t) = [b] and n ~ (6,7) by
Lem. and Lem. we know 0 = {(0,0) | o € supp(n'State))} C



[Id] C [G] and ' = §(C;while (b) do C) ® n5t**). By Lem.
we know 7' = §(C) ® (5%t while (b) do C. By Lem. we

know 7/ (9% = p(State) = [q]. From disablesplit([q],C) we know
dlsablespht([q] while (b) do C). From dlsablespllt(( 1, while (b) do C)
by Lem. 2 we know disablesplit([q], §(C )®7} (State). while (b) do C).
From R,G,[q] Exsr {P A [b]}C{P} and n(State) ’: [q] A P we

know (6(C) ® n St R [q]) =, (G,P). From TH we have
(§(while (b) do C)®u, R, [q]) =k, (G Q) for all u such that p =

[a] AP. From (§(C)@n'S**), R, [q]) ==, (G, P), disablesplit([q],5(C)®
n(State)) - disablesplit([q], while (b) do C), sta(q, R), closed(Q),

scl(P), Id = R and Id = G by Lem. we have

(8(C)@n5a); while (b) do C, R, [q]) ==, (G, Q). 1., (0, R, [d]) s
(G, Q).

n(State) ': |——\b—|.

From n(State) = [q] A P, we know 7(5%t) = [q] A Py A [b].

From Py A [-b] = Q we know n(5t) = [q] A Q. From n(5tmt) =
§(while (b) do C), n(St) = [=b] and 7~ (0,7') by Lem. and
Lem.we know 0 = {(0,0) | o € supp(n'Stet9))} C [Id] C [G] and

' = 6(skip) @ n(5t¢) By Lem. [18 and Lem. [19| we know »/ 5™ =

5(skip) and 5/ (%" = p(State) = [q] A Q. From Sta(Q, R, true) and

I = true we know Sta(Q, R, [q]). From Id = G, n’(smt) = ¢(skip),

and 7/ = [q] A Q by Lem. we know (1, R, 1) =k .

(Gl V G, Q)

n(State) b’é |'b“ /\n(State) b’é |—_‘b .
From 7(5%et¢) k£ [b] by Lem. we know [Pr(b)], (statey # 1. From

nState) kL [-b] by Lem. we know [Pr(b)], sty # 0, thus

0 < [Pr(b)],sweo < 1. Let p % [Pr(b)], s, then 0 < p <

1. By Lem. 285 there exists 71 and 7 such that n = 1 ® n2,
n 5tete) = [b] and 7,(5%t®) \= [-b]. From n ~ (#,7) we know
m ®pn2 ~ (0,1'). By Lem. there exists 61, 62,7],n5 such that
0 =061U02, 0 =ny @ n's m ~ (01,n)) and n2 ~ (62,73). From
0 < p < 1by Lem. we know supp(n) = supp(m ®p n2) =
supp(n)Usupp(nz), thus supp(ni) C supp(n) and supp(nz) C supp(n).
By Lem. [23| we know suppi(StMt)) C supp(nSt™)) From n(Stmt) =
27

§(while (b) do C)) by Lem. [27|we know 7; (5™ = §(while (b) do C).
Similarly we can prove 5" = §(while (b) do C). From nl(Stmt) =
§(while (b) do C©), n;(5%) |= [b] and 7 ~ (91,771) by Lem.
and Lem. We know 01 = {(0,0) | o € supp(n (5*9*)} and 7] =
§(C; while (b) do C) ®@n; (5%, From n2<5tmt> = 6(Whlle (b) do C)
no(State) = [=b] and 1y ~» (91,771) by Lem. and Lem. we
know 0y = {(0,0) | o € supp(nz(59*))} and 0}, = 6(C; while (b) do C)®
no(5tate) thus @ = 6, Uy C [Id] C [G]. By Lem. 217 we know ' =

M @pny = (6(C; while (b) do C)@n, (5719 @, (5(skip) @, 5ot =
(6(C)@n,(5%t9); while (b) do C) &, (5(sk1p)®n2(5t“te)) By Lem.[12]



and Lem. we know n/(State) _ nl(State) Dy ng(State) = n(State) |:

[q]. From disablesplit([q], C') we know disablesplit([q], while (b) do ().
From disablesplit([q], C) and disablesplit([q], skip) by Lem. 286

we know disablesplit([q], §(C)®@n; (5?%)) and disablesplit([q], §(skip)®
nz(5tate)). From disablesplit([q], §(C)@n; (519 and disablesplit([q], while (b) do C)
by Lem.we know disablesplit([q], 5(C)@n; (5%*); while (b) do C).
From scl([q]) and scl(P) we know scl([q] A P). From supp(n1) C

supp(n) by Lem. 24| we know supp(m; (5t%*)) C supp(n(5tet®)). From

ntState) = [q] AP and scl([q] A P) we know 7, (5t%%) |= [q] AP. From

R,G, [a] Fxer {PABTIC{P} we know (3(C)an; (4949, R, [q]) =k,

(G, P). From IH we have (§(while (b) do C) ® u, R, [q]) =,

(G, Q) for all ysuch that u = [q]AP. From (§(C)@n, (5t R [q]) ==k,
(G, P), disablesplit([q], §(C)®mn, (5t4t9), disablesplit([q], while (b) do C),
sta(q, R), closed(Q), scl(P), Id = R and Id = G by Lem. [299

we have (6(C) @ n;(5%*); while (b) do C,R,[q]) =%, (G,Q).

From supp(nz) C supp(n) by Lem. we know supp(n,(Stet)) C
supp(ntState)). From 55t = [q] A P and scl([q] A P) we know

772(State) ': |'q‘| A P. From ,'72(State) ': ’—_'b‘l we know ,'72(State) ':

[q] A P A [-b]. From P A [-b] = Q we know (5% |= [q] A Q.

From Sta(Q, R, truﬁ and [q| = true we know Sta(Q, R, [q]). By

Lem. [18[ and Lem. [19| we know (J(skip) ® ng(smte))(smt) = (skip)

and (3(skip) & 1, (57%9)' ™" — py(51919) 1= [q] Q. From Sta(Q, R, [q))
and Id = G by Lem.we know (5(skip)®n(5t9%) R, [q]) =k,
(G, Q). From (§(C)®@n,5**): while (b) do C, R, [q]) =k, (G, Q),
(3(skip)m (59, R, [q]) =k, (G,Q),0 < p < 1, disablesplit([q], 6(C)@
m (State). while (b) do C) and disablesplit(§(skip) ® 7, (5*%t)) and
closed(Q) by Lem. We have ((§(C)@mn; ***¢); while (b) do )@,
(d(skip) ® o), R, [q]) ={sr (G, Q) i, (0, R.[a]) ==
(G. Q).
Lemma 301. ForallR,I,G,Q,q,n,n, ifnSt®) =1, (n, R, [q]) =2, (G,Q),
disablesplit([q],n), sta(q, R), Id = G, and Vz € fv(I). G = Inv(z), then
(n, B, I) ==sr (G, Q)

Proof. For all R, I,G,Q,q,n such that sta(q, R), Id = G and Vz € fo(I). G =
Inv(zx), we prove for all 5, if n(St) |= T (n, R, [q]) =", (G, Q) and disablesplit([q],7),
then (n, R, I) =7, (G, Q) by induction on n.

— base case: n = 0. trivial.
— inductive case: n = k + 1.
IH: for all n, if ntStete) = I (n, R, [q]) =F,, (G,Q), disablesplit([q],n),
then (n, R, I) =t (G,Q).
For all 1) such that n(5%%®) = I (n, R, [q]) =*E! (G, Q), disablesplit([q],n1),
to prove (1, R, I) =F1! (G, Q), we need to prove
o if n(5t) (skip) > 0, then 77|Skip(smte) E Q.
From (1, R, [q]) =%+ (G, Q) and n(S™™ (skip) > 0 we know n|siip' ™% =
Q.



° n(State) ': I
By assumption.

R
e foralln/, ifn - ', then (n/, R, I) =F (G, Q).
R
For all i such that n - 7', there exists " and b such that n i n”,

n"|y =n' and n’(smte) & I. From g LS n” and sta(q, R) by Lem. we

have 7”"%"*¢) = [q]. From 7"|, = 7 by Lem. [20{ we know supp(n’) C
supp(n'). By Lem. [24] we know supp(n’ ") C supp(n”**™*)). From

n//(State) /(State) ': "(ﬂ From n '_R> 77//

E [q] and scl([q]) we know 7
R
and 7|, = 7’ we know g = 7. From (n,R,[q]) =3l (G,Q) we
know (', R,[q]) =k, (G,Q). From n % 7’ by Lem. |188| we know
q

/(Stmt) (Stmt)

supp(n ) € supp(n'>™?).
From disablesplit([q]|,n) by Lem. we know disablesplit([q], 7).
From 5™ |= I, (i, R, [a]) =>}.x (G, Q), disablesplit([q],n’) by
IH we have (7', R, I) =k, (G, Q).

o forall @ and 7/, ifn < (6,7), then 6 C [G], n'**™®) &= I and (v, R, ) =h
(G,Q).
For all § and 7’ such that  — (0,7'), from (n, R, [q]) =*{! (G,Q)
we know n(5%¢) = [q]. From disablesplit([q],7) and n < (8,7)
by Lem. 291] we know 7 ~ (8,7/). From (1, R, [q]) =*&! (G, Q) we
know 0 C [G] and (7, R, [q]) =%, (G,Q). From 0 C [G] and Vx €
fo(I). G = Inv(x) we know Vz € fu(I),(0,0") € 6. o'(z) = o(x). From
n ~ (0,1') by Lem. we know n’(smm)|fv([) = n(SmtE)|fv(I). From
n(State) = T by Lem. [272|we know /") = I. From disablesplit([q], 1)
and 7~ (6, 7) by Lem. [293|we have disablesplit([q],7’). From /%' |=
I, (W,R,[q]) =, (G,Q) and disablesplit([q],n’) by IH we have
(', R, 1) = (G, Q).

1
[

Lemma 302. ForallR,I,G,Q,q,n,1m,m,1,p, if0 <p<1,1n=md,((skip)®
p), ) = I Q, (m.R.[d]) Bl (G,Q), disablesplit([q],m),
closed(Q), sta(q, R), Sta(Q, R, true), Id = G and Vx € fv(I). G = Inv(z),
then (n, R, I) = (G, Q).

Proof. For all R, I,G,Q,q,n such that closed(Q), sta(q, R), Sta(Q, R, true),
Id = G and Vo € fo(I). G = Inv(z), we prove for all n,m,u,p, if 0 < p <

L = m @, (5(skip) ® ), n*) = I, p = Q, (m, R, [q]) =1 (G,Q),
disablesplit([q], m1), then (n, R, 1) =2, (G, Q) by induction on n.

— base case: n = 0. trivial.

— inductive case: n =k + 1.
IH: for all 1, my, 1, p, if 0 < p < 1, 1 = @y (3(skip) @ p), n5*) = 1, b=
Q. (m, R [a]) =k, (G,Q), disablesplit([a],n1), then (1, R, ) ==k,



G,Q).
;or gl)l n,m, i, p such that 0 < p < 1, n =m &, (6(skip) ® ), p(State) = T,
pEQ, (n, R, [d]) = (G,Q), disablesplit([q],n1), to prove (n, R, I) =3
(G,Q), we need to prove
o if n(5t™%) (skip) > 0, then 77|skip(smte) E Q.
By Lem. 19 we know (6(skip) @ p)*"™ (skip) = &(skip)(skip) = 1.

By Lem. we know (d(skip) ® p)|skip = (6(skip) ® p). Let py def

n (540 (skip). There are two cases: p; = 0 or p; > 0. We prove the two
cases respectively.
* P11 = 0.
From 0 < p < 1,7, 5 (skip) = p; = 0 and (6(skip) ® ,u)( skip) =

1'> 0 by Lem. 25§ we know nlu — (1 @, (3(skip) & 1)) oy —
(5(skip) ® 11)|skip = (8(skip)®yp). By Lem. [19|we know nsiip **** =

(8(skip) ® 1) %" = 1. From 1 |= Q we know nlaip ™™ = Q.

Stmit) (

def . .
Let p/ = Ml’jri’(’iﬂ)). From 0 < p < 1, ;5% (skip) = p; > 0 and

(6(skip) ®,u)(5tmt) (skip) = 1 > 0 by Lem. we know 7)|skip =
(m ©p (0(skip) @ u))skip = M lskip Spr

(6(skip) ® ) |skip = M1 |skip@®y (6(skip)®p). By Lem.[T2and Lem. [I9) .
we know 77|Skip(State) M |sk lp(State) By (8(skip) ® ‘u)(State) = 01 |ski (State) By
w. From (n1, R, [q]) t:ﬂ,j;gl (G, Q) and 7, (5t (skip) > 0 we know
771|Sk1p(State E Q. From p = Q and closed(Q) we know 1, |Skip(State) By

Q,ie. 77|sk1p (State) ): Q.
. (State ':I

By assumption.
e for all 7/, if n % ', then (n/, R, I) =F (G, Q).

For all 7/ such that n ? 7', i.e., m @, (0(skip) @ p) % 7’. There exists
n" and b such that 1, @, (5(skip) @ p) it n”,n"|p =17 and g (State) E1.
From n1 @, (4(skip) ® u) it 7" and 0 < p < 1 by Lem. there exists
! 0y, p" such that 0 < p” < 1, 1" = 0 ©pr nlf, m1 5 771’ and J(skip) ®
e ny. From 0’|, = 7’ by Lem. we know [Pr(b)], sty > 0. Let

| def [Pr(d)] oy (State) , P2 & [[Pr(b)ﬂ y (state) . By Lem. 2 and Lem. Hwe
know [Pr(0)], (state) = [[Pr(b)}]o7 '®,m
p// . [[Pr(b)]]ni/(.s'tate) + (1 —p//) . [[PI‘( )II //(State) - p P11 + P2 > O
There are three cases: p1 > 0Aps = 0, p1 =0Ap2 >0orp; > 0/\])2 > 0.

We prove the three cases respectively.
xpp > 0Apy = 0. From 0 < p < 1, [[Pr(b)]]ni,mmm) = p; and

[[Pr(b)]]né,@me) = pa by Lem.we know 1’ = 0"y = (0} ©pr 13)|p =
W lp- From (n1, R, [q]) =44 (G, Q) we know 1) = [q].

//)(State) == [[PI’ b //(State)® /,n//(State) ==



From kit 1y and sta(q, R) by Lem. we have r]i’(smte) E [q].

From 7y, = n' by Lem. we know supp(n’) C supp(n)). By
Lem. We know supp(n S C supp(n}S***)). From (51 =

[q] and scl([q]) we know 7} = [q]. From m it ny and

R
nls = n' we know = n'. From (n1, R, [q]) =5 (G,Q) we

R
know (7, R,[q]) =%, (G,Q). From n, = 1" by Lem. we
q

know supp(n’ ™) C supp(n (5t™)). From disablesplit([q],n:)
by Lem. we know disablesplit([q],7’). From o5 = 1,

(', R, [q]) =k, (G,Q), disablesplit([q],”’), sta(q, R), Id = G
and Vz € fu(I). G = Inv(z) by Lem. we have (', R, I) =F_,
(G.Q).

* pp =0Ap2 > 0.

From 0 < p < 1, [[Pr(b)]]ni,(mte) = p; and [[Pr(b)]]ngwme) = po

by Lem. we know o' = 0|y = (0 ©pr 15)ls = n%p. From
R
5(skip) ® p it ny and n4|, = ' we know §(skip) ® u o 7. By

Lem. we know supp(n’(Stmt)) C supp((6(skip) ®M)(Stmt) . By
Lem. we know (d(skip) ®M)(Stmt) = §(skip). By Lem. we

/(Stmt) _ 6 (skip). From d(skip) ® u gﬁ n', p E Q and
rue

Sta(Q, R, true) by Lem. |[186| we have n/(State) E Q. From n’(smte) =
I we know /%" = I A Q. From Sta(Q, R, true) and I = true we

have Sta(Q, R, I). From Id = G, 5/ ®™ = 5(skip), %) = TAQ
by Lem. we know (', R,I) =* . (G,Q).

* pp > 0Ape > 0.

L s def p’p1 "
etp—mFrom0<p <1,p1>0andp2>0
we know 0 < p' < 1. From 0 < p < 1, [Pr(b)], sty = p1 and
[[Pr(b)]]né/(State) = ps by Lem.we know 1’ = n"|, = (0} ®pr 15)|p =
W lo ®p 03]y From (n1, R, [a]) =44 (G, Q) we know 1y (5%) |=
[q]. From n; ©5 ¢ and sta(q, R) by Lem. we have nf/(51%9) |=
q]. By Lem. [20| we know supp(ny|s) C supp(n}). By Lem. [24] we

Uit Ui
know supp(n{|y'™**”) € supp(nf****). From nf**" = Tq] and

scl([q]) we know 7/[,"*"® = [q]. From 5, =% 7/ we know n; Fi]

know 7

q
77/1I|b' From (7717 R, [Cﬂ) ’:>§;r1 (Ga Q) we know (7711/|b7 R, [Cﬂ) ':>§ST
(G, Q). From é(skip)®pu ki ny by Lem.we know supp(né’(smt)) -

supp((d(skip) ® u)(Stmt)). By Lem.we know (d(skip) ® ,u)(Stm) =
5(skip). By Lem. [27 we know 5}*"™ = §(skip). By Lem. |L3| we

know 7} = &(skip) ® n}**'? . From [Pr(b)],ystarer = p2 > 0 by



Lem. |242| and Lem. we know 7|, = (d(skip) ®77”(St“te))|b =

6<skip> ® n2<“““>|b = &(skip) @ 74,5, thus 1 = n{|p ©p

‘ (State) )

nyle = 0 |b ®p (d(skip) @ n5 s . From 4(skip) ® p il ny we

know §(skip) ® u i 7Y ]p. From p | @ and Sta(Q, R, true) by

Lem. We have n41p (Smte) E Q. From F} nY|p by Lem. We

know supp(n!|,"*™) C supp(n,St™)). From disablesplit([q],n:)

by Lem. we know

disablesplit([q],n{|s). From 0 < p’ < 1, 0" = n{|p Bp (6 (skip)

7o ), of P = 1y = Q, (oo, R, [a]) =y (G Q)

and disablesplit([q],n{|s) by IH we have (v, R, I) t:>’§ST (G, Q).

e forall @ and 7/, ifn < (6,7), then 6 C [G], n’**™®) &= I and (1, R, ) =

(G.Q).
For all 6 and 7' such that n < (6,7n'), from 0 < p < 1 by Lem. [243
and Lem. we know nextsplit(n) = nextsplit(m @, (d(skip) ® pn)) =
nextsplit(ny ) Unextsplit(d(skip)®@u) D nextsplit(d(skip)®@u) = {nextsplit(skip)} =
{split(true)}. From n < (6,7") by Lem. we know 1 ~ (6,7),
ie., m @, (0(skip) @ p) ~ (6,7'). From 0 < P < 1 by Lem.
there exists 601, 602,m), 15 such that § = 6, Ubs, ' = 0} &p 15, M1 ~
(01,11,), 6(Skip) @ i~ (0,15). From (ny, R, [a]) ==E51 (G.Q) w
know 7, (5%%°) = [q]. From disablesplit([q],7;) and 7 ~» (01,7)1) by
Lem. we know 1, < (61,m}1). From (n1, R, [q]) ,:>k+1 (G,Q) we
know 6; C [G] and (7}, R, [q]) =%, (G, Q). By Lem. [I§ and Lem.
we have §(skip) ® u™" = §(skip) and &(skip) ® p°*"® = yi. From
0(skip) ® p ~ (02,1%) by Lem. and Lem. [[93| we know 6 = {(c,0) |
o € p} C[Id] C [G] and n = §(skip) ® p, thus § = 6; Uy C [G] and
N =n)®pns =1 Bp (6(skip) @ p). From 6 C [G] and Vz € fo(I). G =
Inv(z) we know Vz € fu(I),(0,0’) € . ¢'(x) = o(z). From n~ (6,7)
by Lem. 249 we know n’(smte)|fv(1) = n(smte)|fv([). From n(State) |= T by
Lem. we know /%" |= I. From disablesplit([q],7:) and n; ~
(01,m}) by Lem. we have disablesplit([q],n}). From 0 < p < 1,

0 = &, (3(skip) @ ), ' | 1w Q. (o, R, [a]) =, (GLQ)
and disablesplit([q],7;) by IH we have (0, R,I) =F.. (G, Q).

Lemma 303 (Soundness of (WHILE-NST) rule). For allb,C, R,G1,G2,1, P, P,Q,q,
if Sta(P V Py, R, I), Sta(Py, R, true), P; = [b], Sta(Q, R, true), P> A [-b] =

Q, R,Gy,1 ):ST {Pl}C{Pl \ P2}7 P, A (b—l = |—q—|, R, Gy, |_q~| ':NST {P2 AN

[b]}C{ P}, disablesplit([q], C), sta(q, R), closed(Q), scl(P,), Id = R, Id =

G1, Id = Gy and Vz € fo(I). G2 = Inv(z), then R,G1V Ga,I Eyer {P1 V
Py}while (b) do C{Q}.

Proof. Forallb,C,R,G1,Gs, 1, P, Ps,Q,q,such that Sta(P,VPs, R, I), Sta(P,, R, true),
P = |—b-‘, Sta(Q,R,true), Py A [ﬁb-‘ = Q, R,Gl,l ):ST {Pl}C{Pl \/PQ}, Py N
[b] = [d], R,G2,[d] Exsr {P2 A [b]}C{P:}, disablesplit([q], ), sta(q, R),



closed(Q) and Vx € fu(l). G = Inv(z), to prove R,G1 V Ga,I Eysr {P1 V

Py}while (b) do C{Q}, we need to prove for all n and p, if p =1 A (P V P2),

then (init(while (b) do C,u), R, I) =7 (G1 V G2,Q). For all n and u such

that u = I A (Py V P,), by Lem. 18| we know init(while (b) do C, u)*"™") =

((while (b) do C) @ ;)™ = §(while (b) do C). To prove (init(while (b) do C, ;1), R, I) =",
(G1V Go,Q), it suffices to prove for all 7, if (5™ = §(while (b) do C), then

(n, R, I) =1y (G1V Ga,Q). We prove it by induction on n.

— base case: n = 0. trivial.
— inductive case: n =k + 1.
IH: for all 5, if 5™ = §(while (b) do C) and 75t = T A (P, V Py),
then (9, R,I) =% (G1V G2,Q).
For all 77 such that n(5%™) = §(while (b) do C) and n(St®) |= T A (P, V Py),
to prove (n, R, I) =+l (G vV G, Q), we need to prove
o if 7(5tm1) (skip) > 0, then 7]swip'” ™ = Q.
7S (skip) = §(while (b) do C)(skip) = 0, which contradicts with
7St (skip) > 0.
. n(State) ': I.
From 7(5tt¢) = T A (P, V Py) we know 7(5tet®) |= T

e forall 7/, if n >§> 7', then (7', R, I) =k (G1V G, Q).

supp(nSt™). From (5™ = §(while (b) do C) by Lem. [27| we know
n/(Stmt) = §(while (b) do C). From 75t = [ >§> 7’ and Sta(P; V

Py, R, 1) by Lem. we know /5" = I A (P, v P5). By IH we have
(71'7 Ra I) ’:>§ST (Gl v G27 Q)
e forall @ and 7', ifn < (6,7), then 6 C [G], n’**™® &= I and (1, R, 1) =F .
(Gl V Ga, Q)
For all § and 7’ such that n < (,7'), from (5™ = §(while (b) do C)
by Lem. we know nextsplit(n) = {nextsplit(while (b) do C)} =
{split(true)}. From n — (6,7’) by Lem. we have n~» (0,7'). From
ntState) = T A (Py V Py) we know n(5t€) = T A Py or (5tete) |= T A Py.
We prove the two cases respectively.
x piState) = T A Py
From P, = [b] we know 1(5%%) = [b]. From n(5) = §(while (b) do C)
by Lem.and Lem.we know 8 = {(0,0) | o € supp(n'Stet9))} C
[Id] € [G1V G2 and i = §(C;while (b) do C) ® n'S*@*). By
Lem. we know 1’ = (6(C) ® n(5tete)); while (b) do C. From
R,G1,I s {P1}C{PyV Py} and n(5%%®) = T A Py we know (§(C) ®
ntState) R I) ==k (G, PiVP). By IH we know (6(while (b) do C)®
w R, I) =k (G Vv Ga,Q) for all p such that u = I A (P V Py).
From Id = G, V Gy and (6(C) @ n5*) R 1) =k, (G1, Py V P)
by Lem. [216] we know ((6(C) @ 7(5%4)); while (b) do C, R, I) ==F,
(G1VGa,Q), ie., (1, R, 1) =F (G1VGs, Q). By Lem.we have
(77/7 R, I) ':>§ST (Gl V Go, Q)

R
For all #' such that 7 - n', by Lem. we know Supp(n/(stmt)) c



x p(State) = T A Py,
There are three cases: n(5t€) |= [b], n(5tete) = [=b] or n(State) £
[b] A nState) LL [—p]. We prove the three cases respectively.

. n(State) ': [b—|
From 7% = §(while (b) do C), n(5*¢) = [b] and 7 ~»
(0,m") by Lem. and Lem. we know 0 = {(0,0) | 0 €
supp(ntStete)} C [Id] C [G1VGs] and ¥ = §(C; while (b) do C)®
n(State) By Lem. [19| we know /(5% = y(State) & I To prove
(W', R, I) =k, (G1VGa,Q), from Gy = G1V G2 by Lem. [181] it
suffices to prove (', R, I) ==F_. (G2, Q). From disablesplit([q], C)
we know disablesplit([q],
while (b) do ), thus disablesplit([q], C; while (b) do C). By
Lem. [286] we know disablesplit([q], §(C;while (b) do C) ®
nState)) “ie., disablesplit([q],n’). To prove (1/,R,I) =k .
(G2, Q), from gy (State) = I, disablesplit([q],7’), sta(q, R), Id =
G and Vo € fov(I). G2 = Inv(z) by Lem. 301} it suffices to
prove (', R, [q]),=".. (G2,Q), i.e., (6(C;while (b) do C) ®
ntState) R [q]) =k, (G2, Q). By Lem.we know §(C; while (b) do C)®
n(State) — §(C) @ n(State); while (b) do C, thus we need to prove
(6(C) @ ntStete); while (b) do C), R, [q]) = (G2, Q). From
disablesplit([q], C) by Lem.[286] we know disablesplit([q], §(C)®
n(State)). From n(State) ': P, and n(State) ': I‘b“l we know n(State) ':
Py A [b]. From Py A [b] = [bfq] we know n(5%¢) |= [q] A Py A
[b]. From R,Ga,[q] Exsr {P2 A [0]}C{P:} we know (§(C) ®
5149 R, [q]) =k, (G, P2). To prove (§(C)@ne); while (b) do C, R, [q]) =y,
(GQ, Q)v from (5(C)®77(State)a R, [(ﬂ) ':>§ST (G27 PQ)a disablesplit([q—l ) 5(C)®
nState)) - disablesplit(while (b) do C), sta(q, R), closed(Q),
scl(P,), Id = R and Id = G by Lem. 299] it suffices to prove
(§(while (b) do C) ® u, R, [q]) =, (G2,Q) for all u such
that 1 = [q] A Po. From R,Ga,[q] Fxsr {P2 A [b]}C{P2},
Py A [-b] = Q, closed(Q), Sta(Ps, R, true), Sta(Q, R, true),
sta(q, R), disablesplit([q],C), scl(P2), Id = R and Id = G,
by Lem. 300 we know R, G2, [q] Esr {P2}while (b) do C{Q},
thus (6(while (b) do C) ® i, R, [q]) =k, (G2,Q) for all u
such that u = [q] A Pa.

. n(State) ': |V_‘b-|.
From n(5t) = I A P, we know n(5t%%) |= I A Py A [-b]. From
Py A [-b] = Q we know ntStet) = T A Q. From n(5tmt) —
§(while (b) do ©), n5t*e) |= [=b] and 1 ~ (6,7') by Lem.
and Lem.we know 0 = {(0,0) | o € supp(n5**t4))} C [1d] C
[G1V G3] and 7' = §(skip) @ n(5¢**®), By Lem. (18| and Lem.
we know n’(smt) = §(skip) and n’(sme) = plState) = 1 A Q.
From Sta(Q, R, true) and I = true we know Sta(Q, R, I). From
Id = G1VGs, /™) = d(skip), and p (Stete) — p(State) EIANQ
by Lem. We know (1, R, I) ==k (G1 V G2, Q).



. n(State) b’é |—b—| /\W(State) % [—\b—‘.
From 7(S*at) k£ [b] by Lem. [226( we know [Pr(b)], (swwe # 1.

From (5%t b£ [=b] by Lem. [227| we know [Pr(b)], e # O,

thus 0 < [Pr(b)],swe < 1. Let p % [Pr(b)], e, then 0 <
p < 1. By Lem. [285] there exists 71 and ny such that 7 = 1 @, 72,
1 (5tate) = [b] and 7,(5t%%) |= [=b]. From n ~» (6,7') we know
m @p n2 ~ (0,7'). By Lem. there exists 61,62, 77,05 such
that @ = 601 U6, ' =) @p ', m ~ (61,17) and 2 ~ (62,15).
From 0 < p < 1 by Lem. we know supp(n) = supp(m @,
n2) = supp(m) U supp(n2) 2 supp(m). By Lem. 23] we know
supp(n 51D C supp(n(5t™) From n(5t™) = §(while (b) do C)
by Lem. [27] we know 7, (5™ = §(while (b) do C). Similarly
we can prove 7,5 = §(while (b) do C). From 7, (5™ =
§(while (b) do C), n;5%%¢) |= [b] and 1, ~ (61, 7)) by Lem.
and Lem. we know 61 = {(0,0) | 0 € supp(n; 5t9)}
and 7, = §(C;while (b) do C) @ 1, (5®). From 7,5t =
§(while (b) do C), n(5%) |= [=b] and 1o ~ (61, 7;) by Lem.[220)
and Lem. we know 0y = {(0,0) | o € supp(n.t7*))} and
n, = 0(C;while (b) do C) @ np(5%t) thus § = 6; U 6y C
[Id] C [G1 Vv G2] and 1’ = 1} ®p 5 = (6(C; while (b) do C) ®
n, (State)) ®p (0(skip) ® n2(5tat€)) By Lem. and Lem. we
know n/(State) — nl(State) @p nQ(State) _ T](State) ': I. To prove
(', R, I) =k (G1V Gy, Q), from Gy = Gy V Gy by Lem.
it suffices to prove (', R,I) =k (G2,Q). From supp(n) C
supp(n) by Lem. we know supp(n; (5t9)) C supp(n(State)),
From n(State) E P, and scl(P,) we have ny (State) = P,. Similarly
we can prove 75514 = Py, From 17,5t = [-b] we know
o (State) = Py A[=b]. From Py A[-b] = Q we have n,(5%t) |= Q.
From disablesplit([q],C) we know

disablesplit([q], while (b) do C), thus disablesplit([q], C; while (b) do C).
By Lem. we know disablesplit([q], d(C; while (b) do C)®
m State)). To prove (1, R,I) =k, (G2,Q), from 0 < p < 1,
1’ = (6(C; while (b) do C) © n, 51)) @, (§(skip) © np(512t)),
p/(Stte) = 1 py(State) = @ disablesplit([q], 5(C; while (b) do C)®
n (5tat9))  closed(Q), sta(q, R), Sta(Q, R, true), Id = G5 and
Ve € fu(I). G2 = Inv(z) by Lem. [302] it suffices to prove
(6(C; while (b)) do C) @ m 5 R, [q]) =t (Ga,Q). By
Lem. we know §(C;while (b) do C) @ (5t = §(C) @
m (Ste%): while (b) do (), thus we need to prove

(6(C) @ m,(Stte); while (b) do C), R, [q]) =X, (G2, Q). From
disablesplit([q], C) by Lem. We know disablesplit([q], §(C)®
m State)). From n,(Stete) |= P, and n;(5%%) = [b] we know
nl(State) ': P2 AN “fl From R, GQ, [q] ':NST {P2 A ’Vb‘| }C{PQ} we
know (6(C) ®771(State), R, [q—l) ':>II\CIST (G27 PQ) To prove (5(C) ®
m (Stete): while (b) do C, R, [q]) =, (G2,Q), from (§(C) ®



m 599 R, [q]) ==k, (Ga, Py), disablesplit([q], 6(C)en, (S1f),
disablesplit(while (b) do C), sta(q,R), closed(Q) scl(Ps),

Id = Rand Id = G5 by Lem. it suffices to prove (6(while (b) do C)®
w, R, [q]) =F., (G2, Q) for all u such that u |= [q] A Ps. From

R, G2, [q] s {P2 A [V]}C{P}, P2 A [2b] = Q, closed(Q),

Sta(P,, R, true), Sta(Q, R, true), sta(q, R), disablesplit([q], C),
scl(P,),Id = R and Id = G5 by Lem. We know R, G2, [q] Ensr
{P;}while (b) do C{Q}, thus (§(while (b) do C)®u, R, [q]) =k,

(G2, Q) for all u such that u = [q] A Pa.

Lemma 304. ForallC,R,G,I,P,Q, if R,G,I Fysr {P}C{Q}, then R, G, I =ysr
{P}C{Q}.

Proof. Forall C,R,G, I, P,Q suchthat R, G, I Fysr {P}C{Q}, we prove R, G, I Fysr
{P}C{Q} by induction on the derivation of R, G, I Fysr {P}C{Q}.

— case (ST-NST): R, G, I k¢ {P}C{Q}.

From R,G,I s {P}C{Q} by Lem. we know R, G, I = {P}C{Q}.
By Lem. [180] we know R, G, I Fysr {P}C{Q}.

—case (DISJ): P = PPV Py, Q = Q1 V Qa, R,G, I Fysr {P1}C{Q1} and

R, G T Fyer {P2}C{Q0).
From R, G, I Fysr {P1}C{Q1} by induction hypothesis we know R, G, I =ysr
{P}C{Q1}. From R,G,I Fysr {P2}C{Q2} by induction hypothesis we
know R,G,I Eysr {P2}C{Q2}. By Lem. we know R,G,I Fysr {P1V
P2}'C{Q1 \Y QQ}, ie, R,G, I Fygr {P}C{Q}

— case (CONJ)Z P =P A PQ, Q = Ql A QQ, R,G,I Fast {Pl}C{Ql} and

R, G, I Fysr {P2}C{Q0).
From R, G, I bysr {P1}C{Q1} by induction hypothesis we know R, G, I Eysr
{P}C{Q1}. From R,G,I bysr {P2}C{Q2} by induction hypothesis we
know R,G,I Exsr {P2}C{Q2}. By Lem. we know R, G, I Fysr {P1 A
P2}C{Q1 A QQ}, i.e., R, G, I }_NST {P}C{Q}

—case (csQ): P = P, R = Ry, Gi = G, Q1 = Q and Ry,G1,1 Fysr
(PC{Q).

From Ry, Gy, I Fysr {P1}C{Q1} by induction hypothesis we know Ry, G1, 1 Exsr
{P,}C{Q@Q1}. From P = P;, R= Ry, G1 = G and @1 = @ by Lem. We
know R, G, I Eysr {P}C{Q}.

— case (SEQ-ST): C = C1;C, R, G, [ F4r {P}C1{M} and R, G, T Fysr {M}C2{Q}.
From R,G,I bgr {P}C1{M?} by Lem. We have R, G, I =4 {P}C1{M}.
From R, G, I Fysr {M}C2{Q} by induction hypothesis we have R, G, I =ysr
(M}Ca{Q).

By Lem. 18| we know R, G, I Fyer {P}C1; Co{Q}, i, R, G, T e {P}C{Q}.

— case (SEQ—NST)Z C = 01;02, G=G1V GQ, RV GQ,G17I I—NST {P}Ol{M},
R, Ga,true Fygr {M}C2{Q}, Nosplit(Cs), closed(Q), scl(M) and Vz €
fo(I). G2 = Inv(x).

From RV Go,G1, I Fysr {P}C1{M?} by induction hypothesis we have RV
G2,G1, I Exsr {P}C1{M}. From R, G2, true Fyer {M}C2{Q} by induction
hypothesis we have R, Ga, I Eysr {M}C2{Q}. From Nosplit(C5), closed(Q),



scl(M) and Vo € fov(I). G2 = Inv(z) by Lem. 284 we know R,G;p V
Go, I Ensr {P}C1; Co{Q}, ie., R,G, I Eysr {P}C{Q}.

case (COND): C' = if (b) then C; else C2, P = P, V Py, Sta(P, V Py, R, ),
P = |—b-‘, P, = |V_\b-|, R,G,I Fast {Pl}C'l{Q} and R,G,I Fast {PQ}Ol{Q}
From R, G, I bysr {P1}C1{Q} by induction hypothesis we know R, G, I |=ysr
{P}C1{Q}. From R, G, I Fysr {P2}C1{Q} by induction hypothesis we know
R,G,I =y {P2}C2{Q}. From Sta(PyV Po, R, I), P, = [b] and P, = [b]
by Lem. We know R, G, I [Exsr {P1V Po}if (b) then Cy else Co{Q}, i.e.,
R.G.1 o {P}C{Q).

case (WHILE-ST): C' = while (b) do Cy, P = P, V Py, Sta(P, V Py, R, 1),
Sta(Q,R,I), P = |—b-‘, P, = |—_\b-| /\CQ7 R,G,I For {Pl}C'l{Pl \/PQ}
From R, G, I by {P1}C1{P;V P} by induction hypothesis we know R, G, I |=4r
{Pl}Cl{Pl \/PQ}. From Sta(P1 \/PQ,R,I), Sta(Q,R7 1)7 P = |—b~| and Py =
[-b] A Q by Lem. we know R, G, I =g {P1 V Py}while (b) do C1{Q},
ie, R,G,I Es {P}C{Q}.

case (WHILE-NST): C' = while (b) do Cy, P = P,V P, G = G1 V Ga,
Sta(P,V Py, R, I), Sta(Ps, R, true), Sta(Q, R, true), P, = [b], P2 A [-b] =
Q, R, G1,I "sT {Pl}Cl{Pl \Y Pz}, Py A ’Vb-| = [q], R, G27 [Cﬂ "NST {PQ N
[b]}C1{ P2}, disablesplit([q], C}), sta(q, R), closed(Q), scl(P,), and Vz €
fo(I). Go = Inv(x).

From R,G1,I btgr {P1}C1{P; V P>} by Lem. we know R,G1,I Egr
{P,}C1{P1 V Py}. From R,G2,[q] Fysr {P2 A [b]}C1{P2} by induction
hypothesis we know R,Ga,[q] FEnsr {P2 A [b]}C1{P:}. From Sta(P; V
P27R, I), Sta(Pg,R, true), Sta(Q,R, true), P = [b], Py A |V_\b-| = Q, Py A
[b] = [q], disablesplit([q],C}), sta(q, R), closed(Q), scl(P;) and Vz €
fv(I). G2 = Inv(z) by Lem. m we know R,G1 V Go,I Eysr {P1 V
Py}while (b) do C1{Q}, i.e., R,G,I Esr {P}C{Q}.

Lemma 305 (Soundness of (sQ-DIsJ) rule). For all C,G, Py, Py, Q1,Qo, if
G ):SQ {Pl}C{Ql} and G lZSQ {PQ}C{QQ}, then G lZSQ {Pl \Y PQ}C{Ql V QQ}

Proof. For all C,G, Py, Ps,Q1,Q2 such that G |y {P1}C{Q1} and G g
{P2}C{Q2}, to prove G |=sq {P1 V P2}C{Q1 V Q2}, we need to prove for all py,
if u = PV Py and |[C]()| = 1, then [C](n) E @1V Q2 and (0,0”) = G for
all o and o’ such that o € supp(p) and o’ € supp([C](c)). For all u such that
p = PV Py and |[C](p)] =1, from p = Py V Py we know p = Py or p |= Ps.
We prove the two cases respectively.

- pE P

From G [eq {P1}C{Qu}, 1 Py and |[C](1)] = 1 we know [C]() E Q1
and (o,0") = G for all o and ¢’ such that o € supp(u) and o’ € supp([C](o)).

From [C](u) E Q1 we know [C](u) = Q1 V Qo.

- pE P

From G o {P2}C{Qa}, 1 = Po and [[C](0)] = 1 we know [C1(1) F Q2
and (o, 0") = G for all o and o’ such that o € supp(p) and o’ € supp([C](o)).

From [C](u) E Q2 we know [C](1) E Q1 V Qo.



Lemma 306 (Soundness of (SQ-cONJ) rule). For all C,G, Py, P2, Q1, Q2,
if G Fsq {P1IC{Qu1} and G [sq {P2}C{Q2}, then G [Fsq {PIAP2}C{Q1AQ2}.

Proof. For all C,G, Py, Ps,Q1,Q2 such that G |y {P1}C{Q1} and G g
{P2}C{Q2}, to prove G |=sq {P1 A P2}C{Q1 A Q2}, we need to prove for all p,
if u = PL APy and |[C](p)| = 1, then [C](n) E @1V Q2 and (0,0’) = G for
all o and o’ such that o € supp(p) and o’ € supp([C](c)). For all u such that
= PL APy and |[C)(p)| =1, from p = Py A P2 we know g = Py and p = Ps.
From G feq {P1}C{Q1}, = Pr and |[C]()] = 1 we know [C](s) = @ and
(0,0") |E G for all 0 and ¢’ such that o € supp(p) and o’ € supp([C](c)). From
G s {R}C{Qa}, p = Py and [[C](p)] = 1 we know [C](n) = Q2. From
[C)(s) & Q1 and [Cl(s) k= Qs we know [Cl(s) = Q1 A @s.

L}emma 307. ForallC,u, X,r, if X ¢ wv(C), then [C](u{X ~ r}) = [CT(){X ~

Proof. For all C, o, X,r such that X ¢ wv(C'), we have

[CIp{X ~r})
= EO‘N}L{X”\/)T}{[[C]] (U)}
=Eonk, (5o {x~rp}{[C](0)}
= EJ’NH{EUN(;(U’{X«»T}){[[C]] (U)}} (by Lem.
=Em o {[Cl(e’{X ~ r})} (by Lem.
= Eo/ e {[C](0"){X ~ 1}}
= EO‘/NIL{EG’NHC]](O'/){é(O—{X ~ 7’})}}
=Eor,,_, (1clo){0(c{X ~7r})}  (by Lem.
=E,~[oyu{d(c{X ~r})}
= [CT({X ~ r}.

Lemma 308. For all p € SDgtate, X, 7, |p{X ~ 1} = |u|.

Proof. For all u € SDgiqpe, X, 7, we have |pu{X ~ r}| =3, p{X ~ r}(o’) =
Yo 2aglilo) | o{X 1} =o'} =52, (o) = |ul.

Lemma 309. For all o,u, X,r, if o € supp(p), then o{X ~» r} € supp(u{X ~»
r}).

Proof. For all o, u, X, r such that o € supp(u), we know p(o) > 0, thus pu{X ~»
rHo{X ~ r}) = 2, {ulo’) | o{X ~ 1} = o{X ~ r}} = p(o) > 0, so
o{X ~> 1} € supp(p{X ~ r}).

Lemma 310 (Soundness of (SQ-EXISTS) rule). For all C,P,Q,G, X, if
X ¢ fu(G)Uwu(C) and G |Esq {P}C{Q}, then G |Eyq {IX.PIC{IX.Q}.

Proof. For all C, P, @, G, X such that X ¢ fv(G)Uwv(C) and G |y {P}C{Q},
from X ¢ fv(G)U fv(GQ) we know X ¢ fu(G) and X ¢ wu(C). To prove G |=gq
{3X.P}C{3X.Q}, we need to prove for all u, if p = IX.P and |[C](x)| = 1,
then [C](1) E 3X.Q and (0,0’) | G for all o and ¢’ such that o € supp()



and o’ € supp([C](o)). For all p such that p = 3IX.P and |[C](1)] = 1, from
u | 3X.P we know there exists r such that u{X ~ r} | P. From X ¢ wv(C)
by Lem. [307| we know [CT(u{X ~ r}) = [C](u){X ~ r}. By Lem. [308| we know
CT({X ~ r})| = [[CT({X ~ r}| = [[C](1)] = 1. From G =5 {P}C{Q},
p{X ~ r} |= P and [[C](p{X ~ r})[ = 1 we know [C](u{X ~ r}) = @Q,
e, [CT(){X ~ r} E Q, thus [C](n) E IX.Q. For all o and ¢’ such that o €
supp(p) and o’ € supp([C](o)), by Lem. 309 we know o{X ~» r} € supp(u{X ~
r}) and o'{X ~ r} € supp([C](c){X ~ r}). From X ¢ wv(C) we know
[CUo)H{X ~ 7} = [Cl(o{X ~ r}), thus o'{X ~ 7} € supp([C](c{X ~ r})).
From G fsq {P}YC{Q}, i{X ~ 1} | P, [[C]GH{X ~ rP)] = 1, o{X ~
r} € supp(u{X ~ r}) and o’'{X ~ r} € supp([C](c{X ~ r})) we know
(0{X ~ r},0'{X ~ r}) E G, thus (0,0") = 3IX.G. From X ¢ fv(G) we know
(0,0") = G.

Lemma 311 (Soundness of (SQ-FORALL) rule). For all C,P,Q,G, X, if
X ¢ fo(G)Uwu(C) and G |Esq {P}C{Q}, then G Eyq {VX.PIC{VX.Q}.

Proof. For all C, P,Q, G, X such that X ¢ fo(G)Uwv(C) and G =4 {P}C{Q},
from X ¢ fo(G)U fu(G) we know X ¢ fu(G) and X ¢ wv(C). To prove G 4q
{VX.P}C{VX.Q}, we need to prove for all u, if y = VX.P and |[C](x)| = 1,
then [C] (1) E VX.Q and (0,0") = G for all o and ¢’ such that o € supp(u) and
o’ € supp([C](o)). For all u such that p = VX.P and |[C](x)| = 1, to prove
[C]l(p) E VX.Q, we need to prove [C](1){X ~ r} = Q for all r. For all r, from
@ = 3X.P we know u{X ~ r} = P. From X ¢ wv(C) by Lem. we know
[CTHp{X ~ r}) = [C](r){X ~ r}. By Lem. [30§| we know |[CT(u{X ~ r})| =
IC1 (X ~ r}| = [[C)(w)| = 1. From G Fug {PYCLQ}, X ~ r} |= P and

ICT(u{X ~ 1) = 1 we know [C](uf{X ~ r}) |= Q, Le., [CI({X ~ 7} = Q.
For all o and ¢’ such that o € supp(p) and o’ € supp([C](0)), by Lem. we

know o{X ~» 0} € supp(pu{X ~ 0}) and o’{X ~ 0} € supp([C](0){X ~ 0}).
From X ¢ wv(C) we know [C](0){X ~ 0} = [C](c{X ~ 0}), thus ¢/{X ~
0} € supp([C](c{X ~ 0})). From p = VX.P we know u{X ~ 0} = P. By
Lem. O8] we know [[C](u{X ~ 0})] = [[CIW{X ~ 0} = [[C)(p)| = 1.
From G =sq {P}YC{Q}, p{X ~ 0} = P, [[C]GH{X ~ 0})] = 1, o{X ~
0} € supp(u{X ~ 0}) and o’'{X ~ 0} € supp([C](c{X ~ 0})) we know
(0{X ~ 0},0'{X ~ 0}) &= G, thus (0,0’) F 3X.G. From X ¢ fv(G) we know
(0,0") = G.

Lemma 312 (Soundness of (sQ-csQ) rule). For all C,P,P'.Q,Q,G,G,
ifP= P, G (PYCIQ), Q' = Q and G’ = G, then G s {PYC{Q).

Proof. Forall C, P, P',Q,Q’',G,G" such that P = P', G’ |=sq {P'}C{Q'}, Q' =
Q and G’ = G, to prove G =g {P}C{Q}, we need to prove for all p, if u = P
and |[C](u)| = 1, then [C](n) = Q and (o,0") = G for all o and ¢’ such that
o € supp(p) and o’ € supp([C](o)). For all u such that p = P and |[C](p)] = 1,
from p = P and P = P’ we know p |= P'. From G |=sq {P'}C{Q'}, p = P’
and |[C](x)] = 1 we know [C](x) E Q' and (0,0') | G’ for all o and o’
such that o € supp(p) and o' € supp([C](0)). From Q' = Q and G’ = G we



know [C](u) = Q and (0,0") = G for all o and o’ such that o € supp(u) and
o' € supp([C](0)).

Lemma 313. For all C, s, iz p, [C](1 &y i2) = [C)(111) &, [C](112)-

Proof. For all C, ji1, 2, p, by Lem.we know [C](u1®pu2) = Eornpy @, 1[C](0)} =
Eoni {[C](0)} @p Bornn {ICT(0)} = [CT(11) @p [Cl(12)-

Lemma 314. For all set A and p1,po € SDa, p € (0,1), if |1 Sp p2| = 1, then
lpa| =1 and |p2| = 1.

Proof. For all set A and puy, 2 € SDa, p € (0,1) such that |pug @) po| = 1, we

have 1 = |p1 @p pio| = 32, (1(a) ®p pla)) = 322, p - pa(a) + (1 = p) - p2(a) =
p-|pi|+ (1 —p) - |uz2]. From 0 < p < 1 we know |u;| =1 and |pe| = 1.

Lemma 315 (Soundness of (sQ-OoPLUS) rule). For allC,G, Py, Py, Q1,Q2,p,
if G Esq {P1}C{Q1} and G [sq {P2}C{Q2}, then G f=sq {P1 ©p P2}C{Q1 @)

Q2}

Proof. For all C,G, Py, Py,Q1,Q2,p such that G Fsq {P1}C{Q1} and G =4
{P}C{Q2}, there are three cases: p = 0, p = 1 or 0 < p < 1. The cases
p = 0 and p = 1 are trivial. We only prove the case 0 < p < 1. To prove
G Esq {P1 ®p P2}C{Q1 @) Q2}, we need to prove for all p, if u = Py @, P>
and |[C](w)] = 1, then [C](p) = @1 ®p Q2 and (0,0”) | G for all o and o’
such that o € supp(p) and o’ € supp([C](o)). For all y such that p = Py @, Ps
and |[C](p)| = 1, from p = Py &, P, and 0 < p < 1 we know there exists p;
and po such that g = 1 By po, p1 = P1 and po |= Py, By Lem. we know
[CT(1) = [C](1 ©p p2) = [Cl(p1) Sp [Cl(p2). From 0 < p < 1 by Lem. [314
we know |[C](p1)] = 1 and |[C](u2)| = 1. From G Esq {P1}C{Q1}, 11 E Py
and |[C](11)] = 1 we know [C](u1) | Q1. From G |=sq {P2}C{Q2}, p2 E Po
and [[C ()| = 1 we know [Cl(ji2) = Qa- From [Cl(n) E @r, [Cl(12) = s,
0<p<1and [Cl(n) = [Cl(m) B [CL(1i2) we know [CT(1) & Q1 p Q. For
all o and o’ such that o € supp(u) and o’ € supp([C](0)), from 0 < p < 1
by Lem. we know supp(p) = supp(p1 ©p p2) = supp(p1) U supp(p2). From
o € supp(p) we know o € supp(u1) or o € supp(uz). If o € supp(uy), from
G [sq {P1}C{Q1}, p1 = P and o’ € supp([C](0)) we know (0,0') E G. If
o € supp(pz), from G |Egq {P2}C{Q2}, 12 = Pe and o’ € supp([C] (o)) we know
(o,0") EG.

Definition H.50. Let V € Dy, ,., we define [C](V) L\ Pr,.v[[C](v) =

).

Lemma 316. For all V,V' € Dpy,,,. and C, [C](V) = [C](V).



Proof. For all V,V' € Dypg,,,. and C, we have

[CT(V) =E, +{IC](o)}
=Eonk, ., (3 {I[C](0)}
=E, v{Eo~u{[C](0)}}  (by Lem.
=E,.v{[C].}
=Xo. >, V(v)-[Cl.(o)
=Xo. >, AV©W)-plo) | [Cl, = u}
=Xo. 3, (o) - 3 V() | [Cl, = u}
=03, wo) - Pr,v[[C], = 4]
=Xo. 3, pu(o) - [CT(V) (1)
= [C](V).

Lemma 317. For all set A and V € SDsp,, if |V| = 1, then |v| = 1 for all
v € supp(V).

Proof. For all set A and V' € SDgp, such that |[V| = 1, we prove by contradiction.
Assume there exists p € supp(V') such that |u| # 1, then V(i) > 0 and |p| < 1,
so V(1) - lu| < V(u), thus [V] = ¥, V(o) = 5, T, V(v) - vlo) = 3, V(v) -
3, vlo) = 3, V)| = V) -5, V) ol [ 0% u} < V) + 3, (V) |
v#u}l=> V(v)=1|V| <1, which contradicts with |V| = 1.

Lemma 318. For all V € Dy, and p, if p € supp(V), then [C](u) €
supp([CT(V)).

Proof. For all V € Dpyg,,,. and p such that u € supp(V'), we know V(u) > 0,
thus [CT(V)([C](n)) = Prov[[C](v) = [Cl(w)] = V(i) > 0, so [Cl(k) €
supp([C](V)).

Lemma 319. For all set A and p € Dp,, a € supp(R), there exists v € supp(p)
such that a € supp(v).

Proof. For allset Aand p € Dp ,, a € supp(fr), we know 0 < 7i(a) = >_ o, p(v):
v(a), so there exists v such that p(v) > 0 and v(a) > 0, thus v € supp(p) and

a € supp(v).

Lemma 320 (Soundness of (sQ-BIGOPLUS) rule). For all C,G,P,Q, if

G fsq {PYC{Q}, then G =5 {D PIC{D Q}-

Proof. Forall C, G, P,Q such that G |=sq {P}C{Q}, to prove G =5 {P P}C{P Q},
we need to prove for all u, if u = @ P and |[C](1)] = 1, then [C](r) = P Q and
(0,0") = G for all o and ¢’ such that o € supp(p) and o’ € supp([C](0)). For
all p such that p = @ P and [[C](u)] = 1, from u = € P we know there exists
V € Dpyg,,,. such that u =V and v = P for all v € supp(V). By Lem. we
know [C]() = [C](V) = [C](V). From [[C](x)| = 1 we know |[C](V)| = 1. For
all 1/ € supp([C](V)), by Lem. 317 we know [¢/| = 1. From ' € supp([C](V))
we know 0 < [C](V) (i) = Prov[[C](v) = '] = 2 {V(¥) | [C](v) = p'}, so
there exists v such that v € supp(V) and [C](v) = p'. From v € supp(V) we




know v | P. From |¢/| = 1 we know [[C](v)| = 1. From G s {P}C{Q},
v E P and [[C](v)] = 1 we know [C](v) E Q, ie., ¢/ = Q. Therefore,
p = Q for all ¢ € supp([C](V)). From closed(Q) we know [[Cﬂ( ) E Q.
From [C](p) = [C](V) we know [C](n) = Q. For all ¢ and o’ such that
o € supp(p) and o' € supp([C](0)), from u = V we know o € supp(V), by
Lem. there exists v € supp(V') such that v € supp(V). From v € supp(V) we
know v |= P. From v € supp(V) by Lem. B1§ we know [C](v) € supp([C](V)).
From |[C](V)| =1 by Lem. 317 we know [[C](v)| = 1. From G = {P}C{Q},
vE P, |[Cl(v)| =1, o € supp(v) and ¢’ € supp([C](v)) we know (0,0") = G.

Lemma 321. For all n and o, (skip,o) i>”(sk:’ip,a).
Proof. by induction on n.

— base case: n = 0. trivial.

— inductive case: n =k + 1.
IH: for all o, (skip, o) #k(skip, o).
For all o, by IH we know >, ,{p1-p2 | (skip,0) 2L’y A (C o) B2
k(skip,o)} = S {po | (skip,0) £ F(skip,0)} = 1, thus (skip,o) EN
"(skip, o).

Lemma 322. For alln,o,0’, if 0 # o', then (skip,o) E>”(skip, o).
Proof. by induction on n.

— base case: n = 0. trivial.
— inductive case: n =k + 1.
IH: for all 0,0’ if o # o/, then (skip, o) E>’“(skip, a’).
For all o, by IH we know >, ,n{p1-p2 | (skip,0) — RN (e N A YN (e Y
k(skip,0)} = Y{p» | (skip,0) £% *(skip,o’)} = 0, thus (skip,o) >
" (skip, o).
Lemma 323. For all o, [skip](c) = 6(0).

Proof. For all o, we have

[skip](c) = Ao”. hmp where Vn. (skip, o) M>"(skip,o’)

hml ifo! =0

(by Lem. and Lem. [322)
lim 0 otherwise

ifo! =0

otherwise

I
,%r—’H/—/H

0‘

Lemma 324. For all p, [skip](p) =



Proof. For all 1, by Lem.[323|and Lem. [17 we know [skip] (1) = Eq~,.{[skip](c)} =
Eonp{d(0)} = p-

Lemma 325 (Soundness of (sQ-SKIP) rule). For all Q, Id =5, {Q} skip{Q}.

Proof. For all @, to prove Id =yq {Q}skip{Q}, we need to prove for all p, if

u = @ and |[skip](u)| = 1, then [skip](n) E @ and (0,0’) | Id for all o
and o’ such that o € supp(u) and o’ € supp([skip](c)). For all u such that

1 = Q and |[skip](p)| = 1, by Lem. 324 we know [skip](x) = p |= Q. For all o
and o’ such that o € supp(p) and o’ € supp([skip](o)), by Lem. we know
[skip](c) = (o). From o’ € supp([skip](c)) we know ¢’ = o, thus (0,0") | Id.

Lemma 326. For all Cy,Cy, p, [Cr; Co](p) = [C2]([C1] ().
Proof. For all Cy,Cs, i, we have

[C1; Ca] (1) = Eonpu{[Cr; C2] (o)}
= Eou{[C2]([C1](0))}
=Eoni{Eoner1(o) [C2](07)}
=Eong, ., ([c:]o{[C2](0")}  (by Lem.
= Eo ey ilCa] (o)}
= [Co]([C1](w))-

Lemma 327. For all p € SDgiete and C, if |[C](n)] = 1, then |u| = 1.
Proof. For all p € SDgtate and C such that |[[C](p)| = 1, we know

1= [[C](w)]

From u € SDgtare we know |p] < 1, thus |u| = 1.

Lemma 328. For allC,p, 0, if o € supp([C](w)), then there exists oo such that
oo € supp(p) and o € supp([C](00)).

Proof. For all C,u,o such that o € supp([C](r)), we have 0 < [C](p)(0) =
Egonpn{[Cl(00)} (o) = >_,, #(00)[C](00)(c), so there exists o such that 1u(og) >
0 and [C](o0)(o) > 0, thus ¢ € supp(p) and o € supp([C](00)).

Lemma 329. ForallC,pu,0,0',if o € supp(u), then supp([C](c)) C supp([CT(r)).

Proof. For all C,u,0,0’ such that o € supp(u), we know u(o) > 0, to prove
supp([C](0)) C supp([C](1)), we need to prove o' € supp([C](p)) for all
o’ € supp([C](o)). For all o/ € supp([C](c)), we have [C](c)(c’) > 0, thus
[C1)(0") = Eqpnp{[C](00)} (o) = 35, #(00)-[C](00)(0") = u(o)-[CT(o)(0") >
0, so o’ € supp([C](o)).



Lemma 330 (Soundness of (sQ-SEQ) rule). For all Cy,Cs, P, M, Q,G1, G2,
ZfG1 lZSQ {P}Cl{M} and G2 ):SQ {M}CQ{Q}, then G10G2 'ZSQ {P}Cl,CQ{Q}

Proof. For all Cy,Cs, P, M, Q,G1, Gy such that Gy Fsq {P}C1{M} and G |=qq
{M}C2{Q}, to prove G o Ga [=sq {P}C1;C2{Q}, we need to prove for all y, if
p = P and [[C1;C2] ()] = 1, then [C1;C2](p) E @ and (0,0") | G for all o
and o’ such that o € supp(u) and o' € supp([C1; C2](0)). For all p such that
p = P and [[Cy; Co](1)| = 1, by Lem. B26]we know [Cy; Co] (1) = [C2]([C1] (1))
From |[C1; Co](p)] = 1 we know [[Co]([C1](1)] = 1. By Lem. we know
[[C1](1)] = 1. From Gy =sq {P}C1{M}, p = P and |[C1](1)] = 1 we know
[Ci(#) = M. From Gy eq {M}Co{Q}, [C1](12) = M and [[C2)([Cr](10)] = 1
we know [Co]([C1]() = Q. For all o and ¢’ such that o € supp(n) and o’ €
supp([Cy; C2] (o)), we have [Cy; Ca] (o) = [Co]([C1](o)). From ¢’ € supp([Cy; C2](0))
we know o’ € supp([C2]([C1](0))). By Lem. there exists o’ such that
o € supp([C1](0)) and o’ € supp([Ca](0”)). From Gy |Esq {P}C1{M}, u = P,
()] = 1, 0 € supp(u) and 0" € supp(ICi](0) we know (,0") |= Ci.
From o € supp(p) by Lem. we know supp([C1](0)) C supp([C1] (). From
o € supp([Ca](0)) we know o” € supp([Ca](u)). From Gy s {M}C{Q},
[C1](1) = M, [[C)ICI ()] = 1, o” € supp(IC1] (1)) and o’ € supp([C](0™))
we know (0”,0’) = G2. From (0,0") = G1 we know (0, 0’) |E G1 0 Gs.

Lemma 331. For all z,e,o,n, if n > 1, then (z := e,0) i>”(.sl’<:ip,a{:1c ~

[e]o})-

Proof. For all z,e,0,n such that n > 1, we have

20’70'{1)1 pa | (x=e,0) Z5 (C7,0") A(C, ") £ —1(skip, o{z ~ [e]s})}

= > {p2 | (skip,o{z ~ [e],}) ="~ (skip, o {z ~ [],})}
=1.  (by Lem.[321)

Therefore (x := e, o) i>”(skip7a{x ~ [e]o})-

Lemma 332. For all z,e,o,n, if n > 1 and o’ # o{x ~ [e],}, then (x =
€e,0) 2>”(skip, ).

Proof. For all x,e,o,n such that n > 1, we have
ZC,J/{M ‘p2 | (x:=e,0) o, (C', 6"y N (C,0") p—2>”_1(skip,a’)}
= Y {p2 | (skip, o{z ~ [e]}) ="~ (skip, 0")}
= 0. (by Lem. [322)

Therefore (x :=e,0) g>”(skip,0’).

Lemma 333. For all o,z,e, [x :=€](c) = §(c{z ~ [e],})-



Proof. For all o,x, e, we have

here Vn. (xz :=e¢,0) M>"(Skip7al)
), if o/ =c{z~ [€e],}

o i
{ 0::0), otherwise

[ :

LHi

(by Lem. and Lem. [332)

1fa —a{x«» [els}
0, otherwise

= 6(o{z ~ [e]o})-

Definition H.51. p{z ~ e} € E, ., {5(c{z ~ [e]o})}-

Lemma 334. For all p,x,e, p{x~ e} = Ao'. Y>> _{u(o) | o{x ~ [e]o} =o'}

Proof. For all u, x, e, we have

iz~ €} = Bpuy{3(0{z ~ [e]o})}
= 2”3, (o) - 3(ofa ~ [e], (")
= 20" S {u(0) | ofa ~ [el.o} = o'}

Lemma 335. For all p,x,e, [z :=e](u) = p{x ~ e}.

Proof. For all p,z,e, by Lem. 333 we know [z := €] (1) = Eonp {2z := €](0)} =
By {0(0{a~ [l )} = pl ¢

Lemma 336. For all e,z,¢',0, [ele'/z]]o = [€]o{ev[e].}-
Proof. For all e,x,¢’, 0, we prove [ele'/z]]o = [€]o{z]er],3 by induction on e.

— case n.
[nle’/z]]e = [nle = n = [nlofuoie],
— case .
If z =y, then [yle'/z]], = [z[e'/2]]o = [¢']ls = o{z ~ [€]-}(2)
[%])o{zve1,y = Wlogaoleq,y- Otherwise x # y, then [yle’/z]], = [y]o
o(y) = oz~ [€']o}(y) = Wlotzole1. )
— case e + es.
IH1: [[el[ei/x]ﬂa = [[elﬂa{z«»[[e/]]g}-
TH2: [[62[6 /x]ﬂg = [[egﬂg{w,\,,[[e/ﬂa}.
By IH1 and IH2 we have [(e; + e2)[e'/z]], = [e1le’/x]]s + [e2]€’/x]]s
[er]ofatenoy + [e2]otaten,y = [e1 + e2lofan e,y
— case e] — es.
Similar to the case e; + es.
— case e] * es.
Similar to the case e; + es.

Lemma 337. For all b,x,e,0, [ble/x]]s = [b]ofzofe],}-

Proof. by induction on b.



— case true.

[truele/x]], = {true}, = tt = [true],(zufe], }-
— case false.

[falsele/z]], = {false}, = ff = [false], {zfe], }-
— case e1 < es.

[(er < e2)le/z]]s = [er]e/z] < eale/z]]~
tt, if [erle/z]]s < [e2le/x]]s
ff, otherwise

_ tt, if [[elﬂa{r\»ﬂe]]g} < II62]]0'{1’\'>|IE]]0} (by Lem. 336
f, otherwise

= [[el < eQﬂa{m«»[[e]]U}~
— case e] = es.
Similar to the case e; < es.
— case e; < eg.
Similar to the case e; < es.
— case —b.
IH: for all z,e, 0, [ble/x]]s = [b]ofzo]e], }-
For all z, e, o, we have

[(=b)[e/z]]o = [-ble/z]]~
ff, if [ble/z]]s = tt
tt, if [ble/z]], = ff
_ ff, if [[bﬂg{xv[[e]]a} =1t
N tt, if [[bﬂa{zv[[e]]a} = ff (by IH)
= [Blo (o felo -

— case by A bs.
[H1: for all z,e,0, [bile/7]]o = [b1]ofzo]e], -
[H2: for all z,e,0, [bile/7]]o = [b1]ofzo]e],}-
For all z, e, o, we have

[(b1 A b2)[e/z]]o
= [b1fe/x] A bole/x]] o
tt, if [b1]e/x]], = tt and [b2le/z]], = tt
ff, otherwise
tt, if Hblﬂa{xv[[e]]g} = tt and [[bg]]g{xv[[e]]a} =tt

= | (by TH1 and TH2)
f, otherwise

= [b1 A b2]ofaofe] -

— case by V bs.
Similar to the case by A bs.

Lemma 338. For all o,x,11,r2, o{z~ ri}{x ~ ro} = o{x ~ ra}.



Proof. For all o,x,7r1, 72, we have

_ To, ify==x
o{z~riH{z~ra} =My oz~ mMy), fy+e
~ T2, ?fy:a:
oy), ify#x
= o{z~ ra}.

Lemma 339. For allo,x,y,r1,72, if t # vy, then o{z ~ ri1}{y ~ r} = o{y ~
ro}{x ~ r1}.

Proof. For all o,x,y,r1,72,

T2, ifz=y9
U{ff’\’)ﬁ}{y’\”ﬁ}—Az-{a{xMTl}(z)’ if 24y
ro, ifz=y
= Az.¢ 11, ifz==x
o(z), ifz#£yNz#x
71, fz==x

= A= of{y~ra}(2), ifz#£x

=o{y~ roH{z~ i}
Lemma 340. For all o,¢e,x,r, if v & fv(e), then o{x ~> r}|sye) = 0 fu(e)-
Proof. For all o, e,z,r such that = ¢ fu(e), to prove o{z ~ r}|1y(e) = 0| fu(e), W
need to prove o{x ~ 7} ty(e)(y) = 0| fu(e)(y) for all y € fu(e). For all y € fu(e),
from x ¢ fuv(e) we know y # x, thus o{x ~ r}|ty)(y) = o{z ~ r}(y) = o(y) =
U‘fv(e) (y)
Lemma 341. For all q,0,x,e, 0 = qle/z] if and only if o{x ~ [e]s} E q.
Proof. by induction on q.

— case b.
For all o,z,e, by Lem. we have o = ble/z] < [ble/z]], = tt <—
[[bﬂg{wM[[e]]U} =tt <= of{z~ [e].} Eb
— case —q.
IH: for all o,z,e, u = qle/] if and only if o{z ~ [e],} E q.
For all 0,2, e, by IH we have 0 = (-q)[e/z] <= o = ~qle/z] <= o [~
qle/r] = o{z~[e]o} Fa = o{z~[e]o} = ~a.
— case q1 N\ qa.
IH1: for all o, z,e, o = qile/x] if and only if o{x ~ [e],} E ai1-
IH2: for all o,z,e, o |E qq[e/z] if and only if o{z ~ [e],} E qa.
For all o, x, e, we have

o = (a1 A az)le/7]
<~ o = qile/x] A qqle/z]
> (0 Faile/z]) A (0 = azle/z])
> (o{z~ [e]o} Fai) A(p{z~ [e]o} Fa2)  (by IHI and IH2)
— p{z~ [e]o} Eair Aqo.



— case q1 V q2.
Similar to the case q; A qs.

— case VX.q.
IH: for all o,x,e, o = qle/z] if and only if o{z ~ [e],} E q.
For all o,z,e, we need to prove o = (VX.q)[e/z] if and only if o{x ~»
[e]lo} E ¥X.q. Usually X is a logical variable, so we can assume X ¢ fo(e)
and X # x, by Lem. we know o{X ~ r}|sye) = 0|fy(e). By Lem. [252
we know [e],{x~ry = [€]o-

o = (VX.q)le/z] <=0k (VX.q)le/z]
<— o = VX.q[e/z]
< Vr. o{X ~ r} = qle/x]
= Vr. o{X ~ rHz ~ [e]loixwr ) EF QA (by IH)
= Vr.o{X~rHx~[e]l.} Edq
= Vr.o{z~ el {X ~rrEq (by Lem. [339)
— o{z~ [e]s} E ¥X.q.

— case 31X.q.
Similar to the case VX.q.

Lemma 342. Forallo,p,z,e, if o € supp(p), then o{z ~ [e],} € supp(u{x ~

e}).
Proof. For all o, pi, x, e such that o € supp(p), we know p(o) > 0, thus

p{z~ ef(o{z ~ [e]lo}) = Eoynp{d(oo{z ~ [e]o})} (o {z ~ [e]o})
Yoo 11(00) - 6(a0{z ~ [e]o })(o{z ~ [e]s})
g(o)

)

VIVl

s0 o{a ~ [elo} € supp(ufw ~> e}).

Lemma 343. Forall p,x,e,0, if o € supp(u{x ~ e}), then there exists oy such
that oo € supp(p) and oo{z ~ [€]s, } = 0.

Proof. For all p,z,e,o such that o € supp(u{z ~ e}), we know u{z ~ e}(o) >
0. By Lem. we know p{z ~ e}(o) = >, {u(oo) | oo{z ~ [e]s,} = o}, s0

> oo 11(00) [ 00{x ~ [e]s,} = o} > 0, thus there exists og such that (oo) > 0
and og{z ~ [€]s,} = 0. From p(o) > 0 we know og € supp(p).

Lemma 344. For all §,x,e,p, [§le/x]], = [€] i{ase} -
Proof. For all ,z,e, i, we prove [{[e/z]], = [£]ufz~sey DY induction on &.

— caser.

[rle/z]] = [r]u = 7 = Irlugoey-



— case E(¢).
[E(e")]

)
~
8

P

=

E(e'le/x])]

o~pll€[e/]] 5]

M[[[e Hg{w,\,,[[e]] }] (by Lem. 336
g,u‘( ) H HO’{.L’\/)IIC]] }

o (o) - [€]o [ oz~ [e]o} =o'}
o (ofu(o) | ofa ~ [e]o} = 0'}) - [¢]y
o i{z ~ eb(o’) - [e']or (by Lem. [334)
NM{z«»e}H[e/HU']

) pgazoey-

ﬁﬁ

anv

Mmpm

27

— case Pr(q).

[Pr(a)e/]], = [Pr(ale/])],.

Pro.ulo = dle/z]]

Prooufo{z~[elo} =al  (by Lem. 341)
2olulo) | o{z ~ [elo} =a}

Yoo inlo) o' Eano{z~[e]o} =o'}

2o {2 o {n(o) [o{z~[e]o} =o'} [0 = a}
%: An{z~e}(0’) o' =q}  (by Lem. [334)
[P

Ty NM{w'\»e}[ ! }: q]
( )]]u{xve}

— case & + &.
HL: [&le/]]n = [1]ugasey-
IH2: [& [e/zm/t = [[EQHM{JJMe}'
By IH1 and IH2 we have [(& + &2)le/z]], = [&ile/z]], + [&ile/2]], =
[[glﬂ,u{zve} + [[§2ﬂp{m~>e} = [[51 + £2Hu{mve}-
— case & — &s.
Similar to the case & + &o.
— case &1 * &o.
Similar to the case & + &s.

Lemma 345. For all p,x,e, X,r, if X # x and X ¢ fu(e), then p{x ~
eHX ~r} = p{X ~ rHaz ~ e}

Proof. For all pu,z,e, X, r such that X # x and X ¢ fv(e), we have

p{z ~ eH{X ~r}
=Xo". > Ap{r~e}(d’) | d{X ~r}=0"} (by Lem. [334)
" SIS Alo) | ofa~ [} = 0’} | o' {X ~> 1} =07} (by Lem. B33)
A" S50 To) | o{z e [elo} = 0 Ao {X ~r 1} = 0"}
=Ao". 3 Aulo) | o{z ~ [e]c HX ~r} = 0"}
=Ao". 3 {u(o) | o{X ~rHaz~ [e]o} = 0"} (by Lem. |339)
= Xo”. ZU’U,{M((J') |o{X ~r} =0 Ao'{x~ [e]s} ="}
=A0". 3 o {2 Anlo) | o{X ~r} =o'} [o/{x~ [e]o} = 0"}
=Xo". > Ap{X ~ri(o’) | o' {z~e} =0"} (by Lem. [334))
= p{X ~ rH{z~ e} (by Lem. [334)



Lemma 346. For all p1, po, p, z, e, (1 ®p p2){z ~ e} = pi{x ~ e} &, po{zr ~

e}.

Proof. For all py, us, p, x, e, we have

(11 ©p p2){z ~ e}
= EUN}M@pMz {5(0’{33 ~ [[eﬂg})}
— By {3(o{~ [elo D)} Bp Bompr (0(r{z ~ [l ]} (by Lem.

= p{z ~ e} Bp pa{z ~ e}

Lemma 347. For all u,x, e, uy, ph, p, if p{x ~ e} = pj &, uh, then there exists
w1 and po such that g = p Py pa, pr{xr ~ e} = py and po{z ~ e} = pb.
Proof. For all u,z,e, ,ul,u2,p such that p{x ~ e} = pj &, ph, let p def

(o) 1, (o {z~ el }) of (o) (o {z~lelo})
Ao el el and py < ro EHSEIEAL then

f eBpuz:Ao.p'ul((c)f)f( ({1 *[[pﬂ) ~})uz(<f) ot L)
_ w(o)-py (o{z~[e]o ICHNICA Cingd D74
=Ao.p- ,u{gcwel}(o{xv[[e]]a}) + (1 7p) ’ H{xveg}(a{xv[[eﬂa})

= 30 et - P # (e {e o [elo}) + (L= p) - wh(ofe ~ [e]o )
= Ao. u{xwe}(l;?xw[[e]]a}) ’ (lu’ll ©p H/Q)(G{z ~ [[GHU})

= Ao. u{xwe}éta'?szv[[e]]d}) ’ /j,{(E ~ 6}(0’{.’[: ~ [[6]]0})

= Ao. p(o)

=p

and

pi{r~ e} =’y {m(o) | o{r~ [e]o} =0’} (by Lem. [334))

=Y, {:{(ZL‘;;{;{{Z:%‘;% D ofa o [elo} = o'}

=AY, {55;L‘;3<0,) |o{z~ [eo} =o'}

=o' ity Solulo) | ofw~ [} = o'}
= Ao’ ﬁ p{z~el(o’)  (by Lem.[334)
=o' iy (o)

= ph-

Simiarly we can prove ug{x ~ e} = pb.

Definition H.52. Let V € Dy, ,., we define V{z ~ e} = Lef A > AV (v) -
vz~ e} = u}.

Lemma 348. For all V € Dp,,,,, and z,e, V{z~ e} = V{z ~ e}.

Proof. For all V € Dy, ,. and z,e, we have

Vig~et =3, Viz~ej(p) - plo)
=022, 2 V(W) - plo) [ v{z~ e} = p}
=Xo.). V() v{z~ e}(o)



and
Viz~el=x0. Y {V(d') | o/{x~ [e]or} =0} (by Lem. [334))
=03 5 2 V(W) -v(d') | o' {z~[e]o} = o}
~ e V0T o) | o ) o)

y Vv
=Xo.>., V(v) -v{z~ e}(o), (by Lem. [334))

thus V{x ~ e} = V{x ~ e}.

Lemma 349. For all V € Dpg,,,. and z,e, supp(V{r ~e}) ={v{z~e}|ve
supp(V)}.

Proof. For all V € Dy, ,. and z, e, we have

supp(V{z ~ e}) = {n | V{z~ e}(u) > 0}
={u| 2 VW) [v{z~ e} =pn} >0}
={p|I.V)>0Av{zr~e}=pu}
={p| . vesupp(V)Av{z~ e} = pu}
={v{z~ e} |v e supp(V)}.
Definition H.53. scale(u, i/, z,€) €f \o. ﬁfﬁl’é}(&{{ﬁiﬂfjﬂi}}))-
Lemma 350. For all p,p,xz,e, scale(u, p',x,e){x ~ e} = p'.

Proof. For all u, i/, x, e, we have
scale(p, ', z, e){x ~ e}
=Xo". > {scale(p, /', x,€e)(0) | of{x ~ [e],} =o'} (by Lem. [334)

IR :{ZJ;f{iff;i“{J]ﬂ | oz~ [e]o} =o'}

=o' S, ey | ot~ [} = o'}

=o', ﬁ S Ano) | ofz ~ [elo} =o'}
= Ao’. ,u{zki»(# pl{x ~ e}(a’) (by Lem. [334)
= Xo’. p/(o")

g MI_

Lemma 351. For allV € Dpy,,,. and pi,z,e, if V. = p{x ~ e}, then there exists
V' such that V'{x ~ e} =V and V' = pu.

Proof. For all V € Dy, and u,z,e such that V. = p{z ~ e}, let V' Lef
A .Y AV (v) | scale(p,v) = v'}, then

Vi=xo.Y, V() V(o)
0. S S AV() V(o) | scale(p, ) = v/}
=Xo.>., V(v) - scale(p,v)(o)

_ S AR
=202, V() i e oloe oD

= 3. T - 2 V) ol ~ el ])
= Ao. u{z'\»e}?a(ﬁlfx)'\»ﬂe]]a]]) ’ V(U[[x ~ [[6]]0-]])

= Ao. p{zve}?ﬂﬁm)vﬂeﬂ”]]) ’ ,u{x ~ 6}(0’|ISU ~ [[6]]0]])
= Ao. p(o)

= u




and

VS{x~ el = "3 AV ()| vV{z~ e} =v"}
=" 3 AV (v) | scale(p,v) =V ANV {z~ e} =1V}
=" AV (v) | scale(p, v){x ~ e} = 1"}
=" AVw) |v=2"} (by Lem. [350))
=V

Lemma 352. For all Q,p,x,e, p = Qle/x] if and only if u{x ~ e} = Q.

Proof. by induction on Q.

case [q].
For all p, x, e, we have u{x ~ e} |= [q] <= Vo € supp(u{zr~e}). 0 = q
and

p = lalle/z] < p = [ale/2]]
< Vo € supp(u). o = qle/x]
<= Vo € supp(u). of{x ~ [e]o} E q (by Lem. [341))

To prove i = [qlle/z] < p{x ~ e} = q, we need to prove (Vo €

supp(p). o{z ~ [e]o} = a) <= (Vo € supp(u{z ~ e}). o |= q). We prove
the two directions respectively.

o Yo € supp(p). o{z ~ [elo} = a.
For all o € supp(u{z ~ e}), by Lem. there exists og such that
oo € supp(p) and oo{z ~ [e]s,} = o. From og € supp(p) we know
oof{x~ [e]o} Eq,ie, o E=q.

o Vo € supp(pu{z~ e}). 0 E q.

For all o € supp(p), by Lem. [342| we have o{z ~ [e],} € supp(u{z ~
e}), thus o{z ~ [e],} = q.

case & < &o.

For all i, z, e, by Lem. [344] we have p = (&1 < &)[e/z] <= p = &ile/z] <

Eale/x] = [&ile/a]], < [Eele/z]l, = [Silufawer < [E2lufauey =

pl{r~ e} =& < &

case &1 = &o.

Similar to the case & < &s.

case &1 < &o.

Similar to the case & < &.

case Q).

IH: for all p,z, e, p = Qle/x] if and only if u{z ~ e} E Q.

For all u,z,e, by IH we have u = (-Q)le/z] < p = -Qle/z] < u -

Qle/z] «= p{z~e} FQ = plr~ep =-Q.

case Q1 A Qs.

THI: for all p,z, e, p = Q1]e/x] if and only if u{x ~ e} = Q1.

TH2: for all p,z,e, p = Q2le/x] if and only if u{x ~ e} = Qa.



For all u,z, e, we have

1= (QuAQ2)e/x]
= pFE Qile/x] A Q2le/x]
> (b | Qule/z]) A (p = Qale/x])
= (p{z~et EQ1) A (u{x~ e} EQ2) (by TH1 and TH2)
— p{r~el EQ1 NQa.

case Q1 V Q3.

IH1: for all p,x, e, p = Q1[e/x] if and ounly if u{x ~ e} = Q1.
IH2: for all p,x, e, pu = Q2le/x] if and ounly if u{x ~ e} = Qo.
For all p, x, e, we have

pE (Q1V Q2)le/x]
= pu = Qile/z]V Q2le/7]
= (u Qile/x]) V (1 | Qzle/x])
= ({r~et EQ)V({r~el FQ2)  (by IH1 and TH2)
=z~ e E QY Qe

case VX.Q.

IH: for all p,x,e, u = Qe/x] if and only if u{z ~ e} E Q.

For all u,x, e, we need to prove p = (VX.Q)[e/z] if and only if u{z ~ e} =
VX.Q. Usually X is a logical variable, so we can assume X ¢ fuv(e) and
X # z, by Lem. 345 we know p{X ~ r}{z ~ e} = p{z ~ e}{X ~ r}, thus

pE (VX.Q)le/z] = p = (VX.Q)le/x]
— pEVX.Qle/x]
=V (X o 1} = Qle/]
SV p{X~rH{z~el =EQ
= Vr.u{z~e{X~rtEQ
— p{z~ e} EVX.Q.

(by TH)

case 3X.Q).

Similar to the case VX.Q.

case Q1 B, Q2.

IHI: for all p,z, e, p = Q1]e/x] if and only if u{x ~ e} = Q1.

TH2: for all p,z, e, p = Q2le/x] if and only if u{x ~ e} = Qa.

For all i, x, e, we need to prove u = (Q1 €, Q2)[e/z] if and only if pu{x ~
e} = (Q1 &p Q2). There are three cases: p =0, p=1and 0 < p < 1. We
prove the three cases respectively.

e case p = 0.

pE (Q1 @o Qz2)[e/x]
= p | Qile/z] o Qale/7]
= (1 | Q2le/z])
= (p{z~e} EQ2)  (byIH2)
> p{r~ e} F Q1 ®o Q2.



e case p=1.
1= (Q1 @1 Q2)[e/7]
= p = Qile/x] @1 Q2le/x]
= (1 | Qile/x])
— (Wfz~et Q)  (by IHI)
= p{z~ e} F Q1 &1 Q2.
e case 0 < p < 1.

pE (Q1 ©p Q2)[e/]
< = Qile/] ©p Qale/7]
= 3, p2. 1= p1 Dy p2 A (1 | Qule/x]) A (p2 = Qale/z])

<= 3y, po. =1 Op iz A (m{z ~ e} = Q1) A (pe{a~ e} = Q2)  (by IH1 and 1H2)

< Jpn, po. o= 1 Bp po A pfr ~ e} = pi{z ~ e} &p pa{z ~ e} A
(p{z~ e} = Q1) A (pa{z~ e} = Q2)  (by Lem. [346)
= Jph, s s Hoe o= 1 Bp pio A pu{x ~ e} = py A po{x ~ e} = ps A
pla ~ e} = py @p py A (1) = Q1) A (ph = Q)
< 3y, py. pl{a~ e} =y Sp pp A (py = Q1) A (s = Q2)  (by Lem. [347)
= pfr~ e} Q16 Q2
— case Q1 P Qo.
IHI: for all p,z,e, p = Q1]e/x] if and only if pu{x ~ e} = Q1.
TH2: for all p,z,e, p = Qale/x] if and only if u{x ~ e} = Qa.
For all p, z, e, we have p{z ~ e} = Q1 9Q2 <= Ip. u{z~ e} EQ18,Q2

and
pi= Q@ Qa)lefr] <= p = Qule/a] & Qzle/7]
= dp. p = Qile/z] p Qale/x]
= Tp. p = (Q1 &y Q2)le/x].
To prove p = (Q1 ®Q2)[e/x] < p{z~ e} = Q1P Qq, it suffices to prove
pE(Qr &)y Q2)le/z] <= p{x~ e} = Q1 @p Q2 for all p. The rest of the
proof is similar to the case Q1 &, Q2.

— case P Q.
THI: for all p,z, e, p = Qle/x] if and only if p{z ~ e} E Q.
For all u,x, e, we have

m = (D Q)e/x]
— p = DQle/x]
< 3V € Dyp,,,,.. 4 A (Vv € supp(V). v I= Qle/x])
<= 3dV € Dpy,,,.- 1 A (Vv € supp(V). v{z ~ e} E Q) (by IH)
< 3V €Dyp,,,,.. 4 Ap{z~ e} =V{r~ e} A (Vv € supp(V). v{z~ e} E Q)
<= WV eDp,,,, - p=VAp{z~el=V{z~e}A

(Vv € supp(V{z~e}). v E Q) (by Lem. |348 and Lem. |349)
< 3V, V' €Dpy,,,.. u=V AV{z~ e} =V Ap{z~ e} =V'A(Vv e supp(V'). v = Q)
<= V' € Dpy,,.. p{z~ e} =V’ A (Vv € supp(V'). v E Q) (by Lem. [351))

=z~ DR
Lemma 353 (Soundness of (sQ-ASGN) rule). For all x,e,P,Q,G, if P =
Qle/z] and (o,0{x ~ [e]s}) E G for all o and p such that o € supp(p) and
= P, then G Egq {P}x :=e{Q}.

(I
<I<I<|




Proof. For all z,e, P,Q,G such that P = Qle/x] and (o,0{x ~ [e]s}) E G for
all o and g such that o € supp(p) and p = P, to prove G |=sq {P}x := e{Q},
we need to prove for all p, if p = P and |[x := e]](p)| = 1, then [z :=¢] (1) E Q
and (0,0") = G for all o and ¢’ such that o € supp(u) and o’ € supp([z =
e](o)). For all u such that p = P and |[z := e](u)| = 1, by Lem. [335| we know

[z :=e](u) = p{x ~ e}. From p = P and P = Q[e/x] we know p = Qle/x].
By Lem. [352| we know u{x ~ e} | @, thus [z := ¢](1) E Q. For all o and
o’ such that o € supp(p) and o' € supp([z := €](o)), by Lem. we know
[x := €](o) = d(o{x ~ [e],}). From o’ € supp([z := e](0)) we know o’ =
o{x ~ [e]o}. From o € supp(n) and p = P we know (0,0”") = G.

Lemma 354. For allb,Cy,Cy,0,n, ifo = b, then (if (b) then C, else Cs,0) &
nt1(skip, o’) if and only if (Cy,0) 2" (skip,o’).

Proof. For all b, C1, Cy, 0,n such that o = b, we know [b], = tt, thus

(if (b) then C; else Cy,0) 2" *1(skip, o)
= p =2 cr1p1 - p2 | (if (b) then C; else C2,0) 2L (¢, 0" A (C, o) B (skip, o{z ~ [e]+})}
= p=3{p2|(C1,0) =" (skip,0")}
= (C1,0) B (skip, o).

Lemma 355. For allb,Cy,Cy,0,n, ifo = —b, then (if (b) then Cy else Cy,0)
"t (skip, o') if and only if (Cy, o) 7 (skip, o).
Proof. For all b, Cy, Cs, 0,n such that o = —b, we know [b], = fI, thus

(if (b) then C, else C3,0) L ! (skip, o)
= p =2 crip1-p2 | (if (b) then C; else C2,0) 2L (¢, 0" A (C, o) 227 (skip, o{z ~ [e]s})}
= p=>{p2 | (C2,0) 25" (skip,0’)}
= (Ca,0) L (skip, o).

Lemma 356. For allb,Cy,Cs,0, if o = b, then [if (b) then Cy else C3](0) =
[Ci](o).

Proof. For all b, Cy, Co, 0 such that o |= b, we have

[if (b) then C; else Cs](0)
= Ao’.lim B,Where Vn. (if (b) then C else Cs,0) M”(skip, a’)
= Ao’.lim (0 :: p), where Vn. (if (b) then C; else Cs,0) M>”"’1(skip,a’)
= Xo’.lim (0 :: E),where Vn. (Cy,0) Mn(skip,o’) (by Lem. [354))
= \o’.lim p,where Vn. (C1,0) M"(skip,a’)
= [C1] (o).

Lemma 357. Forallb,Cy,Co, p, if p = [b], then [if (b) then C; else C3](p) =
[Crl(w)-



Proof. For all b, Cy, Cy, p such that p |= [b], we know o = b for all o € supp(u),
thus

[if (b) then C; else C](u)
= E,~,{[if (b) then C; else C3](o)}
= Xo’. Y, u(o) - [if (b) then C else Ca](0)(o
—\o" S {u(o) - [if (3) then C; else Co][(0)(o") | o € supp()}
=Xo". > {u(o) - [if (b) then C; else Cs](0)(0’) | o € supp(p) Ao = b}
Ao’ > Au(o) - [Ci](o)(0’) | o € supp(p) Ao [= b} (by Lem. [356))
Ad' Y An(o) - [Chil(o)(0") | o € supp(p)}
Ad Y, o) - [Ci](o) (o)
Eonp{[Ch] (o)}
[C1](w)-

Lemma 358. Forallb,Cy,Cs, 0, if o |= b, then [if (b) then C; else C3](0) =
[C2](0).

Proof. For all b, Cy, Cy, o such that o = —b, we have

(o)

[if (b) then C; else Cs](0)
— Ao’ lim p, where V. (if (b) then C, else Ca, o) 2"l (skip, o”)

— X\o’.lim (0 =: p), where Vn. (if (b) then C; else Cy, o) 2n+1 (skip, o”)
= Ao’.lim (0 :: p), where Vn. (C1,0) M>”(skip7a’) (by Lem. 355))
= Ao’.lim p,where Vn. (Cy,0) M>”(skip,a’)

= [G1] (o).

Lemma 359. Forallb,Cy,Co, i, if p = [b], then [if (b) then Cy else C3](p) =
[Ca] ()

Proof. For all b,Cy,Cs, p such that p = [-b], we know o = —b for all o €
supp(p), thus

[if (b) then C; else C3](n)
= Eo~p {[if (b) then C; else C3](0)}
=Xo".>", u(o) - [if (b) then C; else Cs](o)(o
=Xo". > {u(o) - [if (b) then C, else Cs](0)(o
(o

)

) (0)(0") | o € supp(p)}

=Xo". >, {,u(ag [if (b) then C; else Cg]])(O’)
) - )

") | o € supp(p) Ao = b}
=X’ 3 Aulo) - [Co] (o) (o) | o € supp(u) Ao = b} (by Lem. 358)
=X’ 3 {ulo) - [C2](0) (o) | o € supp(p)}
= Ao’ 3, o) - [Co] (o) (o)
=Eo u{[C2](0)}

= [Cal ().

R)

Lemma 360 (Soundness of (SQ-COND) rule). For allb,Cy,Cy, Py, P2,Q1,Q2,G,

if G Esq {P1 A [D]}C1{Q1} and G [Esq {P2 A [0]}C1{Q2},
then G |=sq {(P1 A [D]) ®p (P2 A [-0])}if (D) then C) else C2{Q1 ©p Q2}.



Proof. For all b, Cy,Cy, Py, P2, Q1,Q2, G such that G =g {PLA[D]}C1{Q1} and

G Esq {P2A]D]}C1{Q2}, to prove G [=sq {(PiA[D])®,(PeA[-b]) HE (b) then C; else Co{ Q18
()2}, we need to prove for all p, if u |= (PiA[b])&,(PeA[—b]) and |[if (b) then C; else Co](1)| =
1, then [if (b) then C; else Cs](1) = Q1 ®p Q2 and (0,0’) |= G for all o and

o’ such that o € supp(p) and o’ € supp([if (b) then C; else Cs](0)). For all u

such that p = (P1 A [b]) @, (P2 A [-b]) and [[if (b) then C; else Cq](1)| = 1,

there are three cases.

—p=1and u}= P AJ[b].
From p k= [b] by Lem. 357 we know [if (b) then C; else Co](n) = [C1] ().
From |[[if (b) then C; else C5](u)| =1 we know [[C1](1)] = 1. From G |=4q
{PLA[b]}C1{Q1} and p = Py A [b] we know [C1](u) = Q1. From p =1 we
have [C1](p) = Q1 P, Q2, thus [if (b) then C; else Ca] (1) = Q1 9, Q2. For
all 0 and ¢’ such that o € supp(p) and o’ € supp([if (b) then C; else Cs] (o)),
from p | [b] and o € supp(u) we know o = b. By Lem. we know
[if (b) then C; else Cs](0) = [C1](0).
From o’ € supp([if (b) then Cy else Cs](0)) we know o’ € supp([C1](0)).
From G g {PLA[D]}C1{Q1}, p = Py, 0 € supp(u) and o’ € supp([C1] (o))
we know (o,0") = G.

—p=0and u= Py A[-b].
From p = [—b] by Lem. [359 we know [if (b) then C; else Ca] (1) = [C2] ().
From |[[if (b) then C; else C3](u)| =1 we know [[C2](1)] = 1. From G |=4q
{PaA[b]}C2{Q2} and p = Po A[—b] we know [Ca] (1) E Q2. From p = 0 we
have [C2] (1) = Q1P Q2, thus [if (b) then C; else Ca] (1) = Q1 9, Q2. For
all o and ¢’ such that o € supp(p) and o’ € supp([if (b) then C; else Cs](0)),
from p = [—b] and o € supp(p) we know o = —b. By Lem. 358 we know
[if (b) then C; else Cs](0) = [C2](0). From o’ € supp([if (b) then C; else Cz](0))
we know o’ € supp([C3](0)). From G Esq {P2 A [-0]}C2{Q2}, 1 E P,
o € supp(p) and o € supp([C2] (o)) we know (o0,0") = G.

— 0 < p < 1 and there exists pq and pg such that p = 1 ®, o, p1 = P1 A [b]
and 125 ': P2 A |—_\b-|
By Lem.we know [if (b) then C; else C5] (1) = [if (b) then C; else Ca] (11,
p2) = [if (b) then C else Cs](p1) @) [if (b) then C; else Ca](u2). From
0 <p < 1by Lem. we know |[if (b) then C; else C](u1)] = 1 and
[[if (b) then C; else C3](p2)| = 1. From G |=sq {PAA[0]}C1{Q1}, 1 = PiA
[b] and |[if (b) then Cy else Ca](1)] = 1 we know [if (b) then C else Ca](u1) =
Q1. From G [=sq {P2A[b]}C1{Q2}, 2 = PoA[b] and |[if (b) then Cy else Ca](u2)| =
1 we know [if (b) then C; else Cs](u2) = Q2. From [if (b) then C; else Co]|(p) =
[if (b) then C; else Ca2](u1) @, [if (b) then C; else Co(u2), 0 < p < 1,
[[if (b) then Cl else Cg]](ul) ): Ql and [[if (b) then Cl else CQ]](MQ) ): QQ
we know [if (b) then C; else Cs](1) = Q1 Bp Q2. For all o and ¢’ such that
o € supp(p) and o’ € supp([if (b) then C; else Co](0)), from 0 < p < 1 by
Lem. we know supp(p) = supp(p1 Sp p2) = supp(p) U supp(pe). From
o € supp(p) we know o € supp(p1) or o € supp(pz). If o € supp(py), from
p1 = [b] we know o = b. By Lem. [356] we know [if (b) then C; else Cs](0) =
[C1] (o). From o’ € supp([if (b) then C; else C3](0)) we know o’ € supp([C1](0)).



From G |=sq {PAIA[D]}C1{Q1}, 1 = P, 0 € supp(py) and o’ € supp([C1](0))
we know (0,0’) = G. If 0 € supp(pe), from pe = [-b] we know o =

b. By Lem. [356| we know [if (b) then C; else Cs](0) = [C2](c). From

o' € supp([if (b) then C; else Cs2](0)) we know o’ € supp([C2](0)). From

G Esq {P2 A [70]}C2{Q2}, po E Po, 0 € supp(uz) and o’ € supp([C2](0))

we know (o,0") E G.

Lemma 361. For all C' and p, [(C)](p) = [C](1)-

Proof. For all C and p, we have [(C)](1t) = Eonp {[{C)](0)} = Eonp {[C](0)} =
[C().-

Lemma 362 (Soundness of (sQ-ATOM) rule). For all C, P,Q, G, if G |=sq
{P}IC{Q}, then G [=sq {PHONQ}-

Proof. Forall C, P,Q, G such that G =4 {P}C{Q}, to prove G |=sq {PHC){Q},
we need to prove for all p, if 4 = P and |[(C)](1)| = 1, then [{(C)] (1) E @ and
(0,0") = G for all o and ¢’ such that o € supp(p) and o’ € supp([{C)](o)). For
all p such that g = P and |[(C)](x)] = 1, by Lem. [361] we know [(C)](u) =
[C (). From [(C)](1)] = 1 we know [[Cl(w)] = 1. From G o, {P}C{QY,
p = P and |[C](1)| = 1 we know [C](p) = @, thus [(C)](1) = Q. For all o and
o’ such that o € supp(u) and o’ € supp([({C)](0)), we have [(C)](o) = [C] (o).
From o’ € supp([(C)](0)) we know ¢’ € supp([C](0)). From G |=sq {P}C{Q},
wE P, [CHw)| =1, o € supp(p) and o’ € supp([C](o)) we know (0,0’) E G.

Lemma 363. For all Cy,Cy,p,0,n,p, ((C1) @, (Ca),0) 25"+ (skip,o’) if and
only if there exists p1 and py such that p' = p-p1 + (1 —p) - pa, ((C1),0) 2,

"(skip,c’) and ({(Cs),0) 220 (skip, a’).
Proof. For all C1,Cs,p,0,n,p’, we have

((Ch) @p (Ca), o) =T (skip, o)
= p =Y dpr P2 | ((C1) @y (Ca),0) 5 (C',0") A(C,0") 2257 (skip, o{z ~ [e],})}
= =p-YAp1 | ((C1),0) 25" (skip,o”)} + (1 —p) - X{p2 | ((C2),0) =" (skip,a’)}
= Ip1,pa. P =p-pr+ (1 —p)-p2 A ((CL),0) E57(skip, o) A ((Cy), o) £257(skip, o).

Lemma 364. For all C1,Cs, 0, [(C1) &, (C)] (o) = [{(C1)] (o) @p [(C2)] (o).



Proof. For all Cy,Cs,0,n, we have

[(C1) &5 (C2)](0)
= \o'. limB,Where Vn. ((C1) &y (Ca),0) —n]>n(

p[ 1 )
= X0’ lim (0 =z ), where ¥n. ((C1) @, (Cs), ) LLW(skip,a')
p

= X\o’.lim p, where Vn. ((C1) @, (Ca),0) J]%”H(sklp a’)

= Ao’.lim (p- p1 + (1 — p) - p3), where Vn. ((C1), o) pl—[n]ﬁb(sklp, A

((C2), o) Z2n(skip,o')  (by Lem. [B63)

= Ao’. p-limpy + (1 — p) - lim py, where Vn. ((C1),0) pl—[n]>”(sk1p o'y A

(Ca), o) 2 (skip, o)

=Xo'.p- hmpl,where Vn. (Cy,0) pl—["]W(skip,U’) +

(I-p)- lim ps, where Vn. (C1,0) pl—[n]>"(skip, a’)

=X’ p-[Ci](o)(0") + (1 = p) - [C2](o) (o)
= [C1](0) ®p [C2](0).

Lemma 365. For all C1,Cs, p1, [{Ch) @y (C2)] (1) = [(C1)] (1) @p [{C2)] (1)
Proof. For all Cy,Cs, i, we have

[{C1) @p (C2)] (1) = Eonp{[(C1) Bp (C)](0)}
Eoni{[{C](0) @p [(C2)](0)}  (by Lem. [364)
E, o, [C)1(0)} &y Eonnd [(C2)](0)} (b Lem. [I§)

[(CDI(w) @ [(C2)] (w)-

Lemma 366 (Soundness of (sQ-PCH) rule). For all Cq,Cs, P,Q1,Q2, G, if
G Eso {P}C1{Q1} and G =g {P}02{Qa}, then G =g {P}C1) @, (Co){Q1 @,

Q2}.

P’I“OOf. For all 01,02,P,Q1,Q2,G such that G 'ZSQ {P}Ol{Ql} and G 'ZSQ
{P}C2{Q2}, to prove G |=sq {P}HC){Q1 ®p Q2}, we need to prove for all p, if
i Pand [[(C1) @, (C)]()] = 1, then [{Ch) @, (Co)] () = Q and (0, 0”) k= G
for all o and ¢’ such that o € supp(p) and o’ € supp([(C1) ®p (C2)](c)). For
all p such that p = P and |[(C1) @, (C2)](p)] = 1, by Lem. we know
[(C1) @p (C)] (1) = [(C1)] (1) Dp [{C2)] (). There are three cases: p =0, p =1
or 0 < p < 1. We prove the three cases respectively.

—p=0.
[(C1) ®p (C2)](1) = [KCOI(1) ©p [(C) (1) = [(C2) (). From [[(C1) ®p
(C2)](1)] = 1 we know [[(C2)[(p)| = 1. From G |=sq {PHC2){Q2}, p = P
and [[(C2)[(1)] = 1 we know [(Co)](p) = Q2, thus [{Ch) &, (C2)] (1) = Q.
From p = 0 we know [(C1) @, (C2)] (1) = Q1PpQ2. For all o and ¢’ such that
o € supp(p) and o’ € supp([(C1)® ,), E[]g( 0)), by Lem. [364| we know [(C1)®,

(1
1)
(Cy
(C2)](0) = [{C1)](0) @p [(C2)](0) =

>]]( ). From o’ € supp([(C1) &,



(Co)](0)) we know o' € supp([{Ca)](0). From G fosq {PHC2{Qa}, 1= P,
LCol ] =17 & supp(p) and o” € upp([(Co)l(0) we know () = .
—p=
[(C1) @y (C2)] (1) = [(CHI(R) &p [([C](k) = [(C1)](1). From [[{C1) &y
(Co)](12)] = 1 we know [{C1)]()| = 1. From G g {PHCL{Q1}, 1 = P
and [[{C1)]()| = 1 we know TC11() = Qi thus [(C) B, (C)] () = Qs
From p = 1 we know [(C1)®, (C2)] (1) E Q1®,Q2. For all o and ¢’ such that
o € supp(p) and o’ € supp([{C1)®,(C2)](0)), by Lem. We know [(C1)®,
(Co)](0) = [(C1)](0) &y [{C2)] (o) = [{C1)](0). From o € supp([{C1) &y
(C2)] (o)) we know o’ € Supp([K >ﬂ( ))- From G |=sq {PHC1{@1}, 1 = P,
I{CV] ()] =1, o € supp(p) and o’ € supp([(C1)](0)) we know (0, 0") | G.
- 0<p<l.
From G @, (CoIG9) = 1 we know IC)100) @ I

)
G Fsq {PHCI{Q1}, p = P and \[[(01>ﬂ( )| = 1 we know [(C1)](n) =
Q1. From G s {P}HC2){Q2}, p = P and [[(Co)](n)] =
[(C2)[ (1) = Q2. From [(C1)@, (C)] (1) = [(C1)] (1)@, [(C2) | (1
[CDI () = Qi and [(C2)] (1) = @2 we know [(C1) @, (Co)] (1)

For all o and ¢’ such that o € supp(u) and o’ € supp([(C
by Lem. [364] we know [(C1) ®, (C2)](0) = [(C1)](0) &, [(C2)](0). From
0 < p < 1 by Lem.[275|we know supp([(C1) @, (C2)](0)) = supp([(C1)](o))U
supp([(C2)](0)). From ¢’ € supp([(C1)®,(C2)](0)) we know o’ € supp([(C1)](o))
or o' € supp([{Ca)](0)). 1t o € supp(I(C)](0)), from G Fu {PHC{@Q1},
wE P ILCOI| = 1, 0 € supp() and o' € supp([(C1)](0)) we know
(0,0") |= G 1f 0" € supp([(C2)](0)), from G =sq {PHC2){Q2}, 1 = P,
[[{C)1 ()| =1, o € supp(p) and o’ € supp([{C2)](c)) we know (o,0”) = G.

Lemma 367. For all C, P,Q,G, if G bsq {P}C{Q}, then G |=sq {P}C{Q}.

Proof. For all C, P, @, G such that G Fsq {P}C{Q}, we prove G |y {P}C{Q}
by induction on the derivation of G Fsq {P}C{Q}.

— case (SQ—DISJ)Z P=PV PQ, Q = Ql vV QQ, G }_SQ {Pl}C{Ql} and G |_SQ
{P,}C{Qs}.
From G Fsq {P1}C{Q1} by induction hypothesis we know G |=sq {P1}C{Q1}.
From G Fgq {P>}C{Q2} by induction hypothesis we know G Eqq {P2}C{Q2}.
By Lem. 05| we know G |=gq {P1 V P2}C{Q1 V Q2}, ie., G [=sq {PYC{Q}.
— case (SQ—CONJ)Z P=PVP Q=0 V.Q,G Fsq {Pl}C{Q1} and
G Feq {P2}C{Qu}.
From G kg {P1}C{Q1} by induction hypothesis we know G =g {P1}C{Q1}.
From G kg {P>}C{Q2} by induction hypothesis we know G =g {P2}C{Q2}.
By Lem. [306] we know G [=sq {P1 A P2}C{Q1 A Q2}, ie., G =gq {PIC{Q}.
— case (SQ-EXIST): P = 3X.P, Q = 3X.Q1, G kg {P}C{Q:1} and X ¢
fu(G) Uwo(C).
From G Fsq {P1}C{Q1} by induction hypothesis we know G |=sq {P1}C{Q1}.
From X ¢ fv(G) Uwv(C) by Lem. we know G ¢ {3IX.P}C{3X.Q},
ie., G e {PIC{Q}.



— case (SQ—FORALL)I P = VX.Pl, Q = VX.Ql, G l_SQ {Pl}C{Ql} and X ¢

fu(G) Uwo(C).

From G Fgq {P1}C{Q1} by induction hypothesis we know G |=sq {P1}C{Q1}.
From X ¢ fv(G) U wv(C) by Lem. we know G |=sq {VX.P1}C{VX.Q},
ie., G e {PYC{Q}.

case (8Q-CsQ): P = P, G' b4 {P'}C{Q'}, @' = Q and G' = G.

From G’ o {P’'}C{Q'} by induction hypothesis we know G’ =5 {P’'}C{Q'}.
From P = P', ' = Q and G’ = G by Lem. 12| we know G |=¢q {P}C{Q}.
case (SQ-OPLUS): P = P; @, P», Q = Q1 ®p Q2, G Fsq {P1}C{Q1} and
G |_sQ {PQ}C{QZ}-

From G Fgq {P1}C{Q1} by induction hypothesis we know G |=¢q {P1}C{Q1}.
From G Fgq {P2}C{Q2} by induction hypothesis we know G |=¢q {P2}C{Q2}.
By Lem. B15| we know G |=gq {P1 @) P }C{Q1 8, Q2}, ie., G oo {PYC{Q}.
case (SQ-BIGOPLUS): P= P, Q =P Q1 and G s, {P1}C{Q1}.

From G Fsq {P1}C{Q1} by induction hypothesis we know G |=sq {P1}C{Q1}.
By Lem. We know G f=sq {P P }C{P Q}, ie., G Esq {P}IC{Q}.

case (SQ-SKIP): C' = skip, P = @, G = Id.

By Lem. [325] we know Id |=sq {Q}skip{Q}, i.e., G s {P}C{Q}.

case (SQ-SEQ): C' = C1;C, G = G1 0 Ga, Gy Fsq {P}C1{M} and G2 Fgq
{M}C{Q}.

From G; Fsq {P}C1{M } by induction hypothesis we know G gq {P}C1{M}.
From Gj Fsq {M}C2{Q} by induction hypothesis we know Gy s {M}C2{Q}.
By Lem. [330] we know G o Gy |=gq {P}C1; Co{Q}, ie., G Esq {P}C{Q}.
case (SQ-ASGN): C' =z :=e, P = Q[e/z] and (o,0{z ~ [e]s}) = G for all
o and p such that o € supp(p) and p = P.

From P = Qle/z] and (0,0{z ~ [e],}) E G for all o and p such that
o € supp(p) and p = P by Lem. B53] we know G =g {P}z := e{Q}, i.e.,
G o {PIC1Q).

case (sQ-COND): C' = if (b) then C; else Cy, P = (P1 A [b]) &, (P2 A [)]),
Q - Ql @p QQ, G "SQ {Pl A [b]}Cl{Ql} and G "SQ {PQ AN ["b] }CQ{QQ}
From G Fsq {P1 A [0]}C1{Q1} by induction hypothesis we know G =gq
{Py A [b]}C1{@Q1}. From G Fgq { P2 A [-b]}C2{Q2} by induction hypothesis
we know G |Egq {P2 A [-0]}C2{Q2}. By Lem. we know G g {(P1 A
[b]) ®p (P2 A[—b])}if (b) then Cy else Co{Q18,Q2}, ie., G Esq {PIC{Q}.
case (SQ-ATOM): C' = (C}) and G Fsq {P}C1{Q}.

From G s {P}C1{Q} by induction hypothesis we know G |=sq {P}C1{Q}.
By Lem. 362 we know G f=sq {P}HC1){Q}, i-e., G 5o {PIC{Q}.

case (SQ-PCH): C' = (C1) & (C2), Q = Q1 ®p Q2, G Fsq {P}C1){Q1} and
G Fsq {PHC) Q1.

From G Fgq {P}{C1){Q1} by induction hypothesis we know G =sq {P}{C1){Q1}.
From G Fgq {P}(C2){Q2} by induction hypothesis we know G =g {P}{C2){Q2}.
By Lem. we know G |=sq {P}HC1) @p (Co){Q1 ®)p Q2}, ie., G Fsq
{PIC{Q},
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