
A Program Logic for Concurrent Randomized
Programs in the Oblivious Adversary Model

Abstract. Concurrent randomized programs under the oblivious adver-
sary model are extremely difficult for modular verification because the
interaction between threads is very sensitive to the program structure
and the execution steps. We propose a new program logic supporting
thread-local verification. With a novel “split” mechanism, one can split
the state distribution into smaller partitions, and the reasoning can be
done based on each partition independently, which allows us to avoid
considering different execution paths of if -statements and while-loops
simultaneously. The logic rules are compositional and are natural exten-
sions of their sequential counterparts. Using our program logic, we verify
four typical algorithms under the oblivious adversary model.

1 Introduction

Randomization has become an important and powerful technique in the design
of concurrent and distributed algorithms. By introducing probabilistic coin-flip
operations, problems like consensus and leader election can be solved efficiently
(e.g. [12,2,3]), despite that they are inherently difficult or even impossible to
solve in a non-probabilistic concurrent setting.

To understand the semantics of concurrent randomized programs, one has to
take into account the interplay between concurrency and randomization. In par-
ticular, one must answer the question: can the result of a coin-flip operation affect
the choice of scheduling (i.e. which thread will perform the next operation)? For
this, algorithm designers propose a spectrum of adversary models specifying the
knowledge about the past execution that a scheduler (a.k.a. an adversary) can
use for choosing the next thread. Different adversary models assume different
knowledge, varying from none to all.

At one end of the spectrum is the oblivious adversary (OA) model, where an
adversary has no knowledge and must fix the entire schedule prior to the execu-
tion. The OA model is a natural abstraction of most real-world scheduling algo-
rithms, including the round-robin scheduling and the priority-based scheduling.
It reflects the scheduling in almost all real general infrastructures such as operat-
ing systems or programming languages (e.g. as in golang) where the scheduling
does not rely on the specific behaviors of the threads being scheduled.

Designing algorithms for the OA model has gained lots of attention and
more than ten algorithms have been proposed over the years (see [4,5] for a
comprehensive introduction). As a concrete example, consider Chor et al. [12]’s
conciliator algorithm. A conciliator is a weak consensus object that guarantees
probabilistic agreement, namely that with a high probability the return values

of all threads are equal. In Chor et al. [12]’s conciliator algorithm, each thread
i executes Ci:

Ci
def
= (while (s = 0) do 〈s := i〉 ⊕p 〈skip〉) ; yi := s

Here s is a shared variable initialized to 0, yi is the local variable for thread i
that records its return value. The probabilistic choice 〈s := i〉⊕p 〈skip〉 says that
thread i writes i to s with probability p and does nothing (skip) with probability
1 − p. It repeats until the thread observes s 6= 0, then it loads s to yi. Given n
threads running the conciliator code in the OA model, the algorithm ensures the
postcondition Pr(y1 = y2 = · · · = yn) ≥ (1 − p)n−1, i.e. the probability for the
threads to reach a consensus (thus y1 = y2 = · · · = yn) is no less than (1−p)n−1.

However, there has been little attention paid to verifying algorithms in the
OA model. Existing program logics for verifying concurrent randomized pro-
grams [19,17,13] work with only the strong adversary (SA) model, which is at
the other end of the spectrum of adversary models. A strong adversary has
the full knowledge of the past execution, including outcomes of past coin-flips,
thread-local states and shared states. Consequently, any algorithm which is cor-
rect under SA must still be correct under OA, but not vice versa. For instance,
the aforementioned conciliator algorithm is not correct in SA. None of the ex-
isting program logics can apply to the conciliator, or more generally, to any
algorithms which are correct only with weaker adversaries such as OA.

On the one hand, it is unclear how to take advantage of the OA model in
the verification. On the other hand, the OA model brings its own verification
challenges. As we will see in Sec. 3, the program behaviors in the OA model
seem sensitive to the number of execution steps in different program branches,
but the verification with program logics must be modular, syntax-directed and
insensitive to the number of execution steps.

The good news is, from the existing algorithms designed for the OA model,
we observe that the correctness properties of these algorithms usually follow
certain common patterns and can be specified by what we call “closed” assertions.
To verify these properties, we do not need to prove they hold over the whole
state distribution, which may contain states resulting from the execution of
different program branches. Instead, we can prove there exists a partition of the
distribution such that the property holds over every part. For closed assertions,
the validity over every part implies the validity over the whole distribution.

Based on this observation, we propose the first program logic for concurrent
randomized programs targeting the OA model. Our work makes the following
new contributions:

– We take advantage of the OA model by proposing an abstract small-step
operational semantics over state distributions, which allows us to apply clas-
sical concurrency reasoning techniques (such as invariants) by interpreting
assertions over state distributions.

– We propose a novel proof technique called split to support modular reason-
ing and overcome the problem with branch statements. By splitting a state

distribution into several smaller ones, we can reason about the different pro-
gram branches independently. This makes us prove the postcondition holds
over a partition of the final state distribution. Then we can derive it for the
whole distribution as long as the postcondition is closed.

– We design a set of logic rules for compositional reasoning about concurrent
randomized programs with the split mechanism. Thanks to the split idea, our
rules for sequential composition, if -statements and while-loops are simple
and natural extensions of their classical (non-probabilistic) counterparts.

– We prove that our logic ensures partial correctness of concurrent random-
ized programs where the adversaries are also randomized. Since we focus
on closed assertions as postconditions, the verification is independent of the
distribution of schedules. The partial correctness verified by the logic holds
over arbitrary probabilistic distributions of oblivious adversaries.

– Using our logic, we report the first formal verification of four typical algo-
rithms in the OA model, including the aforementioned conciliator [12], group
election (the core phase of Alistarh and Aspnes’ randomized test-and-set al-
gorithm [2]), a shared three-sided dice and a multiplayer level-up game.

Outline. We first review mathematical preliminaries in Sec. 2 (readers who are
not interested in formal details can skip this section). Then we informally explain
our key ideas in Sec. 3. We present the language setting including our abstract
semantics in Sec. 4. We develop our program logic in Sec. 5, and verify conciliator
as a case study in Sec. 6. We discuss related work in Sec. 7. The appendix contains
the full formal details of this work, including semantics rules, logic rules, example
proofs and logic soundness proofs.

2 Preliminaries

Below we review the background on probability theory and sketch the basic
mathematical notations used in our work for describing probabilities, expected
values, etc. Readers who are not interested in mathematics can safely skip this
section and come back later when the notations are used.

A sub-distribution over a set A is defined as a function µ :A→ [0, 1] such that

– the support supp(µ)
def
= {a ∈ A | µ(a) > 0} is countable; and

– the weight |µ| def
=
∑
a∈A µ(a) ≤ 1.

If µ is a sub-distribution over A and its weight |µ| = 1, we say µ is a distribution
over A. We use SDA to denote the set of sub-distributions over A, and DA to
denote the set of distributions over A.

For µ ∈ SDA, intuitively µ(a) represents the probability of drawing a from
µ. Then, the probability of an event E : A→ Prop and the expected value of a
random variable V : A→ R are defined as follows, denoted by Pra∼µ[E(a)] and
Ea∼µ[V (a)] respectively (here a is a bound variable).

Pra∼µ[E(a)]
def
=

∑
a∈A{µ(a) | E(a)} Ea∼µ[V (a)]

def
=

∑
a∈A µ(a) · V (a) (2.1)

For instance, suppose µ is a state distribution, and q is a state assertion (we
write σ |= q if q holds at the state σ). Then Prσ∼µ[σ |= q] represents the
probability that q is satisfied. If JeKσ is the evaluation of the expression e on σ,
then Eσ∼µ[JeKσ] represents the expected value of e in µ.

For an event E with non-zero probability in µ (i.e. Pra∼µ[E(a)] > 0), we
define the conditional sub-distribution µ|E as follows:

µ|E
def
= λa.

{
µ(a)

Pra∼µ[E(a)]
, if E(a) holds

0, otherwise
(2.2)

Given two sub-distributions µ1, µ2 ∈ SDA and a probability p ∈ [0, 1], we
define the mixture sub-distribution µ1 ⊕p µ2 ∈ SDA as follows:

µ1 ⊕p µ2
def
= λa. p · µ1(a) + (1− p) · µ2(a) (2.3)

Given two sub-distributions µ1 ∈ SDA and µ2 ∈ SDB , we define the product
sub-distribution µ1 ⊗ µ2 ∈ SDA×B as follows:

µ1 ⊗ µ2
def
= λ(a, b). µ1(a) · µ2(b) (2.4)

In Sec. 4.2, we will use the product ⊗ to compute the initial distribution of
program configurations, from the initial program C and an initial state distribu-
tion. When C’s execution ends, we will extract the final state distribution from
the final distribution of program configurations by projection. Specifically, given
µ ∈ SDA×B , the projection of µ with the sets A and B is defined as:

µ(A) def
= λa′.Pr(a,b)∼µ[a = a′] µ(B) def

= λb′.Pr(a,b)∼µ[b = b′] (2.5)

For almost surely terminating programs (i.e. programs which have infinite
executions with zero probability and terminate with probability 1), we define the
“final” state distribution as the limit of an infinite sequence of state distributions.
In general, we define the limit of a convergent sequence of sub-distributions in
Def. 2.6.

Definition 2.6 (convergent sequence of sub-distributions). Let A be a
set,

→
µ be an infinite sequence of sub-distributions overA. We say

→
µ converges to a

sub-distribution µ, represented as lim
→
µ = µ, if and only if lim

n→∞

∑
a∈A|

→
µ [n](a)−

µ(a)| = 0 (where
→
µ [n] means the n-th element of the sequence

→
µ). We say

→
µ

diverges and lim
→
µ is undefined if

→
µ does not converge to any µ.

Definition 2.7 (expected sub-distribution). 1 Let µ ∈ SDA and f : A →
SDB . The expected sub-distribution Ea∼µ{f(a)} ∈ SDB is defined as

Ea∼µ{f(a)}
def
= λb.

∑
a∈A µ(a) · f(a)(b)

1 It is also known as the “bind” operator of the monadic structure of sub-distributions.

a1

p1
a2

p2

b1

p11

b2

p12

b1

p21

b2

p22

µ

f(a1) f(a2)

b1

p1p11 + p2p21

b2

p1p12 + p2p22

Ea∼µ{f(a)}

Fig. 1: Expected sub-distribution.

(0, 0)

(0, 0)
1
2

1
2

(0, 0)

1
2

(0, 1)

1
2 (1, 0)

1
2

(1, 0)

1
2

(1, 1)

(a)

σ1
1
2

1
2

1
2

1
2

1
2

1
2

σk
1
2

1
2

1
2

1
2

1
2

1
2

. . .

. . .

. . .

(b)
Fig. 2: Execution of a sequential program. In (a), a pair at a node specifies x and
y’s values in the state.

Definition 2.7 computes the sub-distributions’ expectation. As illustrated in
Fig. 1, the function f transforms each element ai in the support of µ to a sub-
distribution f(ai), and then the expected sub-distribution (see the right side of
the figure) is the mixture of all f(ai).

Also, from a sub-distributions’ sub-distribution µ ∈ SDSDA , we can compute
the flattened sub-distribution µ ∈ SDA as the mixture of all the sub-distributions
in the support of µ:

µ
def
= λa.

∑
ν∈SDA µ(ν) · ν(a) . (2.8)

3 Informal Development

Below we start with reasoning about sequential randomized programs (Sec. 3.1).
For concurrent randomized programs, we introduce the oblivious adversary (OA)
model and define the correctness of programs with randomized schedules (Sec. 3.2).
Then we show how to do thread-local reasoning by taking advantage of OA
(Sec. 3.3). To address the challenges posed by branch statements (Sec. 3.4), we
propose the split mechanism (Sec. 3.5). Finally we show some other key ideas of
our approach (Sec. 3.6).

3.1 Sequential Randomized Programs and Their Correctness

Randomized programs can be viewed as programs in a classical (non-probabilistic)
programming language (e.g. WHILE) extended with probabilistic choice state-
ments 〈C1〉 ⊕p 〈C2〉. It makes a random choice to execute 〈C1〉 or 〈C2〉, with
probability p and 1 − p, respectively. Here we use 〈C〉 to represent an atomic
statement that executes C in one step. We explain atomicity in Sec. 3.2.

The execution of a sequential randomized program starting from a particular
initial state forms a tree. For instance, Fig. 2a shows the execution tree for

Coins def
= 〈x := 0〉 ⊕ 1

2
〈x := 1〉; 〈y := 0〉 ⊕ 1

2
〈y := 1〉;

starting from the initial state where x and y are both 0. Each branching in the
tree corresponds to a probabilistic choice. If we consider all possible initial states,
the execution becomes a forest (where each node represents a program state σ),
as shown in Fig. 2b.

Correctness Although the execution model based on the view of state transitions
is similar to the model of classical sequential programs, the properties about
randomized programs can be significantly different. For the program Coins, one
may want to derive properties like “the probability that x equals y at the end
of the program is 0.5”. Unlike a postcondition in Hoare-style logics for classical
sequential programs, which is expected to hold over every leaf node of the forest,
the above property describes the collection of all the leaf nodes as a whole, i.e.
the state distribution at the end of the program.

Therefore, in the Hoare-style specification {P}C{Q} for randomized pro-
grams, P and Q are assertions over distributions of initial states and final states,
respectively. For the example Coins, we can specify the aforementioned property
as {true}Coins{Pr(x = y) = 0.5} or {true}Coins{dx = ye ⊕0.5 dx 6= ye}. Here
dpe lifts the state assertion p to an assertion over state distributions µ, requiring
that p holds at all states in supp(µ), the support of µ. The assertion P ⊕p Q
holds at µ, if µ is a mixture of two distributions µ0 and µ1, which are associated
with probabilities p and 1−p, and satisfy P and Q respectively. We can give the
following Hoare-logic rule to probabilistic choices:

`sq {P}C1{Q1} `sq {P}C2{Q2}
`sq {P}〈C1〉 ⊕p 〈C2〉{Q1 ⊕p Q2}

(sq-pch)

In this view, a program C transforms a state distribution µ (that satisfies P)
to another µ′ (that satisfies Q).2 The resulting logic rules (e.g. [6]) are almost
the same as the classical (non-probabilistic) ones — we just need to lift the
assertions from predicates over states to predicates over state distributions.

3.2 Concurrent Randomized Programs and the OA Model

A concurrent randomized program C1 ‖ · · · ‖ Cn (denoted by C) has two sources
of nondeterminism: the probabilistic choices (in each thread Ci) and the schedul-
ing. Its correctness usually assumes a certain class of scheduling, specified by an
adversary model.

The oblivious adversary (OA) model considered in this paper requires that
the scheduling must be determined prior to the execution, regardless of the
2 An alternative view is expectation-based, where P and Q are expectations
(e.g. [16,8]).

x = 0

x = 0 x = 0

x = 0 x = 0

x = 1 x = 1

1
3

2
3

x := 2x x := x
2

x := 1 x := 1

(a)

x = 0

x = 0 x = 0

x = 1 x = 1

x = 2 x = 1
2

1
3

2
3

x := 1 x := 1

x := 2x x := x
2

(b)

x = 0

x = 1

x = 1 x = 1

x = 2 x = 1
2

x := 1

1
3

2
3

x := 2x x := x
2

(c)

Fig. 3: Execution trees in OA model, for Cx
def
= (〈x := 2x〉⊕ 1

3
〈x := x

2 〉 ‖ x := 1).

outcomes of a thread’s local coin-flip operations. For example, Fig. 3 shows all
the possible executions in the OA model for a simple program Cx consisting
of two threads: 〈x := 2x〉 ⊕ 1

3
〈x := x

2 〉 ‖ x := 1. In the concurrent setting,
the probabilistic choice 〈C1〉 ⊕p 〈C2〉 is executed in two steps: it first flips a
coin, getting heads with probability p and tails with probability 1− p, and then
executes either the atomic statement 〈C1〉 for heads, or 〈C2〉 for tails. Note
that, although we require the two branches to be atomic statements, we mainly
use 〈C1〉 ⊕p 〈C2〉 to encode a random assignment, so C1 and C2 themselves
may correspond to single instructions at the machine level anyway (in this case,
the atomic wrappers 〈·〉 are unnecessary) and the need of atomicity here is
not overly idealistic. The more general form of C1 ⊕p C2 can be encoded as
(〈x := true〉 ⊕p 〈x := false〉; if (x) then C1 else C2). 3

Therefore, in OA, there are only three possible schedules for Cx: t1 t1 t2
(Fig. 3a); t1 t2 t1 (Fig. 3b); and t2 t1 t1 (Fig. 3c). In the figure, state transitions
by different threads are in different colors (in black for t1, and in red for t2). We
can see that, by fixing a specific OA schedule, the transitions at the same layer
of an execution tree must be made by the same thread.

In contrast, the strong adversary (SA) model allows arbitrary scheduling. An
SA scheduler has the full knowledge of machine states, especially including the
outcomes of coin-flip operations, and can rely on that knowledge to schedule
threads. For the example Cx, in addition to the three schedules in Fig. 3, the SA
model also allows two more schedules, where t1 and t2 are scheduled in different
orders for different outcomes of the coin flip. As such, the transitions at the same
layer of an execution tree could be made by different threads.

This example also demonstrates that, thanks to the restriction of the schedul-
ing, one can derive stronger properties of programs in the OA model that do not
hold in the SA model. As shown in Fig. 3, in the OA model the expected value

3 In the proofs of algorithms, we may insert auxiliary statements (a.k.a. ghost code)
to be executed with the probabilistic choice together. This is actually the only case
when C1 or C2 is non-atomic and needs to be wrapped by 〈·〉.

µ |= Pµ µ

µ1 µk µ′ |= Q

ϕ1 ϕk

. . .

. . .

. . .

Fig. 4: Illustration of |= {P}C{Q}.

of x at the end of execution is 1, which is not true considering the two more
schedules in the SA model.

Correctness and closed assertions. What is the meaning of the Hoare triple
{P}C{Q} now? Figure 4 shows the execution of a concurrent program, where µ
is the distribution of the initial states. The execution under each (OA) schedule
ϕi corresponds to a forest, as in the case for sequential programs. Edges of
different colors represent execution steps from different threads. The execution
under all schedules forms a set of forests. It is obvious that P specifies µ, but
what about Q?

Here we have two choices. We can either view the schedules being non-
deterministic, or being probabilistic. For the former, we require that Q hold over
every µi (the leaf node distribution of the forest generated with the schedule
ϕi). However, this result is not strong enough — if we sample the execution of C
and observe the final results, the sampled executions may not be generated with
the same schedule, that is, the final states we observe may come from different
µi. So it is more natural to take the latter (probabilistic) view of schedule and
consider the mixture distribution µ′ of µ1, . . . , µk, . . ., where the weight of each
µi is the probability of the schedule ϕi. Since we do not know the distribution
of schedules in advance, Q needs to hold with all schedule distributions, that
is, Q holds over µ′ obtained by taking an arbitrary probability distribution for
µ1, . . . , µk, . . .

We use |=nd {P}C{Q} to represent the semantics of the Hoare triple under
the non-deterministic view, and |=pr {P}C{Q} for the probabilistic view. It is
easy to prove the latter implies the former. The reverse does not hold in general,
but it holds if Q is “closed”. Here closed(Q) requires that the mixture of any
(potentially countably infinite) number of distributions satisfies Q if each of these
distributions satisfies Q. (We will formally define closed(Q) in Sec. 5.1.) As a
result, for a closed postcondition, we can reduce the proof of |=pr {P}C{Q} to
the proof of |=nd {P}C{Q}.

Most concurrent randomized algorithms that we know have closed postcondi-
tions. As examples of closed assertions, dbe, Pr(b) = 0.5 and E(x) = 1∧ dx ≥ 0e
are all closed. So, for the earlier example Cx, we only need to prove that the leaf
distribution of each execution tree in Fig. 3 satisfies E(x) = 1 ∧ dx ≥ 0e.

We give the formal definition of |=nd {P}C{Q} in Sec. 4.1. We show the formal
defintiion of |=pr {P}C{Q} and prove that they are equivalent whenQ is closed in
Appendix B. In this paper we focus on closed Q’s only and omit the subscript nd
henceforth. Assuming closed(Q) not only gives us the equivalence between the

t1

t2

µ

µ′

µ′′

(a)

t1

t2

µ

µ′

µ′′

(b)

Fig. 5: Concrete vs. Abstract Operational Semantics in OA.

probabilistic and non-deterministic views of schedules, but also is crucial to make
our split mechanism work, as we show in Sec. 3.5 below. Note that closed(Q)
is not an overly strong requirement for practical programs, because it is needed
only for the postcondition Q of the whole program C. The postconditions for
individual statements and threads do not need to be closed.

3.3 Thread-Local Reasoning in OA

The question is, how to take advantage of the OA model and verify the stronger
correctness guarantee of a program by thread-local reasoning, i.e. verifying one
thread at a time.

A natural thought is to extend the sequential reasoning in Sec. 3.1 to con-
currency. To this end, we hope to view the execution of a concurrent program
as transitions over state distributions, as what we do for sequential reasoning.
However, unlike sequential semantics that are usually big-step (see e.g. [6,18])
and care about only the initial and final state distributions, the transitions in
a concurrent setting need to be small-step, to reflect the interleaving between
threads.

One might also consider to migrate the existing approaches for the SA model
to the OA setting. However, the interleaving pattern between threads in the OA
model is very different from that in the SA model. The SA model allows that dif-
ferent threads may be scheduled for different outcomes of a probabilistic choice
operation, while the OA model does not allow it. As a result, program logics
for SA (e.g. [17,13]) adopt weak assumptions on the environment behaviors in
the thread view: for different states in the support of the current state distribu-
tion, different environment threads may interrupt and take very different steps.
Therefore, they model the environment behaviors as transitions from states to
state distributions (e.g. [17]) or transitions from states to states (e.g. [13]).

However, this idea may not be as useful in the OA setting as in the SA
setting (thought it is still sound). Algorithms in the OA model usually rely on
the assumption that the scheduling cannot depend on the results of probabilistic
choices, so the weak assumption that different states may be interrrupted by
different environment threads it too weak in the OA setting, and it is not obvious
how to forbid the impossible interleavings in the OA model if we still model
the environment behaviors as transitions from states to state distributions or
transitions from states to states.

To address this problem, we exploit the stronger assumption on the environ-
ment behaviors: for different states in the support of the current distribution, it
must be the same environment thread that interrupts and take steps. Therefore,
we propose the abstract operational semantics and layer-based reasoning.

Abstract operational semantics. In the OA model, we observe that, for all the
states at the same layer of the execution forest (i.e. nodes of the same depths,
as shown in Fig. 5a), it is always the same thread picked to execute the next
step, since the schedule is predetermined. That is, the edges with the same
depths are always of the same color, represents a step from the same thread.
Naturally, we can view the states of the same layer as a whole, forming a state
distribution. If we also view the edges between two layers as a whole, then
Fig. 5a is abstracted to Fig. 5b. This gives us an abstract operational semantics
with small-step transitions over state distributions. The execution looks like an
interleaving execution of a classical (non-probabilistic) concurrent program.

Consequently, we can apply classical concurrency reasoning techniques (e.g.
invariants) to reason about executions in our abstract semantics. Our abstraction
is sound in that the Hoare-triple {P}C{Q} valid in our abstract semantics also
holds with the concrete semantics.

Invariants. To do thread-local reasoning, one needs to specify the interference
between the current thread and its environment (i.e. the other threads), which
can be modeled by an invariant I. For classical concurrent programs, I is a state
assertion that needs to hold at all times. The current thread can assume that I
holds before each of its steps, but it must also ensure that I still holds after each
step. For a randomized program, we define I over state distributions. It holds at
all the µ’s in executions in our abstract semantics (e.g. µ, µ′ and µ′′ in Fig. 5b).
Since every such µ corresponds to a layer in the concrete semantics, we call I a
layer invariant and the reasoning layer-based.

In addition to layer invariants I, our logic also uses non-probabilistic rely
and guarantee conditions R and G, to simplify the formulation of I in proofs of
programs. By “non-probabilistic”, we mean that R and G specify state transitions
in the concrete semantics (but do not specify the probability of the transitions).
Their treatment is the same as in classical rely-guarantee reasoning [14].

Unfortunately, we need to address one more challenge to make this nice ab-
straction work. To define the abstract operational semantics, we view all the
edges (program steps) at the same layer in Fig. 5a as a whole to get Fig. 5b.
However, although these edges are from the same thread, they may still corre-
spond to the execution of different code, due to the branch statements in the
thread. Below we explain the challenges and our solution in detail.

3.4 Problems with Branch Statements

A program may contain branch statements such as if-statements and while-
loops, which condition on random variables (i.e. variables whose values are prob-
abilistic). In general, different branches may take different numbers of steps to
execute, making it difficult to do layer-based reasoning.

c11 c21

c12 c3

c4 c4

c3 skip

Fig. 6

For instance, we consider the program C ‖ c4, where:

C
def
= (if (x = 0) then (c11; c12) else c21); c3;

Here each c stands for an atomic command. Assume the
initial values of x are assigned in a probabilistic choice,
which is either 0 or 1. Figure 6 shows a possible execu-
tion, where we need to consider the two possibilities cor-
responding to the two initial values of x. Note we allow
the right branch to execute skip when it reaches the end
while the left branch executes c3.

Thread t1 switches to t2 after executing two steps
(we omit the step evaluating the boolean condition). The
layer-based reasoning asks us to find some invariant and
prove that it holds over the distribution of every layer (i.e.
every green dashed box). This forces us to consider the si-
multaneous execution of c11 and c21 in the then-branch
and the else-branch. Even worse, since the two branches have different lengths,
we have to consider the simultaneous execution of c12 and c3. This looks partic-
ularly unreasonable if we consider the fact that c3 actually sequentially follows
c12 in the program structure! This makes it almost impossible to design struc-
tural and compositional Hoare-style logic rules. The problem is exacerbated by
while-loops, where the number of rounds of loops may rely on random variables.

Note that this problem does not show up in the deterministic setting where
there is no randomization and we prove properties of individual states. In the
execution of if-statements, a state either enters the then-branch or enters the
else-branch, but not both. So we only need to verify the two cases respectively.
But in the probabilistic setting, assertions are properties of state distributions.
We are reasoning about all the possible execution traces collectively. It is pos-
sible that some states enter the then-branch in some execution traces and the
other states enter the else-branch in different execution traces. They need to be
considered together to prove probabilistic properties.

We also do not have to worry about the problem with branch statements in
the sequential probabilistic setting. Since there is no interleaving, we can reason
about probabilistic properties in a “big-step” flavor where we only consider the
initial state distribution and the final one. To reason about the branch state-
ment, we can reason about the different branches (on the corresponding sub-
distributions) separately and then do a mixture at the join point. To see this
more clearly, consider the (cond) rule for if-statements in Barthe et al. [6]’s
sequential logic:

{P1 ∧ dbe}C1{Q1} {P2 ∧ d¬be}C2{Q2}
{(P1 ∧ dbe)⊕ (P2 ∧ d¬be)}if (b) then C1 else C2{Q1 ⊕Q2}

(cond)

When using this rule, we do not mix the intermediate state distributions in the
then and else branches until the end of both branches. That is, we do not need
to specify or reason about the whole intermediate state distributions of the if-

statement (though we may specify the intermediate distributions for the then
and else branches separately).

The (cond) rule in [6] is perfectly fine for sequential programs, but not for
the concurrent OA setting, in which we need to specify the intermediate state
distributions that are subject to the environment interference. Furthermore, the
intermediate assertions in the program proofs in Barthe et al. [6]’s logic are not
necessarily the ones we want to expose to the environment. Consider the code C
in the above example: (if (x = 0) then (c11; c12) else c21); c3. When using Barthe
et al. [6]’s logic to verify {P}C{Q}, one picks an intermediate assertion M , and
verifies {P}if · · · {M} and {M}c3{Q} separately. Note that this M specifies the
final state distribution after executing the whole if-statement, but the states
in the support are not at the same “layer”, because it takes different numbers
of steps for the then and else branches. So, this M does not specify the state
distribution that should be exposed to the environment. Therefore, the sequential
logic in [6] cannot be directly generalized to the concurrent OA setting due to
the problem with branch statements.

Below we use an interesting example to further demonstrate the problem and
then introduce our solution.

Example: a shared three-sided dice. To see the problem with branch statements
more concretely, we consider a simple program CDice of n threads, where the
code of each thread is Dice:

Dice def
= while (x = 0) do Roll, where Roll def

= (x
$
:= {1 : 1

2
| 2x : 1

6
| x

2
: 1

3
})

Here x is a shared variable initialized to 0. The loop body Roll is a random
assignment, which is short for the atomic probabilistic choice 〈〈x := 1〉⊕ 1

2
(〈x :=

2x〉⊕ 1
3
〈x := x

2 〉)〉. That is, the thread atomically rolls a 3-sided dice and updates
x according to the outcome: it sets x to 1 with probability 1

2 , doubles x with
probability 1

6 and halves x with probability 1
3 .

We want to verify that CDice satisfies the postcondition E(x) = 1. As we
explained, to do thread-local reasoning, we first find out the invariant IDice to
model the interference:

IDice
def
= I0 ⊕ I1, where I0

def
= dx = 0e and I1

def
= (dx 6= 0e ∧ E(x) = 1)

It says, every whole state distribution µ (at every layer of an execution forest) is
a mixture µ0⊕µ1 (formed by taking µ0 with arbitrary probability and taking µ1

with the remaining probability) in which µ0 and µ1 satisfy I0 and I1 respectively.
To check IDice is indeed an invariant, one may consider showing that IDice is

preserved by Roll. However, even if IDice is preserved by Roll (which is indeed
true), it is still unclear whether IDice is preserved layer by layer. Specifically,
after executing Roll, we will reach a state distribution whose support contains
both the states satisfying x = 0 and those satisfying x 6= 0. From the former, the
thread will enter the next round of the loop; but from the latter, the thread will
exit the loop and do the code after the loop (or skip if there is no subsequent
code). Consequently, Roll may be executed “at the same time” with skip, as

µ µ1⊕
IDice

µ′ µ′1⊕
IDice?

Roll skip

(a) from layer to layer

µ0
I0

µ′00 µ′01

dx = 0e dx = 1e

Roll

(b) split

{IDice}
while (x = 0) do
{IDice}
〈Roll; split(x = 0, x 6= 0)〉
{IDice}

{IDice ∧ dx 6= 0e}
{E(x) = 1}

(c) proof

Fig. 7: Executions of Dice and Its Proof with Split.

shown in Fig. 7a. What we need to prove is that IDice is preserved by a mixture
of executing Roll and skip at the same layer.

However, it is difficult to design logic rules to compose the proofs of Roll and
skip for their mixture, because Roll as the loop body is actually syntactically
sequenced before skip, the code after the loop. We face a similar problem as the
problem with the if-statement, as explained above.

3.5 Our Key Idea: Split

Instead of trying to reason about the mixture of the behaviors of different state-
ments at the whole layer, we split the state distribution of the layer, and reason
about the different statements separately. In detail, we introduce an auxiliary
command split(b1, . . . , bk). It divides the current state distribution µ into k dis-
joint parts µ1, . . . , µk, such that each smaller distribution µi satisfies dbie and µ
is their mixture µ1 ⊕ . . .⊕ µk. In our abstract operational semantics the thread
non-deterministically picks a µk and continues its execution. One can instrument
the code being verified with proper split commands so that each µk corresponds
to a different branch of a branch statement.

With split, the invariant I no longer needs to specify the whole layer µ, but
instead it specifies only the smaller distributions µk generated by split. This I
must be preserved by the execution at every µk. For instance, if we instrument
split(b,¬b) before if (b) then C1 else C2, then we only need to prove that I
is preserved by the executions of C1 and C2 at distributions satisfying dbe and
d¬be respectively.

Split is physical and irreversible. We do not provide any command to mix
back the smaller distributions that result from split. Instead of directly verifying
`a {P}C{Q}4 where C contains no split commands and thus Q holds at the
whole leaf layer, we verify `a {P}C′{Q} for C′ that results from instrumenting
C with auxiliary split commands. Therefore Q needs to hold at every smaller
distribution at the leaf layer. That said, we do provide the following logic rule
to convert `a {P}C′{Q} back to `a {P}C{Q}:
4 The subscript “a” indicates that the judgment is for reasoning based on the abstract
semantics.

`a {P}C′{Q} closed(Q)

`a {P}RemoveSplit(C′){Q}
(removesplit)

HereRemoveSplit(C′) removes all the split commands from C′, and closed(Q)
(defined at the end of Sec. 3.2) allows us to re-establish Q at the mixture of
smaller distributions that all satisfy Q.

Proof for the shared three-sided dice. To verify Dice, we split the state distribu-
tions so that the states at which the thread enters the next round of the loop
and those at which the thread exits the loop are always separate. As such, the
invariant IDice is revised to be a disjunction:

IDice
def
= I0 ∨ I1, where I0

def
= dx = 0e and I1

def
= (dx 6= 0e ∧ E(x) = 1)

In contrast to the earlier I0 ⊕ I1 which holds at a mixture, this new IDice holds
at a state distribution µ satisfying either I0 or I1. If µ satisfies I0, the thread
enters the next round of the loop; otherwise it exits the loop.

We instrument the loop body with the split command, as shown in red
color in Fig. 7c. This split command ensures that the new IDice is indeed an
invariant. As the blue assertions indicate, if IDice holds before the loop body,
which means either I0 or I1 holds, then IDice still holds after atomically executing
Roll and split. In particular, as shown in Fig. 7b, if I0 holds before the loop body,
executing Roll gives us a state distribution satisfying dx = 0e⊕dx = 1e, and then
executing split(x = 0, x 6= 0) (see the red vertical bar) results in two separate
state distributions µ′00 satisfying dx = 0e and µ′01 satisfying dx = 1e. Both µ′00

and µ′01 satisfy IDice. The full proof is given in Appendix G.1.

Logic rules for split and branch statements. Below we introduce our logic rules
for split, if -statements and while-loops to show how the split mechanism works.

G `sq {I∧P}C{(I∧Q∧db1e)⊕ · · · ⊕ (I∧Q∧dbke)} · · ·
R,G, I ` {P}〈C〉 split(b1, . . . , bk){(Q∧db1e)∨. . .∨(Q∧dbke)}

(atom-split)

As in the Dice example, split is usually inserted after and executed atomi-
cally with some code 〈C〉. As such, we provide the command 〈C〉 split(b1, . . . , bk),
which has the same meaning as 〈C; split(b1, . . . , bk)〉. The (atom-split) rule re-
quires us to prove the `sq judgment, which reasons about C as sequential code,
and ensures that the state distribution at the end is a mixture of smaller distribu-
tions satisfying db1e, . . . , dbne respectively. Since split turns the big distribution
into these smaller ones as separate parts, the postcondition of the conclusion
is a disjunctive assertion. We can see that split essentially turns ⊕ into ∨. The
disjunction can be the precondition of the subsequent if and while statements
as required by the (cond) and (while) rules below. Here we omit the side con-
ditions which says that the pre/post-conditions are stable with respect to R and
I. The definition of rely/guarantee conditions and stability will be explained in
Sec. 5.1 and the complete rule will be presented in Sec. 5.2.

P1 ⇒ dbe P2 ⇒ d¬be R,G, I ` {P1}C1{Q} R,G, I ` {P2}C2{Q} · · ·
R,G, I ` {P1 ∨ P2}if (b) then C1 else C2{Q}

(cond)

P1 ⇒ dbe P2 ⇒ d¬be ∧Q R,G, I ` {P1}C{P1 ∨ P2} · · ·
R,G, I ` {P1 ∨ P2}while (b) do C{Q}

(while)

Our (cond) rule assumes that, before the if -statement, the state distribu-
tions have already been split into smaller distributions for executing the then-
and else-branches separately. Therefore, the precondition is supposed to be the
disjunction P1∨P2, where P1 ⇒ dbe and P2 ⇒ d¬be. Recall that dbe says b holds
with probability 1, i.e. all the states in the support of the distribution satisfy
b. So, dbe ∨ d¬be is not implied by db ∨ ¬be. The latter holds always, but for
the former to hold, we must do split first. Then the branches can be verified
independently, as we do in classical Hoare logic.

Similarly, in the (while) rule, the loop invariant is the disjunction P1 ∨ P2.
Resulting from a split, the part satisfying P1 ensures that the loop always contin-
ues with its next round since P1 ⇒ dbe, while the part satisfying P2 terminates
the loop as P2 ⇒ d¬be. One may need to insert split before the loop and inside
the loop body C, so that P1 ∨ P2 holds before every round of the loop.

3.6 “Big-Step” Reasoning for Probabilistic Choices in OA

In the Dice example, the probabilistic choices are included in an atomic block,
so we can apply the sequential rule to reason about them. But in general, the
execution of 〈C1〉 ⊕p 〈C2〉 is not atomic, and its two steps (i.e. the coin flip and
the execution of 〈C1〉 or 〈C2〉) can interleave with the environment steps.

Fortunately, despite the interference, we can still apply sequential reasoning
to probabilistic choices by taking advantage of OA. In the OA model, the sched-
uler and the environment threads should not be aware of the outcome of the coin
flip. So we can soundly swap the coin-flip step and the environment steps, and
reason about the atomic probabilistic choice 〈〈C1〉 ⊕p 〈C2〉〉 instead, as shown
by the (lazycoin) rule below:

`a {P}lazycoin(C){Q}
`a {P}C{Q}

(lazycoin)

Here lazycoin(C) replaces every 〈C1〉⊕p〈C2〉 with skip; 〈〈C1〉⊕p〈C2〉〉 in C. This
extra skip is to ensure that the new code has the same number of steps as the
non-atomic 〈C1〉 ⊕p 〈C2〉, and thus to ensure that lazycoin(C) and C generate
the same behaviors in the OA model. Note that (lazycoin) is unsound in the
SA model.

Summary. Our logic takes advantage of the OA model in two aspects. First, the
logic soundness is established via our abstract operational semantics, which views
program execution as thread-interleaving transitions over state distributions. It
allows us to achieve thread compositionality using classical concurrency reasoning
techniques (e.g. invariants). The abstract semantics reflects the key feature of
OA that the same thread is scheduled for all states at the same layer of the

(Nat) n, k ∈ N (Real) p, r ∈ R (PVar) x ∈ String
(Expr) e ::= n | x | e1 + e2 | e1 − e2 | e1 ∗ e2 | . . .
(Bexp) b ::= true | false | e1 < e2 | e1 = e2 | e1 ≤ e2 | ¬b | b1 ∧ b2 | b1 ∨ b2 | . . .

(SplitInstr) sp ::= split(b1, . . . , bk)
(Stmt) C ::= skip | x := e | C1;C2 | if (b) then C1 else C2 | while (b) do C

| 〈C〉 | 〈C〉 sp | 〈C1〉 ⊕p 〈C2〉
(Prog) C ::= C1 ‖ · · · ‖ Cn

Fig. 8: The Programming Language.

execution forest. Second, the (lazycoin) rule allows us to verify probabilistic
choices as if they were atomic. It exploits that in OA the outcomes of coin flips do
not affect the schedule nor the environment threads. That said, OA also makes it
challenging to achieve intra-thread compositional reasoning (i.e. reasoning about
branch statements in each thread), and we address the challenges using split.

4 The Programming Language

The syntax of the language is defined in Fig. 8. The whole program C consists of
n sequential threads. The statements C of each thread are mostly standard. The
atomic statements 〈C〉 and the probabilistic choices 〈C1〉 ⊕p 〈C2〉 are explained
in Sec. 3. For verification purpose, we also append the atomic statements with
split statements to get (〈C〉 sp) where sp is in the form of split(b1, . . . , bk).

Below we give two operational semantics to the language. The concrete one
follows the standard interleaving semantics and models program steps as proba-
bilistic transitions over program states. The split statements are ignored in this
semantics. That is, they are viewed as annotations for verification only and have
no operational effects.

The abstract semantics models program steps as transitions over distribu-
tions of program configurations. We also assign operational semantics to split
statements. We prove that Hoare-triples valid in the abstract semantics are also
valid in the concrete semantics (Thm 4.1 below).

4.1 Concrete Operational Semantics

We show selected semantics rules in Fig. 9 and give the full set of rules in Ap-
pendix B. The single-step transition of the whole program is defined through
the thread-local transitions. Each step is decorated with a p, the probability
that the step may occur. For most thread-local transitions except the proba-
bilistic choices and atomic statements, p is simply 1. Note that we allow the
skip command at the end of execution to stutter with probability 1, but it can-
not stutter if it is sequenced before some C. That is, “skip;C” can only step to
C. 〈C1〉 ⊕p 〈C2〉 chooses to execute the left or right branches, with probability

Thread IDs, schedules, states and states distributions:
(ThreadId) t ∈ N+ (Schedule) ϕ ::= t ::ϕ (coinductive)

(State) σ ∈ PVar→ R (DState) µ ∈ DState

Global transitions: (C, σ) p−→
t

(C′, σ′)
(Ct, σ)

p−→ (C′t, σ
′)

(C1 ‖ · · · ‖ Ct ‖ · · · ‖ Cn, σ)
p−→
t

(C1 ‖ · · · ‖ C′t ‖ · · · ‖ Cn, σ′)

Thread-local transitions: (C, σ) p−→ (C′, σ′)
JeKσ = n

(x := e, σ)
1−→ (skip, σ{x; n}) (skip, σ) 1−→ (skip, σ)

C1 6= skip (C1, σ)
p−→ (C′1, σ

′)

(C1;C2, σ)
p−→ (C′1;C2, σ

′) (skip;C2, σ)
1−→ (C2, σ)

(〈C1〉 ⊕p 〈C2〉, σ)
p−→ (〈C1〉, σ) (〈C1〉 ⊕p 〈C2〉, σ)

1−p−−→ (〈C2〉, σ)

∃k.∀n ≥ k. (C, σ) p−→n(skip, σ′)

(〈C〉, σ) p−→ (skip, σ′)

(〈C〉, σ) p−→ (skip, σ′)

(〈C〉 split(b1, . . . , bk), σ)
p−→ (skip, σ′)

Fig. 9: Concrete Operational Semantics.

p and 1− p, respectively. The atomic statement 〈C〉 is always done in one step,
no matter how complicated C is. We assume C in the atomic statement never
contains while-loops, so it always terminates in a bounded number of steps.

(C0, σ0)

(C1, σ1)
0.4

(skip, σ3)
1

(skip, σ3)
1

(C2, σ2)
0.6

(C4, σ4)
0.5

1
(C5, σ5)

0.5

(skip, σ6)
1

Fig. 10

Before giving semantics to 〈C〉, we first
introduce the n-step thread-local transi-
tion, represented as (C, σ)

p−→n(C ′, σ′). In-
formally, if there is only one n-step ex-
ecution path from (C, σ) to (C ′, σ′), the
probability p in (C, σ)

p−→n(C ′, σ′) is the
product of the probability of every step
on the path. If there are more than one
execution paths, we need to sum up the
probabilities of all the paths.

Figure 10 shows an execution. There
is only one 2-step path from (C0, σ0) to
(C5, σ5), thus (C0, σ0)

0.6×0.5−−−−−→2 (C5, σ5).
Similarly, there is a 2-step transition (C0, σ0)

0.4−−→2 (skip, σ3). However, since
there is another 3-step path from (C0, σ0) to (skip, σ3), we also have (C0, σ0)

0.7−−→
3 (skip, σ3), where the probability is the sum of 0.4×1×1 and 0.6×0.5×1.

Then the operational semantics rule for 〈C〉 says it finishes the execution
of C in one step (that is, the execution of C cannot be interrupted by other
threads). For the example in Fig. 10, we know (〈C0〉, σ0)

0.7−−→ (skip, σ3) and

(〈C0〉, σ0)
0.3−−→ (skip, σ6). This also shows that 〈C〉 may lead to different states

with different probabilities, since C may contain probabilistic choices.
The multi-step transition ((C, σ)

p−→
ϕ

n(C′′, σ′′)) of the whole program C under

the schedule ϕ is similar to the multi-step thread-local transitions. The schedule
ϕ is an infinite sequence of thread IDs. It decides which thread t is to be executed
next. The accumulated probability of an n-step transition is the sum of the
probability of every possible execution path.

Below we define JCKϕ as a function that maps an initial state σ to a sub-
distribution of final states. We also lift the function to the distribution µ of the
initial states.

JCKϕ(σ)
def
= λσ′. lim

→
pσ′ , where ∀n. (C, σ)

→
pσ′ [n]−−−−→
ϕ

n(skip ‖ · · · ‖ skip, σ′)

JCKϕ(µ)
def
= Eσ∼µ{JCKϕ(σ)} (see Eqn. 2.7 for the expected sub-distribution)

Here
→
pσ′ is an infinite sequence of probabilities and

→
pσ′ [n] is the n-th element

of the sequence5.
Then we can give a simple definition of the partial correctness of C with

respect to the precondition P and the postcondition Q, which are assertions
over state distributions and are defined in Sec. 5.1.

Definition 4.1. |= {P}C{Q} iff, for all µ and ϕ, if µ |= P , and |JCKϕ(µ)| = 1,
then JCKϕ(µ) |= Q.

The premise |JCKϕ(µ)| = 1 requires the execution of C (with the schedule ϕ and
the initial state distribution µ) terminates with probability 1.

4.2 Abstract Operational Semantics

The abstract semantics, shown in Fig. 11, models each step as a transition be-
tween distributions W of the whole program configurations (C, σ). Also we give
semantics to split statements.

Below we use nextsplit(W, t) to represent the set consisting of the next split
statements to be executed in the thread t of the program configurations in
supp(W). The next split statement of the thread t is sp if the next statement
to be executed is in the form of 〈C〉 sp, otherwise the next split is defined as
split(true). Throughout this paper, we assume all the splits split(b1, . . . , bk)
satisfy the following validity check, which says for any state there is always one
and only one bi that holds.

Definition 4.2. A split statement is valid, i.e., validsplit(split(b1, . . . , bk))
holds, if and only if for any state σ, ∀i, j. i 6= j =⇒ σ |= ¬(bi ∧ bj) and
σ |= b1∨. . .∨bk.

5 In our definition of JCKϕ(σ), lim
→
pσ′ always exists as we can prove

→
pσ′ always con-

verges.

W ∈ DProg×State W |b
def
= W |λ(C,σ).σ|=b

δ(C) def
= λC1.

{
1, if C1 = C
0, otherwise

init(C, µ) def
= δ(C)⊗ µ (see Eqn. 2.4 for the definition of ⊗)

nextsplit(C)
def
=

split(b1, . . . , bk), if C = 〈C1〉 split(b1, . . . , bk)
nextsplit(C1), if C = C1;C2

split(true), otherwise

nextsplit(W, t) def
= {nextsplit(Ct) | (C1 ‖ · · · ‖ Cn, σ) ∈ supp(W)}

W
t
;W ′ iff W ′ = λ(C′, σ′).

∑
C,σ{p ·W (C, σ) | (C, σ) p−→

t
(C′, σ′)}

W
t
;W ′ nextsplit(W, t) = {split(b1, . . . , bk)} W ′|bi =W ′′

W
t
↪→W ′′

W
t
;W ′ #nextsplit(W, t) > 1

W
t
↪→W ′

Fig. 11: Abstract Operational Semantics.

The transition W
t
↪→ W ′′ is done in two steps. First we make the tran-

sition W
t
; W ′ based on the concrete semantics, without considering splits.

Then the splits in nextsplit(W, t) are executed. We expect nextsplit(W, t) to be
a singleton set, i.e. threads t in different program configurations in supp(W)
all have the same subsequent split statement. We non-deterministically pick bi
from b1 . . . bk, and let W ′′ be the filtered distribution W ′|bi (see Fig. 11 and
Eqn. 2.2 for the definition of W |b). If the split statement is split(true), we
know W ′′ is the same as W ′. If nextsplit(W, t) contains more than one split
statements, then we view the program as inappropriately instrumented. In this
case we ignore all the split statements in nextsplit(W, t) and let W ′′ be W ′.

P

Q Q Q

. . .

. . .

. . .

Fig. 12: Illustration of |=a {P}C{Q}.

Figure 12 illustrates the execu-
tion. The dashed arrows repre-
sent state transitions in the con-
crete semantics, while the solid
arrows represent the transitions
W

t
; W ′ in the abstract seman-

tics. Like before, we use different
colors to represent actions of dif-
ferent threads. The vertical bars
represent splits. The solid arrow
and the split together correspond
to the transition W

t
↪→ W ′′. The

branching shown by the two solid red arrows reflects the non-deterministic choice
of the cases of the split.

Before giving the partial correctness under the abstract semantics, we first
define the termination of W0 in Def. 4.3: if the execution sequence of W0 under
the abstract semantics converges with the limit W , we say W0 terminates at W .
Here History(W0, ϕ,

→
W) says that

→
W is a possibly infinite sequence W0,W1, . . .

where Wi

ϕ[i]
↪→ Wi+1 for every i. The formal definition of History can be found

in Appendix B. The limit (lim
→
W) is defined by Def. 2.6. The projection of W

over code (W (Prog)) and state (W (State)) are defined by Eqn. 2.5.

Definition 4.3 (Termination of W). GivenW0 and a schedule ϕ. We sayW0

terminates at W under the schedule ϕ, represented as W0 ⇓ϕ W , if and only if

there is an infinite sequence
→
W such that History(W0, ϕ,

→
W), lim

→
W = W and

W (Prog)(skip ‖ · · · ‖ skip) = 1.

Next we define the partial correctness under the abstract semantics, |=a
{P}C{Q}. The initial distribution of program configurations is init(C, µ). As
defined in Fig. 11, init(C, µ) says the initial program is always C and the state
distribution is µ. Figure 12 illustrates the meaning of |=a {P}C{Q}: if P holds
over the initial distribution, Q must hold over every final distribution. Theo-
rem 4.1 shows that the partial correctness in the abstract semantics implies the
partial correctness in the concrete semantics when the postcondition is closed.
Below we develop our program logic based on this abstract semantics.

Definition 4.4. |=a {P}C{Q} iff for all µ, if µ |= P , then for all ϕ and W , if
init(C, µ) ⇓ϕ W , then W (State) |= Q.

Theorem 4.1. for all P,C, Q, if |=a {P}C{Q} and closed(Q), then |= {P}C{Q}.

5 The Program Logic

We present the assertion language and the logic rules in this section.

5.1 The Assertion Language

We show the syntax of assertions in Fig. 13 and their semantics in Fig. 14.
We use p and q to represent classical assertions over states, and P , Q and
I for probabilistic assertions over state distributions. We also use ξ to denote
probabilistic expressions such as the expected value of an arithmetic expression
or the probability of a classical assertion. The expression ξ evaluates to a real
number under the state distribution µ, represented as JξKµ. E(e) evaluates to the
expected value of JeKσ (where σ ∈ supp(µ)). Pr(q) evaluates to the probability
of σ |= q (where σ ∈ supp(µ)). The key definitions of expected values and
probability of assertions are shown in Eqn. (2.1).

(Assertion) p,q ::= b | ¬q | q1 ∧ q2 | q1 ∨ q2 | ∀X.q | ∃X.q | . . .
(Pexp) ξ ::= r | E(e) | Pr(q) | ξ1 + ξ2 | ξ1 − ξ2 | ξ1 ∗ ξ2 | . . .

(PAssertion) P,Q,M, I ::= dqe | ξ1 < ξ2 | ξ1 = ξ2 | ξ1 ≤ ξ2 | ¬Q | Q1 ∧Q2 | Q1 ∨Q2

| ∀X.Q | ∃X.Q | Q1 ⊕p Q2 | Q1 ⊕Q2 | . . .
(Action) R,G ::= pnq | [q] | ¬R | R1∧R2 | R1∨R2 | ∀X.R | ∃X.R | R1◦R2 | . . .

Fig. 13: The Assertion Language.

Evaluation of probabilistic expressions:

JrKµ
def
= r JE(e)Kµ

def
= Eσ∼µ[JeKσ]

Jξ1 + ξ2Kµ
def
= Jξ1Kµ + Jξ2Kµ JPr(q)Kµ

def
= Prσ∼µ[σ |= q]

Semantics of probabilistic assertions:

µ |= dqe iff for all σ ∈ supp(µ), σ |= q
µ |= Q1 ⊕p Q2 iff p = 1 and µ |= Q1, or p = 0 and µ |= Q2, or 0 < p < 1 and

there exist µ1 and µ2 such that µ = µ1 ⊕p µ2, µ1 |= Q1 and µ2 |= Q2

µ |= Q1 ⊕Q2 iff there exists p such that µ |= Q1 ⊕p Q2

Fig. 14: Semantics of Assertions.

The assertion dqe lifts the state assertion q to a probabilistic assertion. It
says q holds on all states in the support of the state distribution. The assertion
P ⊕p Q holds at µ, if µ is a mixture of two distributions µ0 and µ1, which are
associated with probabilities p and 1−p, and satisfy P andQ respectively.Q1⊕Q2

says there exists p such that Q1⊕pQ2 holds. The semantics of ∀X.Q and ∃X.Q
are given in Appendix D. Throughout this paper, we use capital letters X to
indicate that X is a logical variable and lowercase letters x to indicate that x is
a program variable. We define true as a syntactic sugar of dtruee which holds
on all state distributions.

Note that Q ⊕ Q ⇒ Q may not hold. For instance, let’s instantiate Q with
(dx = 0e∨dx 6= 0e). A state distribution µ satisfying Q⊕Q may be a mixture of
µ1 and µ2 such that all the states in supp(µ1) satisfy x = 0 (thus µ1 satisfies Q)
while all the states in supp(µ2) satisfy x 6= 0 (thus µ2 satisfies Q too). However,
µ itself does not satisfy Q, which requires either all the states in supp(µ) satisfy
x = 0, or all the states satisfy x 6= 0.

ActionsR andG are assertions over state transitions. Their semantics, (σ, σ′) |=
R, is the same as that in classical (non-probabilistic) rely-guarantee logics. We
use JRK to denote the set of state transitions that satisfy R.

Stability We define the stability of a probabilistic assertion Q with respect to
the environment interference (specified by I and R) in Fig. 15. We first define

µ
R
�
I
µ′′ to describe that the current state distribution is changed from µ to µ′′

due to the environment interference. As we can see in the abstract operational

µ
R7→ µ′ iff ∃θ∈P(State× State). θ⊆JRK ∧ supp(µ)=dom(θ) ∧ supp(µ′)=range(θ)

µ
R
�
I
µ′′ iff µ |= I ∧ (∃µ′. µ R7→ µ′ ∧ supp(µ′′) ⊆ supp(µ′)) ∧ µ′′ |= I

Sta(Q,R, I) iff ∀µ, µ′. µ |= Q ∧ µ
R
�
I
µ′ =⇒ µ′ |= Q

Fig. 15: Stability.

semantics, every transition made by a thread is done in two steps. The first step
is normal execution without splits and the second step is the execution of split.
Similarly, we model the execution of the environment in two steps. The first
step is µ R7→ µ′. It requires us to find a set θ of state transitions allowed by R
(i.e. θ ⊆ JRK), such that θ transforms the states of supp(µ) to those of supp(µ′).
The second step is the execution of split statements by the environment. The
condition supp(µ′′) ⊆ supp(µ′) abstracts the behaviors of split. In addition, the
environment needs to preserve the invariant I, so µ |= I ∧ µ′′ |= I. Then we can
give a simple definition of Sta(Q,R, I) in Fig. 15.

In general, it is not easy to prove the stability of a probabilistic assertion with
respect to classical rely conditions. But in practice, the thread-local pre/post-
conditions and intermediate assertions P are usually “non-probabilistic”, in the
form of db1e ∨ . . . ∨ dbne. This is because the probabilistic information is often
about the shared resource and has already been specified by the global invariant
I. For such P , proving stability Sta(P,R, I) is not much harder than proving
stability in the classical rely-guarantee reasoning. We give some rules to syntac-
tically proving Sta(P,R, I) in Appendix D.

Closed Assertions As explained in Sec. 3.5, we need the postcondition of
the whole program to be closed for applying split. closed(Q) means that the
mixture of any (maybe countably infinite) number of state distributions satisfies
Q if each of them satisfies Q.

Definition 5.1. An assertion Q is closed, i.e., closed(Q) holds, if and only if,
for all ν ∈ DDState , if µ |= Q holds for all µ ∈ supp(ν), then ν |= Q (see Eqn. (2.8)
for the definition of ν).

Many assertions are closed, such as dx = 1e, Pr(y > 2) = 0.5, dx = 0e ⊕
dx = 1e. We have some syntactic rules to prove that an assertion is closed: The
lifted assertion dpe is closed. Conjunction and universal quantification of closed
assertions are closed. If bothQ1 andQ2 are closed, thenQ1⊕pQ2 andQ1⊕Q2 are
closed. In addition, assertions in the form of (ξ1 ./ ξ2)∧Q (where ./ ∈ {<,=,≤})
are closed if Q is closed, and, for any sub-expression E(e) in ξ1 or ξ2, Q ensures
that e is bounded or non-negative. For instance, both E(x) = 1∧d−10 ≤ x ≤ 10e
and E(x) ≤ 2 ∧ dx ≥ 0e are closed. The formal rules for proving closedness are
given in Appendix D.

Note that disjunction, existential quantification and negation of closed as-
sertions may not be closed. For instance, dx = 1e ∨ dx = 2e, ∃N.dx = Ne, and
Pr(x = 0) 6= 0.5 are not closed. It may be surprising to notice that, (Q⊕Q⇒ Q)
does not imply closed(Q), because the mixture of an infinite number of distri-
butions can possibly fail Q (here we do not expand the reason which will need
deep knowledge about limit). For example, E(x) = 1 is not closed. But this does
not seem to limit the applicability of our logic, because the values of program
variables are often bounded, e.g. x is never less than 0, and E(x) = 1 ∧ dx ≥ 0e
is closed.

In this work, we focus on the class of randomized algorithms whose correct-
ness is about the bound of the probability of a random event or the expected
value of a random variable. For this kind of algorithms, our syntactic rules for
closedness are useful enough. The postconditions of these algorithms can usually
be expressed in the form of Pr(b) ./ r or E(e) ./ r, where r is a real number
and ./ is a comparison operator which can be <,=,≤, >,≥. The closedness of
the assertion Pr(b) ./ r can be proved directly following the syntactic rules. For
E(e) ./ r, we need to strengthen it with the bound of e, i.e. dr1 ≤ e ≤ r2e holds
for some r1 and r2. Then we can prove that (E(e) ./ r)∧ dr1 ≤ e ≤ r2e is closed
using our rules. In practice, the bounds r1 and r2 for e are easy to find and
prove, based on the specific functionality of the verified algorithm.

Limit-Closed Assertions To verify almost surely terminating programs, we
require the invariant I and the postconditions of all threads are limit-closed
assertions. Below we define limit-closed assertions (see Def. 2.6 for the definition
of lim

→
µ).

Definition 5.2. An assertion Q is limit-closed, i.e., lclosed(Q) holds, if and
only if, for all infinite sequences

→
µ , if lim

→
µ = µ, and

→
µ [n] |= Q holds for all n,

then µ |= Q.

We also have some syntactic rules to prove that an assertion is limit-closed:
The lifted assertion dpe is limit-closed. Conjunction, disjunction and universal
quantification of limit-closed assertions are limit-closed. If both Q1 and Q2 are
limit-closed, then (Q1∧dqe)⊕p(Q2∧d¬qe) and (Q1∧dqe)⊕(Q2∧d¬qe) are limit-
closed. In addition, assertions in the form of (ξ1 ./ ξ2) ∧Q where ./ ∈ {=,≤} is
limit-closed if Q is closed, and, for any sub-expression E(e) in ξ1 or ξ2, Q ensures
that e is bounded. These rules are similar to the rules for closedness and thus
are also useful in verifying algorithms whose correctness is about the bound of
the probability of a random event or the expected value of a random variable.
The formal rules for proving lclosed(Q) are given in In Appendix D.

5.2 Inference Rules

Our inference rules are organized into three layers for the whole program, the
thread local rely-guarantee reasoning, and sequential reasoning, as shown in
Fig. 16.

Whole-Program Rules The top-level rules are used to verify whole programs.
The judgement is in the form of `a {P}C{Q}. Here P and Q are probabilistic
assertions, which specify the initial state distributions and the terminating state
distributions respectively.

The parallel composition rule (par) is (mostly) standard. One verifies each
thread Ci separately, proving that if the behaviors of its environment satisfy its
rely condition and preserves the invariant, then the thread itself satisfies its guar-
antee and preserves the invariant. One also checks the interference constraints
(Gi ⇒ Rj), i.e. the guarantee of each thread is permitted in the rely of every
others. The invariant I and the postcondition of each thread Q1, . . . , Qn are
required to be limit-closed assertions, which ensures that the limit state distri-
bution of the infinite sequence produced by C under the abstract operational
semantics satisfies I and Q1, . . . , Qn.

As mentioned before, we may instrument programs with auxiliary split in-
structions to make reasoning and verification easier. We provide the (removes-
plit) rule to convert the instrumented program back to the original program we
want to verify, as long as the postcondition Q is closed. Here RemoveSplit(C)
removes all the split instructions from C. The formal definition ofRemoveSplit
is trivial and thus omitted.

The (lazycoin) rule allows us to replace every non-atomic probabilistic
choice 〈C1〉 ⊕p 〈C2〉 with skip; 〈〈C1〉 ⊕p 〈C2〉〉 in C, as explained in Sec. 3.6. We
also support the standard consequence rule, conjunction rule and disjunction
rule for whole programs, which are omitted here.

Thread-Local Rules The thread-local judgement is in the form of R,G, I `
{P}C{Q}. As in the traditional rely-guarantee reasoning [14], the rely condition
R of a thread specifies the permitted state transitions that its environment may
have, and its guarantee condition G specifies the possible state transitions made
by the thread itself. The invariant I specifies the probabilistic property that is
preserved by both the thread and its environment at every layer. The rely/guar-
antee conditions need to be reflexive in well-formed thread-local judgements.

To verify 〈C〉, the (atom) rule verifies C as sequential code, and requires I is
preserved at the end if it holds at the beginning, and the whole state transitions
resulting from the sequential execution C satisfy the guarantee G. The pre/post-
conditions need to be stable with respect to R and I. We use Sta({P,Q}, R, I)
as a shorthand for Sta(P,R, I) ∧ Sta(Q,R, I). Similar representations are used
in the remaining part of the paper.

Our (seq) rule for sequential composition is standard. The (atom-split),
(cond) and (while) rules have been explained in Sec. 3.5. Note that (atom-
split) cannot be replaced by (atom), since only split can turn ⊕ into ∨ (see
the first premise and conclusion’s postconditions in (atom-split)).

Sequential Rules The judgement for sequential rules is in the form of G `sq
{P}C{Q}. Note that the guarantee G does not specify the state transition of

Whole program rules: `a {P}C{Q}

∀i. Ri, Gi, I ` {Pi}Ci{Qi} ∀i, j. i 6= j =⇒ (Gi ⇒ Rj)
P ⇒ I ∧ P1 ∧ · · · ∧ Pn I ∧Q1 ∧ · · · ∧Qn ⇒ Q lclosed({I,Q1, . . . , Qn})

`a {P}C1 ‖ · · · ‖ Cn{Q}
(par)

`a {P}C{Q} closed(Q)

`a {P}RemoveSplit(C){Q}
(removesplit)

`a {P}lazycoin(C){Q}
`a {P}C{Q}

(lazycoin)

Thread-local rules: R,G, I ` {P}C{Q}

G `sq {I ∧ P}C{I ∧Q}
Sta({P,Q}, R, I)

R,G, I ` {P}〈C〉{Q}
(atom)

R,G, I ` {P}C1{M}
R,G, I ` {M}C2{Q}

R,G, I ` {P}C1;C2{Q}
(seq)

G `sq {I ∧ P}C{(I ∧Q ∧ db1e)⊕ · · · ⊕ (I ∧Q ∧ dbke)}
Sta({P,Q ∧ (db1e ∨ · · · ∨ dbke)}, R, I)

R,G, I ` {P}〈C〉 split(b1, . . . , bk){(Q∧db1e)∨. . .∨(Q∧dbke)}
(atom-split)

P1 ⇒ dbe P2 ⇒ d¬be Sta(P1 ∨ P2, R, I)
R,G, I ` {P1}C1{Q} R,G, I ` {P2}C2{Q}
R,G, I ` {P1 ∨ P2}if (b) then C1 else C2{Q}

(cond)

P1 ⇒ dbe P2 ⇒ d¬be ∧Q R,G, I ` {P1}C{P1∨P2} Sta({P1∨P2, Q}, R, I)
R,G, I ` {P1 ∨ P2}while (b) do C{Q}

(while)

Sequential rules: G `sq {P}C{Q}
G `sq {P}C1{Q1} G `sq {P}C2{Q2}
G `sq {P}〈C1〉 ⊕p 〈C2〉{Q1 ⊕p Q2}

(sq-pch)

Fig. 16: Selected Logic Rules.

every single step of C. Instead it specifies the state transitions from initial states
to the corresponding final states at the end of C.

For the probabilistic choice 〈C1〉⊕p 〈C2〉, the (sq-pch) rule asks one to verify
C1 and C2 separately and mix their postconditions Q1 and Q2 according to the
probability of the coin flip. The rules for other statements are simple extensions
of those in [6] and are presented in Appendix E.

Soundness The following theorem shows that our logic is sound with respect
to the abstract operational semantics, where |=a {P}C{Q} is given in Def. 4.4.

Theorem 5.1. For all P,C, Q, if `a {P}C{Q}, then |=a {P}C{Q}.

Why split is an explicit operation instead of a logical one. The explicit
instrumentation of split can simplify the logic soundness proof. Instead, if split
is treated as a logical step, the formulation of the judgment semantics would in-
volve alternating universal and existential quantifications (where the existential

quantification says there exists a logical split), which would make the soundness
proof much harder. The explicit split can also make the correctness proofs of
programs easier to read, since the instrumented code explicitly shows where the
key proof steps occur.

6 Case Study: Conciliator

As introduced in Sec. 1, Chor et al. [12] give a probabilistic-write based concil-
iator for probabilistic agreement between n threads, each thread i executing Ci
below.

Ci
def
= (while (s = 0) do 〈s := i〉 ⊕p 〈skip〉) ; yi := s

Here s is a shared variable, yi is the local variable for thread i that records its
return value.

We want to prove {ds = 0e}C1 ‖ · · · ‖ Cn{Pr(y1 = · · · = yn) ≥ (1− p)n−1}.
Intuitively the postcondition holds because, when there is exactly one thread
i succeeded in writing to s, all threads will return i. This ideal case happens
with probability no less than (1 − p)n−1 in OA, because (i) for the program to
terminate, at least one thread has updated s, and (ii) after the first update to
s, each of the other n − 1 threads has at most one chance to update s, and
such an update happens with probability no more than 1 − p. Note that this
algorithm does not work in SA, where different threads can be scheduled for
different outcomes of coin flips, making the aforementioned ideal case happens
with probability less than (1− p)n−1.

To formulate the intuition, we introduce a shared auxiliary variable c that
counts how many threads have written to s and insert the auxiliary code c := c+ 1
which is executed atomically with s := i. We also introduce flag variables di to
formalize the “at most one chance” update to s. When di is set, it means thread
i can no longer update s. We insert the auxiliary code SetFlagi to set di at
the proper time. At the whole-program level, we apply the (removesplit) and
(lazycoin) rules to wrap the probabilistic choice in an atomic block, and to in-
strument split(s = 0, s 6= 0) after the loop body such that the resulting smaller
distributions either enter or exit the loop. Using the (par) rule, our goal becomes
to thread-locally verify the code below.

(while (s = 0) do (skip; 〈PWritei〉 split(s = 0, s 6= 0))) ; 〈SetFlagi; yi := s〉,
where PWritei

def
= 〈s := i; c := c+ 1;SetFlagi〉 ⊕p 〈SetFlagi〉

and SetFlagi
def
= if (s 6= 0) then di := 1 else skip

We define the invariant I below, which says that either s = 0 (and thus c = 0
and each thread has chance to update s), or s 6= 0 (and thus c > 0) and the
probability of c = 1 has a lower bound.

I
def
= I0 ∨ I1, where I0

def
= ds = 0 ∧ c = 0 ∧ ∀i. di = 0e, I1

def
= ds 6= 0 ∧ c > 0e ∧ PBound,

and PBound def
= ∃K ≤ n. d

∑n
i=1 di = Ke ∧Pr(c = 1) ≥ (1− p)K−1

The formal proof is presented in Appendix G.2. Besides Dice discussed in
Sec. 3 and conciliator discussed here, in Appendix G.3 and Appendix G.4, we
also prove two more complicated algorithms, group election [2] and a multiplayer
level-up game, by extending the logic in Sec. 5.2 with more advanced rules (the
full logic can be found in Appendix E).

7 Related Work and Discussions

McIver et al. [17] develop the probabilistic rely-guarantee calculus, which, to
our knowledge, is the first program logic for concurrent randomized programs.
They use event structures to define the semantics of concurrent randomized pro-
grams, in which they assume arbitrary schedules, i.e. the strong adversary (SA)
model. On top of that semantics, they take an algebraic approach (in the spirit
of concurrent Kleene algebra) to derive the reasoning rules, with probabilistic
rely/guarantee conditions. Their calculus does not apply to the algorithms of
conciliator and group election verified in our work, whose correctness assumes
weaker adversary models. Besides, we encode probabilistic properties in the in-
variant and use only non-probabilistic rely-guarantee conditions, which enable
simple stability proofs.

Tassarotti and Harper [19] extend the concurrent program logic Iris [15] with
probabilistic relational reasoning, to establish refinements between concurrent
randomized programs and monadic models. These monadic models are more
abstract and are not concerned about concurrent executions. They also give
rules for reasoning about probabilistic properties on monadic models. On the one
hand, their program semantics assumes the SA model. On the other hand, their
logic soundness only holds for schedules under which the program is guaranteed
to certainly terminate (i.e. terminate in a finite number of steps). As a result,
they cannot verify the examples in our work. That said, it seems interesting
to incorporate in our work the advanced features of Iris for modular reasoning
about nested data structures and/or higher-order functions.

Fesefeldt et al. [13] propose a concurrent quantitative separation logic for
reasoning about lower-bound probabilities of realizing a postcondition of a con-
current randomized program in the SA model. Like us, they require program
executions to preserve resource invariants on shared states. But their invariants
are limited to qualitative expectations, which map states to either 0 or 1, so
cannot specify probabilistic distributions as ours. Moreover, they can only verify
lower bounds of probabilities, while we can also reason about exact probabilities
and expectations.

For the part of sequential reasoning, our rules mostly follow Barthe et al. [6].
Our lclosed condition (see the (par) rule in Fig. 16) is similar to their “t-closed”
condition, both introduced for supporting almost surely terminating programs.
Our assertion language for invariants and pre- and post-conditions is similar
to theirs too, where an assertion is a predicate over state distributions. They
provide a (split) rule which is very different from our split mechanism. Using
the (split) rule, one can logically split the initial distribution into two parts,

reason about the execution of the same code on the two parts separately, and
mix the two final distributions back. This rule is similar in spirit to their (cond)
rule and cannot be applied to solve the problem with branch statements in the
concurrent OA setting. We provide a (sq-oplus) rule for sequential reasoning
in Appendix E which is almost the same as their (split) rule. It is possible to
extend our assertion language with separating conjunctions, to specify spatial
disjointness of state distributions and probabilistic independence (following [7]).
There are also (sequential) program logics (e.g. [9,8,1]) where assertions denote
functions from program states to probabilities or expected values.

Bertrand et al. [10,11] apply model checking techniques for verifying random-
ized algorithms in weak adversary models. However, Bertrand et al.’s approach
does not apply to the algorithms we have verified. Their work focuses on the
class of algorithms with some form of “symmetry” regarding the local control
flow. Such an algorithm must execute “symmetric” code for different outcomes
of a coin flip. But none of the algorithms verified here satisfies this property. In-
stead they all have probabilistic branch statements that take different numbers
of steps, which is the main challenge to our logic design. We conjecture that our
split idea may still be helpful when developing automata-based approaches to
verify these algorithms.

Comparison with operational semantics based verification. Although it is possible
to do verification based on concrete operational semantics directly (by inductive
reasoning about execution traces or by exploring the whole state space), we
prefer the logic-based approach for the following reasons.

First, our program logic supports syntax-directed verification with high-level
abstraction. Users do not need to enumerate the possible executions of pro-
grams, and the detailed low-level operational semantics are hidden by the logic
soundness proofs. In particular, users do not need to enumerate the schedules
of the threads. This is a great advantage because an almost surely terminating
program (like the algorithms we have verified) can have an infinite number of
schedules and have schedules of infinite lengths. By contrast, to carry out the
proofs using the operational semantics directly, users would have to consider all
possible schedules, and may need co-induction over schedules, which would lead
to much more complicated proofs.

Second, the program logic enables users to formalize the key intuition of
algorithms. We believe that, when trying to design or understand an algorithm,
people actually conduct compositional (though informal) reasoning instead of
exploring the whole state space of the execution. Our logic gives a systematic way
to describe the intuition and explain the correctness through the formalization
of program specifications (e.g. invariants, rely and guarantee conditions) and
the insertion of the auxiliary split. For instance, in our informal understanding
of the shared 3-sided dice example (Sec. 3.4) and the conciliator (Sec. 6), we
already implicitly partition the whole state distributions. Our work identifies
this implicit but crucial step in the intuition, finds a way (called split) to allow
users to specify this step, and proves that this step is sound.

Usefulness of split beyond the OA model. The split mechanism and closed asser-
tions actually give us a general abstraction mechanism for compositional reason-
ing of randomized algorithms. Just like loop invariants abstract away the number
of loops executed, and environment invariants and rely/guarantee conditions ab-
stract away the concrete interleaving between threads, our split mechanism and
closed assertions allow us to abstract away the probabilistic weights of differ-
ent branches (including loops) taken in randomized algorithms. Although the
mechanism is particularly useful for the OA model, it also provides insights to
simplify reasoning in randomized algorithms in general.

Limitations and future directions First, since we assume closed postconditions,
non-closed properties such as probabilistic independence and (co)variance can-
not be proved using our logic. It is interesting and nontrivial to explore how
to verify algorithms with these properties. Second, we have not implemented or
mechanized our logic. It would also be interesting to automate the code instru-
mentaion (split) and the side-condition checks (closed, l-closed, stability). The
last but not the least, the current set of logic rules may not be perfect. We will
try more advanced mathematics and semantic theories to generalize and simplify
our rules, and also test their applicability by more real-world algorithms.

References

1. Aguirre, A., Barthe, G., Hsu, J., Kaminski, B.L., Katoen, J.P., Matheja, C.: A
pre-expectation calculus for probabilistic sensitivity. Proc. ACM Program. Lang.
5(POPL) (jan 2021). https://doi.org/10.1145/3434333, https://doi.org/10.
1145/3434333

2. Alistarh, D., Aspnes, J.: Sub-logarithmic test-and-set against a weak adversary. In:
Proceedings of the 25th International Conference on Distributed Computing. pp.
97–109. DISC’11, Springer-Verlag, Berlin, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-24100-0_7

3. Aspnes, J.: Randomized protocols for asynchronous consensus. Distributed Com-
put. 16(2-3), 165–175 (2003). https://doi.org/10.1007/s00446-002-0081-5,
https://doi.org/10.1007/s00446-002-0081-5

4. Aspnes, J.: Notes on randomized algorithms (2023), https://www.cs.yale.edu/
homes/aspnes/classes/469/notes.pdf

5. Aspnes, J.: Notes on theory of distributed systems (2023), https://www.cs.yale.
edu/homes/aspnes/classes/465/notes.pdf

6. Barthe, G., Espitau, T., Gaboardi, M., Grégoire, B., Hsu, J., Strub, P.: An
assertion-based program logic for probabilistic programs. In: Proceedings of the
27th European Symposium on Programming (ESOP 2018). pp. 117–144. Springer
(2018). https://doi.org/10.1007/978-3-319-89884-1_5, https://doi.org/10.
1007/978-3-319-89884-1_5

7. Barthe, G., Hsu, J., Liao, K.: A probabilistic separation logic. Proc. ACM Program.
Lang. 4(POPL), 55:1–55:30 (2020)

8. Batz, K., Kaminski, B.L., Katoen, J.P., Matheja, C.: Relatively complete veri-
fication of probabilistic programs: An expressive language for expectation-based
reasoning. Proc. ACM Program. Lang. 5(POPL) (jan 2021). https://doi.org/
10.1145/3434320, https://doi.org/10.1145/3434320

https://doi.org/10.1145/3434333
https://doi.org/10.1145/3434333
https://doi.org/10.1145/3434333
https://doi.org/10.1145/3434333
https://doi.org/10.1007/978-3-642-24100-0_7
https://doi.org/10.1007/978-3-642-24100-0_7
https://doi.org/10.1007/978-3-642-24100-0_7
https://doi.org/10.1007/978-3-642-24100-0_7
https://doi.org/10.1007/s00446-002-0081-5
https://doi.org/10.1007/s00446-002-0081-5
https://doi.org/10.1007/s00446-002-0081-5
https://www.cs.yale.edu/homes/aspnes/classes/469/notes.pdf
https://www.cs.yale.edu/homes/aspnes/classes/469/notes.pdf
https://www.cs.yale.edu/homes/aspnes/classes/465/notes.pdf
https://www.cs.yale.edu/homes/aspnes/classes/465/notes.pdf
https://doi.org/10.1007/978-3-319-89884-1_5
https://doi.org/10.1007/978-3-319-89884-1_5
https://doi.org/10.1007/978-3-319-89884-1_5
https://doi.org/10.1007/978-3-319-89884-1_5
https://doi.org/10.1145/3434320
https://doi.org/10.1145/3434320
https://doi.org/10.1145/3434320
https://doi.org/10.1145/3434320
https://doi.org/10.1145/3434320

9. Batz, K., Kaminski, B.L., Katoen, J.P., Matheja, C., Noll, T.: Quantitative sep-
aration logic: A logic for reasoning about probabilistic pointer programs. Proc.
ACM Program. Lang. 3(POPL) (jan 2019). https://doi.org/10.1145/3290347,
https://doi.org/10.1145/3290347

10. Bertrand, N., Konnov, I., Lazic, M., Widder, J.: Verification of randomized con-
sensus algorithms under round-rigid adversaries. In: Fokkink, W.J., van Glabbeek,
R. (eds.) Proceedings of the 30th International Conference on Concurrency The-
ory (CONCUR 2019). LIPIcs, vol. 140, pp. 33:1–33:15. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.CONCUR.2019.
33, https://doi.org/10.4230/LIPIcs.CONCUR.2019.33

11. Bertrand, N., Lazic, M., Widder, J.: A reduction theorem for randomized dis-
tributed algorithms under weak adversaries. In: Henglein, F., Shoham, S., Vizel,
Y. (eds.) Proceedings of the 22nd International Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI 2021). Lecture Notes in Computer
Science, vol. 12597, pp. 219–239. Springer (2021). https://doi.org/10.1007/
978-3-030-67067-2_11, https://doi.org/10.1007/978-3-030-67067-2_11

12. Chor, B., Israeli, A., Li, M.: Wait-free consensus using asynchronous hardware.
SIAM Journal on Computing 23(4), 701–712 (1994). https://doi.org/10.1137/
S0097539790192635, https://doi.org/10.1137/S0097539790192635

13. Fesefeldt, I., Katoen, J., Noll, T.: Towards concurrent quantitative separation logic.
In: Proceedings of 33rd International Conference on Concurrency Theory (CON-
CUR 2022). pp. 25:1–25:24 (2022). https://doi.org/10.4230/LIPIcs.CONCUR.
2022.25, https://doi.org/10.4230/LIPIcs.CONCUR.2022.25

14. Jones, C.B.: Tentative steps toward a development method for interfering pro-
grams. ACM Trans. Program. Lang. Syst. 5(4), 596–619 (oct 1983). https:
//doi.org/10.1145/69575.69577, https://doi.org/10.1145/69575.69577

15. Jung, R., Swasey, D., Sieczkowski, F., Svendsen, K., Turon, A., Birkedal, L., Dreyer,
D.: Iris: Monoids and invariants as an orthogonal basis for concurrent reasoning. In:
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages. p. 637–650. POPL ’15, Association for Comput-
ing Machinery, New York, NY, USA (2015). https://doi.org/10.1145/2676726.
2676980, https://doi.org/10.1145/2676726.2676980

16. McIver, A., Morgan, C.: Abstraction, Refinement and Proof for Probabilistic Sys-
tems. Monographs in Computer Science, Springer (2005). https://doi.org/10.
1007/b138392, https://doi.org/10.1007/b138392

17. McIver, A., Rabehaja, T.M., Struth, G.: Probabilistic rely-guarantee calculus.
Theor. Comput. Sci. 655, 120–134 (2016). https://doi.org/10.1016/j.tcs.
2016.01.016, https://doi.org/10.1016/j.tcs.2016.01.016

18. Rand, R., Zdancewic, S.: VPHL: A verified partial-correctness logic for proba-
bilistic programs. In: Ghica, D.R. (ed.) Proceedings of the 31st Conference on
the Mathematical Foundations of Programming Semantics (MFPS 2015). Elec-
tronic Notes in Theoretical Computer Science, vol. 319, pp. 351–367. Elsevier
(2015). https://doi.org/10.1016/j.entcs.2015.12.021, https://doi.org/10.
1016/j.entcs.2015.12.021

19. Tassarotti, J., Harper, R.: A separation logic for concurrent randomized programs.
Proc. ACM Program. Lang. 3(POPL) (jan 2019). https://doi.org/10.1145/
3290377, https://doi.org/10.1145/3290377

https://doi.org/10.1145/3290347
https://doi.org/10.1145/3290347
https://doi.org/10.1145/3290347
https://doi.org/10.4230/LIPIcs.CONCUR.2019.33
https://doi.org/10.4230/LIPIcs.CONCUR.2019.33
https://doi.org/10.4230/LIPIcs.CONCUR.2019.33
https://doi.org/10.4230/LIPIcs.CONCUR.2019.33
https://doi.org/10.4230/LIPIcs.CONCUR.2019.33
https://doi.org/10.1007/978-3-030-67067-2_11
https://doi.org/10.1007/978-3-030-67067-2_11
https://doi.org/10.1007/978-3-030-67067-2_11
https://doi.org/10.1007/978-3-030-67067-2_11
https://doi.org/10.1007/978-3-030-67067-2_11
https://doi.org/10.1137/S0097539790192635
https://doi.org/10.1137/S0097539790192635
https://doi.org/10.1137/S0097539790192635
https://doi.org/10.1137/S0097539790192635
https://doi.org/10.1137/S0097539790192635
https://doi.org/10.4230/LIPIcs.CONCUR.2022.25
https://doi.org/10.4230/LIPIcs.CONCUR.2022.25
https://doi.org/10.4230/LIPIcs.CONCUR.2022.25
https://doi.org/10.4230/LIPIcs.CONCUR.2022.25
https://doi.org/10.4230/LIPIcs.CONCUR.2022.25
https://doi.org/10.1145/69575.69577
https://doi.org/10.1145/69575.69577
https://doi.org/10.1145/69575.69577
https://doi.org/10.1145/69575.69577
https://doi.org/10.1145/69575.69577
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1007/b138392
https://doi.org/10.1007/b138392
https://doi.org/10.1007/b138392
https://doi.org/10.1007/b138392
https://doi.org/10.1007/b138392
https://doi.org/10.1016/j.tcs.2016.01.016
https://doi.org/10.1016/j.tcs.2016.01.016
https://doi.org/10.1016/j.tcs.2016.01.016
https://doi.org/10.1016/j.tcs.2016.01.016
https://doi.org/10.1016/j.tcs.2016.01.016
https://doi.org/10.1016/j.entcs.2015.12.021
https://doi.org/10.1016/j.entcs.2015.12.021
https://doi.org/10.1016/j.entcs.2015.12.021
https://doi.org/10.1016/j.entcs.2015.12.021
https://doi.org/10.1145/3290377
https://doi.org/10.1145/3290377
https://doi.org/10.1145/3290377
https://doi.org/10.1145/3290377
https://doi.org/10.1145/3290377

A More Preliminaries

Definition A.1 (finite series of real numbers). Let r0, . . . , rn be a finite
sequence of real numbers, the finite series

∑n
i=0 ri is inductively defined as∑0

i=0 ri
def
= 0∑n+1

i=0 ri
def
= (
∑n
i=0 ri) + rn+1.

Definition A.2 (infinite series of real numbers). Let (rn)n∈N be an infinite
sequence of real numbers, the infinite series

∑∞
i=0 ri is defined as∑∞

i=0 ri
def
= lim

n→∞

∑n
i=0 ri.

Definition A.3 (summation on finite sets). Let A be a finite set and f :
A→ R be a function, then there exists a bijection g : {0, . . . ,#A− 1} → A, and∑
a∈A f(a) is defined as ∑

a∈A f(a)
def
=
∑#A−1
i=0 f(g(i)).

We can prove the definition does not depend on the choice of g.

Definition A.4 (summation on countably infinite sets). Let A be a count-
ably infinite set and f : A → R be a function, then there exists a bijection
g : N → A. We say

∑
a∈A f(a) is absolutely convergent iff

∑∞
i=0|f(g(i))| con-

verges, and the value of
∑
a∈A f(a) is defined as∑
a∈A f(a)

def
=
∑∞
i=0 f(g(i)).

We can prove the definition does not depend on the choice of g.

Definition A.5 (summation on uncountable sets). Let A be an uncount-
able set and f : A → R be a function such that supp(f)

def
= {a ∈ A | f(a) 6= 0}

is countable.
∑
a∈A f(a) is defined as∑

a∈A f(a)
def
=
∑
a∈supp(f) f(a).

We write
∑
a∈A{f(a) | P (a)} as a shorthand for

∑
a∈{a′∈A|P (a′)} f(a), where

P is a predicate over A.

Definition A.6 ((sub-)distribution). A sub-distribution over a set A is de-
fined by a function µ : A→ [0, 1] such that

– the support supp(µ) is countable; and
– the weight |µ| def

=
∑
a∈A µ(a) ≤ 1.

If µ is a sub-distribution over A and |µ| = 1, we say µ is a distribution over A.
We use SDA to denote the set of sub-distributions over A, and DA to denote the
set of distributions over A.

Definition A.7 (probability of events). Let µ ∈ SDA. The probability of an
event E : A→ Prop w.r.t µ is defined as

Pra∼µ[E(a)]
def
=
∑
a∈A{µ(a) | E(a)}

Definition A.8 (expected value of random variables). Let µ ∈ SDA. The
expected value of a random variable V : A→ R w.r.t µ is defined as

Ea∼µ[V (a)]
def
=
∑
a∈A µ(a) · V (a)

Definition A.9 (expected sub-distribution). Let µ ∈ SDA and f : A →
SDB . The expected sub-distribution Ea∼µ{f(a)} ∈ SDB is defined as

Ea∼µ{f(a)} def
= λb.

∑
a∈A µ(a) · f(a)(b)

Definition A.10 (flattened sub-distribution).
Let µ ∈ SDSDA . The flattened sub-distribution µ ∈ SDA is defined as

µ
def
= λa.

∑
ν∈SDA µ(ν) · ν(a) .

Definition A.11 (conditional sub-distribution). Let µ ∈ SDA and E : A→
Prop such that Pra∼µ[E(a)] > 0. The conditional sub-distribution µ|E is defined
as

µ|E
def
= λa.

{
µ(a)

Pra∼µ[E(a)] , if E(a) holds
0, otherwise

Definition A.12 (convergent sequence of sub-distributions). Let A be a
set,

→
µ be an infinite sequence of sub-distributions overA. We say

→
µ converges to a

sub-distribution µ, represented as lim
→
µ = µ, if and only if lim

n→∞

∑
a∈A|

→
µ [n](a)−

µ(a)| = 0 (where
→
µ [n] means the n-th element of the sequence

→
µ). We say

→
µ

diverges and lim
→
µ is undefined if

→
µ does not converge to any µ.

Definition A.13 (product sub-distribution). Let µ1 ∈ SDA and µ2 ∈ SDB .
The product sub-distribution µ1 ⊗ µ2 ∈ SDA×B is defined as

µ1 ⊗ µ2
def
= λ(a, b). µ1(a) · µ2(b)

Definition A.14 (projection of sub-distribution). Let µ ∈ SDA×B . and
µ2 ∈ SDB . The projection of µ with the sets A and B is defined as:

µ(A) def
= λa′.Pr(a,b)∼µ[a = a′]

µ(B) def
= λb′.Pr(a,b)∼µ[b = b′]

B Full Operational Semantics

Fig. 17 gives full rules of concrete operational semantics. The step rules for
sequencing, ifs and while-loops are mostly standard except that in the first rule
for sequencing, we require that C1 is not skip to prevent conflicts with the
stutter rule for skip.

The rule for atomic blocks assumes that programmers never write while loops
in atomic blocks so that atomic blocks can always terminate in a bounded num-
ber of steps. We also have a more general rule for atomic blocks that permit while
loops inside, as shown below. When 〈C〉 contains no while loops, the two rules
are equivalent. To simplify the presentation, we choose to present the simpler
rule (that avoids using limit) in this paper.

∀n. (C, σ)
→
p [n]−−−→n(skip, σ′)

(〈C〉, σ) lim
→
p−−−→ (skip, σ′)

In Sec. 4.1, we give the definition of |=nd {P}C{Q}. Now we give the defini-
tion of |=pr {P}C{Q} in Def. B.1. We use φ ∈ DSchedule to denote the distribu-
tion of oblivious schedules and we define JCKφ(µ)

def
= Eϕ∼φ{JCKϕ(µ)} as the final

state distribution of the execution forest of C from the initial state distribution
µ under probabilistic schedules sampled from φ.

Definition B.1. |=pr {P}C{Q} iff, for all µ and φ, if µ |= P , and |JCKφ(µ)| = 1,
then JCKφ(µ) |= Q.

As explained in Sec. 3.2, |=nd {P}C{Q} and |=nd {P}C{Q} are equivalent
when Q is closed, as shown by Thm. B.1.

Theorem B.1. For all P,C, Q such that closed(Q), then |=nd {P}C{Q} ⇐⇒
|=pr {P}C{Q}.

Proof. For all P,C, Q such that closed(Q), first we prove |=nd {P}C{Q} =⇒
|=pr {P}C{Q}.

To prove |=pr {P}C{Q}, we need to prove for all µ and φ, if µ |= P and
|JCKφ(µ)| = 1, then JCKφ(µ) |= Q. From 1 = |JCKφ(µ)| = |Eϕ∼φ{JCKϕ(µ)}| =
Eϕ∼φ[|JCKϕ(µ)|] =

∑
ϕ φ(ϕ) · |JCKϕ(µ)| ≤

∑
ϕ φ(ϕ) = 1 we know

∑
ϕ φ(ϕ) ·

|JCKϕ(µ)| =
∑
ϕ φ(ϕ), so

∑
ϕ φ(ϕ)·(1−|JCKϕ(µ)|) = 0, thus φ(ϕ)·(1−|JCKϕ(µ)|) =

0 for all ϕ. Therefore |JCKϕ(µ)| = 1 for all ϕ ∈ supp(φ). From |=nd {P}C{Q}
and µ |= P we know JCKϕ(µ) |= Q for all ϕ ∈ supp(φ). From JCKφ(µ) =
Eϕ∼φ{JCKϕ(µ)} and closed(Q) we have JCKφ(µ) |= Q.

Next we prove |=pr {P}C{Q} =⇒ |=nd {P}C{Q}.
To prove |=nd {P}C{Q}, we need to prove for all µ and ϕ, if µ |= P and

|JCKϕ(µ)| = 1, then JCKϕ(µ) |= Q. Let φ def
= δ(ϕ), then JCKφ(µ) = Eϕ′∼δ(ϕ){JCKϕ′(µ)} =

JCKϕ(µ), so |JCKφ(µ)| = |JCKϕ(µ)| = 1. From |=pr {P}C{Q} and µ |= P we have
JCKφ(µ) |= Q. From JCKφ(µ) = JCKϕ(µ) we have JCKϕ(µ) |= Q.

Thread IDs, schedules, states and states distributions:
(ThreadId) t ∈ N+ (Schedule) ϕ ::= t ::ϕ (coinductive)

(State) σ ∈ PVar→ R (DState) µ ∈ DState

Global transitions: (C, σ) p−→
t

(C′, σ′)
(Ct, σ)

p−→ (C′t, σ
′)

(C1 ‖ · · · ‖ Ct ‖ · · · ‖ Cn, σ)
p−→
t

(C1 ‖ · · · ‖ C′t ‖ · · · ‖ Cn, σ′)

Global multistep transitions: (C, σ) p−→
ϕ

n(C′, σ′)

(C, σ) 1−→
ϕ

0(C, σ)

p =
∑

C′,σ{p1 · p2 | (C, σ)
p1−→
t

(C′, σ′) ∧ (C′, σ′) p2−→
ϕ

n(C′′, σ′′)}

(C, σ) p−−→
t::ϕ

n+1(C′′, σ′′)

Thread-local transitions: (C, σ) p−→ (C′, σ′)

(skip, σ) 1−→ (skip, σ)

JeKσ = n

(x := e, σ)
1−→ (skip, σ{x; n})

C1 6= skip (C1, σ)
p−→ (C′1, σ

′)

(C1;C2, σ)
p−→ (C′1;C2, σ

′) (skip;C2, σ)
1−→ (C2, σ)

JbKσ = tt

(if (b) then C1 else C2, σ)
1−→ (C1, σ)

JbKσ = ff

(if (b) then C1 else C2, σ)
1−→ (C2, σ)

JbKσ = tt

(while (b) do C, σ) 1−→ (C;while (b) do C, σ)

JbKσ = ff

(while (b) do C, σ) 1−→ (skip, σ)

(〈C1〉 ⊕p 〈C2〉, σ)
p−→ (〈C1〉, σ) (〈C1〉 ⊕p 〈C2〉, σ)

1−p−−→ (〈C2〉, σ)

∃k.∀n ≥ k. (C, σ) p−→n(skip, σ′)

(〈C〉, σ) p−→ (skip, σ′)

(〈C〉, σ) p−→ (skip, σ′)

(〈C〉 split(b1, . . . , bk), σ)
p−→ (skip, σ′)

(C, σ)
1−→0(C, σ)

p =
∑
C′,σ′{p1 · p2 | (C, σ)

p1−→ (C′, σ′) ∧ (C′, σ′)
p2−→n(C′′, σ′′)}

(C, σ)
p−→n+1(C′′, σ′′)

Fig. 17: Appendix: Full Rules for Concrete Operational Semantics

In Sec. 4.2, we use History(W,ϕ,
→
W) to represent that

→
W is an infinite

sequence W0,W1, . . . where Wi

ϕ[i]
↪→ Wi+1 for every i, as defined coinductively

below (see the definition of W and W
t
↪→W ′ in Fig. 11).

W
t
↪→W ′ History(W ′, ϕ,

→
W
′
)

History(W, t :: ϕ,W ::
→
W
′
)

==============================

C Justifications for Non-probabilistic Rely/Guarantee
Conditions

As explained in Sec. 3.3, we use R,G, I to specify the interference between the
current thread and its environment, where I is the probabilistic layer invariant
(over state distributions) and R,G are non-probabilistic rely/guarantee condi-
tions (over state transitions). One might suggest to replace the layer invariant by
probabilistic rely/guarantee conditions to uniform probabilistic rely/guarantee
conditions and non-probabilistic ones. To do that, we need to use higher-order
rely/guarantee conditions R,G, but it is not obvious what type R,G should be
defined as.

One solution is to defineR,G as predicates over transitions between state dis-
tributions, which has been tried in earlier versions of our work. It indeed works in
proving probabilistic properties of randomized programs. However, when we try
to prove some non-probabilistic properties, such R,G seems not to be expressive
enough to support traditional rely-guarantee reasoning. For example, we might
define G as (x = 0 n y = 1) ∨ (x 6= 0 n y = 2) for a thread with the code
〈if (b) then y := 1 else y := 2〉 in traditional rely-gurantee reaoning. Here pnq
means the initial state of the transition satisfies p and the resulting state satisfies
q. In the probabilistic setting, the initial state distribution may contain some
states where x = 0 and some states where x 6= 0. We want to define some G to
express that for the initial states where x = 0, the corresponding resulting states
satisfies y = 1, and for the initial states where x 6= 0, the correponding resulting
states satisfies y = 2. However, this property cannot be expressed by any predi-
cate over transitions between state distributions because we have no information
about the correpondence between the initial states and the resulting states given
the initial state distribution and the resulting state distribution. One may define
G as (dx = 0endy = 1e)∨(dx 6= 0endy = 2e) or dx = 0∨x 6= 0endy = 1∨y = 2e.
But Both of them are different from the property we want to express. What we
want to express is actually d(x = 0 n y = 1) ∨ (x 6= 0 n y = 2)e, which is not a
predicate over transitions between state distributions.

Another solution is to define R,G as predicates over transitions from states
to state distributions. In this way R,G are expressive enough to specify state
transitions as in the traditional rely-gurantee reasoning. We can define G as
(x = 0ndy = 1e)∨(x 6= 0ndy = 2e) for a thread with the code 〈if (b) then y :=
1 else y := 2〉, which solves the problem of the previous solution. However, such

R,G are not expressive enough to specify the initial state distribution, which
makes it more difficult to prove that an assertion P is stable with respect to
R than the previous solution. For instance, we want to prove that an assertion
P

def
= E(x) = 1 is stable under the interference of an environment thread with

the code 〈x := 1⊕0.5 skip〉; skip in the oblivious adversary model. It is obvious
that both 〈x := 1⊕0.5 skip〉 and skip preserves P . In the previous solution, we
can define R as P n P . It is trivial to prove P is stable with respect to R. In
the current solution, one might define R as ∃N. x = N n ((dx = 1e ⊕0.5 dx =
Ne) ∨ dx = Ne), where N is a logical variable used to record the initial value
of x. We can see that R actually allows that some of the initial states execute
〈x := 1 ⊕0.5 skip〉 while some of the initial states exeucte skip, which will not
happen in the oblivious adversary model. This makes P not stable with respect
toR. To ensure that P is stable, we need to strengthenR to reject the possibility
that some of the initial states execute 〈x := 1⊕0.5 skip〉 while some of the initial
states exeucte skip. To do that, we might need to use program counters in P
and R, which makes the proof more complicated.

The third solution is to define R,G as predicates over distributions of state
transitions, i.e., R,G ∈ DState×State → Prop. This solution solves the problems
of the first solution and the second solution. First, R,G are expressive enough
to specify state transitions as in the traditional rely-gurantee reasoning becase
we know the correspondence between the initial states and the resulting states
given the distribution of state transitions. Second, R,G are expressive enough to
specify the initial state distribution becase we know the initial state distribution
given the distribution of state transitions. However, R,G cannot be used to spec-
ify the split operation. Recall that the split operation devides the current state
distribution into smaller distributions and then select one of them nondetermin-
istically. It is not obvious how to view a split operation as a distribution of state
transitions. A possible solution is to extend State with a bottom state ⊥ and view
a split operation as a process where some of the initial states take identity tran-
sitions while other initial states move to ⊥. This seems to be a feasible solution
but we might need to be careful with the bottom state in the design of the pro-
gram logic. What’s more, the assertion language for R,G ∈ DState×State → Prop
might be very complicated.

To be brief, we want the rely/guarantee conditions to satisfy the following re-
quirements: (1) They should be expressive enough to specify state transitions as
in the traditional rely-gurantee reasoning. (2) They should be expressive enough
to specify the inital state distribution to make stability easy to prove. (3) The
should be expressive enough to specify the split operation. (4) The assertion
language should be simple enough.

As explained in Sec. 3.3, our solution is to separate the rely/guarantee condi-
tions for concurrent randomized programs into three components: R,G, I where
I is the probabilistic layer invariant (over state distributions) and R,G are non-
probabilistic rely/guarantee conditions (over state transitions). We can see that
this solution satisfies the four requirements. First, R,G are expressive enough
to specify state transitions as in the classical rely-guarantee reasoning. Actu-

ally R,G are exactly the classical rely/guarantee conditions. Second, I is the
probabilistic layer invariant so it is expressive enough to specify the initial state
distributions. Third, we can specify the split operation by I becase the split op-
eration is a transition between state distributions. Lastly, the assertion language
for R,G is the same as the one in the classical rely-guarantee reasoning and
the assertion language for I is the same as the one for pre/post-conditions of
sequential randomized programs.

We have to admit that the expressive power of our rely/guarantee conditions
are far from complete, but they are expressive enough to prove the examples
in this paper. How to define complete rely/guarantee conditions is beyond the
scope of our work.

D Full Assertion Language

The syntax of assertions is shown in Fig. 18, and semantics in Fig. 19. We use p
and q to represent classical assertions over states, and ξ for probabilistic expres-
sions such as the expected value of an arithmetic expression or the probability
of a classical assertion. The expression ξ evaluates to a real number under the
state distribution µ, represented as JξKµ. E(e) evaluates to the expected value of
JeKσ (where σ ∈ supp(µ)). Pr(q) evaluates to the probability of σ |= q (where
σ ∈ supp(µ)). The key definitions of expected values and probability of assertions
are shown in Eqn. (2.1).

We also use P , Q and I to denote probabilistic assertions over state distri-
butions. The assertion dqe lifts the state assertion q to a probabilistic assertion.
It says q holds on all states in the support of the state distribution. The asser-
tion P ⊕p Q holds at µ, if µ is a mixture of two distributions µ0 and µ1, which
are associated with probabilities p and 1−p, and satisfy P and Q respectively.
Q1⊕Q2 says there exists p such that Q1⊕pQ2 holds.

⊕
Q holds on µ if and only

if there exists a distribution of state distribution V such that µ is the flattened
distribution of V and Q holds on each state distribution in the support of V (see
Eqn. (2.8) for the definition of flattened distribution). ∀X.Q holds on µ if and
only if Q holds on µ{X ; r} for any real number r. Here, µ{X ; r} changes
the value of X to r in all states in µ. Note that X must be a logical variable.
Throughout this paper, we use capital letters X to indicate that X is a logical
variable and lowercase letters x to indicate that x is a program variable.

Note that Q ⊕ Q ⇒ Q may not hold. For instance, let’s instantiate Q with
(dx = 0e∨dx 6= 0e). A state distribution µ satisfying Q⊕Q may be a mixture of
µ1 and µ2 such that all the states in supp(µ1) satisfy x = 0 (thus µ1 satisfies Q)
while all the states in supp(µ2) satisfy x 6= 0 (thus µ2 satisfies Q too). However,
µ itself does not satisfy Q, which requires either all the states in supp(µ) satisfy
x = 0, or all the states satisfy x 6= 0.

We define true as a syntactic sugar of dtruee which holds on all state distribu-
tions. In addition, we define Q | e1, . . . , en to describe that Q is probabilistically
independent from e1, . . . , en. Informally speaking, Q | e1, . . . , en holds on µ if

and only if µ can be split into multiple distributions such that each satisfies Q
and the values of e1, . . . , en are all deterministic.

Actions R and G are assertions over state transitions. The action pnq means
the initial state of the transition satifies p and the final state of the transition
satifies q. [q] specifies an identity transition with the states satisfying q. R1 ◦R2

holds on (σ, σ′) if and only if there exists σ′′ such that R1 holds on (σ, σ′′) and
R2 holds on (σ′′, σ′). It can be used to specify multistep state transitions.

(Assertion) p,q ::= b | ¬q | q1 ∧ q2 | q1 ∨ q2 | ∀X.q | ∃X.q | . . .
(Pexp) ξ ::= r | E(e) | Pr(q) | ξ1 + ξ2 | ξ1 − ξ2 | ξ1 ∗ ξ2 | . . .

(PAssertion) P,Q,M, I ::= dqe | ξ1 < ξ2 | ξ1 = ξ2 | ξ1 ≤ ξ2 | ¬Q | Q1 ∧Q2 | Q1 ∨Q2

| ∀X.Q | ∃X.Q | Q1 ⊕p Q2 | Q1 ⊕Q2 |
⊕
Q | . . .

(Action) R,G ::= pnq | [q] | ¬R | R1∧R2 | R1∨R2 | ∀X.R | ∃X.R | R1◦R2 | . . .

Fig. 18: The Assertion Language

Below we introduce the concept of semi-classical assertions.

Definition D.1. An assertion Q is semi-classical, i.e., scl(Q) holds, if and only
if, for all µ, µ′, if µ |= Q and supp(µ′) ⊆ supp(µ), then µ′ |= Q.

We can see that semi-classical assertions only care about the support of a
distribution but do not care about the probability of each state in the support.
It is easy to see dqe is semi-classical, for any classical state assertion q. Con-
junction, disjunction, universal quantification and existential quantification of
semi-classical assertions are also semi-classical assertions.

Semi-classical assertions are heavily used in the thread-local proofs of our
examples. By separating the postconditions into probabilistic properties and
non-probabilistic properties, we put all probabilistic properties into the global
invariant I and keep all thread-local assertions semi-classical, which makes our
thread-local proof concise and easy to understand. What’s more, since semi-
classical assertions do not care about probability, proving the stability of semi-
classical assertions does not need complicated reasoning about probability, which
makes the rely/guarantee reasoning much simpler.

In Figs. 20, 21, 22 and 23 we give sets of rules to syntactically prove properties
of assertions.

Inference rules for stability of probabilistic assertions are given in Fig. 20. To
prove dqe is stable with respect to R and I, it suffices to prove that q is stable
with respect to R under the classical definition of stability. An assertion Q is
stable with respect to R and Q for any R. Q is stable with respect to R and
I if an equivalent assertion Q′ is stable with respect to a weaker rely condition
R′ and a weaker invariant I ′. The other rules are straightforward and need no
explanation.

Evaluation of probabilistic expressions:

JrKµ
def
= r JE(e)Kµ

def
= Eσ∼µ[JeKσ]

Jξ1 + ξ2Kµ
def
= Jξ1Kµ + Jξ2Kµ JPr(q)Kµ

def
= Prσ∼µ[σ |= q]

Semantics of probabilistic assertions:

µ |= dqe iff for all σ ∈ supp(µ), σ |= q
µ |= Q1 ⊕p Q2 iff p = 1 and µ |= Q1, or p = 0 and µ |= Q2, or 0 < p < 1 and

there exist µ1 and µ2 such that µ = µ1 ⊕p µ2, µ1 |= Q1 and µ2 |= Q2

µ |= Q1 ⊕Q2 iff there exists p such that µ |= Q1 ⊕p Q2

µ |=
⊕
Q iff there exists V ∈ DDState such that µ = V and ∀ν ∈ supp(V). ν |= Q

µ{X ; r} def
= Eσ∼µ{δ(σ{X ; r})}

µ |= ∀X.Q iff for all r, µ{X ; r} |= Q
µ |= ∃X.Q iff there exists r such that µ{X ; r} |= Q

true
def
= dtruee Q | e1, . . . , en

def
=

⊕
(∃X1, . . . , Xn.de1 = X1 ∧ · · · ∧ en = Xne ∧Q)

Semantics of actions:
(σ, σ′) |= pn q iff σ |= p and σ′ |= q
(σ, σ′) |= [q] iff σ = σ′ and σ |= q
(σ, σ′) |= ∀X.R iff for all r, (σ{X ; r}, σ′{X ; r}) |= R
(σ, σ′) |= ∃X.R iff there exists r such that (σ{X ; r}, σ′{X ; r}) |= R
(σ, σ′) |= R1 ◦R2 iff there exists σ′′ such that (σ, σ′′) |= R1 and (σ′′, σ′) |= R2

True
def
= truen true Id

def
= [true] Inv(e)

def
= ∃X.e = X n e = X

JRK def
= {(σ, σ′) | (σ, σ′) |= R}

Fig. 19: Semantics of More Assertions

sta(q, R) iff ∀σ, σ′. σ |= q ∧ (σ, σ′) |= R =⇒ σ′ |= q

sta(q, R)

Sta(dqe, R, I)
Sta(Q,R, I)

Sta(∀X.Q,R, I)
Sta(Q,R, I)

Sta(∃X.Q,R, I)
Sta(Q1, R, I) Sta(Q2, R, I)

Sta(Q1 ∧Q2, R, I)

Sta(Q1, R, I) Sta(Q2, R, I)

Sta(Q1 ∨Q2, R, I)

Sta(Q,R,Q)

Sta(Q′, R′, I ′) Q⇔ Q′ R⇒ R′ I ⇒ I ′

Sta(Q,R, I)

Fig. 20: Inference Rules for Stability

Inference rules for semi-classical assertions are given in Fig. 21. It is easy
to see dqe is semi-classical, for any classical state assertion q. Conjunction, dis-
junction, universal quantification and existential quantification of semi-classical
assertions are also semi-classical assertions.

scl(dqe)
scl(Q)

scl(∀X.Q)

scl(Q)

scl(∃X.Q)

scl(Q1) scl(Q2)

scl(Q1 ∧Q2)

scl(Q1) scl(Q2)

scl(Q1 ∨Q2)

Fig. 21: Inference Rules for Semi-Classical Assertions

Inference rules for closed assertions are given in Fig. 22. The lifted assertion
dqe is closed. Conjunction and universal quantification of closed assertions are
closed. If both Q1 and Q2 are closed, then Q1⊕pQ2 and Q1⊕Q2 are closed. An
assertion equivalent to a closed assertion is also closed. In addition, assertions
in the form of ξ1 ./ ξ2 ∧ Q where ./ ∈ {<,=,≤} is closed if Q is closed and Q
ensures that every arithmetic expression e appears in the form of E(e) in ξ1 or
ξ2 is bounded or nonnegative.

getExprs ∈ Pexp→ P(Expr)
getExprs(r) def

= ∅
getExprs(E(e)) def

= {e}
getExprs(Pr(q)) def

= ∅
getExprs(ξ1 + ξ2)

def
= getExprs(ξ1) ∪ getExprs(ξ2)
...

getExprs({ξ1, ξ2})
def
= getExprs(ξ1) ∪ getExprs(ξ2)

closed(Q) ∀e ∈ getExprs({ξ1, ξ2}). (∃r1, r2. Q⇒ dr1 ≤ e ∧ e ≤ r2e) ∨ (Q⇒ de ≥ 0e)
closed(ξ1 < ξ2 ∧Q)

closed(Q) ∀e ∈ getExprs({ξ1, ξ2}). (∃r1, r2. Q⇒ dr1 ≤ e ∧ e ≤ r2e) ∨ (Q⇒ de ≥ 0e)
closed(ξ1 = ξ2 ∧Q)

closed(Q) ∀e ∈ getExprs({ξ1, ξ2}). (∃r1, r2. Q⇒ dr1 ≤ e ∧ e ≤ r2e) ∨ (Q⇒ de ≥ 0e)
closed(ξ1 ≤ ξ2 ∧Q)

closed(dqe)
closed(Q1) closed(Q2)

closed(Q1 ∧Q2)

closed(Q)

closed(∀X.Q)

closed(Q1) closed(Q2)

closed(Q1 ⊕p Q2)

closed(Q1) closed(Q2)

closed(Q1 ⊕Q2)

closed(Q′) Q′ ⇔ Q

closed(Q)

Fig. 22: Inference Rules for Closed Assertions

Inference rules for limit-closed assertions are given in Fig. 23. The lifted as-
sertion dqe is limit-closed. Conjunction, disjunction and universal quantification
of limit-closed assertions are limit-closed. If both Q1 and Q2 are limit-closed,
then (Q1∧dqe)⊕p (Q2∧d¬qe) and (Q1∧dqe)⊕ (Q2∧d¬qe) are limit-closed. In
addition, assertions in the form of ξ1 ./ ξ2 ∧Q where ./ ∈ {=,≤} is limit-closed
if Q is limit-closed and Q ensures that every arithmetic expression e appears in
the form of E(e) in ξ1 or ξ2 is bounded.

lclosed(Q) ∀e ∈ getExprs(ξ1) ∪ getExprs(ξ2). ∃r1, r2. Q⇒ dr1 ≤ e ∧ e ≤ r2e
lclosed(ξ1 = ξ2 ∧Q)

lclosed(Q) ∀e ∈ getExprs(ξ1) ∪ getExprs(ξ2). ∃r1, r2. Q⇒ dr1 ≤ e ∧ e ≤ r2e
lclosed(ξ1 ≤ ξ2 ∧Q)

lclosed(dqe)
lclosed(Q1) lclosed(Q2)

lclosed(Q1 ∧Q2)

lclosed(Q1) lclosed(Q2)

lclosed(Q1 ∨Q2)

lclosed(Q)

lclosed(∀X.Q)

lclosed(Q′) Q′ ⇔ Q

lclosed(Q)

lclosed(Q1) lclosed(Q2)

lclosed((Q1 ∧ dqe)⊕p (Q2 ∧ d¬qe))
lclosed(Q1) lclosed(Q2)

lclosed((Q1 ∧ dqe)⊕ (Q2 ∧ d¬qe))

Fig. 23: Inference Rules for Limit-closed Assertions

E Extensions to Logic Rules

Unfortunately the rules in Fig. 16 are not sufficient for verifying more advanced
examples, such as group election [2] and the multiplayer level-up game, whose
loops require split in the first few rounds only. In this section, we motivate our
extensions to the logic and give the full set of logic rules.

Example: a multiplayer level-up game. The program CLvUp consists of n threads,
where every thread i runs the following code LvUpi (ignore the code in red for
now):

1 ki = 1;
2 while (ki ≤ m ∧ vi = 0) do
3 〈x[ki] := x[ki] + 1; y[ki] := y[ki] + 1〉 ⊕p 〈vi := 1; y[ki] := y[ki] + 1〉;
4 ki := ki + 1;

The game hasm levels. In the shared array x[1..m], each x[j] records the number
of threads that has passed the level j. At each level, the threads try to progress
to the next level, succeeding with probability p. If a thread i fails at some level, it
sets vi to 1 and exits the game. Each thread i has two local variables: ki records
its next level, and vi records whether it has failed the game.

Intuition. We want to verify that CLvUp satisfies the postcondition ∀j. E(x[j]) =
n · pj . To see why this holds, we first observe the following when the program
terminates:

– E(x[1]) = n ·p. Clearly all the n threads can enter the first round of the loop
and flip the coin at line 3. E(x[1]) is the expected number of heads in these
n flips, so it is n · p.

– ∀j. E(x[j + 1]) = p · E(x[j]). Similarly, x[j] is the number of threads that
can enter the (j+ 1)-th round of the loop and flip the coin. So E(x[j+ 1]) =
p · E(x[j]).

Then, by induction, we know the postcondition holds. To turn this intuition into
an invariant, we introduce an auxiliary array y[1..m] with each y[j] recording
the number of threads that execute line 3 of round j. We instrument line 3 with
the auxiliary code (in red above) that increments y[ki]. So, when the program
terminates, ∀j. x[j] = y[j + 1] holds. We formulate the invariant as follows:

ILvUp
def
= ∀j. Qj , where Qj

def
= E(x[j]) = p · E(y[j])

The key of the proof is to show that ILvUp is indeed an invariant. Since ILvUp
is defined as ∀j. Qj , we only need to prove, for every j, Qj is an invariant.
Unfortunately, just as in the Dice example, it is possible that the transitions at
the same layer are made by different code, making it difficult to prove that Qj
is preserved layer by layer.

Split. Apparently line 3 of round j is the only code that modifies x[j] and y[j]. So
it is the only line that can possibly invalidate Qj . To prove Qj can be preserved,
we split the state distributions before round j according to the value of vi, in
order to separate out the states at which the thread exits the loop and has no
change to enter round j, from the states at which the thread enters the next
round (thus has a chance to continue to round j).

After round j (i.e. ki > j), the execution will not access x[j] or y[j], and
hence will naturally preserve Qj . In this case, we do not need to split the state
distribution even though it may contain different code (code either in the loop
body or skip), as neither of them access x[j] or y[j] anyway.

The challenging case is the exact round j (i.e. ki = j), where x[j] and y[j]
are actually updated. Suppose Qj holds before executing line 3. The left branch
of line 3 increments both x[j] and y[j] with probability p, while the right branch
only increments y[j] with probability 1−p. We can see that Qj would be invalid
if we consider the distribution resulting from only one of the branches indepen-
dently. It is preserved only if we consider the whole distribution resulting from
both branches. Therefore, at the end of line 3 we cannot split the distribution
based on the value of vi, otherwise Qj becomes invalid after the split.

As such, we insert split(ki < j ∧ vi = 0, ki < j ∧ vi = 1, ki ≥ j) at line 3, just
after the probabilistic choice, to split the state distributions into smaller ones
satisfying dvi = 0e and dvi = 1e when (and only when) ki < j.

However, as we explain above, the third partition (where ki ≥ j) resulting
from the split will produce distributions whose supports contain different code.

µ
P1

µ1 µ2
P1 P2

C

µ11 µ12
P1 P2

C

(a) split in two rounds, where P1 ⇒ dbe

µ
P2 ∧ dbe

µ1 µ2
dbe d¬be

P2

⊕

C

µ11 µ12 µ2
dbe d¬be d¬be

P2

⊕ ⊕

C skip

(b) non-split, where blue boxes indicate ter-
mination of the loop’s executions

Fig. 24: Execution of the loop in the (while-nst) rule.

Our logic rules cannot reason about this case because they always rely on proper
splits of distributions to avoid the mix of code. We have to extend our logic to
verify examples like LvUp.

New rules. The (while) rule in Fig. 16 cannot apply to the loop of LvUp. The
reason is, the rule requires the loop invariant be P1 ∨P2 such that P1 ⇒ dbe and
P2 ⇒ d¬be, which requires one to split the state distributions into smaller ones
satisfying dbe and d¬be in all rounds of the loop; but in the loop of LvUp, we
must only split when ki < j (i.e. at the first j − 1 rounds).

To reason about loops that split in the first few rounds only, we design a new
(while-nst) rule as below:

Sta(P1 ∨ P2, R, I) P1 ⇒ dbe R,G1, I ` {P1}C{P1 ∨ P2} P2 ∧ d¬be ⇒ Q
P2 ∧ dbe ⇒ dqe R,G2, dqe `nst {P2 ∧ dbe}C{P2} ∀x ∈ fv(I). G2 ⇒ Inv(x)
disablesplit(dqe, C) sta(q, R) Sta({P2, Q}, R, true) closed(Q) scl(P2)

R,G1 ∨G2, I `nst {P1 ∨ P2}while (b) do C{Q}
(while-nst)

Like the (while) rule in Fig. 16, the (WHILE-NST) rule requires the loop
invariant be a disjunction P1 ∨ P2 such that P1 ⇒ dbe. But it does not require
P2 ⇒ d¬be. For the loop in LvUp, P1 and P2 are instantiated as dki ≤ j∧vi = 0e
and dki ≤ j ∧ vi = 1e ∨ dki > je respectively. With the precondition P1, one
verifies that the loop body C satisfies R,G1, I ` {P1}C{P1∨P2}, which requires
C to properly split the state distributions to regain P1 ∨ P2, just as in the
(while-st) rule. With the precondition P2, the states exiting the loop satifies
Q because P2 is semi-classical and P2 ∧ d¬be ⇒ Q. The states entering the
loop satifies P2 ∧ dbe due to the same reason. The (while-nst) rule requires us
to verify C with the precondition P2 ∧ dbe. It requires that, starting from state
distributions satisfying P2∧dbe, the execution of C satisfies the two requirements:
(1) It does not modify the free variables in the invariant I. (2) It does not split
the state distribution into smaller ones. In this way, the execution of C naturally
perserves I.

We formulate (1) as the premise ∀x ∈ fv(I). G2 ⇒ Inv(x). We formulate (2)
as the premise disablesplit(dqe, C) where dqe is an invariant throughout the
execution of C. disablesplit(dqe, C) means for any state distribution µ satisfy-
ing dqe, every split instruction in C cannot split µ into smaller ones. The formal
definition of disablesplit is given in Definition E.2. To ensure dqe is an invari-
ant, we require that all states entering the loop satisfies q, i.e., P2 ∧ dbe ⇒ dqe,
and q is preserved by the environment, i.e., sta(q, R). Note that different states
may terminate the loop after executing different number of steps. However, the
invariant I holds on the whole state distribution at each layer, which means
conditional distribution of terminating states in each layer, which satifies Q,
may not satifies I. To ensure that Q will not be invalidate by the environ-
ment, it is required that Q is stable under the interference from the environment
without the assumption that the environment preserves I. That’s why we need
Sta(Q,R, true). Sta(P2, R, true) is required due to the same reason. What’s
more, we need closed(Q) to conclude that the terminating state distribution
satifies Q from the fact that states terminating with any number of steps satifies
Q.

Note that in the (while-nst) rule, we use a new kind of judgmentR,G, I `nst
{P}C{Q}. Here “NST” is short for “non-simultaneous termination”. Roughly it
means, for any state distribution µ satisfying P , the executions of C starting
from a state in the support of µ can (probabilistically) terminate within differ-
ent numbers of steps, and we keep all the probabilistic states upon termination
in the same distribution (i.e. we do not split). This judgment is introduced for
characterizing the executions of while-loops in which we do not split in all
rounds.

Figure 24 shows executions of the different rounds of the loop. In the first few
rounds, we always split (see Fig. 24a), so that the execution of the loop body C
starting from P1 terminates at separate state distributions satisfying P1 and P2

respectively. In this case, we verify C with R,G1, I ` {P1}C{P1 ∨P2}. For later
rounds, we do not split (see Fig. 24b), so the final state distribution when the
loop terminates is a mixture of µ2 (corresponding to termination in one round),
µ12 (corresponding to termination in two rounds), and so on. That’s why in
the (while-nst) rule we conclude with the NST judgment for the while-loop.
Moreover we allow each of the later rounds to non-simultaneously terminate, so
we verify the NST judgment R,G2, I2 `nst {P2 ∧ dbe}C{P2}.

We provide a set of rules for the NST judgment. Notably, the (seq-nst) rule
for sequential composition of the NST judgments is as below:

R ∨G2, G1, I `nst {P}C1{M} R,G2, true `nst {M}C2{Q}
∀x ∈ fv(I). G2 ⇒ Inv(x) Nosplit(C2) closed(Q) scl(M)

R,G1 ∨G2, I `nst {P}C1;C2{Q}
(seq-nst)

Since the proof of C1 uses the NST judgment, C1 may have multiple execution
traces that terminate in different numbers of steps (like the loop in Fig. 24b).
Consequently, in the execution of C1;C2, different statements may be executed
“at the same time”. Therefore we encounter the same problem as in Sec. 3.5.
However, we can borrow the ideas of the (while-nst) rule and conservatively

require that the execution of C2 neither modifies the free variables in the invari-
ant I nor splits the state distributions into smaller ones. The first requirement is
formulated as the premise ∀x ∈ fv(I). G2 ⇒ Inv(x). The second requirement is
formulated as Nosplit(C2), which means that C2 contains no split commands.
Note that C1 is verified under the rely condition R ∨G2, because the execution
of C2 may still influence the behaviors of C1 by modifying other variables used in
C1. What’s more, we require closed(Q) to conclude that the terminating state
distribution satifies Q from the fact that states terminating with any number
of steps satifies Q. Moreover, the execution of C1 terminates within different
number of steps. To use the post-condition M as the pre-condition of C2, we
need M to be semi-classical.

Although the resulting (seq-nst) rule looks very restrictive, we expect that,
for most examples, we can properly split at all rounds of the loops and verify
them using the (while) and (seq) rules. The (seq-nst) rule is supposed to
be used only for advanced examples, where the thread’s code is in the form of
while (b) do C;C2 and we split in the first few rounds of the loop only.

The full version of the extended logic rules are given in Fig. 25, Fig. 26
and Fig. 27. We use R,G, I `st {P}C{Q} to denote the judgement R,G, I `
{P}C{Q} in Sec. 5.2 to highlight its difference from the judgement R,G, I `nst
{P}C{Q}, where “ST” is short for “simultaneous termination” and “NST” is short
for “non-simultaneous termination”.

The full version of whole-program rules is given in Fig. 25. The (removes-
plit) rule and the (lazycoin) rule are the same as that in Fig. 16. The (par)
rule is almost the same as the one in Fig. 16 except that we only need to
prove Ri, Gi, I `nst {Pi}C{Qi} for every thread instead of proving Ri, Gi, I `st
{Pi}C{Qi} for the need of supporting more advanced examples in Sec. G. In ad-
dition, we provide the standard consequence rule (p-csq). The (bigconj) and
(bigdisj) rule are simple generalizations of the standard conjunction rule and
disjunction rule in hoare logic.

P ⇒ P1 `a {P1}C{Q1} Q1 ⇒ Q

`a {P}C{Q}
(p-csq)

`a {P1}C{Q1} . . . `a {Pn}C{Qn}
`a {P1 ∧ · · · ∧ Pn}C{Q1 ∧ · · · ∧Qn}

(bigconj)

`a {P1}C{Q1} . . . `a {Pn}C{Qn}
`a {P1 ∨ · · · ∨ Pn}C{Q1 ∨ · · · ∨Qn}

(bigdisj)

`a {P}C{Q} closed(Q)

`a {P}RemoveSplit(C){Q}
(removesplit)

`a {P}lazycoin(C){Q}
`a {P}C{Q}

(lazycoin)

∀i, j. i 6= j =⇒ Gj ⇒ Ri ∀i. Ri, Gi, I `nst {Pi}Ci{Qi}
P ⇒ I ∧ P1 ∧ · · · ∧ Pn I ∧Q1 ∧ · · · ∧Qn ⇒ Q lclosed({I,Q1, . . . , Qn})

`a {P}C1 ‖ · · · ‖ Cn{Q}
(par)

Fig. 25: Whole Program Rules: Full Version

The full version of our thread-local rules is given in Fig. 26. The � symbol
is used in many thread-local rules. It can be instantiated to st or nst in those
rules.

The (st-nst) rule allows us to derive a `nst judgement by deriving its `st
counterpart. The rules for deriving `st judgements are easier to use than the rules
for deriving `nst judgements. If the executions of C starting from all initial states
indeed terminate after the same numbers of steps, we can prove R,G, I `nst
{P}C{Q} using the (st-nst) rule and the rules for deriving `st judgements.

The disjunction rule (disj) and the conjunction rule (conj) are standard.
The (exist) rule and the (forall) rule introduce existential quantification
and universal quantification over pre/post-conditions, respectively, as long as
the quantified variable is not free in R,G, I and cannot be modified by C. The
consequence rule (csq) allows adaptions of different parts of the judgement.

In the (skip) rule, the postcondition is the same as the precondition for the
skip statement does not modify any variable. The guarantee condition is Id due
to the same reason. In addtion, the pre/post-condition Q is required to be stable
under the interference from the environment (specified using R and I), which
ensures that the environment does not invalidate Q.

The (atom) rule and the (atom-split) rule are the same as that in Fig. 16.
The (seq-st) rule is generalized from the (seq) rule in Fig. 16. If � is instanti-
ated to st, it is the same as the (seq) rule. The (seq-st) rule also works when
� is instantiated to nst for we only require that the execution of C1 terminate
simultaneously on different states. Similarly, the (cond) rule also works when
� is instantiated to nst. The (while-st) rule is the same as the one in Fig. 16.

The following definition gives the condition when a split command sp is
disabled by an assertion Q, which is used in the (while-nst) rule.

Definition E.1. A split instruction split(b1, . . . , bk) is disabled by an assertion
Q, i.e.,
disablesplit(Q, split(b1, . . . , bk)) holds if and only if there exists i such that
Q⇒ dbie.

Definition E.2. disablesplit(Q,C) holds if and only if every split instruction
in C is disabled by Q.

The sequential rules are given in Fig. 27. The judgement for sequential rules
is in the form of G `sq {P}C{Q}. Note that the guarantee G does not specify the
state transition of every single step of C. Instead it specifies the state transitions
from initial states to the corresponding final states at the end of C.

For the probabilistic choice 〈C1〉⊕p 〈C2〉, the (sq-pch) rule asks one to verify
C1 and C2 separately and mix their postconditions Q1 and Q2 according to the
probability of the coin flip. The (sq-cond) rule takes a similar form: one only
needs to verify the then- and else-branches separately.

The (sq-seq) rule is similar to the standard sequential composition rule. Note
that the intermediate assertion M may specify a state distribution consisting of
states at different layers. The guarantee condition of C1;C2 is the composition
of the guarantee condition of C1 and the guarantee condition of C2 for the

R,G, I `st {P}C{Q}
R,G, I `nst {P}C{Q}

(st-nst)

R,G, I `� {P1}C{Q1}
R,G, I `� {P2}C{Q2}

R,G, I `� {P1 ∨ P2}C{Q1 ∨Q2}
(disj)

R,G, I `� {P1}C{Q1}
R,G, I `� {P2}C{Q2}

R,G, I `� {P1 ∧ P2}C{Q1 ∧Q2}
(conj)

X /∈ fv(R,G, I) ∪ wv(C)
R,G, I `� {P}C{Q}

R,G, I `� {∃X.P}C{∃X.Q}
(exist)

X /∈ fv(R,G, I) ∪ wv(C)
R,G, I `� {P}C{Q}

R,G, I `� {∀X.P}C{∀X.Q}
(forall)

P ⇒ P1 R⇒ R1 G1 ⇒ G Q1 ⇒ Q R1, G1, I `� {P1}C{Q1}
R,G, I `� {P}C{Q}

(csq)

Sta(Q,R, I)

R, Id, I `st {Q}skip{Q}
(skip)

Sta({P,Q}, R, I) G `sq {I ∧ P}C{I ∧Q}
R,G, I `st {P}〈C〉{Q}

(atom)

G `sq {I ∧ P}C{(I ∧Q ∧ db1e)⊕ · · · ⊕ (I ∧Q ∧ dbke)}
Sta({P,Q ∧ (db1e ∨ · · · ∨ dbke)}, R, I)

R,G, I ` {P}〈C〉 split(b1, . . . , bk){(Q ∧ db1e) ∨ · · · ∨ (Q ∧ dbke)}
(atom-split)

R,G, I `st {P}C1{M} R,G, I `� {M}C2{Q}
R,G, I `� {P}C1;C2{Q}

(seq-st)

R ∨G2, G1, I `nst {P}C1{M} R,G2, true `nst {M}C2{Q}
∀x ∈ fv(I). G2 ⇒ Inv(x) Nosplit(C2) closed(Q) scl(M)

R,G1 ∨G2, I `nst {P}C1;C2{Q}
(seq-nst)

Sta(P1 ∨ P2, R, I) P1 ⇒ dbe P2 ⇒ d¬be
R,G, I `� {P1}C1{Q} R,G, I `� {P2}C2{Q}
R,G, I `� {P1 ∨ P2}if (b) then C1 else C2{Q}

(cond)

Sta({P1∨P2, Q}, R, I) P1 ⇒ dbe P2 ⇒ d¬be ∧Q R,G, I `st {P1}C{P1∨P2}
R,G, I `st {P1 ∨ P2}while (b) do C{Q}

(while-st)

Sta(P1 ∨ P2, R, I) P1 ⇒ dbe R,G1, I `st {P1}C{P1 ∨ P2} P2 ∧ d¬be ⇒ Q
P2 ∧ dbe ⇒ dqe R,G2, dqe `nst {P2 ∧ dbe}C{P2} ∀x ∈ fv(I). G2 ⇒ Inv(x)
disablesplit(dqe, C) sta(q, R) Sta({P2, Q}, R, true) closed(Q) scl(P2)

R,G1 ∨G2, I `nst {P1 ∨ P2}while (b) do C{Q}
(while-nst)

Fig. 26: Thread-local Rules: Full Version

G `sq {P1}C{Q1}
G `sq {P2}C{Q2}

G `sq {P1 ∨ P2}C{Q1 ∨Q2}
(sq-disj)

G `sq {P1}C{Q1}
G `sq {P2}C{Q2}

G `sq {P1 ∧ P2}C{Q1 ∧Q2}
(sq-conj)

X /∈ fv(G) ∪ wv(C)
G `sq {P}C{Q}

G `sq {∃X.P}C{∃X.Q}
(sq-exist)

X /∈ fv(G) ∪ wv(C)
G `sq {P}C{Q}

`sq {∀X.P}C{∀X.Q}
(sq-forall)

P ⇒ P ′ G′ `sq {P ′}C{Q′} Q′ ⇒ Q G′ ⇒ G

G `sq {P}C{Q}
(sq-csq)

G `sq {P1}C{Q1}
G `sq {P2}C{Q2}

G `sq {P1 ⊕p P2}C{Q1 ⊕p Q2}
(sq-oplus)

G `sq {P}C{Q}
G `sq {

⊕
P}C{

⊕
Q}

(sq-bigoplus)

Id `sq {Q}skip{Q}
(sq-skip)

G1 `sq {P}C1{M} G2 `sq {M}C2{Q}
G1 ◦G2 `sq {P}C1;C2{Q}

(sq-seq)

P ⇒ Q[e/x] ∀µ, σ. µ |= P ∧ σ ∈ supp(µ) =⇒ (σ, σ{x; JeKσ}) |= G

G `sq {P}x := e{Q}
(sq-asgn)

G `sq {P1 ∧ dbe}C1{Q1} G `sq {P2 ∧ d¬be}C2{Q2}
G `sq {(P1 ∧ dbe)⊕p (P2 ∧ d¬be)}if (b) then C1 else C2{Q1 ⊕p Q2}

(sq-cond)

G `sq {P}C{Q}
G `sq {P}〈C〉{Q}

(sq-atom)
G `sq {P}C1{Q1} G `sq {P}C2{Q2}
G `sq {P}〈C1〉 ⊕p 〈C2〉{Q1 ⊕p Q2}

(sq-pchoice)

Fig. 27: Sequential Rules: Full Version

guarantee condition in the sequential judgement specifies the transition from
the initial state to the terminating state. For example, we can prove

(x = y n x = y) `sq {dx = ye}x := x+ 1; y := y + 1{dx = ye}

using the (sq-seq) rule by instantiating G1 with (x = y n x = y + 1) and G2

with (x = y + 1 n x = y).
The (sq-oplus) rule and the (sq-bigoplus) rule are useful for local reason-

ing and reflect the additivity of the semantics. Using the (sq-oplus) rule, we can
logically split the initial state distribution into two parts, reasoning about the
execution of C on the two parts separately, and mix the two terminating state
distributions back according to their weight in the initial state distribution. The
(sq-bigoplus) rule is similar but allows us to logically split the initial state dis-
tribution into infinite ones. The other sequential rules are direct generalizations
of the classical Hoare logic rules to the probabilistic setting.

F Judgement Semantics

The semantics of the top-level judgement `A {P}C{Q} has already been defined
in Definition 4.4 based on the abstract operational semantics.

Before giving the definition of the thread-local judgement, we define thread-
local transitions in Fig. 28. As in the abstract operational semantics, we model
the execution of a thread under the interference from the environment as tran-
sitions between the sub-distributions η of thread configurations (C, σ). Thread-
local transitions include transitions made by the thread itself and transitions
made by the environment.

Let θ be a set of state transitions (θ ∈ P(State× State)). The transition made
by the thread itself is represented as η ↪→ (θ, η′′), which is done in two steps.
First we make the transition η ; (θ, η′) based on the concrete semantics and
collect all state transitions in this step as θ, without considering splits. Then the
splits in nextsplit(η) are executed just like in the abstract operational semantics.
Here nextsplit(η) represents the set consisting of the next split statements to be
executed in the thread configurations in supp(η).

The transition made by the environment is represented as η
R
�
I
η′′, which

is also done in two steps. The first step is represented as η R7→ η′. We collect
all transitions between thread configurations made by the environment as ψ.
Note that the environment never modifies the thread’s code and is assumed
to make state transitions permitted in the rely condition R. The second step
models the execution of split statements from the environment. No matter what
split statement is executed by the environment, there always exists a b such that
η′|b = η′′. If the environment does not execute any split statement, then η′′ must
be equal to η′ and we can safely let b be true. In addition, the environment is
assumed to perserve the invariant, i.e., η′(State) |= I.

η ∈ DStmt×State η|b
def
= η|λ(C,σ).σ|=b

init(C, µ) def
= δ(C)⊗ µ nextsplit(η) def

= {nextsplit(C) | (C, σ) ∈ supp(η)}
ψ ∈ P((Stmt× State)× (Stmt× State))

η
R7→ η′ iff ∃ψ. dom(ψ) = supp(η) ∧ range(ψ) = supp(η′) ∧

(∀((C, σ), (C′, σ′)) ∈ ψ. C′ = C ∧ (σ, σ′) |= R)

η
R
�
I
η′′ iff ∃η′, b. η R7→ η′ ∧ η′|b = η′′ ∧ η′′(State) |= I

η ; (θ, η′) iff η′ = λ(C′, σ′).
∑
C,σ{p · η(C, σ) | (C, σ)

p−→ (C′, σ′)} ∧
θ = {(σ, σ′) | ∃C,C′. η(C, σ) > 0 ∧ (C, σ)

p−→ (C′, σ′) ∧ p > 0}

η ; (θ, η′) nextsplit(η) = {split(b1, . . . , bk)} η′|bi = η′′

η ↪→ (θ, η′′)

η ; η′ #nextsplit(η) > 1

η ↪→ (θ, η′)

Fig. 28: Thread-local Transitions

The following definition describes that a thread behaves appropriately within
n steps under the interference from the environment.

Definition F.1. (η,R, I) Z=⇒n
st (G,Q) is inductively defined as follows:

(η,R, I) Z=⇒0
st (G,Q) always holds; (η,R, I) Z=⇒n+1

st (G,Q) if and only if the
following are true:

1. η(code)(skip) = 0 or η(code)(skip) = 1.
2. if η(code)(skip) > 0, then η(State) |= Q;
3. η(State) |= I;

4. for all η′, if η
R
�
I
η′, then (η′, R, I) Z=⇒n

st (G,Q);

5. for all θ, η′, if η ↪→ (θ, η′), then θ ⊆ JGK, η′(State) |= I and (η′, R, I) Z=⇒n
st

(G,Q).

(η,R, I) Z=⇒n
st (G,Q) means, from an initial distribution η, if the thread in-

terfere with the environment within n steps where each environment step satifies
R and preserves I, then each step done by the thread itself satifies G and pre-
serves I. What’s more, throughout this process, either all thread configurations
in the support of the distribution is terminated or none of them is terminated,
and if all thread configurations are terminated, then the state distribution satifies
Q.

The semantics of the thread-local judgement R,G, I `st {P}C{Q} is defined
below. Given the initial state distribution µ, the initial distribution of thread
configurations is defined as init(C, µ) (see Fig. 28).

Definition F.2. R,G, I |=st {P}C{Q} iff for all µ, if µ |= I ∧ P , then
(init(C, µ), R, I) Z=⇒n

st (G,Q) for all n.

R,G, I |=st {P}C{Q} means, from an inital state distribution satisfying I
and P , the execution of C under the interference from the environment behaves
appropriately within any finite number of steps.

Definition F.3. (η,R, I) Z=⇒n
nst (G,Q) is inductively defined as follows:

(η,R, I) Z=⇒0
nst (G,Q) always holds; (η,R, I) Z=⇒n+1

nst (G,Q) if and only if the
following are true:

1. if η(code)(skip) > 0, then η|skip
(State) |= Q;

2. η(State) |= I;

3. for all η′, if η
R
�
I
η′, then (η′, R, I) Z=⇒n

nst (G,Q);

4. for all θ, η′, if η ↪→ (θ, η′), then θ ⊆ JGK, η′(State) |= I and (η′, R, I) Z=⇒n
nst

(G,Q).

Here η|skip
def
= η|λ(C,σ).C=skip is the terminated part of η.

The main difference between (η,R, I) Z=⇒n
nst (G,Q) and (η,R, I) Z=⇒n

st
(G,Q) is that, for nst judgement, condition (1) it does not require η to be termi-
nated or not terminated with probability 1. This way it allows “non-simultaneous

termination”. To ensure that Q is still meaningful, it requires the terminated por-
tion to satisfy Q.

The semantics of the thread-local judgementR,G, I `nst {P}C{Q} is defined
below.

Definition F.4. R,G, I |=nst {P}C{Q} iff for all µ, if µ |= I ∧ P , then
(init(C, µ), R, I) Z=⇒n

nst (G,Q) for all n.

Before giving the semantics of the `sq judgement, we define JCK as a function
that maps an initial state σ to a sub-distribution of final states. We also lift
the function to the distribution µ of the initial states. The definition of JCK(σ)
and JCK(µ) are similar to JCKϕ(σ) and JCKϕ(µ) except that we don’t need the
scheduler for C is a sequential program.

JCK(σ)
def
= λσ′. lim

→
pσ′ ,where ∀n. (C, σ)

→
pσ′ [n]−−−−→n(skip, σ′)

JCK(µ)
def
= Eσ∼µ{JCK(σ)}

Then we can give the semantics of the sequential judgement G `sq {P}C{Q}
below.

Definition F.5. G |=sq {P}C{Q} iff for all µ, if µ |= P and |JCK(µ)| = 1, then
JCK(µ) |= Q and for all σ ∈ supp(µ) and σ′ ∈ supp(JCK(σ)), (σ, σ′) |= G.

Similar to Definition 4.1, the premise |JCK(µ)| = 1 indicates the execution
of C (with the initial state distribution µ) terminates with the probability 1.
G |=sq {P}C{Q} means, if the execution of C from an initial state distribu-
tion satifying P terminate with the probability 1, then the terminating state
distribution satifies Q, and the transitions from any possible initial state to any
possible terminating state reachable from that initial state satifies G.

G Proofs of More Examples

G.1 Shared 3-Sided Dice

We show the full proof of the shared 3-sided dice in Fig. 29, which we informally
discussed in Sec. 3.5. We split atomically after Roll as before, but slightly revise
the previously defined invariant IDice. This is because we need the invariant to
be lclosed to apply the (par) rule, but IDice = (dx = 0e∨ (dx 6= 0e∧E(x) = 1))

is not. A counterexample is the sequence
→
µ [n] = δ({x; n+1

2 })⊕ 1
n
δ({x; 1

2}).
Each

→
µ [n] in the sequence satisfies IDice, but its limit µ = δ({x; 1

2}) does not.
The main reason for IDice to be not lclosed is that x can be arbitrarily large.

However, it is the formulation of IDice to blame, instead of the shared 3-sided
dice which does enforce an upper bound for x. To see this, observe that each
thread may increase x by setting it to 1, or doubling it when it is positive. The
former trivially ensures x is bounded. The latter can be done at most once by
each thread, thus, x should be bounded by 2n, where n is the number of threads.

Ri, Gi, I ` {dx = 0e}C′i{dx > 0e}
`a {P}C′1 ‖ · · · ‖ C′n{Q}

(par)

`a {P}C1 ‖ · · · ‖ Cn{Q}
(removesplit)

P
def
= dx = 0 ∧ (∀i. ci = 0)e

Q
def
= dx > 0e ∧ E(x) = 1

Ri, Gi, I `

{dx = 0e}
{dx = 0e ∨ dx > 0e}
while (x = 0) do
{dx = 0e}
{dx = 0e ∨ dx > 0 ∧ ci = 0e}
〈Rolli〉 split(x = 0, x 6= 0)
{dx = 0e ∨ dx > 0e}

{dx > 0e}

Ci
def
= while (x = 0) do 〈Rolli〉,

C′i
def
= while (x = 0) do 〈Rolli〉 split(x = 0, x 6= 0)

Rolli
def
= 〈x := 1〉 ⊕ 1

2
(〈 SetFlag(x, ci) ;x := 2x〉 ⊕ 1

3
〈x := x

2
〉)

SetFlag(x, ci)
def
= if (x > 0) then ci := 1

IDice
def
= dx = 0e ∨ (dx > 0e ∧ E(x) = 1)

I
def
= IDice ∧ dx ≤ 2

∑
i cie ∧ (∀i. IsFlag(x, ci))

Ri
def
= ((x = 0n x ≥ 0) ∨ (x > 0n x > 0)) ∧ Inv(ci)

Gi
def
= ((x = 0n x ≥ 0) ∨ (x > 0n x > 0)) ∧ (∀j 6= i.Inv(cj))

IsFlag(x, ci)
def
= dci = 0 ∨ ci = 1e ∧ dx = 0⇒ ci = 0e

Fig. 29: Proof Sketch of Shared 3-sided Dice.

To formulate this observation, we introduce an auxiliary flag ci for each
thread i, to record whether thread i has doubled a positive x. We instrument the
loop body Rolli with an auxiliary statement SetFlag(x, ci) just before x := 2x,
that sets ci when a positive x is doubled by thread i. Meanwhile, we strengthen
IDice into I, as shown in the bottom half of Fig. 29. I additionally requires
dx ≤ 2

∑
i cie and IsFlag(x, ci). The former enforces an upper bound on x, and

the latter enforces the integrity of the values stored in ci. Now we can prove
lclosed(I), as explained in Sec. 5.1.

The rest of the proof is straightforward using our logic rules, sketched in
Fig. 29. The precondition P additionally require ci to be initialized to 0. The
rely and guarantee conditions Ri and Gi simply says x changes only from 0 to
positive, and stays positive thereafter. They additionally require that ci is local
to each thread using Inv(ci) (see Fig. 14 for the definition of Inv).

The loop body 〈Rolli〉 split(x = 0, x 6= 0) is verified by applying the (atom-
split) rule, where Q is instantiated with (dx = 0e ∨ dx > 0e). This requires us
to verify Rolli:

Gi `sq {I ∧ (dx = 0e ∨ dx > 0∧ ci = 0e)}Rolli{(I ∧Q∧ dx = 0e)⊕ (I ∧Q∧ dx 6= 0e)} .

It is equivalent to the following, which simplifies the postcondition and can be
proved by applying the (sq-pch) rule:

Gi `sq {I ∧ (dx = 0e ∨ dx > 0 ∧ ci = 0e)}Rolli{(I ∧ dx = 0e)⊕ (I ∧ dx 6= 0e)} .

G.2 Conciliator

As introduced in Sec. 1, [12] gives a probabilistic-write based conciliator for
probabilistic agreement between n threads, each thread i executing Ci below.

Ci
def
= (while (s = 0) do 〈s := i〉 ⊕p 〈skip〉) ; yi := s

Here s is a shared variable, yi is the local variable for thread i that records its
return value.

We want to prove {ds = 0e}C1 ‖ · · · ‖ Cn{Pr(y1 = · · · = yn) ≥ (1− p)n−1}.
Intuitively the postcondition holds because, when there is exactly one thread
i succeeded in writing to s, all threads will return i. This ideal case happens
with probability no less than (1 − p)n−1 in OA, because (i) for the program to
terminate, at least one thread has updated s, and (ii) after the first update to
s, each of the other n − 1 threads has at most one chance to update s, and
such an update happens with probability no more than 1 − p. Note that this
algorithm does not work in SA, where different threads can be scheduled for
different outcomes of coin flips, making the aforementioned ideal case happens
with probability less than (1− p)n−1.

To formulate the intuition, we introduce a shared auxiliary variable c that
counts how many threads have written to s and insert the auxiliary code c := c+1
which is executed atomically with s := i (see PWritei in Fig. 30). Similar to the
shared 3-sided dice example, we also introduce flag variables di to formalize the
“at most one chance” update to s. When di is set, it means thread i can no longer
update s. We insert the auxiliary code SetFlag(s, di) to set di at the proper time.

The proof is sketched in Fig. 30. At the whole-program level, we apply the
(removesplit) and (lazycoin) rules to wrap the probabilistic choice in an
atomic block, and to instrument split(s = 0, s 6= 0) after the loop body such
that the resulting smaller distributions either enter or exit the loop. Using the
(par) rule, our goal becomes to thread-locally verify C ′′i in Fig. 30. In thread-
local proof, the invariant I says that either s = 0 (and thus c = 0 and each
thread has chance to update s), or s 6= 0 (and thus c > 0) and the probability
of c = 1 has a lower bound (specified by PBound). The rest of the proof follows
directly from our logic rules.

G.3 Multiplayer Level-up Game

We verify the multiplayer level-up game using the instrumented code ĈLvUp =

L̂vUp1 ‖ · · · ‖ L̂vUpn, where the code for thread i is L̂vUpi:

1 ki = 1;
2 while (ki ≤ m ∧ vi = 0) do
3 〈x[ki] := x[ki] + 1; y[ki] := y[ki] + 1; zi[ki] := 1;wi[ki] := 1 〉

⊕p 〈vi := 1; y[ki] := y[ki] + 1;wi[ki] := 1 〉
4 ki := ki + 1;

Ri, Gi, I ` {Pi}C′′i {Qi}
`a {P}C′′1 ‖ · · · ‖ C′′n{Q}

(par)

`a {P}C′1 ‖ · · · ‖ C′n{Q}
(removesplit)

`a {P}C1 ‖ · · · ‖ Cn{Q}
(lazycoin)

P
def
= dc = 0 ∧ s = 0 ∧ (∀i.di = 0)e

Q
def
= Pr(y1 = · · · = yn) ≥ (1− p)n−1

Ri, Gi, I `

{ds = 0e ∨ ds 6= 0e}
while (s = 0) do
{ds = 0e}
{ds = 0e ∨ ds 6= 0 ∧ di = 0e}
skip;
{ds = 0e ∨ ds 6= 0 ∧ di = 0e}
〈PWritei〉 split(s = 0, s 6= 0);
{ds = 0e ∨ ds 6= 0e}

{ds 6= 0e}
〈 SetFlag(s, di) ; yi := s〉
{ddi = 1 ∧ ((c = 1 ∧ yi = s) ∨ (c > 1))e}

Ci
def
= (while (s = 0) do PWritei); 〈 SetFlag(s, di) ; yi := s〉

C′i
def
= (while (s = 0) do (skip; 〈PWritei〉)); 〈 SetFlag(s, di) ; yi := s〉

C′′i
def
= (while (s = 0) do (skip; 〈PWritei〉 split(s = 0, s 6= 0))); 〈 SetFlag(s, di) ; yi := s〉

PWritei
def
= 〈s := i; c := c+ 1;SetFlag(s, di) 〉 ⊕p 〈skip; SetFlag(s, di) 〉

I
def
= ds = 0 ∧ c = 0 ∧ (∀i. di = 0)e ∨ (ds 6= 0 ∧ c > 0e ∧ PBound)

PBound def
= ∃K ≤ n. d(∀i. di = 0 ∨ di = 1) ∧

∑n
i=1 di = Ke ∧Pr(c = 1) ≥ (1− p)K−1

Pi
def
= ds = 0e ∨ ds 6= 0e, Qi

def
= ddi = 1 ∧ ((c = 1 ∧ yi = s) ∨ (c > 1))e

Ri
def
= ((Inv(c) ∧ Inv(s)) ∨ (∃N. c = N n (c = N + 1 ∧ s 6= 0))) ∧ Inv(di) ∧ Inv(yi)

Gi
def
= ((Inv(c) ∧ Inv(s)) ∨ (∃N. c = N n (c = N + 1 ∧ s 6= 0))) ∧ (∀j 6= i.Inv(dj) ∧ Inv(yj))

Fig. 30: Proof Sketch of Conciliator.

Following the intuition in Appendix E, we introduce auxiliary array y[1..m] such
that y[j] records the number of threads that executes line 3 of round j, and
instrument line 3 of LvUpi with auxiliary code y[ki] := y[ki] + 1. We further
introduce auxiliary thread local arrays wi[1..m] and zi[1..m] for the convenience
of local reasoning. Here wi[j] is a flag recording whether thread i has executed
line 3 of round j, and zi[j] is a flag recording whether thread i has leveled up in
round j (execute the left branch with probability p). Auxiliary code for setting
wi and zi are also appended in line 3.

The proof sketch is at the top of Fig. 31. As in Sec. E, we prove post conditions
Qj for each round j by applying (p-csq) and (bigconj) rules. We use the nst
judgements for thread local proofs, and insert split(ki < j∧vi = 0, ki < j∧vi =

1, ki ≥ j) at line 3 of L̂vUpi. We denote the resulting thread local code by C ′i(j).
In addition to E(x[j]) = p ·E(y[j]), the invariant Ij further require that the flags
zi[j] and wi[j] are consistent with x[j] and y[j], i.e., dx[j] =

∑
i zi[j] ∧ y[j] =∑

i wi[j]e.

The rest of the proof is straightforward. The seemingly complicated interme-
diate assertions such as Tji and Mji are mostly talking about the data consis-
tencies of the auxiliary variables.

G.4 Group Election

Group election [2] is a probabilistic algorithm for consensus on leadership. It
selects a relatively small group of leaders rapidly against oblivious adversaries.

A simplified version of group election CElct consists of n threads, each thread
runs the following code Elcti:

1 ki = 1;
2 while (ki ≤ m ∧ vi = 0) do
3 〈s[ki] := 1〉 ⊕p 〈vi := s[ki]〉;
4 ki := ki + 1;
5 yi := 1− vi;

Similar to CLvUp, the election has m rounds. In the shared array s[1..m], each
s[j] records whether there is a winner in round j. In each round j, the threads
try to win the round and progress to the next round, by writing 1 to s[j] with
probability p. Different from CLvUp, if thread i failed in round j, it does not exit
the election immediately, but checks whether someone else has won by reading
s[j] into vi. If so (vi = 1), thread i terminates and lose the election; if not
(vi = 0), thread i automatically progress to the next round. In the end, a thread
with vi = 0 becomes a leader and sets its local variable yi to 1, while a thread
with vi = 1 becomes a follower and set its local variable yi to 0.

We want to verify that CElct satisfies the postcondition E(
∑
i yi) ≤ fm(n),

where f = λx.p ·x+ 1
p . To see why this holds, we first observe an invariant that,

for any round j,

E(#threads finish line 3 with vi = 0) ≤ f (E(#threads execute line 3)).

This follows by observing that (i) in line 3, a thread has probability p to win,
and (ii) calculating the number of thread that execute the right branch in line 3
and return vi = 0, is the same as calculating the time before success of a finite
number of independent Bernoulli trial with success probability p, which has an
expectation no larger than 1

p .
The proof is sketched in Fig. 32. We introduce two thread local auxiliary

arrays ci[1..m] and wi[1..m] to formalize the invariant. For each thread i and
round j, ci[j] records whether thread i has executed line 3 in round j, wi[j]
records whether thread i finish round j with vi = 0. The previously introduced
intuition is formalized in a more precise way:

E(
∑n
i=1 wi[j]) = E(p ·

∑n
i=1 ci[j] + 1−p−(1−p)1+

∑n
i=1 ci[j]

p).

The above assertion is the main part of Sj , which is the main part the invariant
Ij = Sj | s[1], . . . , s[j − 1]. Here P | x1, . . . , xn

def
=
⊕

(∃X1, . . . , Xn. d∀i. xi =
Xie ∧ P), it implies P is independent of x1, . . . , xn.

Ri, Gi, Ij `nst {Pi}C′i(j){Qji}
`a {P}C′1(j) ‖ · · · ‖ C′n(j){Qj}

(par)

`a {P}ĈLvUp{Qj}
(removesplit)

`a {P ∧ · · · ∧ P}ĈLvUp{Q1 ∧ · · · ∧Qm}
(bigconj)

`a {P}ĈLvUp{Q}
(p-csq)

Ri, Gi, Ij `nst

{(∃K ≤ j. dki = K ∧ vi = 0 ∧ Tjie) ∨ d(ki > j ∨ vi = 1) ∧ Tjie}
while (ki ≤ m ∧ vi = 0) do

{∃K ≤ j. dki = K ∧ vi = 0 ∧ Tjie}
{(dki = j ∧ vi = 0 ∧ Tjie) ∨ (∃K < j. dki = K ∧ vi = 0 ∧ Tjie)}
〈(x[ki] := x[ki] + 1; y[ki] := y[ki] + 1; zi[ki] := 1;wi[ki] := 1)〉
⊕p
〈vi := 1; y[ki] := y[ki] + 1;wi[ki] := 1 〉
split(ki < j ∧ vi = 0, ki < j ∧ vi = 1, ki ≥ j)
{dki = j ∧Mjie ∨ (∃K < j. dki = K ∧ vi = 0 ∧Mjie)∨

(∃K < j. d(ki = K ∧ vi = 1) ∧Mjie)}
ki := ki + 1
{(∃K ≤ j. dki = K ∧ vi = 0 ∧ Tjie) ∨ d(ki > j ∨ vi = 1) ∧ Tjie}

{dTji ∧ dki > m ∨ vi 6= 0ee}
{dwi[1] = 1 ∧ (j < m⇒ zi[j] = wi[j + 1])e}

P
def
= d(∀i. ki = 1 ∧ vi = 0) ∧ (∀j. x[j] = 0 ∧ y[j] = 0)e

Q
def
= ∀j ≤ m. E(x[j]) = n · pj

Qj
def
= E(x[j]) = p · E(y[j]) ∧ dy[1] = n ∧ (j < m⇒ x[j] = y[j + 1])e

Ij
def
= E(x[j]) = p · E(y[j]) ∧ dx[j] =

∑
i zi[j] ∧ y[j] =

∑
i wi[j]e

Pi
def
= (∃K ≤ j. dki = K ∧ vi = 0 ∧ Tjie) ∨ d(ki > j ∨ vi = 1) ∧ Tjie

Qji
def
= dwi[1] = 1 ∧ (j < m⇒ zi[j] = wi[j + 1])e

Li
def
= (ki = 1 ∧ vi = 0) ∨ wi[1] = 1

Tji
def
= L(i) ∧

(ki ≤ j ∧ zi[j] = 0 ∧ wi[j + 1] = 0) ∨
(ki = j + 1 ∧ wi[j + 1] = 0 ∧

((zi[j] = 1 ∧ vi = 0) ∨ (zi[j] = 0 ∧ vi = 1))) ∨
(ki > j + 1 ∧ zi[j] = 1 ∧ wi[j + 1] = 1))

Mji

def
= L(i) ∧

(ki < j ∧ zi[j] = 0 ∧ wi[j + 1] = 0) ∨
(ki = j ∧ wi[j + 1] = 0 ∧

((zi[j] = 1 ∧ vi = 0) ∨ (zi[j] = 0 ∧ vi = 1))) ∨
(ki ≥ j + 1 ∧ zi[j] = 1 ∧ wi[j + 1] = 1))

Ri

def
= Inv(ki) ∧ Inv(vi) ∧ (∀j. Inv(zi[j]) ∧ Inv(wi[j]))

Gi
def
=

∧
i′ 6=iRi′

Fig. 31: Proof Sketch of Multiplayer Level-up Game

∀i ≤ n. Ri, Gi, Ij `nst {P}C′i(j){Qji}
`a {P}C′1(j) ‖ · · · ‖ C′n(j){Qj}

(par)

` {P}C1 ‖ · · · ‖ Cn{Qj}
(removesplit)

` {P ∧ · · · ∧ P}C1 ‖ · · · ‖ Cn{Q1 ∧ · · · ∧Qm}
(bigconj)

` {P}C1 ‖ · · · ‖ Cn{E(
∑n
i=1 yi) ≤ f

m(n)}
(p-csq)

Ri, Gi, Ij `nst

{P}
{(∃K ≤ j. dki = K ∧ vi = 0 ∧ Tjie) ∨ d(ki > j ∨ vi = 1) ∧ Tjie}
while (ki ≤ m ∧ vi = 0) do
{∃K ≤ j. dki = K ∧ vi = 0 ∧ Tjie}
{(dki = j ∧ vi = 0 ∧ Tjie) ∨ (∃K < j. dki = K ∧ vi = 0 ∧ Tjie)}
〈(s[ki] := 1; ci[ki] := 1;wi[ki] := 1)⊕p
(vi := s[ki]; ci[ki] := 1; if (vi = 0) then wi[ki] := 1)〉
split(ki < j ∧ vi = 0, ki < j ∧ vi 6= 0, ki ≥ j);
{dki = j ∧Mjie ∨ (∃K < j. dki = K ∧ vi = 0 ∧Mjie)∨

(∃K < j. d(ki = K ∧ vi = 1) ∧Mjie)}
ki := ki + 1
{(∃K ≤ j. dki = K ∧ vi = 0 ∧ Tjie) ∨ d(ki > j ∨ vi = 1) ∧ Tjie}

{dTji ∧ dki > m ∨ vi 6= 0ee}
{d((wi[m] = 1 ∧ vi = 0) ∨ (wi[m] = 0 ∧ vi = 1)) ∧

ci[1] = 1 ∧ (j < m⇒ wi[j] = ci[j + 1])e}
〈yi := 1− vi〉
{d((wi[m] = 1 ∧ yi = 1) ∨ (wi[m] = 0 ∧ yi = 0)) ∧

ci[1] = 1 ∧ (j < m⇒ wi[j] = ci[j + 1])e}
{dyi = wi[m] ∧ ci[1] = 1 ∧ (j < m⇒ wi[j] = ci[j + 1])e}

Qj
def
= E(

∑n
i=1 wi[j]) ≤ p · E(

∑n
i=1 ci[j]) +

1
p
∧

d∀i. yi = wi[m] ∧ ci[1] = 1 ∧ (j < m⇒ wi[j] = ci[j + 1])e
Qji

def
= dyi = wi[m] ∧ ci[1] = 1 ∧ (j < m⇒ wi[j] = ci[j + 1])e

Sj
def
= E(

∑n
i=1 wi[j]) = E(p ·

∑n
i=1 ci[j] +

1−p−(1−p)1+
∑n
i=1 ci[j]

p
) ∧

Pr(s[j] = 0) = E((1− p)
∑n
i=1 ci[j])

Ij
def
= Sj | s[1], . . . , s[j − 1]

P
def
= d(∀i. ki = 1 ∧ vi = 0) ∧ (∀j. s[j] = 0 ∧ y[j] = 0) ∧ (∀i, j. wi[j] = 0 ∧ ci[j] = 0)e

Li
def
= ((wi[m] = 1 ∧ vi = 0) ∨ (wi[m] = 0 ∧ (ki ≤ m ∨ vi = 1))) ∧

((ki = 1 ∧ vi = 0) ∨ ci[1] = 1)

Tji
def
= Li ∧

(ki ≤ j ∧ wi[j] = 0 ∧ ci[j + 1] = 0) ∨
(ki = j + 1 ∧ ci[j + 1] = 0 ∧

((wi[j] = 1 ∧ vi = 0) ∨ (wi[j] = 0 ∧ vi = 1))) ∨
(ki > j + 1 ∧ wi[j] = 1 ∧ ci[j + 1] = 1)

Hi

def
= ((wi[m] = 1 ∧ vi = 0) ∨ (wi[m] = 0 ∧ (ki < m ∨ (ki = m ∧ vi = 1)))) ∧

((ki = 1 ∧ vi = 0) ∨ ci[1] = 1)

Mji
def
= H(i) ∧

(ki < j ∧ wi[j] = 0 ∧ ci[j + 1] = 0) ∨
(ki = j ∧ ci[j + 1] = 0 ∧

((wi[j] = 1 ∧ vi = 0) ∨ (wi[j] = 0 ∧ vi = 1))) ∨
(ki ≥ j + 1 ∧ wi[j] = 1 ∧ ci[j + 1] = 1)

Ri

def
= Inv(ki) ∧ Inv(vi) ∧ Inv(yi) ∧ (∀j. Inv(ci[j]) ∧ Inv(wi[j]))

Gi
def
=

∧
j 6=iRi

Fig. 32: Proof Sketch of Group Election

H Proof of Soundness

H.1 Preliminary Lemmas

Lemma 1. For all set A and µ ∈ DA, E1, . . . , Ek ∈ A → Prop, if ∀i, j. i 6=
j =⇒ ¬(Ei(a) ∧ Ej(a)) for all a ∈ A, then Pra∈µ[E1(a) ∨ · · · ∨ Ek(a)] =∑k
i=1 Pra∈µ[Ei(a)].

Proof. For all set A and µ ∈ DA, E1, . . . , Ek ∈ A → Prop such that ∀i, j. i 6=
j =⇒ ¬(Ei(a) ∧ Ej(a)) for all a ∈ A, we have Pra∈µ[E1(a) ∨ · · · ∨ Ek(a)] =∑
a{µ(a) | E1(a) ∨ · · · ∨ Ek(a)} =

∑k
i=1 Pra∈µ[Ei(a)].

Lemma 2. For all set A,B and µ ∈ DA×B, E ∈ A→ Prop, Pr(a,b)∼µ[E(a)] =
Pra∼µ(A) [E(a)].

Proof. For all set A,B and µ ∈ DA×B , E ∈ A→ Prop,

Pr(a,b)∼µ[E(a)]
=
∑
a,b{µ(a, b) | E(a)}

=
∑
a{
∑
b µ(a, b) | E(a)}

=
∑
a{µ(A)(a) | E(a)}

= Pra∼µ(A) [E(a)].

Lemma 3. For all set A,B and µ ∈ DA×B, E ∈ B → Prop, Pr(a,b)∼µ[E(b)] =
Prb∼µ(B) [E(b)].

Proof. For all set A,B and µ ∈ DA×B , E ∈ B → Prop,

Pr(a,b)∼µ[E(b)]
=
∑
a,b{µ(a, b) | E(b)}

=
∑
b{
∑
a µ(a, b) | E(b)}

=
∑
b{µ(B)(b) | E(b)}

= Prb∼µ(B) [E(b)].

Lemma 4. For all set A and µ ∈ DA, E ∈ A→ Prop, if Pra∼µ[E(a)] = 1, then
µ|E = µ.

Proof. For all set A and µ ∈ DA, E ∈ A → Prop such that Pra∼µ[E(a)] = 1,
we have

∑
a{a | E(a)} = Pra∼µ[E(a)] = 1 = |µ| =

∑
a µ(a) =

∑
a{a | E(a)} +∑

a{a | ¬E(a)}, thus
∑
a{a | ¬E(a)} = 0, so µ(a) = 0 for all a such that E(a)

does not hold. Therefore,

µ|E = λa.

{
µ(a)

Pra∼µE(a) , if E(a)

0, otherwise
= λa.

{
µ(a), if E(a)

µ(a), otherwise
= µ.

Lemma 5. For all set A and µ ∈ DA, µ|λa∈A.true = µ.

Proof. For all set A and µ ∈ DA, from Pra∼µ[true] =
∑
a µ(a) = |µ| = 1 by

Lem. 4 we know µ|λa∈A.true = µ.

Lemma 6. Let A be any set,
→
µ be any infinite sequence of sub-distributions

over A, and µ be any sub-distribution over A, if lim
→
µ = µ, then for all a ∈ A,

lim
n→∞

→
µ [n](a) = µ(a).

Proof. From lim
→
µ = µ we know lim

n→∞

∑
a′∈A|

→
µ [n](a′)− µ(a′)| = 0. For all a, to

prove lim
n→∞

→
µ [n](a) = µ(a), we need to prove for all ε > 0, there exists N such

that |→µ [n](a)−µ(a)| < ε for all n ≥ N . For all ε > 0, from lim
n→∞

∑
a′∈A|

→
µ [n](a′)−

µ(a′)| = 0 we know there exists N such that for all n ≥ N ,
∑
a′∈A|

→
µ [n](a′) −

µ(a′)| < ε, thus |→µ [n](a)− µ(a)| < ε for all n ≥ N .

Definition H.1. LetA be any set,
→
µ be any infinite sequence of sub-distributions

over A, and f ∈ A→ DB , we define f(
→
µ)

def
= λn. f(

→
µ [n]).

Lemma 7. Let A,B be any set,
→
µ be any infinite sequence of sub-distributions

over A × B and µ be any sub-distribution over A × B, if lim
→
µ = µ, then

lim
→
µ

(A)
= µ(A).

Proof. From lim
→
µ = µ we know lim

n→∞

∑
a∈A,b∈B |

→
µ [n](a, b)− µ(a, b)| = 0, thus

lim
n→∞

∑
a∈A|

→
µ [n]

(A)
(a)− µ(A)(a)|

= lim
n→∞

∑
a∈A|

∑
b∈B

→
µ [n](a, b)−

∑
b∈B µ(a, b)|

= lim
n→∞

∑
a∈A|

∑
b∈B(

→
µ [n](a, b)− µ(a, b))|

≤ lim
n→∞

∑
a∈A

∑
b∈B |

→
µ [n](a, b)− µ(a, b)|

= 0.

From
∑
a∈A|

→
µ [n]

(A)
(a)−µ(A)(a)| ≥ 0 for all n we know lim

n→∞

∑
a∈A|

→
µ [n]

(A)
(a)−

µ(A)(a)| ≥ 0, thus lim
n→∞

∑
a∈A|

→
µ [n]

(A)
(a) − µ(A)(a)| = 0. Therefore lim

→
µ

(A)
=

µ(A).

Lemma 8. Let A,B be any set,
→
µ be any infinite sequence of sub-distributions

over A × B and µ be any sub-distribution over A × B, if lim
→
µ = µ, then

lim
→
µ

(B)
= µ(B).

Proof. From lim
→
µ = µ we know lim

n→∞

∑
a∈A,b∈B |

→
µ [n](a, b)− µ(a, b)| = 0, thus

lim
n→∞

∑
b∈B |

→
µ [n]

(B)
(b)− µ(B)(b)|

= lim
n→∞

∑
b∈B |

∑
a∈A

→
µ [n](a, b)−

∑
a∈A µ(a, b)|

= lim
n→∞

∑
b∈B |

∑
a∈A(

→
µ [n](a, b)− µ(a, b))|

≤ lim
n→∞

∑
b∈B

∑
a∈A|

→
µ [n](a, b)− µ(a, b)|

= lim
n→∞

∑
a∈A

∑
b∈B |

→
µ [n](a, b)− µ(a, b)| (by Tonelli’s Theorem)

= 0.

From
∑
b∈A|

→
µ [n]

(B)
(b)−µ(B)(b)| ≥ 0 for all n we know lim

n→∞

∑
b∈B |

→
µ [n]

(B)
(b)−

µ(B)(b)| ≥ 0, thus lim
n→∞

∑
b∈B |

→
µ [n]

(B)
(b) − µ(B)(b)| = 0. Therefore lim

→
µ

(B)
=

µ(B).

Lemma 9. Let A be any set,
→
µ be any infinite sequence of sub-distributions

over A, µ be any sub-distribution over A, and E ∈ A → Prop, if lim
→
µ = µ,

Pr
a∼→µ [n]

[E(a)] > 0 for all n,
→
µ [n + 1](a) ≥ →µ [n](a) for all n and a such that

E(a) holds, and lim
n→∞

Pr
a∼→µ [n]

[E(a)] = 1, then lim
→
µ |E = µ|E.

Proof. From lim
→
µ = µ we know lim

n→∞

∑
a∈A|

→
µ [n](a)−µ(a)| = 0, and by Lem. 6

we know µ(a) = lim
n→∞

→
µ [n](a) for all a. From

→
µ [n+ 1](a) ≥ →µ [n](a) for all n and

a such that E(a) holds by Monotone Convergence Theorem for Series we know∑
a{ lim
n→∞

→
µ [n](a) | E(a)} = lim

n→∞

∑
a{
→
µ [n](a) | E(a)}, thus

Pra∼µ[E(a)]
=
∑
a{µ(a) | E(a)}

=
∑
a{ lim
n→∞

→
µ [n](a) | E(a)}

= lim
n→∞

∑
a{
→
µ [n](a) | E(a)}

= lim
n→∞

Pr
a∼→µ [n]

[E(a)]

= 1.

For all a such that E(a) holds, we have
→
µ [n]|E(a) − µ|E(a) =

→
µ [n](a)

Pr
a∼→µ [n]

[E(a)] −
µ(a)

Pra∼µ[E(a)] =
→
µ [n](a)

Pr
a∼→µ [n]

[E(a)]−µ(a), so
→
µ [n]|E(a)−µ|E(a) ≥ →µ [n](a)−µ(a). From

→
µ [n + 1](a) ≥ →µ [n](a) for all n and µ(a) = lim

n→∞

→
µ [n](a) by Monotone Conver-

gence Theorem we know µ(a) ≥ →
µ [n](a) for all n, so

→
µ [n]|E(a) − µ|E(a) =

→
µ [n](a)

Pr
a∼→µ [n]

[E(a)] −µ(a) ≤ µ(a)
Pr

a∼→µ [n]
[E(a)] −µ(a). From

→
µ [n](a)−µ(a) ≤ →µ [n]|E(a)−

µ|E(a) ≤ µ(a)
Pr

a∼→µ [n]
[E(a)] − µ(a) we know |→µ [n]|E(a)− µ|E(a)| ≤ max(|→µ [n](a)−

µ(a)|, | µ(a)
Pr

a∼→µ [n]
[E(a)] − µ(a)|). From lim

n→∞

∑
a{|

µ(a)
Pr

a∼→µ [n]
[E(a)] − µ(a)| | E(a)} =∑

a{µ(a) | E(a)}·(1
lim
n→∞

Pr
a∼→µ [n]

[E(a)] −1) = 0 and lim
n→∞

∑
a∈A{|

→
µ [n](a)−µ(a)| |

E(a)} ≤ lim
n→∞

∑
a∈A|

→
µ [n](a)− µ(a)| = 0 we know

lim
n→∞

∑
a∈A{max(|→µ [n](a) − µ(a)|, | µ(a)

Pr
a∼→µ [n]

[E(a)] − µ(a)|) | E(a)} = 0, thus

lim
n→∞

∑
a∈A|

→
µ [n]|E(a)−µ|E(a)| = lim

n→∞

∑
a∈A{|

→
µ [n]|E(a)−µ|E(a)| | E(a)} = 0.

Therefore lim
→
µ |E = µ|E .

Lemma 10. Let A be any set,
→
µ be any infinite sequence of sub-distributions

over A, µ be any sub-distribution over A, and N be any natural number, if
lim
→
µ = µ, then lim(λn.

→
µ [n+N]) = µ.

Proof. From lim
→
µ = µ we know lim

n→∞

∑
a∈A|

→
µ [n](a)− µ(a)| = 0, thus

lim
n→∞

∑
a∈A|

→
µ [n+N](a)− µ(a)| = 0, so lim(λn.

→
µ [n+N]) = µ.

Lemma 11. For all set A,B and µ1, µ2 ∈ DA×B, p ∈ [0, 1], (µ1 ⊕p µ2)
(A)

=
µ1

(A) ⊕p µ2
(A).

Proof. For all set A,B and µ1, µ2 ∈ DA×B , p ∈ [0, 1],

(µ1 ⊕p µ2)
(A)

= λa.
∑
b(µ1 ⊕p µ2)(a, b)

= λa.
∑
b p · µ1(a, b) + (1− p) · µ2(a, b)

= λa. p ·
∑
b µ1(a, b) + (1− p) ·

∑
b µ2(a, b)

= λa. p · µ1
(A)(a) + (1− p) · µ2

(A)(a)
= µ1

(A) ⊕p µ2
(A).

Lemma 12. For all set A,B and µ1, µ2 ∈ DA×B, p ∈ [0, 1], (µ1 ⊕p µ2)
(B)

=
µ1

(B) ⊕p µ2
(B).

Proof. For all set A,B and µ1, µ2 ∈ DA×B , p ∈ [0, 1],

(µ1 ⊕p µ2)
(B)

= λb.
∑
a(µ1 ⊕p µ2)(a, b)

= λb.
∑
a p · µ1(a, b) + (1− p) · µ2(a, b)

= λb. p ·
∑
a µ1(a, b) + (1− p) ·

∑
a µ2(a, b)

= λb. p · µ1
(B)(b) + (1− p) · µ2

(B)(b)
= µ1

(B) ⊕p µ2
(B).

Lemma 13. For all set A,B and a ∈ A, µ ∈ DA×B, if µ(A)(a) = 1, then
µ = δ(a)⊗ µ(B).

Proof. For all set A,B and a ∈ A, µ ∈ DA×B such that µ(A)(a) = 1, from
µ(A)(a) = 1 we know µ(a′, b) = 0 for all a′ and b such that a′ 6= a, thus
δ(a) ⊗ µ(B) = λ(a′, b). δ(a)(a′) · µ(B)(b) = λ(a′, b). δ(a)(a′) ·

∑
a′′ µ(a′′, b) =

λ(a′, b). δ(a)(a′) · µ(a, b) = λ(a′, b). µ(a′, b).

Lemma 14. For all set A,B and µ1, µ2 ∈ DA, µ3 ∈ DB , p ∈ [0, 1], (µ1 ⊕p µ2)⊗
µ3 = (µ1 ⊗ µ3)⊕p (µ2 ⊗ µ3).

Proof. For all set A,B and µ1, µ2 ∈ DA, µ3 ∈ DB , p ∈ [0, 1],

(µ1 ⊕p µ2)⊗ µ3

= λ(a, b). (µ1 ⊕p µ2)(a) · µ3(b)
= λ(a, b). (p · µ1(a) + (1− p) · µ2(a)) · µ3(b)
= λ(a, b). p · µ1(a) · µ3(b) + (1− p) · µ2(a) · µ3(b)
= λ(a, b). p · (µ1 ⊗ µ3)(a, b) + (1− p) · (µ2 ⊗ µ3)(a, b)
= (µ1 ⊗ µ3)⊕p (µ2 ⊗ µ3).

Lemma 15. For all set A,B,C and µ ∈ DA, f ∈ A → DB , g ∈ B → DC ,
Eb∼Ea∼µ{f(a)}{g(b)} = Ea∼µ{Eb∼f(a){g(b)}}.

Proof. For all set A,B,C and µ ∈ DA, f ∈ A→ DB , g ∈ B → DC ,

Eb∼Ea∼µ{f(a)}{g(b)}
= λc.

∑
b Ea∼µ{f(a)}(b) · g(b)(c)

= λc.
∑
b

∑
a µ(a) · f(a)(b) · g(b)(c)

= λc.
∑
a µ(a) ·

∑
b ·f(a)(b) · g(b)(c)

= λc.
∑
a µ(a) · Eb∼f(a){g(b)}(c)

= Ea∼µ{Eb∼f(a){g(b)}}.

Lemma 16. For all set A,B and µ1, µ2 ∈ DA, f ∈ A→ DB , p ∈ [0, 1],
Ea∼µ1⊕pµ2

{f(a)} = Ea∼µ1
{f(a)} ⊕p Ea∼µ2

{f(a)}.

Proof. For all set A,B and µ1, µ2 ∈ DA, f ∈ A→ DB , p ∈ [0, 1],

Ea∼µ1⊕pµ2
{f(a)}

= λb.
∑
a(µ1 ⊕p µ2)(a) · f(a)(b)

= λb.
∑
a(p · µ1(a) + (1− p) · µ2(a)) · f(a)(b)

= λb. p ·
∑
a µ1(a)f(a)(b) + (1− p) ·

∑
a µ2(a) · f(a)(b)

= λb. p · Ea∼µ1
{f(a)}(b) + (1− p) · Ea∼µ2

{f(a)}(b)
= Ea∼µ1

{f(a)} ⊕p Ea∼µ2
{f(a)}.

Lemma 17. For all set A,B and f ∈ A→ DB , a ∈ A, Ea′∼δ(a) = f(a).

Proof. For all setA,B and f ∈ A→ DB , a ∈ A, we have Ea′∼δ(a) = λb.
∑
a′ δ(a)(a′)·

f(a′)(b) = λb. f(a)(b) = f(a).

Lemma 18. For all set A,B and µ1 ∈ DA, µ2 ∈ DB, (µ1 ⊗ µ2)
(A)

= µ1.

Proof. For all set A,B and µ1 ∈ DA, µ2 ∈ DB , (µ1 ⊗ µ2)
(A)

= λa.
∑
b(µ1 ⊗

µ2)(a, b) = λa.
∑
b µ1(a) · µ2(b) = λa. µ1(a) ·

∑
b µ2(b) = λa. µ1(a) = µ1.

Lemma 19. For all set A,B and µ1 ∈ DA, µ2 ∈ DB, (µ1 ⊗ µ2)
(B)

= µ2.

Proof. For all set A,B and µ1 ∈ DA, µ2 ∈ DB , (µ1 ⊗ µ2)
(B)

= λb.
∑
a(µ1 ⊗

µ2)(a, b) = λb.
∑
a µ1(a) · µ2(b) = λb. µ2(b) ·

∑
a µ1(a) = λb. µ2(b) = µ2.

Lemma 20. For all set A and µ, µ′ ∈ DA, E ∈ A → Prop, if µ|E = µ′, then
supp(µ′) ⊆ supp(µ).

Proof. For all set A and µ, µ′ ∈ DA, E ∈ A → Prop such that µ|E = µ′,
supp(µ′) = {a | µ′(a) > 0} = {a | µ|E(a) > 0} = {a | E(a) ∧ µ(a) > 0} ⊆
{a | µ(a) > 0} ⊆ supp(µ).

Lemma 21. For all set A,B and µ ∈ DA×B, supp(µ(A)) = dom(supp(µ)).

Proof. For all set A,B and µ ∈ DA×B ,

supp(µ(A))
= {a | µ(A)(a) > 0}
= {a |

∑
b µ(a, b) > 0}

= {a | ∃b. µ(a, b) > 0}
= {a | ∃b. (a, b) ∈ supp(µ)}
= dom(supp(µ)).

Lemma 22. For all set A,B and µ ∈ DA×B, supp(µ(B)) = range(supp(µ)).

Proof. For all set A,B and µ ∈ DA×B ,

supp(µ(B))
= {b | µ(B)(b) > 0}
= {b |

∑
a µ(a, b) > 0}

= {b | ∃a. µ(a, b) > 0}
= {b | ∃a. (a, b) ∈ supp(µ)}
= range(supp(µ)).

Lemma 23. For all set A,B and µ1, µ2 ∈ DA×B, if supp(µ1) ⊆ supp(µ2), then
supp(µ1

(A)) ⊆ supp(µ2
(A)).

Proof. For all set A,B and µ1, µ2 ∈ DA×B such that supp(µ1) ⊆ supp(µ2), by
Lem. 21 we know supp(µ1

(A)) = dom(supp(µ1)) ⊆ dom(supp(µ2) = supp(µ2
(A)).

Lemma 24. For all set A,B and µ1, µ2 ∈ DA×B, if supp(µ1) ⊆ supp(µ2), then
supp(µ1

(B)) ⊆ supp(µ2
(B)).

Proof. For all set A,B and µ1, µ2 ∈ DA×B such that supp(µ1) ⊆ supp(µ2), by
Lem. 22 we know supp(µ1

(B)) = range(supp(µ1)) ⊆ range(supp(µ2) = supp(µ2
(B)).

Lemma 25. For all set A and µ ∈ DA, a ∈ A, if µ(a) = 1 then µ = δ(a).

Proof. For all set A and µ ∈ DA, a ∈ A such that µ(a) = 1, we have 1 = |µ| =∑
a′ µ(a′) = µ(a) +

∑
a′{µ(a′) | a′ 6= a} ≤ µ(a) = 1, thus

∑
a′{µ(a′) | a′ 6= a} =

0, so µ(a′) = 0 for all a′ 6= a. From µ(a) = 1 we know µ = δ(a).

Lemma 26. For all set A and µ ∈ DA, a ∈ A, µ = δ(a) if and only if supp(µ) =
{a}.

Proof. For all set A and µ ∈ DA, a ∈ A, we prove the two directions respectively.

– if µ = δ(a), we have supp(µ′) ⊆ supp(µ) = {a′ | µ(a′) > 0} = {a′ | δ(a)(a′) >
0} = {a}.

– if supp(µ) = {a}, we have 1 = |µ| =
∑
a′ µ(a′) =

∑
a′{µ(a′) | a′ ∈

supp(µ′)} =
∑
a′{µ(a′) | a′ ∈ {a}} = µ(a). By Lem. 25 we know µ′ = δ(a).

Lemma 27. For all set A and µ, µ′ ∈ DA, a ∈ A, if µ = δ(a) and supp(µ′) ⊆
supp(µ), then µ′ = δ(a).

Proof. For all set A and µ, µ′ ∈ DA, a ∈ A such that µ = δ(a) and supp(µ′) ⊆
supp(µ), by Lem. 26 we know supp(µ) = {a}, thus supp(µ′) ⊆ {a}. It is obvious
that supp(µ′) 6= ∅, thus supp(µ′) = {a}. By Lem. 26 we know µ′ = δ(a).

H.2 Proof of Theorem 4.1

Proof (Proof of Theorem 4.1). For any P,C, Q such that |=a {P}C{Q} and
closed(Q), by Lem. 92 we have |=a {P}RemoveSplit(C){Q}. It is obvious that
Nosplit(RemoveSplit(C)), by Lem. 68 we have |= {P}RemoveSplit(C){Q}.
From Lem. 75 we have |= {P}C{Q}.

The remainder of this section gives the proofs of the lemmas used in the
proof of Thereorem 4.1.

Definition H.2. GivenW0, ϕ,
→
W such thatHistory(W0, ϕ,

→
W). We writeW0 ⇓′ϕ

µ if and only if lim
n→∞

→
W [n]

(Prog)

(skip ‖ · · · ‖ skip) = 1 and ∀σ. lim
n→∞

→
W [n](skip ‖

· · · ‖ skip, σ) = µ(σ).

Definition H.3. |=a′ {P}C{Q} iff for all µ, if µ |= P , then for all ϕ and µ′, if
init(C, µ) ⇓′ϕ µ′, then µ′ |= Q.

Lemma 28. For all
→
W , if lim

n→∞

→
W [n]

(Prog)

(skip ‖ · · · ‖ skip) = 1, then

lim
n→∞

∑
C,σ{

→
W [n](C, σ) | C 6= skip ‖ · · · ‖ skip} = 0.

Proof. For all
→
W such that lim

n→∞

→
W [n]

(Prog)

(skip ‖ · · · ‖ skip) = 1, we have

lim
n→∞

∑
σ

→
W [n](skip ‖ · · · ‖ skip, σ) = 1. From ∀n. |

→
W [n]| = 1 we know

lim
n→∞

|
→
W [n]| = 1, so

1 = lim
n→∞

|
→
W [n]|

= lim
n→∞

∑
C,σ
→
W [n](C, σ)

= lim
n→∞

(
∑
σ

→
W [n](skip ‖ · · · ‖ skip, σ) +

∑
C,σ{

→
W [n](C, σ) | C 6= skip ‖ · · · ‖ skip})

= lim
n→∞

∑
σ

→
W [n](skip ‖ · · · ‖ skip, σ) + lim

n→∞

∑
C,σ{

→
W [n](C, σ) | C 6= skip ‖ · · · ‖ skip}

= 1 + lim
n→∞

∑
C,σ{

→
W [n](C, σ) | C 6= skip ‖ · · · ‖ skip},

so lim
n→∞

∑
C,σ{

→
W [n](C, σ) | C 6= skip ‖ · · · ‖ skip} = 0.

Lemma 29. For all
→
W,W , if lim

→
W = W and W (Prog)(skip ‖ · · · ‖ skip) = 1,

then for all σ, W (State)(σ) = lim
n→∞

→
W [n](skip ‖ · · · ‖ skip, σ).

Proof. For all
→
W,W such that lim

→
W = W and W (Prog)(skip ‖ · · · ‖ skip) = 1,

from lim
→
W = W by Lem. 7 we know lim

→
W

(Prog)

= W (Prog). By Lem. 6 we

know lim
n→∞

→
W [n]

(Prog)

(skip ‖ · · · ‖ skip) = W (Prog)(skip ‖ · · · ‖ skip) = 1. By

Lem. 28 we know lim
n→∞

∑
C,σ{

→
W [n](C, σ) | C 6= skip ‖ · · · ‖ skip} = 0. It is

obvious that for all σ1 and n, 0 ≤
∑

C{
→
W [n](C, σ1) | C 6= skip ‖ · · · ‖ skip} ≤∑

C,σ{
→
W [n](C, σ) | C 6= skip ‖ · · · ‖ skip}, by Squeeze Theorem we have

0 ≤ lim
n→∞

∑
C{
→
W [n](C, σ1) | C 6= skip ‖ · · · ‖ skip} ≤ lim

n→∞

∑
C,σ{

→
W [n](C, σ) |

C 6= skip ‖ · · · ‖ skip} = 0, thus lim
n→∞

∑
C{
→
W [n](C, σ)} = 0 for all σ. From

lim
→
W = W by Lem. 8 we know lim

→
W

(State)

= W (State). By Lem. 6 we know for

all σ, lim
n→∞

→
W [n]

(State)

(σ) = W (State)(σ), so

W (State)(σ)

= lim
n→∞

→
W [n]

(State)

(σ)

= lim
n→∞

∑
C
→
W [n](C, σ)

= lim
n→∞

(
→
W [n](skip ‖ · · · ‖ skip, σ) +

∑
C{
→
W [n](C, σ) | C 6= skip ‖ · · · ‖ skip})

= lim
n→∞

→
W [n](skip ‖ · · · ‖ skip, σ) + lim

n→∞

∑
C{
→
W [n](C, σ) | C 6= skip ‖ · · · ‖ skip}

= lim
n→∞

→
W [n](skip ‖ · · · ‖ skip, σ) + 0

= lim
n→∞

→
W [n](skip ‖ · · · ‖ skip, σ)

holds for all σ.

Lemma 30. For all n,W,ϕ,
→
W , if History(W,ϕ,

→
W), then

→
W [n]

ϕ[n]
↪→

→
W [n+ 1].

Proof. by induction on n.

- base case: n = 0.
FromHistory(W,ϕ,

→
W) there exists t, ϕ′,W ′,

→
W
′
such that ϕ = t :: ϕ′,

→
W =

W ::
→
W
′
, W

t
↪→ W ′ and History(W ′, ϕ′,

→
W
′
).
→
W [0] = (W ::

→
W
′
)[0] = W .

From History(W ′, ϕ′,
→
W
′
) by Lem. 50 we know

→
W
′
[0] = W ′, so

→
W [1] =

(W ::
→
W
′
)[1] =

→
W
′
[0] = W ′. ϕ[0] = (t :: ϕ′)[0] = t. Therefore

→
W [0]

ϕ[0]
↪→

→
W [1].

- inductive case: n = k + 1.
IH: for all W,ϕ,

→
W , if History(W,ϕ,

→
W) and Nosplit(W), then

→
W [n]

ϕ[k]
↪→

→
W [k + 1].

FromHistory(W,ϕ,
→
W) there exists t, ϕ′,W ′,

→
W
′
such that ϕ = t :: ϕ′,

→
W =

W ::
→
W
′
, W

t
↪→ W ′ and History(W ′, ϕ′,

→
W
′
). From History(W ′, ϕ′,

→
W
′
)

by IH we know
→
W
′
[k]

ϕ′[k]
↪→

→
W
′
[k + 1].

→
W [n] = (W ::

→
W
′
)[k + 1] =

→
W
′
[k].

→
W [n + 1] = (W ::

→
W
′
)[k + 2] =

→
W
′
[k + 1]. ϕ[n] = (t :: ϕ′)[k + 1] = ϕ′[k].

Therefore
→
W [n]

ϕ[n]
↪→

→
W [n+ 1].

Lemma 31. For all W,W ′, t, if W t
; W ′, then for all σ, W ′(skip ‖ · · · ‖

skip, σ) ≥W (skip ‖ · · · ‖ skip, σ).

Proof. For all W,W ′, t, σ such that W t
;W ′,

W ′(skip ‖ · · · ‖ skip, σ)

=
∑

C1,σ1
{W (C1, σ1) | (C1, σ1)

p−→
t

(skip ‖ · · · ‖ skip, σ)}

≥W (skip ‖ · · · ‖ skip, σ) · p,where (skip ‖ · · · ‖ skip, σ)
p−→
t

(skip ‖ · · · ‖ skip, σ)

= W (skip ‖ · · · ‖ skip, σ) · p,where (skip, σ)
p−→ (skip, σ)

= W (skip ‖ · · · ‖ skip, σ).

Lemma 32. For all W,W ′, t, if W
t
↪→ W ′, then for all σ, W ′(skip ‖ · · · ‖

skip, σ) ≥W (skip ‖ · · · ‖ skip, σ).

Proof. For all W,W ′, t such that W
t
↪→ W ′, it is obvious that W (Prog)(skip ‖

· · · ‖ skip) = 0 ∨ W (Prog)(skip ‖ · · · ‖ skip) > 0, we prove the two cases
respectively.

– case 1: W (Prog)(skip ‖ · · · ‖ skip) = 0.
FromW (Prog)(skip ‖ · · · ‖ skip) = 0 we know

∑
σW (skip ‖ · · · ‖ skip, σ) =

0, thus W (skip ‖ · · · ‖ skip, σ) = 0 for all σ. Therefore W ′(skip ‖ · · · ‖
skip, σ) ≥W (skip ‖ · · · ‖ skip, σ) for all σ.

– case 2: W (Prog)(skip ‖ · · · ‖ skip) > 0.
From W (Prog)(skip ‖ · · · ‖ skip) > 0 by Lem. 38 we know nextsplit(W) ⊇
split(true). From W

t
↪→ W ′ by Lem. 48 we know W

t
; W ′. By Lem. 31 we

know for all σ, W ′(skip ‖ · · · ‖ skip, σ) ≥W (skip ‖ · · · ‖ skip, σ).

Lemma 33. For all W,ϕ,
→
W , if History(W,ϕ,

→
W), then for all n and σ,

→
W [n+

1](skip ‖ · · · ‖ skip, σ) ≥
→
W [n](skip ‖ · · · ‖ skip, σ).

Proof. For all W,ϕ,
→
W,n, σ such that History(W,ϕ,

→
W), by Lem. 30 we know

→
W [n]

ϕ[n]
↪→

→
W [n + 1]. By Lem. 32 we have

→
W [n + 1](skip ‖ · · · ‖ skip, σ) ≥

→
W [n](skip ‖ · · · ‖ skip, σ).

Lemma 34. For all W,ϕ,
→
W , if History(W,ϕ,

→
W) and lim

n→∞

→
W [n]

(Prog)

(skip ‖

· · · ‖ skip) = 1, then for all C, σ, lim
n→∞

→
W [n](C, σ) exists.

Proof. For allW,ϕ,
→
W,C, σ such thatHistory(W,ϕ,

→
W) and lim

n→∞

→
W [n]

(Prog)

(skip ‖
· · · ‖ skip) = 1, it is obvious that C = skip ‖ · · · ‖ skip or C 6= skip ‖ · · · ‖ skip,
we prove the two cases respectively.

– C = skip ‖ · · · ‖ skip.
From History(W,ϕ,

→
W) by Lem. 33 we know ∀n.

→
W [n + 1](skip ‖ · · · ‖

skip, σ) ≥
→
W [n](skip ‖ · · · ‖ skip, σ). It is obvious ∀n.

→
W [n](skip ‖ · · · ‖

skip, σ) ≤ 1, by Monotone Convergence Theorem we know lim
n→∞

→
W [n](skip ‖

· · · ‖ skip, σ) exists.
– C 6= skip ‖ · · · ‖ skip.

From lim
n→∞

→
W [n]

(Prog)

(skip ‖ · · · ‖ skip) = 1 by Lem. 28 we know

lim
n→∞

∑
C1,σ1

{
→
W [n](C1, σ1) | C1 6= skip ‖ · · · ‖ skip} = 0.

It is obvious that for all n, 0 ≤
→
W [n](C, σ) ≤

∑
C1,σ1

{
→
W [n](C1, σ1) | C1 6=

skip ‖ · · · ‖ skip}, by Squeeze Theorem we have 0 ≤ lim
n→∞

→
W [n](C, σ) ≤

lim
n→∞

∑
C1,σ1

{
→
W [n](C1, σ1) | C1 6= skip ‖ · · · ‖ skip} = 0, thus lim

n→∞

→
W [n](C, σ) =

0.

Lemma 35. For allW , there existsW1 andW2 such thatW = W1⊕W (Prog)(skip‖···‖skip)

W2, W1
(Prog)(skip ‖ · · · ‖ skip) = 1 and W2

(Prog)(skip ‖ · · · ‖ skip) = 0.

Proof. For all W , let W1
def
= λ(C, σ). δ(skip‖···‖skip)(C)·W (C,σ)

W (Prog)(skip‖···‖skip)
,

W2
def
= λ(C, σ). (1−δ(skip‖···‖skip)(C))·W (C,σ)

1−W (Prog)(skip‖···‖skip)
, then

W1 ⊕W (Prog)(skip‖···‖skip) W2

= λ(C, σ). W (Prog)(skip ‖ · · · ‖ skip) ·W1(C, σ) + (1−W (Prog)(skip ‖ · · · ‖ skip)) ·W2(C, σ)
= λ(C, σ). δ(skip ‖ · · · ‖ skip)(C) ·W (C, σ) + (1− δ(skip ‖ · · · ‖ skip)(C)) ·W (C, σ)
= λ(C, σ). W (C, σ)
= W.

Lemma 36. For all W1,W2, p, t,W
′
1,W

′
2, if W1

t
; W ′1 and W2

t
; W ′2, then

W1 ⊕pW2
t
;W ′1 ⊕pW ′2.

Proof. For all W1,W2, p, t,W
′
1,W

′
2 such that W1

t
;W ′1 and W2

t
;W ′2, we know

W ′1 = λ(C′, σ′).
∑

C,σ{W1(C, σ)·p′ | (C, σ)
p′−→
t

(C′, σ′)},W ′2 = λ(C′, σ′).
∑

C,σ{W2(C, σ)·

p′ | (C, σ)
p′−→
t

(C′, σ′)}, so

W ′1 ⊕pW ′2
= λ(C′, σ′). p ·

∑
C,σ{W1(C, σ) · p′ | (C, σ)

p′−→
t

(C′, σ′)}+

(1− p) ·
∑

C,σ{W2(C, σ) · p′ | (C, σ)
p′−→
t

(C′, σ′)}

= λ(C′, σ′).
∑

C,σ{(p ·W1(C, σ) + (1− p) ·W2(C, σ)) · p′ | (C, σ)
p′−→
t

(C′, σ′)}

= λ(C′, σ′).
∑

C,σ{(W1 ⊕pW2)(C, σ) · p′ | (C, σ)
p′−→
t

(C′, σ′)},

thus W1 ⊕pW2
t
;W ′1 ⊕pW ′2.

Lemma 37. For all W1,W2, p, t,W
′, if W1 ⊕pW2

t
; W ′, then there exists W ′1

and W ′2 such that W ′ = W ′1 ⊕pW ′2, W1
t
;W ′1 and W2

t
;W ′2.

Proof. For allW1,W2, p, t,W
′ such thatW1⊕pW2

t
;W ′, letW ′1

def
= λ(C′, σ′).

∑
C,σ{W1(C, σ)·

p | (C, σ)
p−→
t

(C′, σ′)}, W ′2
def
= λ(C′, σ′).

∑
C,σ{W2(C, σ) · p | (C, σ)

p−→
t

(C′, σ′)},

then W1
t
; W ′1 and W2

t
; W ′2. By Lem. 36 we know W1 ⊕p W2

t
; W ′1 ⊕p W ′2.

From W1 ⊕pW2
t
;W ′ by Lem. 57 we know W ′ = W ′1 ⊕pW ′2.

Lemma 38. For allW , ifW (Prog)(skip ‖ · · · ‖ skip) > 0, then nextsplit(W, t) ⊇
{split(true)} for all t.

Proof. For allW such thatW (Prog)(skip ‖ · · · ‖ skip) > 0, we know
∑
σW (skip ‖

· · · ‖ skip, σ) > 0, thus there exists σ1 such that W (skip ‖ · · · ‖ skip, σ1) > 0.

nextsplit(W, t)
= {nextsplit(Ct) | (C1 ‖ · · · ‖ Cn, σ) ∈ supp(W)}
= {nextsplit(Ct) |W (C1 ‖ · · · ‖ Cn, σ) > 0}
⊇ {nextsplit(skip)}
= {split(true)}

Lemma 39. For all W , if W (Prog)(skip ‖ · · · ‖ skip) = 1, then W t
;W for all

t.

Proof. For all W such that W (Prog)(skip ‖ · · · ‖ skip) = 1, by Lem. 13
we know W = δ(skip ‖ · · · ‖ skip) ⊗ W (State). For all t, we have W

t
;

λ(C′, σ′).
∑

C,σ{W (C, σ) | (C, σ)
p−→
t

(C′, σ′)}.

λ(C′, σ′).
∑

C,σ{W (C, σ) · p | (C, σ)
p−→
t

(C′, σ′)}

= λ(C′, σ′).
∑

C,σ{δ(skip ‖ · · · ‖ skip)(C) ·W (State)(σ) · p | (C, σ)
p−→
t

(C′, σ′)}

= λ(C′, σ′).
∑
σ{W (State)(σ) · p | (skip ‖ · · · ‖ skip, σ)

p−→
t

(C′, σ′)}
= λ(C′, σ′).

∑
σ{W (State)(σ) · p | C′ = skip ‖ · · · ‖ skip ∧ σ′ = σ ∧ p = 1}

= λ(C′, σ′).δ(skip ‖ · · · ‖ skip)(C′) ·W (State)(σ′)
= δ(skip ‖ · · · ‖ skip)⊗W (State)

= W.

so W t
;W .

Lemma 40. For all n,W,ϕ,
→
W,W1,W2, p such that History(W,ϕ,

→
W), W =

W1 ⊕p W2 and W1
(Prog)(skip ‖ · · · ‖ skip) = 1, there exists W ′ such that

→
W [n] = W1 ⊕pW ′.

Proof. by induction on n.

– base case: n = 0.
For all W,ϕ,

→
W,W1,W2, p such that History(W,ϕ,

→
W), W = W1 ⊕p W2

and W1
(Prog)(skip ‖ · · · ‖ skip) = 1, from History(W,ϕ,

→
W) by Lem. 50 we

know
→
W [0] = W = W1 ⊕pW2. Let W ′2

def
= W2, then

→
W [0] = W1 ⊕pW ′.

– inductive case: n = k + 1.
IH: For all W,ϕ,

→
W,W1,W2, p such that History(W,ϕ,

→
W), W = W1⊕pW2

and W1
(Prog)(skip ‖ · · · ‖ skip) = 1, there exists W ′ such that

→
W [k] =

W1 ⊕pW ′.
For all W,ϕ,

→
W,W1,W2, p such that History(W,ϕ,

→
W), W = W1 ⊕p W2

and W1
(Prog)(skip ‖ · · · ‖ skip) = 1, from History(W,ϕ,

→
W) there ex-

ists t, ϕ0,W0,
→
W 0 such that ϕ = t :: ϕ0, W

t
↪→ W0,

→
W = W ::

→
W 0 and

History(W0, ϕ0,
→
W 0), then

→
W [n] = (W ::

→
W 0)[k+ 1] =

→
W 0[k]. It is obvious

that p = 0 ∨ p > 0, we prove the three cases respectively.
• case 1: p = 0.

Let W ′ def
=
→
W 0[k], then

→
W [n] =

→
W 0[k] = W1 ⊕0 W

′.
• case 2: p > 0.

W (Prog)(skip ‖ · · · ‖ skip)

= (W1 ⊕pW2)
(Prog)

(skip ‖ · · · ‖ skip)

= (W1
(Prog) ⊕pW2

(Prog))(skip ‖ · · · ‖ skip) (by Lem. 11)
= p ·W1

(Prog)(skip ‖ · · · ‖ skip) + (1− p) ·W2
(Prog)(skip ‖ · · · ‖ skip)

≥ p > 0,

by Lem. 38 we know nextsplit(W, t) ⊇ {split(true)}. From W
t
↪→ W0

by Lem. 48 we know W
t
; W0. From W = W1 ⊕p W2 by Lem. 36

there exists W01 and W02 such that W0 = W01 ⊕p W02, W1
t
; W01

and W2
t
; W02. From W1

(Prog)(skip ‖ · · · ‖ skip) = 1 by Lem. 39 we

know W1
t
; W1. From W1

t
; W01 by Lem. 57 we have W1 = W01,

so W0 = W1 ⊕p W02. From History(W0, ϕ0,
→
W 0), W0 = W1 ⊕p W02

and W1
(Prog)(skip ‖ · · · ‖ skip) = 1 by IH there exists W ′ such that

→
W 0[k] = W1 ⊕pW ′, thus

→
W [n] =

→
W 0[k] = W1 ⊕pW ′.

Lemma 41. For allW,ϕ,
→
W,W ′, if History(W,ϕ,

→
W) and ∀C, σ. lim

n→∞

→
W [n](C, σ) =

W ′(C, σ), then
∑

C,σ|W (C, σ)−W ′(C, σ)| ≤ 2(1−W (Prog)(skip ‖ · · · ‖ skip)).

Proof. For allW,ϕ,
→
W,W ′ such thatHistory(W,ϕ,

→
W) and ∀C, σ. lim

n→∞

→
W [n](C, σ) =

W ′(C, σ), let p def
= W (Prog)(skip ‖ · · · ‖ skip), by Lem. 35 there exists W1

and W2 such that W = W1 ⊕p W2, W1
(Prog)(skip ‖ · · · ‖ skip) = 1 and

W2
(Prog)(skip ‖ · · · ‖ skip) = 0. By Lem. 40 we know for all n, there exists

W ′ such that
→
W [n] = W1⊕pW ′. By Axiom of Choice, there exists

→
W
′
such that

for all n,
→
W [n] = W1 ⊕p

→
W
′
[n]. For all C and σ, W ′(C, σ) = lim

n→∞

→
W [n](C, σ) =

lim
n→∞

(p·W1(C, σ)+(1−p)·
→
W
′
[n](C, σ)) = p·W1(C, σ)+(1−p)· lim

n→∞

→
W
′
[n](C, σ).

Therefore,∑
C,σ|W (C, σ)−W ′(C, σ)| ≤ 2(1−W (Prog)(skip ‖ · · · ‖ skip))

=
∑

C,σ|p ·W1(C, σ) + (1− p) ·W2(C, σ)− p ·W1(C, σ)− (1− p) · lim
n→∞

→
W
′
[n](C, σ)|

= (1− p) ·
∑

C,σ|W2(C, σ)− lim
n→∞

→
W
′
[n](C, σ)|

≤ (1− p) ·
∑

C,σ(W2(C, σ) + lim
n→∞

→
W
′
[n](C, σ))

= (1− p) · (
∑

C,σW2(C, σ) +
∑

C,σ lim
n→∞

→
W
′
[n](C, σ))

≤ (1− p) · (
∑

C,σW2(C, σ) + lim
n→∞

∑
C,σ
→
W
′
[n](C, σ)) (by Fatou’s Lemma)

= 2(1− p)
= 2(1−W (Prog)(skip ‖ · · · ‖ skip)).

Lemma 42. For all n,W,ϕ,
→
W,W ′, if History(W,ϕ,

→
W) and ∀C, σ. lim

n→∞

→
W [n](C, σ) =

W ′(C, σ), then
∑

C,σ|
→
W [n](C, σ) − W ′(C, σ)| ≤ 2(1 −

→
W [n]

(Prog)

(skip ‖ · · · ‖
skip)).

Proof. by induction on n.

– base case: n = 0.
For allW,ϕ,

→
W,W ′ such thatHistory(W,ϕ,

→
W) and ∀C, σ. lim

n→∞

→
W [n](C, σ) =

W ′(C, σ), by Lem. 41 we have
∑

C,σ|W (C, σ)−W ′(C, σ)| ≤ 2(1−W (Prog)(skip ‖

· · · ‖ skip)). From History(W,ϕ,
→
W) by Lem. 50 we know

→
W [0] = W , so∑

C,σ|
→
W [0](C, σ)−W ′(C, σ)| ≤ 2(1−

→
W [0]

(Prog)

(skip ‖ · · · ‖ skip)).
– inductive: n = k + 1.

IH: for all W,ϕ,
→
W,W ′, if History(W,ϕ,

→
W) and ∀C, σ. lim

n→∞

→
W [n](C, σ) =

W ′(C, σ), then
∑

C,σ|
→
W [k](C, σ)−W ′(C, σ)| ≤ 2(1−

→
W [k]

(Prog)

(skip ‖ · · · ‖
skip)).

For allW,ϕ,
→
W,W ′ such thatHistory(W,ϕ,

→
W) and ∀C, σ. lim

n→∞

→
W [n](C, σ) =

W ′(C, σ), from History(W,ϕ,
→
W) there exists t, ϕ′,W1,

→
W 1 such that ϕ =

t :: ϕ′, W
t
↪→ W1,

→
W = W ::

→
W 1 and History(W1, ϕ

′,
→
W 1). For all C, σ,

lim
n→∞

→
W 1[n](C, σ) = lim

n→∞
(W ::

→
W 1)[n + 1](C, σ) = lim

n→∞

→
W [n + 1](C, σ) =

lim
n→∞

→
W [n](C, σ) = W ′(C, σ). By IH we have

∑
C,σ|

→
W 1[k](C, σ)−W ′(C, σ)| ≤

2(1 −
→
W 1[k]

(Prog)

(skip ‖ · · · ‖ skip)). From
→
W [n] = (W ::

→
W 1)[k + 1] =

→
W 1[k] we know

∑
C,σ|

→
W [n](C, σ) − W ′(C, σ)| ≤ 2(1 −

→
W [n]

(Prog)

(skip ‖
· · · ‖ skip)).

Lemma 43. For all W,ϕ,
→
W,W ′, if History(W,ϕ,

→
W), lim

n→∞

→
W [n]

(Prog)

(skip ‖

· · · ‖ skip) = 1, and ∀C, σ. lim
n→∞

→
W [n](C, σ) = W ′(C, σ), then lim

→
W = W ′.

Proof. For allW,ϕ,
→
W,W ′ such thatHistory(W,ϕ,

→
W), lim

n→∞

→
W [n]

(Prog)

(skip ‖

· · · ‖ skip) = 1, and ∀C, σ. lim
n→∞

→
W [n](C, σ) = W ′(C, σ), by Lem. 42 we know for

all n, 0 ≤
∑

C,σ|
→
W [n](C, σ)−W ′(C, σ)| ≤ 2(1−

→
W [n]

(Prog)

(skip ‖ · · · ‖ skip)).
By Squeeze Theorem we have

0 ≤ lim
n→∞

∑
C,σ|

→
W [n](C, σ) − W ′(C, σ)| ≤ lim

n→∞
2(1 −

→
W [n]

(Prog)

(skip ‖ · · · ‖

skip)) = 2(1− lim
n→∞

→
W [n]

(Prog)

(skip ‖ · · · ‖ skip)) = 0, so lim
n→∞

∑
C,σ|

→
W [n](C, σ)−

W ′(C, σ)| = 0, by Def. 2.6 we have lim
→
W = W ′.

Lemma 44. For all P,C, Q, |=a {P}C{Q} if and only if |=a′ {P}C{Q}.

Proof. For all P,C, Q, first we prove if |=a′ {P}C{Q} then |=a {P}C{Q}. By
definition of |=a, we need to prove for all µ, ϕ,W , if µ |= P and init(C, µ) ⇓ϕ W ,

then W (State) |= Q. From init(C, µ) ⇓ϕ W we know there exists
→
W such that

History(init(C, µ), ϕ,
→
W), lim

→
W = W and W (Prog)(skip ‖ · · · ‖ skip) = 1.

From lim
→
W = W by Lem. 7 we know lim

→
W

(Prog)

= W (Prog). By Lem. 6 we

know lim
n→∞

→
W [n]

(Prog)

(skip ‖ · · · ‖ skip) = W (Prog)(skip ‖ · · · ‖ skip) = 1.

From lim
→
W = W and W (Prog)(skip ‖ · · · ‖ skip) = 1 by Lem. 29 we know for

all σ,W (State)(σ) = lim
n→∞

→
W [n](skip ‖ · · · ‖ skip, σ), thus init(C, σ) ⇓′ϕ W (State).

From |=a′ {P}C{Q}, µ |= P we know W (State) |= Q.
Then we prove if |=a {P}C{Q} then |=a′ {P}C{Q}. By definition of |=a′ , we

need to prove for all µ, ϕ, µ′, if µ |= P and init(C, µ) ⇓′ϕ µ′, then µ′ |= Q. From

init(C, µ) ⇓′ϕ µ′ we know there exists
→
W such that History(init(C, µ), ϕ,

→
W),

lim
n→∞

→
W [n]

(Prog)

(skip ‖ · · · ‖ skip) = 1 and ∀σ. lim
n→∞

→
W (skip ‖ · · · ‖ skip, σ) =

µ′(σ). From History(init(C, µ), ϕ,
→
W) and lim

n→∞

→
W [n]

(Prog)

(skip ‖ · · · ‖ skip) =

1 by Lem. 34 we know lim
n→∞

→
W [n](C, σ) exists for all C and σ. Let W def

=

λ(C, σ). lim
n→∞

→
W [n](C, σ), by Lem. 43 we know lim

→
W = W . By Lem. 7 we

know lim
→
W

(Prog)

= W (Prog). By Lem. 6 we know W (Prog)(skip ‖ · · · ‖ skip) =

lim
n→∞

→
W [n]

(Prog)

(skip ‖ · · · ‖ skip) = 1. FromHistory(init(C, µ), ϕ,
→
W), lim

→
W =

W and W (Prog)(skip ‖ · · · ‖ skip) = 1 we know init(C, µ) ⇓ϕ W . From

|=a {P}C{Q} and µ |= P we have W (State) |= Q. From lim
→
W = W and

W (Prog)(skip ‖ · · · ‖ skip) = 1 by Lem. 29 we know ∀σ. W (State) = lim
n→∞

(skip ‖
· · · ‖ skip, σ). From ∀σ. lim

n→∞
(skip ‖ · · · ‖ skip, σ) = µ′(σ) we know W (State) =

µ′. From W (State) |= Q we have µ′ |= Q.

Definition H.4. Nosplit(C1 ‖ · · · ‖ Cn) if and only if Nosplit(C1) ∧ · · · ∧
Nosplit(Cn).

Definition H.5. Nosplit(W) if and only if ∀(C, σ) ∈ supp(W). Nosplit(C).

Lemma 45. For all C, if Nosplit(C) then nextsplit(C) = split(true).

Proof. by induction on the structure of C.

- case 1: C = 〈C1〉 sp, which contradicts with Nosplit(C).
- case 2: C = C1;C2. IH: if Nosplit(C1) then nextsplit(C1) = split(true).
FromNosplit(C) we knowNosplit(C1), so nextsplit(C) = nextsplit(C1;C2) =
nextsplit(C1) = split(true).

- other cases.
nextsplit(C) = split(true).

Lemma 46. For all W, t, if Nosplit(W) then nextsplit(W, t) = {split(true)}.

Proof. For all W and t such that Nosplit(W), we have

nextsplit(W, t)
= {nextsplit(Ct) | (C1 ‖ · · · ‖ Cn, σ) ∈ supp(W)}
= {nextsplit(Ct) | (C1 ‖ · · · ‖ Cn, σ) ∈ supp(W) ∧Nosplit(C1 ‖ · · · ‖ Cn)} (by Def. H.5)
= {nextsplit(Ct) | (C1 ‖ · · · ‖ Cn, σ) ∈ supp(W) ∧Nosplit(C1) ∧ · · · ∧Nosplit(Cn)} (by Def. H.4)
= {split(true) | (C1 ‖ · · · ‖ Cn, σ) ∈ supp(W) ∧Nosplit(C1) ∧ · · · ∧Nosplit(Cn)} (by Lem. 45)
= {split(true)}

Lemma 47. For all W , W |true = W .

Proof. For all W , W |true = W |λ(C,σ).σ|=true = W |λ(C,σ).true = W . The last step
is by Lem. 5.

Lemma 48. For all W, t,W ′, if nextsplit(W) ⊇ {split(true)}, then W t
;W ′ if

and only if W
t
↪→W ′.

Proof. For allW, t,W ′ such that nextsplit(W) ⊇ {split(true)}, we prove the two
directions respectively.

– if W t
; W ′, from nextsplit(W, t) ⊇ {split(true)} we know nextsplit(W, t) =

{split(true)} or nextsplit(W, t) ⊃ {split(true)}. We prove the two cases
respectively.
• nextsplit(W, t) = {split(true)}.

By Lem. 47 we know W ′|true = W ′. From W
t
; W ′, nextsplit(W, t) =

{split(true)} and W ′|true = W ′ we have W
t
↪→W ′.

• nextsplit(W, t) ⊃ {split(true)}.
#nextsplit(W, t) > 1, so W

t
↪→W ′.

– if W
t
↪→W ′, there are two cases.

• case 1: there existsW ′′, b1, . . . , bk, i such thatW t
;W ′′, nextsplit(W, t) =

{split(b1, . . . , bk)} and W ′′|bi = W ′.
From nextsplit(W, t) ⊇ {split(true)} we know k = i = 1, b1 = true. By
Lem. 47 we know W ′′|true = W ′′, so W ′ = W ′′|bi = W ′′|true = W ′′.
From W

t
;W ′′ we have W t

;W ′.

• case 2: #nextsplit(W) > 1 and W t
;W ′. trivial.

Lemma 49. For all W, t,W ′, if Nosplit(W), then W
t
; W ′ if and only if

W
t
↪→W ′.

Proof. For allW, t,W ′ such thatNosplit(W), by Lem. 46 we know nextsplit(W) =

{split(true)}, so nextsplit(W) ⊇ {split(true)}. By Lem. 48 we know W
t
; W ′

if and only if W
t
↪→W ′.

Lemma 50. For all W,ϕ,
→
W , if History(W,ϕ,

→
W), then

→
W [0] = W .

Proof. For all W,ϕ,
→
W such that History(W,ϕ,

→
W), there exists t, ϕ′,

→
W
′
such

that ϕ = t :: ϕ′,
→
W = W ::

→
W
′
, W

t
↪→ W ′ and History(W ′, ϕ′,

→
W
′
), so

→
W [0] =

(W ::
→
W
′
)[0] = W .

Lemma 51. For all C, σ,C ′, σ′, p, if (C, σ)
p−→ (C ′, σ′) and Nosplit(C), then

Nosplit(C ′).

Proof. by induction on the derivation of (C, σ)
p−→ (C ′, σ′).

- case 1: C = C ′ = skip, σ = σ′, p = 1.
From Nosplit(skip) we know Nosplit(C ′).

- case 2: C = x := e, C ′ = skip, σ′ = σ{x; JeKσ}, p = 1.
From Nosplit(skip) we know Nosplit(C ′).

- case 3: C = skip;C2, C
′ = C2, σ = σ′, p = 1.

From Nosplit(C) we know Nosplit(C2).
- case 4: C = C1;C2, C1 6= skip, C ′ = C ′1;C2, (C1, σ)

p−→ (C ′1, σ
′).

IH: if Nosplit(C1) then Nosplit(C ′1).
From Nosplit(C) we know Nosplit(C1) and Nosplit(C2). By IH we have
Nosplit(C ′1), so Nosplit(C ′1;C2), i.e., Nosplit(C ′).

- case 5: C = if (b) then C1 else C2, JbKσ = tt, C ′ = C1, σ
′ = σ, p = 1.

From Nosplit(C) we know Nosplit(C1) and Nosplit(C2), so Nosplit(C ′).
- case 6: C = if (b) then C1 else C2, JbKσ = ff, C ′ = C2, σ

′ = σ, p = 1.
From Nosplit(C) we know Nosplit(C1) and Nosplit(C2), so Nosplit(C ′).

- case 7: C = while (b) do C1, JbKσ = tt, C ′ = C1;while (b) do C1, σ
′ =

σ, p = 1.
From Nosplit(C) we know Nosplit(C1), so Nosplit(C1;while (b) do C1),
i.e., Nosplit(C ′).

- case 8: C = while (b) do C1, JbKσ = ff, C ′ = skip, σ′ = σ, p = 1.
From Nosplit(skip) we know Nosplit(C ′).

- case 9: C = 〈C1〉, C ′ = skip.
From Nosplit(skip) we know Nosplit(C ′).

- case 10: C = 〈C1〉 sp, C ′ = skip, (〈C1〉, σ)
p−→ (skip, σ′).

C = 〈C1〉 sp contradicts with Nosplit(C).
- case 11: C = 〈C1〉 ⊕p′ 〈C2〉, C ′ = 〈C1〉, σ = σ′, p = p′.
From Nosplit(〈C1〉) we know Nosplit(C ′).

- case 12: C = 〈C1〉 ⊕p′ 〈C2〉, C ′ = 〈C2〉, σ = σ′, p = 1− p′.
From Nosplit(〈C2〉) we know Nosplit(C ′).

Lemma 52. For all C, σ,C′, σ′, t, p, if (C, σ)
p−→
t

(C′, σ′) and Nosplit(C), then
Nosplit(C′).

Proof. For all C, σ,C′, σ′, t, p such that (C, σ)
p−→
t

(C′, σ′) and Nosplit(C), there
exists C1, . . . , Cn, C

′
t such that C = C1 ‖ · · · ‖ Cn, C′ = C1 ‖ . . . Ct−1 ‖

C ′t ‖ Ct+1 ‖ · · · ‖ Cn, and (Ct, σ)
p−→ (C ′t, σ

′). From Nosplit(C) we know
Nosplit(C1) ∧ · · · ∧ Nosplit(Cn). From Nosplit(Ct) and (Ct, σ)

p−→ (C ′t, σ
′)

by Lem. 51 we have Nosplit(C ′t).

Lemma 53. For allW, t,W ′, if Nosplit(W) andW t
;W ′, then Nosplit(W ′).

Proof. For all W, t,W ′ such that Nosplit(W) and W t
;W ′, we know

W ′ = λ(C′, σ′).
∑

C,σ{W (C, σ)·p | (C, σ)
p−→
t

(C′, σ′)}. For all (C′, σ′) ∈ supp(W ′),

we know
∑

C,σ{W (C, σ)·p | (C, σ)
p−→
t

(C′, σ′)} > 0, so there existsW,σ such that

W (C, σ) > 0 ∧ p > 0 ∧ (C, σ)
p−→
t

(C′, σ′). From W (C, σ) > 0 we know (C, σ) ∈

supp(W). From Nosplit(W) we know Nosplit(C). From (C, σ)
p−→
t

(C′, σ′) by
lem. 52 we know Nosplit(C′).

Lemma 54. For allW, t,W ′, if Nosplit(W) andW
t
↪→W ′, then Nosplit(W ′).

Proof. For all W, t,W ′ such that Nosplit(W) and W
t
↪→ W ′, by Lem. 49 we

know W
t
;W ′, by Lem. 53 we have Nosplit(W ′).

Lemma 55. For all n,W,ϕ,
→
W , if History(W,ϕ,

→
W) and Nosplit(W), then

→
W [n]

ϕ[n]
;

→
W [n+ 1].

Proof. by induction on n.

- base case: n = 0.
FromHistory(W,ϕ,

→
W) there exists t, ϕ′,W ′,

→
W
′
such that ϕ = t :: ϕ′,

→
W =

W ::
→
W
′
, W

t
↪→ W ′ and History(W ′, ϕ′,

→
W
′
). From W

t
↪→ W ′ by Lem. 49

we know W
t
; W ′.

→
W [0] = (W ::

→
W
′
)[0] = W . From History(W ′, ϕ′,

→
W
′
)

by Lem. 50 we know
→
W
′
[0] = W ′, so

→
W [1] = (W ::

→
W
′
)[1] =

→
W
′
[0] = W ′.

ϕ[0] = (t :: ϕ′)[0] = t. Therefore
→
W [0]

ϕ[0]
;

→
W [1].

- inductive case: n = k + 1.
IH: for all W,ϕ,

→
W , if History(W,ϕ,

→
W) and Nosplit(W), then

→
W [n]

ϕ[k]
;

→
W [k + 1].

From History(W,ϕ,
→
W) there exists t, ϕ′,W ′,

→
W
′
such that ϕ = t :: ϕ′,

→
W = W ::

→
W
′
, W

t
↪→ W ′ and History(W ′, ϕ′,

→
W
′
). From Nosplit(W) and

W
t
↪→ W ′ by Lem. 54 we know Nosplit(W ′). From History(W ′, ϕ′,

→
W
′
)

by IH we know
→
W
′
[k]

ϕ′[k]
;

→
W
′
[k + 1].

→
W [n] = (W ::

→
W
′
)[k + 1] =

→
W
′
[k].

→
W [n + 1] = (W ::

→
W
′
)[k + 2] =

→
W
′
[k + 1]. ϕ[n] = (t :: ϕ′)[k + 1] = ϕ′[k].

Therefore
→
W [n]

ϕ[n]
;

→
W [n+ 1].

Lemma 56. For all C, µ, if Nosplit(C), then Nosplit(init(C, µ)).

Proof. For all C, µ such thatNosplit(C), we need to prove ∀(C′, σ) ∈ supp(init(C, µ)).Nosplit(C).
For all (C′, σ) ∈ supp(init(C, µ)), we know (δ(C)⊗ µ)(C′, σ) > 0, i.e., δ(C)(C′) ·
µ(σ) > 0, so C′ = C. From Nosplit(C) we have Nosplit(C′).

Lemma 57. For all W,W1,W2, t, if W
t
;W1 and W t

;W2, then W1 = W2.

Proof. From W
t
; W1 we know W1 = λ(C′, σ′).

∑
C,σ{p ·W (C, σ) | (C, σ)

p−→
t

(C′, σ′)}. From W
t
;W2 we know W2 = λ(C′, σ′).

∑
C,σ{p ·W (C, σ) | (C, σ)

p−→
t

(C′, σ′)}. Therefore, W1 = W2.

Definition H.6. Level(C, σ, ϕ, n)
def
= λ(C′, σ′). p,where (C, σ)

p−→
ϕ

n(C′, σ′).

Definition H.7. Level(C, µ, ϕ, n)
def
= Eσ∼µ{Level(C, σ, ϕ, n)}

Lemma 58. For all n,C, σ, ϕ, Level(C, σ, ϕ, n)
ϕ[n]
; Level(C, σ, ϕ, n+ 1).

Proof. by induction on n.

– base case: n = 0.

Level(C, σ, ϕ, 0)

= λ(C′, σ′). p,where (C, σ)
p−→
ϕ

0(C′, σ′)

= λ(C′, σ′).

{
1, if C′ = C ∧ σ′ = σ

0, otherwise
= δ(C, σ).

Level(C, σ, ϕ, 1)

= λ(C′, σ′). p,where (C, σ)
p−→
ϕ

1(C′, σ′)

= λ(C′, σ′). p,where (C, σ)
p−−→
ϕ[0]

(C′, σ′)

= λ(C′, σ′).
∑

C1,σ1
{δ(C, σ)(C1, σ1) · p | (C, σ)

p−−→
ϕ[0]

(C′, σ′)}

= λ(C′, σ′).
∑

C1,σ1
{Level(C, σ, ϕ, 0)((C1, σ1)) · p | (C, σ)

p−−→
ϕ[0]

(C′, σ′)}.

Therefore Level(C, σ, ϕ, 0)
ϕ[0]
; Level(C, σ, ϕ, 1).

– inductive case: n = k + 1.
IH: for all C, σ, ϕ, Level(C, σ, ϕ, k)

ϕ[k]
; Level(C, σ, ϕ, k + 1).

By IH we have for all C, σ, ϕ,C′, σ′,
Level(C, σ, ϕ, k+1)(C′, σ′) =

∑
C1,σ1

{Level(C, σ, ϕ, k)(C1, σ1)·p | (C1, σ1)
p−−→
ϕ[k]

(C′, σ′)}.
By definition of Schedule there exists t and ϕ′ such that ϕ = t :: ϕ′.

Level(C, σ, ϕ, n+ 1)
= Level(C, σ, t :: ϕ′, k + 2)

= λ(C′, σ′). p,where (C, σ) p−−−→
t::ϕ′

k+2(C′, σ′)

= λ(C′, σ′).
∑

C1,σ1
{p1 · p2 | (C, σ)

p1−→
t

(C1, σ1) ∧ (C1, σ1)
p2−→
ϕ′

k+1(C′, σ′)}

= λ(C′, σ′).
∑

C1,σ1
{p1 · Level(C1, σ1, ϕ

′, k + 1)(C′, σ′) | (C, σ) p1−→
t

(C1, σ1)}

= λ(C′, σ′).
∑

C1,σ1
{p1 ·

∑
C′1,σ

′
1
{Level(C1, σ1, ϕ

′, k)(C′1, σ′1) · p | (C′1, σ′1)
p−−−→

ϕ′[k]
(C′, σ′)} | (C, σ) p1−→

t
(C1, σ1)}

= λ(C′, σ′).
∑

C′1,σ
′
1
{
∑

C1,σ1
{p1 · Level(C1, σ1, ϕ

′, k)(C′1, σ′1) | (C, σ)
p1−→
t

(C1, σ1)} · p | (C′1, σ′1)
p−−−→

ϕ′[k]
(C′, σ′)}

= λ(C′, σ′).
∑

C′1,σ
′
1
{
∑

C1,σ1
{p1 · p2 | (C, σ)

p1−→
t

(C1, σ1) ∧ (C1, σ1)
p2−→
ϕ′

k(C′1, σ′1)} · p | (C′1, σ′1)
p−−−→

ϕ′[k]
(C′, σ′)}

= λ(C′, σ′).
∑

C′1,σ
′
1
{p′ · p | (C, σ) p′−−−→

t::ϕ′
k+1(C′1, σ′1) ∧ (C′1, σ′1)

p−−−→
ϕ′[k]

(C′, σ′)}

= λ(C′, σ′).
∑

C′1,σ
′
1
{Level(C, σ, t :: ϕ′, k + 1)(C′1, σ′1) · p | (C′1, σ′1)

p−−−→
ϕ′[k]

(C′, σ′)}

= λ(C′, σ′).
∑

C′1,σ
′
1
{Level(C, σ, ϕ, n)(C′1, σ′1) · p | (C′1, σ′1)

p−−−→
ϕ[n]

(C′, σ′)}.

Therefore Level(C, σ, ϕ, n)
ϕ[n]
; Level(C, σ, ϕ, n+ 1).

Lemma 59. For all n,C, µ, ϕ, Level(C, µ, ϕ, n)
ϕ[n]
; Level(C, µ, ϕ, n+ 1).

Proof. For all n,C, ϕ, µ, by Lem. 58 we know for all σ, Level(C, σ, ϕ, n)
t
;

Level(C, σ, ϕ, n+1), so for all C′, σ′, Level(C, σ, ϕ, n+1)(C′, σ′) =
∑

C1,σ1
{Level(C, σ, ϕ, n)(C1, σ1)·

p | (C1, σ1)
p−−→

ϕ[n]
(C′, σ′)}, thus

Level(C, µ, ϕ, n+ 1)
= Eσ∼µ{Level(C, σ, ϕ, n+ 1)}
= λ(C′, σ′).

∑
σ µ(σ) · Level(C, σ, ϕ, n+ 1)(C′, σ′)

= λ(C′, σ′).
∑
σ µ(σ) ·

∑
C1,σ1

{Level(C, σ, ϕ, n)(C1, σ1) · p | (C1, σ1)
p−−→

ϕ[n]
(C′, σ′)}

= λ(C′, σ′).
∑

C1,σ1
{
∑
σ µ(σ) · Level(C, σ, ϕ, n)(C1, σ1) · p | (C1, σ1)

p−−→
ϕ[n]

(C′, σ′)}

= λ(C′, σ′).
∑

C1,σ1
{Eσ∼µ{Level(C, σ, ϕ, n)}(C1, σ1) · p | (C1, σ1)

p−−→
ϕ[n]

(C′, σ′)}

= λ(C′, σ′).
∑

C1,σ1
{Level(C, µ, ϕ, n)(C1, σ1) · p | (C1, σ1)

p−−→
ϕ[n]

(C′, σ′)}.

Therefore Level(C, µ, ϕ, n)
ϕ[n]
; Level(C, µ, ϕ, n+ 1).

Lemma 60. For all C, µ, ϕ,
→
W , if Nosplit(C) and History(init(C, µ), ϕ,

→
W),

then for all n,
→
W [n] = Level(C, µ, ϕ, n).

Proof. For all C, µ, ϕ,
→
W such that Nosplit(C) and History(init(C, µ), ϕ,

→
W),

there exists t, ϕ′,
→
W
′
such that ϕ = t :: ϕ′,

→
W = init(C, µ) ::

→
W
′
, init(C, µ)

t
↪→

W ′ and History(W ′, ϕ′,
→
W
′
). we prove

→
W [n] = Level(C, µ, ϕ, n) for all n by

induction on n.

- base case: n = 0.→
W [0] = init(C, µ) = δ(C)⊗ µ, and

Level(C, µ, ϕ, 0)

= λ(C′, σ′).
∑
σ{µ(σ) · p | (C, σ)

p−→0(C′, σ′)}
= λ(C′, σ′).

∑
σ{µ(σ) · p | C = C′ ∧ σ = σ′ ∧ p = 1}

= λ(C′, σ′). δ(C)(C′) · µ(σ′)
= δ(C)⊗ µ.

so
→
W [0] = Level(C, µ, ϕ, 0).

- inductive case: n = k + 1.
IH:

→
W [k] = Level(C, µ, ϕ, k).

FromNosplit(C) by lem. 56 we knowNosplit(init(C, µ)). FromHistory(init(C, µ), ϕ,
→
W)

by Lem. 30 we know
→
W [k]

ϕ[k]
;

→
W [k+1]. By Lem. 59 we know Level(C, µ, ϕ, k)

ϕ[k]
;

Level(C, µ, ϕ, k+1), by IH we have
→
W [k]

ϕ[k]
; Level(C, µ, ϕ, k+1). By Lem. 57

we know
→
W [k + 1] = Level(C, µ, ϕ, k + 1).

Lemma 61. For all W and t, there exists W ′ such that W t
;W ′.

Proof. Let W ′ def
= λ(C′, σ′).

∑
C,σ{p ·W (C, σ) | (C, σ)

p−→
t

(C′, σ′)}, by definition

of ; we know W
t
;W ′.

Lemma 62. For all W and b, JPr(b)KW (State) = Pr(C,σ)∼W [σ |= b].

Proof. For all W and b, by Lem. 3 we know JPr(b)KW (State) = Prσ∼W (State) [σ |=
b] =
Pr(C,σ)∼W [σ |= b].

Lemma 63. For all W and b, W |b exists if and only if JPr(b)KW (State) > 0.

Proof. For all W and b, by definition of W |b we know W |b exists if and only
if W |λ(C,σ). σ|=b exists. By Eqn. 2.2 we know W |λ(C,σ). σ|=b exists if and only if
Pr(C,σ)∼W [σ |= b] > 0. By Lem. 62 we know Pr(C,σ)∼W [σ |= b] > 0 if and only
if JPr(b)KW (State) > 0. Therefore, W |b exists if and only if JPr(b)KW (State) > 0.

Lemma 64. For allW and b1, . . . , bk, if validsplit(split(b1, . . . , bk)), then
∑k
i=1JPr(bi)KW (State) =

1.

Proof. For all W and b1, . . . , bk such that validsplit(split(b1, . . . , bk)), we know
for all σ, ∀i, j. i 6= j =⇒ ¬(σ |= bi ∧ σ |= bj) and σ |= b1 ∨ . . . bk, thus∑k

i=1JPr(bi)KW (State)

=
∑k
i=1 Prσ∼W (State) [σ |= bi]

= Prσ∼W (State) [(σ |= b1) ∨ · · · ∨ (σ |= bk)] (by Lem. 1)
= Prσ∼W (State) [σ |= b1 ∨ · · · ∨ bk]
=
∑
σ{W (State)(σ) | σ |= b1 ∨ · · · ∨ bk}

=
∑
σW

(State)(σ)
= |W (State)|
= 1.

Lemma 65. For allW and b1, . . . , bk, if validsplit(split(b1, . . . , bk)), then there
exists i such that W |bi exists.

Proof. For allW and b1, . . . , bk such that validsplit(split(b1, . . . , bk)), by Lem. 63,
we need to prove there exists i such that JPr(bi)KW (State) > 0. We prove it by
contradiction. Assume there is no i such that JPr(bi)KW (State) > 0, i.e., for all i,
JPr(bi)KW (State) = 0, then

∑k
i=1JPr(bi)KW (State) = 0. From validsplit(split(b1, . . . , bk))

by Lem. 64 we know
∑k
i=1JPr(bi)KW (State) = 1, which contradicts with

∑k
i=1JPr(bi)KW (State) =

1. Therefore, there exists i such that JPr(bi)KW (State) > 0.

Lemma 66. For all W and t, there exists W ′ such that W
t
↪→W ′.

Proof. For allW and t, by Lem. 61 we know there existsW ′′ such thatW t
;W ′′.

It is obvious that #nextsplit(W) = 1 ∨ #nextsplit(W) > 1. We prove the two
cases respectively.

- case 1: #nextsplit(W) = 1.
There exists b1, . . . , bk such that nextsplit(W) = {split(b1, . . . , bk)} and
validsplit(split(b1, . . . , bk)).
By Lem. 65 we know there exists i such that W ′′|bi exists. Let W ′

def
= W ′′|bi ,

fromW
t
;W ′′, nextsplit(W) = {split(b1, . . . , bk)}, validsplit(split(b1, . . . , bk))

and W ′′|bi = W ′ we know W
t
↪→W ′.

- case 2: #nextsplit(W) > 1.
From W

t
;W ′′ and #nextsplit(W) > 1 we have W

t
↪→W ′′. Let W ′ def

= W ′′,

then W
t
↪→W ′.

Lemma 67. For all W0 and ϕ, there exists
→
W such that History(W0, ϕ,

→
W).

Proof. by coinduction. From the definition of Schedule, there exists t and ϕ′

such that ϕ = t :: ϕ′. By Lem. 66, there exists W1 such that W0
t
↪→ W1. By

coinduction hypothesis there eixsts
→
W 1 such that History(W1|bi , ϕ′,

→
W 1). From

W0
t
↪→ W1|bi we have History(W0, t :: ϕ′,W0 ::

→
W 1). Let

→
W

def
= W0 ::

→
W 1, then

History(W0, ϕ,
→
W).

Lemma 68. For all P,C, Q, if |=A {P}C{Q} and Nosplit(C), then |= {P}C{Q}.

Proof. For all P,C, Q such that |=A {P}C{Q} and Nosplit(C), by Lem. 44 we
know |=A′ {P}C{Q}. We need to prove for all µ and ϕ such that µ |= P and

|JCKϕ(µ)| = 1, then JCKϕ(µ) |= Q. By Lem. 67 we know there exists
→
W such that

History(init(C, µ), ϕ,
→
W). By Lem. 60 we have ∀n.

→
W [n] = Level(C, µ, ϕ, n).

Therefore ∀n.
→
W [n]

(Prog)

(skip ‖ · · · ‖ skip) = Level(C, µ, ϕ, n)
(Prog)

(skip ‖
· · · ‖ skip), so

lim
n→∞

→
W [n]

(Prog)

(skip ‖ · · · ‖ skip)

= lim
n→∞

Level(C, µ, ϕ, n)
(Prog)

(skip ‖ · · · ‖ skip)

= lim
n→∞

∑
σ′ Level(C, µ, ϕ, n)(skip ‖ · · · ‖ skip, σ′)

= lim
n→∞

∑
σ′ Eσ∼µ[p | (C, σ)

p−→
ϕ

n(skip ‖ · · · ‖ skip, σ′)]

=
∑
σ′ lim
n→∞

Eσ∼µ[p | (C, σ)
p−→
ϕ

n(skip ‖ · · · ‖ skip, σ′)]

=
∑
σ′ Eσ∼µ[lim

n→∞
p | (C, σ)

p−→
ϕ

n(skip ‖ · · · ‖ skip, σ′)]
=
∑
σ′ Eσ∼µ[JCKϕ(σ)(σ′)]

=
∑
σ′ Eσ∼µ{JCKϕ(σ)}(σ′)

=
∑
σ′JCKϕ(µ)(σ′)

= |JCKϕ(µ)|
= 1.

From ∀n.
→
W [n] = Level(C, µ, ϕ, n) we know ∀σ′, n.

→
W [n](skip ‖ · · · ‖ skip, σ′) =

Level(C, µ, ϕ, n)(skip ‖ · · · ‖ skip, σ′), so

lim
n→∞

→
W [n](skip ‖ · · · ‖ skip, σ′)

= lim
n→∞

Level(C, µ, ϕ, n)(skip ‖ · · · ‖ skip, σ′)

= lim
n→∞

Eσ∼µ[p | (C, σ)
p−→
ϕ

n(skip ‖ · · · ‖ skip, σ′)]

= Eσ∼µ[lim
n→∞

p | (C, σ)
p−→
ϕ

n(skip ‖ · · · ‖ skip, σ′)]
= Eσ∼µ[JCKϕ(σ)(σ′)]
= Eσ∼µ{JCKϕ(σ)}(σ′)
= JCKϕ(µ)(σ′)

holds for all σ′.
Therefore init(C, µ) ⇓ϕ JCKϕ(µ). From µ |= P and |=a′ {P}C{Q} we know
JCKϕ(µ) |= Q.

Lemma 69. For all C, σ,C ′, σ′, p, if (RemoveSplit(C), σ)
p−→ (C ′, σ′), then

there exists unique C ′′ such that (C, σ)
p−→ (C ′′, σ′) ∧ C ′ = RemoveSplit(C ′′).

Proof. by induction on the structure of C.

- case 1: C = skip.
RemoveSplit(C) = skip. From (RemoveSplit(C), σ)

p−→ (C ′, σ′) we know
C ′ = skip, σ′ = σ, p = 1. Let C ′′ def

= skip, so RemoveSplit(C ′′) = skip =
C ′.
From (skip, σ)

1−→ (skip, σ) we have (C, σ)
p−→ (C ′′, σ′).

- case 2: C = x := e.
RemoveSplit(C) = x := e. From (RemoveSplit(C), σ)

p−→ (C ′, σ′) we
know
C ′ = skip, σ′ = σ{x; JeKσ}, p = 1. Let C ′′ def

= skip, soRemoveSplit(C ′′) =
skip = C ′.
From (x := e, σ)

1−→ (skip, σ{x; JeKσ}) we have (C, σ)
p−→ (C ′′, σ′).

- case 3: C = C1;C2.
IH: For all σ,C ′, σ′, p, if (RemoveSplit(C1), σ)

p−→ (C ′, σ′), then there exists
unique C ′′ such that (C1, σ)

p−→ (C ′′, σ′) ∧ C ′ = RemoveSplit(C ′′).
It is obvious that C1 = skip∨C1 6= skip, we prove the two cases respectively.
* case 3.1: C1 = skip.
RemoveSplit(C) = RemoveSplit(skip;C2) = skip;RemoveSplit(C2).
From (RemoveSplit(C), σ)

p−→ (C ′, σ′) we know C ′ = RemoveSplit(C2), σ′ =
σ, p = 1.
Let C ′′ def

= C2, so RemoveSplit(C ′′) = RemoveSplit(C2) = C ′.
From (skip;C2, σ)

1−→ (C2, σ) we have (C, σ)
p−→ (C ′′, σ′).

* case 3.2: C1 6= skip.
RemoveSplit(C) = RemoveSplit(C1;C2) = RemoveSplit(C1);RemoveSplit(C2).
From C1 6= skip we knowRemoveSplit(C1) 6= skip. From (RemoveSplit(C), σ)

p−→
(C ′, σ′) we know there exists unique C ′1 such that C ′ = C ′1;RemoveSplit(C2)
and
(RemoveSplit(C1), σ)

p−→ (C ′1, σ
′), by IH there exists unique C ′′1 such

that
(C1, σ)

p−→ (C ′′1 , σ
′) ∧ C ′ = RemoveSplit(C ′′1).

Let C ′′ def
= C ′′1 ;C2, soRemoveSplit(C ′′) = RemoveSplit(C ′′1);RemoveSplit(C2) =

C ′1;RemoveSplit(C2) = C ′.
From (C1, σ)

p−→ (C ′′1 , σ
′) and C1 6= skip we have (C1;C2, σ)

p−→ (C ′′1 ;C2, σ
′),

so (C, σ)
p−→ (C ′′, σ′).

- case 4: C = if (b) then C1 else C2.
RemoveSplit(C) = if (b) thenRemoveSplit(C1) elseRemoveSplit(C2).
It is obvious that JbKσ = tt ∨ JbKσ = ff, we prove the two cases respectively.
* case 4.1: JbKσ = tt.

From (RemoveSplit(C), σ)
p−→ (C ′, σ′) we know C ′ = RemoveSplit(C1), σ′ =

σ, p = 1. Let C ′′ def
= C1, so RemoveSplit(C ′′) = RemoveSplit(C1) =

C ′. From JbKσ = tt we know (if (b) then C1 else C2, σ)
1−→ (C1, σ), so

(C, σ)
p−→ (C ′′, σ′).

* case 4.2: JbKσ = ff.
From (RemoveSplit(C), σ)

p−→ (C ′, σ′) we know C ′ = RemoveSplit(C2), σ′ =

σ, p = 1. Let C ′′ def
= C2, so RemoveSplit(C ′′) = RemoveSplit(C2) =

C ′. From JbKσ = ff we know (if (b) then C1 else C2, σ)
1−→ (C2, σ), so

(C, σ)
p−→ (C ′′, σ′).

- case 5: C = while (b) do C1.
RemoveSplit(C) = while (b) do RemoveSplit(C1).
It is obvious that JbKσ = tt ∨ JbKσ = ff, we prove the two cases respectively.
* case 5.1: JbKσ = tt.

From (RemoveSplit(C), σ)
p−→ (C ′, σ′) we know

C ′ = RemoveSplit(C1);while (b) do RemoveSplit(C1), σ′ = σ, p =
1.
Let C ′′ def

= C1;while (b) do C1, so RemoveSplit(C ′′) =
RemoveSplit(C1);while (b) do RemoveSplit(C1) = C ′.
From JbKσ = tt we know (while (b) do C1, σ)

1−→ (C1;while (b) do C1, σ),
so (C, σ)

p−→ (C ′′, σ′).
* case 5.2: JbKσ = ff.

From (RemoveSplit(C), σ)
p−→ (C ′, σ′) we know C ′ = skip, σ′ = σ, p =

1.
Let C ′′ def

= skip, so RemoveSplit(C ′′) = skip.
From JbKσ = ff we know (while (b) do C1, σ)

1−→ (skip, σ), so (C, σ)
p−→

(C ′′, σ′).
- case 6: C = 〈C1〉.
RemoveSplit(C) = 〈C1〉 = C. From (RemoveSplit(C), σ)

p−→ (C ′, σ′) we
know C ′ = skip. Let C ′′ def

= skip, then RemoveSplit(C ′′) = skip = C ′ and
(C, σ)

p−→ (C ′′, σ′).
- case 7: C = 〈C1〉 sp.
RemoveSplit(C) = 〈C1〉. From (RemoveSplit(C), σ)

p−→ (C ′, σ′) we know
C ′ = skip,
so (〈C1〉, σ)

p−→ (skip, σ′). Let C ′′ def
= skip, then RemoveSplit(C ′′) =

skip = C ′.
From (〈C1〉, σ)

p−→ (skip, σ′) we know (〈C1〉 sp, σ)
p−→ (skip, σ′), so (C, σ)

p−→
(C ′′, σ′).

- case 8: C = 〈C1〉 ⊕p′ 〈C2〉.
RemoveSplit(C) = 〈C1〉 ⊕p′ 〈C2〉 = C. From (RemoveSplit(C), σ)

p−→

(C ′, σ′) we know
C ′ = 〈C1〉 ∧ p = p′ ∧ σ′ = σ or C ′ = 〈C2〉 ∧ p = 1− p′ ∧ σ′ = σ.
We prove the two cases respectively.
* case 8.1: C ′ = 〈C1〉 ∧ p = p′ ∧ σ′ = σ.

Let C ′′ = 〈C1〉, then RemoveSplit(C ′′) = 〈C1〉 = C ′. From (〈C1〉 ⊕p′

〈C2〉, σ)
p′−→ (〈C1〉, σ) we know (C, σ)

p−→ (C ′′, σ′).
* case 8.1: C ′ = 〈C2〉 ∧ p = 1− p′ ∧ σ′ = σ.

Let C ′′ = 〈C2〉, then RemoveSplit(C ′′) = 〈C2〉 = C ′. From (〈C1〉 ⊕p′

〈C2〉, σ)
1−p′−−−→ (〈C2〉, σ) we know (C, σ)

p−→ (C ′′, σ′).

Lemma 70. For all C, σ,C ′, σ′, p, if (C, σ)
p−→ (C ′, σ′), then

(RemoveSplit(C), σ)
p−→ (RemoveSplit(C ′), σ′).

Proof. by induction on the derivation of (C, σ)
p−→ (C ′, σ′).

- case 1: C = C ′ = skip, σ = σ′, p = 1.
RemoveSplit(C) = RemoveSplit(C ′) = skip.
From (skip, σ)

1−→ (skip, σ) we know (RemoveSplit(C), σ)
p−→ (RemoveSplit(C ′), σ′).

- case 2: C = x := e, C ′ = skip, σ′ = σ{x; JeKσ}, p = 1.
RemoveSplit(C) = x := e. RemoveSplit(C ′) = skip.
From (x := e, σ)

1−→ (skip, σ{x; JeKσ}) we know
(RemoveSplit(C), σ)

p−→ (RemoveSplit(C ′), σ′).
- case 3: C = skip;C2, C

′ = C2, σ = σ′, p = 1.
RemoveSplit(C) = skip;RemoveSplit(C2).RemoveSplit(C ′) = RemoveSplit(C2).
From (skip;RemoveSplit(C2), σ)

1−→ (RemoveSplit(C2), σ) we know
(RemoveSplit(C), σ)

p−→ (RemoveSplit(C ′), σ′).
- case 4: C = C1;C2, C1 6= skip, C ′ = C ′1;C2, (C1, σ)

p−→ (C ′1, σ
′).

IH: (RemoveSplit(C1), σ)
p−→ (RemoveSplit(C ′1), σ′).

RemoveSplit(C) = RemoveSplit(C1);RemoveSplit(C2).
RemoveSplit(C ′) = RemoveSplit(C ′1);RemoveSplit(C2).
From C1 6= skip we know RemoveSplit(C1) 6= skip.
From (RemoveSplit(C1), σ)

p−→ (RemoveSplit(C ′1), σ′) we know
(RemoveSplit(C1);RemoveSplit(C2), σ)

p−→ (RemoveSplit(C ′1);RemoveSplit(C2), σ),
so
(RemoveSplit(C), σ)

p−→ (RemoveSplit(C ′), σ′).
- case 5: C = if (b) then C1 else C2, JbKσ = tt, C ′ = C1, σ

′ = σ, p = 1.
RemoveSplit(C) = if (b) thenRemoveSplit(C1) elseRemoveSplit(C2).
RemoveSplit(C ′) = RemoveSplit(C1).
From JbKσ = tt we know
(if (b) thenRemoveSplit(C1) elseRemoveSplit(C2), σ)

1−→ (RemoveSplit(C1), σ),
so
(RemoveSplit(C), σ)

p−→ (RemoveSplit(C ′), σ′).
- case 6: C = if (b) then C1 else C2, JbKσ = ff, C ′ = C2, σ

′ = σ, p = 1.
RemoveSplit(C) = if (b) thenRemoveSplit(C1) elseRemoveSplit(C2).

RemoveSplit(C ′) = RemoveSplit(C2).
From JbKσ = ff we know
(if (b) thenRemoveSplit(C1) elseRemoveSplit(C2), σ)

1−→ (RemoveSplit(C2), σ),
so
(RemoveSplit(C), σ)

p−→ (RemoveSplit(C ′), σ′).
- case 7: C = while (b) do C1, JbKσ = tt, C ′ = C1;while (b) do C1, σ

′ =
σ, p = 1.
RemoveSplit(C) = while (b) do RemoveSplit(C1).
RemoveSplit(C ′) = RemoveSplit(C1);while (b) do RemoveSplit(C1).
From JbKσ = tt we know
(while (b) doRemoveSplit(C1), σ)

1−→ (RemoveSplit(C1);while (b) doRemoveSplit(C1), σ),
so (RemoveSplit(C), σ)

p−→ (RemoveSplit(C ′), σ′).
- case 8: C = while (b) do C1, JbKσ = ff, C ′ = skip, σ′ = σ, p = 1.
RemoveSplit(C) = while (b) do RemoveSplit(C1).
RemoveSplit(C ′) = skip;.
From JbKσ = ff we know (while (b) do RemoveSplit(C1), σ)

1−→ (skip, σ),
so (RemoveSplit(C), σ)

p−→ (RemoveSplit(C ′), σ′).
- case 9: C = 〈C1〉, C ′ = skip.
RemoveSplit(C) = 〈C1〉 = C. RemoveSplit(C ′) = skip = C ′.
From (C, σ)

p−→ (C ′, σ′) we know (RemoveSplit(C), σ)
p−→ (RemoveSplit(C ′), σ′).

- case 10: C = 〈C1〉 sp, C ′ = skip, (〈C1〉, σ)
p−→ (skip, σ′).

RemoveSplit(C) = 〈C1〉. RemoveSplit(C ′) = skip.
From (〈C1〉, σ)

p−→ (skip, σ′) we know (RemoveSplit(C), σ)
p−→ (RemoveSplit(C ′), σ′).

- case 11: C = 〈C1〉 ⊕p′ 〈C2〉, C ′ = 〈C1〉, σ = σ′, p = p′.
RemoveSplit(C) = 〈C1〉 ⊕p′ 〈C2〉. RemoveSplit(C ′) = 〈C1〉.
From (〈C1〉 ⊕p′ 〈C2〉, σ)

p′−→ (〈C1〉, σ) we know (RemoveSplit(C), σ)
p−→

(RemoveSplit(C ′), σ′).
- case 12: C = 〈C1〉 ⊕p′ 〈C2〉, C ′ = 〈C2〉, σ = σ′, p = 1− p′.
RemoveSplit(C) = 〈C1〉 ⊕p′ 〈C2〉. RemoveSplit(C ′) = 〈C2〉.
From (〈C1〉 ⊕p′ 〈C2〉, σ)

1−p′−−−→ (〈C2〉, σ) we know (RemoveSplit(C), σ)
p−→

(RemoveSplit(C ′), σ′).

Lemma 71. For all t,C, σ,C′, σ′, p, (RemoveSplit(C), σ)
p−→
t

(C′, σ′) iff there

exists unique C′′ such that (C, σ)
p−→
t

(C′′, σ′) ∧ C′ = RemoveSplit(C′′).

Proof. First we prove if (RemoveSplit(C), σ)
p−→
t

(C′, σ′), then there exists

unique C′′ such that (C, σ)
p−→
t

(C′′, σ′) ∧ C′ = RemoveSplit(C′′). By defi-
nition of Prog, there exists unique C1, . . . , Cn such that C = C1 ‖ · · · ‖ Cn,
so RemoveSplit(C) = RemoveSplit(C1) ‖ · · · ‖ RemoveSplit(Cn). From
RemoveSplit(C1) ‖ · · · ‖ RemoveSplit(Cn)

p−→
t

(C ′, σ′) we know there exists
unique C ′t such that C′ = RemoveSplit(C1) ‖ · · · ‖ RemoveSplit(Ct−1) ‖ C ′t ‖
RemoveSplit(Ct+1) ‖ · · · ‖ RemoveSplit(Cn) and (RemoveSplit(Ct), σ)

p−→

(C ′t, σ
′). By Lem. 69 we know there exists unique C ′′t such that (Ct, σ)

p−→
(C ′′t , σ

′) ∧ C ′t = RemoveSplit(C ′′t). Let C′′ def
= C1 ‖ · · · ‖ Ct−1 ‖ C ′′t ‖

Ct+1 ‖ · · · ‖ Cn. From (Ct, σ)
p−→ (C ′′t , σ

′) we know (C1 ‖ · · · ‖ Cn, σ)
p−→
t

(C1 ‖ · · · ‖ Ct−1 ‖ C ′′t ‖ Ct+1 ‖ · · · ‖ Cn, σ′), i.e., (C, σ)
p−→
t

(C′′, σ′). From C ′t =

RemoveSplit(C ′′t) we know

RemoveSplit(C′′)
= RemoveSplit(C1 ‖ · · · ‖ Ct−1 ‖ C ′t ‖ Ct+1 ‖ · · · ‖ Cn)
= RemoveSplit(C1) ‖ · · · ‖ RemoveSplit(Ct−1) ‖ RemoveSplit(C ′′t) ‖

RemoveSplit(Ct+1) ‖ · · · ‖ RemoveSplit(Cn)
= RemoveSplit(C1) ‖ · · · ‖ RemoveSplit(Ct−1) ‖ C ′t ‖

RemoveSplit(Ct+1) ‖ · · · ‖ RemoveSplit(Cn)
= C′.

Then we prove if there exists unique C′′ such that (C, σ)
p−→
t

(C′′, σ′) ∧

C′ = RemoveSplit(C′′), then (RemoveSplit(C), σ)
p−→
t

(C′, σ′). From (C, σ)
p−→
t

(C′′, σ′) we know there exists C1, . . . , Cn, C
′
t such that C = C1 ‖ · · · ‖ Cn,

C′′ = C1 ‖ · · · ‖ Ct−1 ‖ C ′′t ‖ Ct+1 ‖ · · · ‖ Cn and (Ct, σ)
p−→
t

(C ′′t , σ
′). From

C = C1 ‖ · · · ‖ Cn we know RemoveSplit(C) = RemoveSplit(C1) ‖ · · · ‖
RemoveSplit(Cn). From C′′ = C1 ‖ · · · ‖ Ct−1 ‖ C ′′t ‖ Ct+1 ‖ · · · ‖ Cn we
know RemoveSplit(C′′) = RemoveSplit(C1) ‖ · · · ‖ RemoveSplit(Ct−1) ‖
RemoveSplit(C ′′t) ‖ RemoveSplit(Ct+1) ‖ · · · ‖ RemoveSplit(Cn). From
(Ct, σ)

p−→
t

(C ′′t , σ
′) by Lem. 70 we have (RemoveSplit(Ct), σ)

p−→

(RemoveSplit(C ′′t), σ′), so (RemoveSplit(C), σ)
p−→
t

(RemoveSplit(C′′), σ′).

From C′ = RemoveSplit(C′′) we know (RemoveSplit(C), σ)
p−→
t

(C′, σ′).

Lemma 72. For all n, ϕ,C, σ, σ′, p, (RemoveSplit(C), σ)
p−→
ϕ

n(skip ‖ · · · ‖

skip, σ′) ⇐⇒ (C, σ)
p−→
ϕ

n(skip ‖ · · · ‖ skip, σ′).

Proof. by induction on n.

- base case: n = 0.

(RemoveSplit(C), σ)
p−→
ϕ

0(skip ‖ · · · ‖ skip, σ′)
⇐⇒ (RemoveSplit(C) = skip ‖ · · · ‖ skip ∧ σ = σ′ ∧ p = 1) ∨

((RemoveSplit(C) 6= skip ‖ · · · ‖ skip ∨ σ 6= σ′) ∧ p = 0)
⇐⇒ (C = skip ‖ · · · ‖ skip ∧ σ = σ′ ∧ p = 1) ∨

((C 6= skip ‖ · · · ‖ skip ∨ σ 6= σ′) ∧ p = 0)

⇐⇒ (C, σ)
p−→
ϕ

0(skip ‖ · · · ‖ skip, σ′)

- inductive case: n = k+ 1. IH: For all ϕ,C, σ, σ′, p, (RemoveSplit(C), σ)
p−→
ϕ

k(skip ‖ · · · ‖ skip, σ′) ⇐⇒ (C, σ)
p−→
ϕ

k(skip ‖ · · · ‖ skip, σ′).

By definition of Schedule, there exists t and ϕ′ that ϕ = t :: ϕ′.

(RemoveSplit(C), σ) p−→
ϕ

n(skip ‖ · · · ‖ skip, σ′)

⇐⇒ (RemoveSplit(C), σ) p−−−→
t::ϕ′

k+1(skip ‖ · · · ‖ skip, σ′)

⇐⇒ p =
∑

C′,σ′′{p1 · p2 | (RemoveSplit(C), σ) p1−→
t

(C′, σ′′) ∧ (C′, σ′′) p2−→
ϕ′

k(skip ‖ · · · ‖ skip, σ′)}

⇐⇒ p =
∑

C′,σ′′{p1 · p2 | ∃!C
′′. (C, σ) p−→

t
(C′′, σ′′) ∧ C′ = RemoveSplit(C′′) ∧

(C′, σ′′) p2−→
ϕ′

k(skip ‖ · · · ‖ skip, σ′)} (by Lem. 71)

⇐⇒ p =
∑

C′′,σ′′{p1 · p2 | (C, σ)
p1−→
t

(C′′, σ′′) ∧ (RemoveSplit(C′′), σ′′) p2−→
ϕ′

k(skip ‖ · · · ‖ skip, σ′)}

⇐⇒ p =
∑

C′′,σ′′{p1 · p2 | (C, σ)
p1−→
t

(C′′, σ′′) ∧ (C′′, σ′′) p2−→
ϕ′

k(skip ‖ · · · ‖ skip, σ′)} (by IH)

⇐⇒ (C, σ) p−−−→
t::ϕ′

k+1(skip ‖ · · · ‖ skip, σ′)

⇐⇒ (C, σ) p−→
ϕ

n(skip ‖ · · · ‖ skip, σ′)

Lemma 73. For all C, σ, JRemoveSplit(C)Kϕ(σ) = JCKϕ(σ).

Proof. For any C, σ, we have

JRemoveSplit(C)Kϕ(σ)

= λσ′. lim
→
p , where ∀n. (RemoveSplit(C), σ)

→
p [n]−−−→
ϕ

n(skip ‖ · · · ‖ skip, σ′) (by definition)

= λσ′. lim
→
p , where ∀n. (C, σ)

→
p [n]−−−→
ϕ

n(skip ‖ · · · ‖ skip, σ′) (by Lem. 72)

= JCKϕ(σ) (by definition)

Lemma 74. For all C, µ, JRemoveSplit(C)Kϕ(µ) = JCKϕ(µ).

Proof. For any C, µ, we have

JRemoveSplit(C)Kϕ(µ)
= Eσ∼µ{JRemoveSplit(C)Kϕ(σ)} (by definition)
= Eσ∼µ{JCKϕ(σ)} (by Lem. 73)
= JCKϕ(µ) (by definition)

Lemma 75. For all P,C, Q, if |= {P}RemoveSplit(C){Q}, then |= {P}C{Q}.

Proof. For any P,C, Q such that |= {P}RemoveSplit(C){Q}, we need to prove
for all µ and ϕ, if µ |= P and |JCKϕ(µ)| = 1, then JCKϕ(µ) |= Q. By Lem. 74
we know JRemoveSplit(C)Kϕ(µ) = JCKϕ(µ), so |JRemoveSplit(C)Kϕ(µ)| =
|JCKϕ(µ)| = 1. From µ |= P and |= {P}RemoveSplit(C){Q} we have JRemoveSplit(C)Kϕ(µ) |=
Q, so JCKϕ(µ) |= Q.

H.3 Proof of Theorem 5.1

Proof (Proof of Theorem 5.1). For any P,C, Q such that `a {P}C{Q}, we prove
|=A {P}C{Q} by induction on the derivation of `a {P}C{Q}.

– case (p-csq): P ⇒ P1, `a {P1}C{Q1} and Q1 ⇒ Q.
From `a {P1}C{Q1} by induction hypothesis we have |=a {P1}C{Q1}. From
P ⇒ P1 and Q1 ⇒ Q by Lem. 157 we know |=a {P}C{Q}.

– case (bigconj): P = P1 ∧ · · · ∧ Pn, Q = Q1 ∧ · · · ∧Qn, `a {P1}C{Q1}, . . . ,
`a {Pn}C{Qn}.
From `a {P1}C{Q1}, . . . , `a {Pn}C{Qn} by induction hypothesis we have
|=a {P1}C{Q1}, . . . , |=a {Pn}C{Qn}. By Lem. 158 we know |=a {P1 ∧ · · · ∧
Pn}C{Q1 ∧ · · · ∧Qn}, i.e., |=a {P}C{Q}.

– case (bigdisj): P = P1 ∨ · · · ∨ Pn, Q = Q1 ∨ · · · ∨Qn, `a {P1}C{Q1}, . . . ,
`a {Pn}C{Qn}.
From `a {P1}C{Q1}, . . . , `a {Pn}C{Qn} by induction hypothesis we have
|=a {P1}C{Q1}, . . . , |=a {Pn}C{Qn}. By Lem. 159 we know |=a {P1 ∨ · · · ∨
Pn}C{Q1 ∨ · · · ∨Qn}, i.e., |=a {P}C{Q}.

– case (removesplit): C = RemoveSplit(C ′), `a {P}C ′{Q} and closed(Q).
From `a {P}C ′{Q} by induction hypothesis we have |=a {P}C ′{Q}. From
closed(Q) by Lem. 92 we know |=a {P}RemoveSplit(C ′){Q}, i.e., |=a
{P}C{Q}.

– case (lazycoin): `a {P}lazycoin(C){Q}.
From `a {P}lazycoin(C){Q} by Lem. 156 we have |=a {P}lazycoin(C){Q}.

– case (par): C = C1 ‖ · · · ‖ Cn, P ⇒ P1 ∧ · · · ∧ Pn, Q1 ∧ · · · ∧ Qn ⇒ Q,
R1, G1, I `nst {P1}C1{Q1}, . . . , Rn, Gn, I `nst {Pn}C1{Qn}, Gj ⇒ Ri for
all i 6= j, lclosed(I), lclosed(Q1), . . . , lclosed(Qn). From R1, G1, I `nst
{P1}C1{Q1}, . . . ,Rn, Gn, I `nst {Pn}C1{Qn} by Lem. 304 we knowR1, G1, I |=nst
{P1}C1{Q1}, . . . , Rn, Gn, I |=nst {Pn}C1{Qn}. By Lem. 177 we have |=a
{P}lazycoin(C){Q}.

The remainder of this section gives the proofs of the lemmas used in the
proof of Theorem 5.1.

Definition H.8. GivenW,ϕ, Γ such thatHistoryT (1,W, ϕ, Γ). Let s be an in-
finite sequence of natural numbers. We writeW ⇓sϕ µ if and only if lim

n→∞
traverse(Γ, s, n)

(Prog)
(skip ‖

· · · ‖ skip) = 1 and ∀σ. lim
n→∞

traverse(Γ, s, n)(skip ‖ · · · ‖ skip, σ) = µ(σ).

Definition H.9. |=AT {P}C{Q} iff for all µ, if µ |= P , then for all ϕ, s, and
µ′, if init(C, µ) ⇓sϕ µ′, then µ′ |= Q.

Lemma 76. For all p,W,ϕ, Γ, s, if HistoryT (p,W,ϕ, Γ), then History(W,ϕ, λn.traverse(Γ, s, n)).

Proof. by coinduction. For all p,W,ϕ, Γ, s such thatHistoryT (p,W,ϕ, Γ), there
are two cases.

– ϕ = t :: ϕ′, Γ = Tree(p,W, Γ0, . . . , Γk), W t
; W ′, nextsplit(W, t) = {sp},

splitter(W ′, sp) = {(W0, p0), . . . , (Wk, pk)} and ∀i.HistoryT (p·pi,Wi, ϕ
′, Γi).

It is obvious that there existsm and s′ such that s = m :: s′ andm ≤ k. From
W

t
; W ′ and #nextsplit(W, t) > 1 we know W

t
↪→ W ′. from HistoryT (p ·

splitter(W, sp) ::= {(W |bi , JPr(bi)KW (State)) | 1 ≤ i ≤ k ∧ JPr(bi)KW (State) > 0},where sp = split(b1, . . . , bk)
Γ ::= Tree(p,W, Γ0, . . . , Γk) (coinductive)
s ::= n :: s (coinductive)

traverse(Γ, s, n) def
=

W, if Γ = Tree(p,W, Γ0, . . . , Γk) ∧ n = 0

traverse(Γm, s′, n′), if Γ = Tree(p,W, Γ0, . . . , Γk) ∧ s = m :: s′ ∧ n = n′ + 1 ∧m ≤ k
undefined, if Γ = Tree(p,W, Γ0, . . . , Γk) ∧ s = m :: s′ ∧ n = n′ + 1 ∧m > k

zeros def
= 0 :: zeros

prob(Γ, s, n) def
=

p, if Γ = Tree(p,W, Γ0, . . . , Γk) ∧ n = 0 ∧ s = zeros
0, if Γ = Tree(p,W, Γ0, . . . , Γk) ∧ n = 0 ∧ s 6= zeros
prob(Γm, s′, n′), if Γ = Tree(p,W, Γ0, . . . , Γk) ∧ s = m :: s′ ∧ n = n′ + 1 ∧m ≤ k
undefined, if Γ = Tree(p,W, Γ0, . . . , Γk) ∧ s = m :: s′ ∧ n = n′ + 1 ∧m > k

W
t
;W ′ nextsplit(W, t) = {sp} splitter(W ′, sp) = {(W0, p0), . . . , (Wk, pk)} ∀i. HistoryT (p · pi,Wi, ϕ, Γi)

HistoryT (p,W, t :: ϕ,Tree(p,W, Γ0, . . . , Γk))
===

W
t
;W ′ #nextsplit(W, t) > 1 HistoryT (p,W

′, ϕ, Γ)

HistoryT (p,W, t :: ϕ,Tree(p,W, Γ))
==

Fig. 33: Auxiliary Definitions in Def. H.8

pm,Wm, ϕ
′, Γm) by coinduction hypothesis we knowHistory(Wm, ϕ

′, λn.traverse(Γ ′, s, n)),
thus History(W, t :: ϕ′,W :: λn.traverse(Γm, s′, n)). From ϕ = t :: ϕ′ and

λn.traverse(Γ, s, n)
= λn.traverse(Tree(p,W, Γ1, . . . , Γk),m :: s′, n)

= λn.

{
W, if n = 0

traverse(Γm, s′, n′), if n = n′ + 1

= W :: λn.traverse(Γm, s′, n)

we know History(W,ϕ, λn.traverse(Γ, s, n)).
– ϕ = t :: ϕ′, Γ = Tree(p,W, Γ ′), W t

; W ′, #nextsplit(W, t) > 1 and
HistoryT (p,W ′, ϕ′, Γ ′).
It is obvious that there exists s′ such that s = 0 :: s′. From W

t
; W ′ and

#nextsplit(W, t) > 1 we know W
t
↪→ W ′. From HistoryT (p,W ′, ϕ′, Γ ′) by

coinduction hypothesis we know History(W ′, ϕ′, λn.traverse(Γ ′, s, n)), thus
History(W, t :: ϕ′,W :: λn.traverse(Γ ′, s′, n)). From ϕ = t :: ϕ′ and

λn.traverse(Γ, s, n)
= λn.traverse(Tree(p,W, Γ ′), 0 :: s′, n)

= λn.

{
W, if n = 0

traverse(Γ ′, s′, n′), if n = n′ + 1

= W :: λn.traverse(Γ ′, s′, n)

we know History(W,ϕ, λn.traverse(Γ, s, n)).

Lemma 77. For all W,ϕ, s, µ, if W ⇓sϕ µ, then W ⇓′ϕ µ.

Proof. For all W,ϕ, s, µ such that W ⇓sϕ µ, by Def. H.8 we know there exists Γ
such that HistoryT (1,W, ϕ, Γ), lim

n→∞
traverse(Γ, s, n)

(Prog)
(skip ‖ · · · ‖ skip) =

1 and
∀σ. lim

n→∞
traverse(Γ, s, n)(skip ‖ · · · ‖ skip, σ) = µ(σ). FromHistoryT (1,W, ϕ, Γ)

by Lem. 76 we knowHistory(W,ϕ, λn.traverse(Γ, s, n)). From lim
n→∞

traverse(Γ, s, n)
(Prog)

(skip ‖
· · · ‖ skip) = 1 and ∀σ. lim

n→∞
traverse(Γ, s, n)(skip ‖ · · · ‖ skip, σ) = µ(σ) we

know W ⇓′ϕ µ.

Lemma 78. For all P,C, Q, if |=a′ {P}C{Q} then |=AT {P}C{Q}.

Proof. For all P,C, Q such that |=a′ {P}C{Q}, we need to prove for all µ, if
µ |= P , then for all ϕ, s, and µ′, if init(C, µ) ⇓sϕ µ′, then µ′ |= Q. For all µ, ϕ, s, µ′
such that µ |= P and init(C, µ) ⇓sϕ µ′, by Lem. 77 we know init(C, µ) ⇓′ϕ µ′.
From |=a′ {P}C{Q} and µ |= P we know µ′ |= Q.

Definition H.10. RemoveSplit(W)
def
= E(C,σ)∼W {δ(RemoveSplit(C), σ)}.

Lemma 79. For allW , RemoveSplit(W) = λ(C, σ).
∑

C′ δ(RemoveSplit(C′))(C)·
W (C′, σ).

Proof. For all W , we have

RemoveSplit(W)
= E(C′,σ′)∼W {δ(RemoveSplit(C′), σ′)}
= λ(C, σ).

∑
C′,σ′W (C′, σ′) · δ(RemoveSplit(C′), σ′)(C, σ)

= λ(C, σ).
∑

C′ δ(RemoveSplit(C′))(C) ·W (C′, σ).

Lemma 80. For all C and µ, RemoveSplit(init(C, µ)) = init(RemoveSplit(C), µ).

Proof. For all C and µ,

RemoveSplit(init(C, µ))
= RemoveSplit(δ(C)⊗ µ)
= λ(C′, σ′).

∑
C′′ δ(RemoveSplit(C′′))(C′) · (δ(C)⊗ µ)(C′′, σ′) (by Lem. 79)

= λ(C′, σ′).
∑

C′′ δ(RemoveSplit(C′′))(C′) · δ(C)(C′′) · µ(σ′)
= λ(C′, σ′). δ(RemoveSplit(C))(C′) · µ(σ′)
= δ(RemoveSplit(C))⊗ µ
= init(RemoveSplit(C), µ).

Lemma 81. For all p,W,ϕ, there exists Γ such that HistoryT (p,W,ϕ, Γ).

Proof. by coinduction. For all p,W,ϕ, from the definition of Schedule, there
exists t and ϕ′ such that ϕ = t :: ϕ′. By Lem. 61, there exists W ′ such that
W

t
; W ′. It is obvious that #nextsplit(W, t) = 1 or #nextsplit(W, t) > 1, we

prove the two cases respectively.

– #nextsplit(W, t) = 1.
There exists b1, . . . , bk such that nextsplit(W) = {split(b1, . . . , bk)} and
validsplit(split(b1, . . . , bk)). By Lem. 65 we know there exists i such that
W ′|bi exists. By Lem. 63 we know JPr(bi)KW ′(State) > 0, thus splitter(W ′, sp)
is not empty. It is obvious that splitter(W ′, sp) is finite, so there exists
W0, p0, . . . ,Wk, pk such that
splitter(W ′, sp) = {(W0, p0), . . . , (Wk, pk)}.
By coinduction hypothesis there eixsts Γ0, . . . , Γk such that ∀i. HistoryT (p ·
pi,Wi, ϕ

′, Γi).
FromW

t
;W ′, nextsplit(W, t) = {sp} and splitter(W ′, sp) = {(W0, p0), . . . , (Wk, pk)}

we haveHistoryT (p,W, t :: ϕ′,Tree(p,W, Γ0, . . . , Γk)). Let Γ def
= Tree(p,W, Γ0, . . . , Γk),

then HistoryT (p,W,ϕ, Γ).
– #nextsplit(W, t) > 1.

By coinduction hypothesis there eixsts Γ ′ such thatHistoryT (p,W ′, ϕ′, Γ ′).
From W

t
; W ′ and #nextsplit(W, t) > 1 we have HistoryT (p,W, t ::

ϕ′,Tree(p,W, Γ ′)). Let Γ def
= Tree(p,W, Γ ′), then HistoryT (p,W,ϕ, Γ).

Definition H.11. Let P be a Prop, χ(P) =

{
1, if P holds
0, otherwise.

.

Lemma 82. For all W, b,C, σ, W |b = λ(C, σ).χ(σ|=bi)·W (C,σ)
JPr(b)K

W (State)
.

Proof. For all W, b,C, σ,

W |b = λ(C, σ).W |λ(C,σ).σ|=b(C, σ)

= λ(C, σ).

{
W (C,σ)

Pr(C,σ)∼W [σ|=b] , if σ |= b

0, otherwise

= λ(C, σ). χ(σ|=b)·W (C,σ)
Pr(C,σ)∼W [σ|=b]

= λ(C, σ).χ(σ|=b)·W (C,σ)
JPr(b)K

W (State)
. (by Lem. 62)

Lemma 83. For allW, sp, if validsplit(sp) and splitter(W, sp) = {(W0, p0), . . . , (Wk, pk)},
then

∑k
i=0 pi = 1 and for all C and σ, W (C, σ) =

∑k
i=0 pi ·Wi(C, σ).

Proof. For allW, sp such that validsplit(sp) and splitter(W, sp) = {(W0, p0), . . . , (Wk, pk)},
there exists b1, . . . , bn such that sp = split(b1, . . . , bn). From validsplit(sp) by
Lem. 64 we know

∑n
i=1JPr(bi)KW (State) = 1. From splitter(W, sp) = {(W0, p0), . . . , (Wk, pk)}

we know
{(W |bi , JPr(bi)KW (State)) | 1 ≤ i ≤ n∧JPr(bi)KW (State) > 0} = {(W0, p0), . . . , (Wk, pk)},
thus

∑k
i=0 pi =

∑
i{JPr(bi)KW (State) | 1 ≤ i ≤ n ∧ JPr(bi)KW (State) > 0} =

∑n
i=1JPr(bi)KW (State) = 1. For all C and σ,∑k

i=0 pi ·Wi(C, σ)
=
∑
i{JPr(bi)KW (State) ·W |bi(C, σ) | 1 ≤ i ≤ n ∧ JPr(bi)KW (State) > 0}

=
∑
i{JPr(bi)KW (State) · χ(σ|=bi)·W (C,σ)

JPr(bi)KW (State)
| 1 ≤ i ≤ n ∧ JPr(bi)KW (State) > 0} (by Lem. 82)

=
∑
i{χ(σ |= bi) ·W (C, σ) | 1 ≤ i ≤ n ∧ JPr(bi)KW (State) > 0}

=
∑
i{χ(σ |= bi) ·W (C, σ) | 1 ≤ i ≤ n ∧Pr(C,σ)∼W [σ |= bi] > 0} (by Lem. 62)

=
∑
i{χ(σ |= bi) ·W (C, σ) | 1 ≤ i ≤ n ∧

∑
C,σ{W (C, σ) | σ |= bi} > 0}

=
∑
i{χ(σ |= bi) ·W (C, σ) | 1 ≤ i ≤ n ∧ ∃C, σ.W (C, σ) > 0 ∧ σ |= bi}

=
∑
i{χ(σ |= bi) ·W (C, σ) | 1 ≤ i ≤ n ∧ ∃C, σ.χ(C, σ) ·W (C, σ) > 0}

= W (C, σ) ·
∑n
i=1 χ(σ |= bi)

= W (C, σ). (from validsplit(split(b1, . . . , bk)))

Lemma 84. For all p,W,ϕ, Γ , if HistoryT (p,W,ϕ, Γ), then prob(Γ, s, 0) =
χ(s = zeros) · p and traverse(Γ, s, 0) = W for all s.

Proof. For all p,W,ϕ, Γ such that HistoryT (p,W,ϕ, Γ), there are two cases.

– ϕ = t :: ϕ′, Γ = Tree(p,W, Γ0, . . . , Γk), W t
; W ′, nextsplit(W, t) = {sp},

splitter(W ′, sp) = {(W0, p0), . . . , (Wk, pk)} and ∀i.HistoryT (p·pi,Wi, ϕ
′, Γi).

For all s, prob(Γ, s, 0) = prob(Tree(p,W, Γ0, . . . , Γk), s, 0) = χ(s = zeros) · p,
and traverse(Γ, s, 0) = traverse(Tree(p,W, Γ0, . . . , Γk), s, 0) = W .

– ϕ = t :: ϕ′, Γ = Tree(p,W, Γ ′), W t
; W ′, #nextsplit(W, t) > 1 and

HistoryT (p,W ′, ϕ′, Γ ′).
For all s, prob(Γ, s, 0) = prob(Tree(p,W, Γ ′), s, 0) = χ(s = zeros) · p,
and traverse(Γ, s, 0) = traverse(Tree(p,W, Γ ′), s, 0) = W .

Lemma 85. For allW,W ′, t, ifW t
;W ′, then RemoveSplit(W)

t
; RemoveSplit(W ′).

Proof. For all W,W ′, t such that W t
;W ′, we have

λ(C′, σ′).
∑

C,σ{RemoveSplit(W)(C, σ) · p | (C, σ)
p−→
t

(C′, σ′)}

= λ(C′, σ′).
∑

C,σ{
∑

C′′ δ(RemoveSplit(C′′))(C) ·W (C′′, σ) · p | (C, σ)
p−→
t

(C′, σ′)} (by Lem. 79)

= λ(C′, σ′).
∑

C,σ,C′′{δ(RemoveSplit(C′′))(C) ·W (C′′, σ) · p | (C, σ)
p−→
t

(C′, σ′)}

= λ(C′, σ′).
∑

C′′,σ{W (C′′, σ) · p | (RemoveSplit(C′′), σ)
p−→
t

(C′, σ′)}

= λ(C′, σ′).
∑

C′′,σ{W (C′′, σ) · p | ∃!C. (C′′, σ)
p−→
t

(C, σ′) ∧ C′ = RemoveSplit(C)} (by Lem. 71)

= λ(C′, σ′).
∑

C,σ,C′′{W (C′′, σ) · p | (C′′, σ)
p−→
t

(C, σ′) ∧ C′ = RemoveSplit(C)}

= λ(C′, σ′).
∑

C,σ,C′′{δ(RemoveSplit(C))(C′) ·W (C′′, σ) · p | (C′′, σ)
p−→
t

(C, σ′)}

= λ(C′, σ′).
∑

C δ(RemoveSplit(C))(C′) ·
∑

C′′,σ{W (C′′, σ) · p | (C′′, σ)
p−→
t

(C, σ′)}

= λ(C′, σ′).
∑

C δ(RemoveSplit(C))(C′) ·W ′(C, σ′) (by W t
;W ′)

= RemoveSplit(W ′). (by Lem. 79)

Therefore, RemoveSplit(W)
t
; RemoveSplit(W ′).

Lemma 86. For all n,W,W0, . . . ,Wk, p0, . . . , pk, t,W
′,W ′0, . . . ,W

′
k, ifW = λ(C, σ).

∑k
i=0 pi·

Wi(C, σ), W t
;W ′ and ∀i. Wi

t
;Wi, then W ′ = λ(C, σ).

∑k
i=0 pi ·W ′i (C, σ).

Proof. For all n,W,W0, . . . ,Wk, p0, . . . , pk, t,W
′,W ′0, . . . ,W

′
k sucht that W =

λ(C, σ).
∑k
i=0 pi ·Wi(C, σ), W t

;W ′ and ∀i. Wi
t
;Wi, we have

W ′ = λ(C′, σ′).
∑

C,σ{W (C, σ) · p | (C, σ)
p−→
t

(C′, σ′)}

= λ(C′, σ′).
∑

C,σ{
∑k
i=0 pi ·Wi(C, σ) · p | (C, σ)

p−→
t

(C′, σ′)}

= λ(C′, σ′).
∑k
i=0 pi ·

∑
C,σ{Wi(C, σ) · p | (C, σ)

p−→
t

(C′, σ′)}
= λ(C′, σ′).

∑k
i=0 pi ·W ′i (C′, σ′)

= λ(C, σ).
∑k
i=0 pi ·W ′i (C, σ).

Lemma 87. For all n,W,W0, . . . ,Wk, p0, . . . , pk, ϕ,
→
W,

→
W 0, . . . ,

→
W k, if History(W,ϕ,

→
W),

W = λ(C, σ).
∑k
i=0 pi · Wi(C, σ), Nosplit(W), ∀i. History(Wi, ϕ,

→
W i) and

∀i. Nosplit(Wi), then
→
W [n] = λ(C, σ).

∑k
i=0 pi ·

→
W i[n](C, σ).

Proof. by induction on n.

– base case: n = 0.
For allW,W0, . . . ,Wk, p0, . . . , pk, ϕ,

→
W,

→
W 0, . . . ,

→
W k such thatHistory(W,ϕ,

→
W),

Nosplit(W), W = λ(C, σ).
∑k
i=0 pi ·Wi(C, σ), ∀i. History(Wi, ϕ,

→
W i) and

∀i. Nosplit(Wi),

from History(W,ϕ,
→
W) by Lem. 50 we know

→
W [0] = W . For all i, from

History(Wi, ϕ,
→
W i) by Lem. 50 we know

→
W i[0] = Wi. FromW = λ(C, σ).

∑k
i=0 pi·

Wi(C, σ) we know
→
W [0] = λ(C, σ).

∑k
i=0 pi ·

→
W i[0](C, σ).

– inductive case: n = n′ + 1.
IH: for allW,W0, . . . ,Wk, p0, . . . , pk, ϕ,

→
W,

→
W 0, . . . ,

→
W k, ifHistory(W,ϕ,

→
W),

Nosplit(W), W = λ(C, σ).
∑k
i=0 pi ·Wi(C, σ), ∀i. History(Wi, ϕ,

→
W i) and

∀i. Nosplit(Wi), then
→
W [n′] =

λ(C, σ).
∑k
i=0 pi ·

→
W i[n

′](C, σ).

For allW,W0, . . . ,Wk, p0, . . . , pk, ϕ,
→
W,

→
W 0, . . . ,

→
W k such thatHistory(W,ϕ,

→
W),

Nosplit(W), W = λ(C, σ).
∑k
i=0 pi ·Wi(C, σ), ∀i. History(Wi, ϕ,

→
W i), and

∀i. Nosplit(Wi),

from History(W,ϕ,
→
W) we know there exists t, ϕ′,W ′,

→
W
′
such that ϕ = t ::

ϕ′, W
t
↪→ W ′, History(W ′, ϕ′,

→
W
′
) and

→
W = W ::

→
W
′
. From Nosplit(W)

and W
t
↪→ W ′ by Lem. 49 we know W

t
; W ′, by Lem. 53 we know

Nosplit(W ′). For all i, from History(Wi, ϕ,
→
W i) and ϕ = t :: ϕ′ we know

there exists W ′i ,
→
W
′

i such that Wi
t
↪→ W ′i , History(W ′i , ϕ

′,
→
W
′

i) and
→
W i =

Wi ::
→
W
′

i. From Nosplit(Wi) and Wi
t
↪→W ′i by Lem. 49 we know Wi

t
;W ′i ,

by Lem. 53 we know Nosplit(W ′i). From W = λ(C, σ).
∑k
i=0 pi ·Wi(C, σ),

W
t
; W ′ and ∀i. Wi

t
; W ′i by Lem. 86 we know W ′ = λ(C, σ).

∑k
i=0 pi ·

W ′i (C, σ). FromHistory(W ′, ϕ′,
→
W
′
),Nosplit(W ′), ∀i.History(W ′i , ϕ

′,
→
W
′

i)

and ∀i.Nosplit(W ′i) by IH we know
→
W
′
[n′] = λ(C, σ).

∑k
i=0 pi ·

→
W
′

i[n
′](C, σ),

thus
→
W [n] = (W ::

→
W
′
)[n′ + 1] =

→
W
′
[n] = λ(C, σ).

∑k
i=0 pi ·

→
W
′

i[n
′](C, σ) =

λ(C, σ).
∑k
i=0 pi · (Wi ::

→
W
′

i)[n
′ + 1](C, σ) = λ(C, σ).

∑k
i=0 pi · (

→
W i)[n](C, σ).

Lemma 88. For all n,W,ϕ,
→
W,Γ, p, if History(RemoveSplit(W), ϕ,

→
W) and

HistoryT (p,W,ϕ, Γ), then
→
W [n](C, σ)·p =

∑
C′ δ(RemoveSplit(C′))(C)·

∑
s prob(Γ, s, n)·

traverse(Γ, s, n)(C′, σ) for all C and σ.

Proof. by induction on n.

– base case: n = 0.
For allW,ϕ,

→
W,Γ, p such thatHistory(RemoveSplit(W), ϕ,

→
W) andHistoryT (p,W,ϕ, Γ),

fromHistory(RemoveSplit(W), ϕ,
→
W) by Lem. 50 we know

→
W [0] = RemoveSplit(W).

From HistoryT (p,W,ϕ, Γ) by Lem. 84 we know for all s, traverse(Γ, s, 0) =
W and prob(Γ, s, 0) = χ(s = zeros) · p. For all C and σ, we have
→
W [0](C, σ) · p

= RemoveSplit(W)(C, σ) · p
= E(C′,σ′)∼W {δ(RemoveSplit(C′), σ′)}(C, σ) · p
=
∑

C′,σ′W (C′, σ′) · δ(RemoveSplit(C′), σ′)(C, σ) · p
=
∑

C′ δ(RemoveSplit(C′))(C) · p ·W (C′, σ)
=
∑

C′ δ(RemoveSplit(C′))(C) · χ(zeros = zeros) · p · traverse(Γ, zeros, 0)(C′, σ)
=
∑

C′ δ(RemoveSplit(C′))(C) ·
∑
s χ(s = zeros) · p · traverse(Γ, s, 0)(C′, σ)

=
∑

C′ δ(RemoveSplit(C′))(C) ·
∑
s prob(Γ, s, 0) · traverse(Γ, s, 0)(C′, σ).

– inductive case: n = n′ + 1.
IH: for allW,ϕ,

→
W,Γ, p, ifHistory(RemoveSplit(W), ϕ,

→
W) andHistoryT (p,W,ϕ, Γ),

then
→
W [n′](C, σ)·p =

∑
C′ δ(RemoveSplit(C′))(C)·

∑
s prob(Γ, s, n

′)·traverse(Γ, s, n′)(C′, σ)
for all C and σ.
For allW,ϕ,

→
W,Γ, p such thatHistory(RemoveSplit(W), ϕ,

→
W) andHistoryT (p,W,ϕ, Γ),

fromHistory(RemoveSplit(W), ϕ,
→
W) we know there exists t, ϕ′,W ′′ such

that ϕ = t :: ϕ′, RemoveSplit(W)
t
↪→W ′′, History(W ′′, ϕ′,

→
W
′
) and

→
W =

RemoveSplit(W) ::
→
W
′
. It is obvious that Nosplit(RemoveSplit(W)),

from RemoveSplit(W)
t
↪→W ′′ by Lem. 49 we know RemoveSplit(W)

t
;

W ′′. From HistoryT (p,W,ϕ, Γ), there are two cases.

• Γ = Tree(p,W, Γ0, . . . , Γk),W t
;W ′, nextsplit(W, t) = {sp}, splitter(W ′, sp) =

{(W0, p0), . . . , (Wk, pk)} and ∀i. HistoryT (p · pi,Wi, ϕ
′, Γi).

FromW
t
;W ′ by Lem. 85 we knowRemoveSplit(W)

t
; RemoveSplit(W ′).

FromRemoveSplit(W)
t
;W ′′ by Lem. 57 we knowW ′′ = RemoveSplit(W ′).

FromHistory(W ′′, ϕ′,
→
W
′
) we knowHistory(RemoveSplit(W ′), ϕ′,

→
W
′
).

From nextsplit(W, t) = {sp} we know validsplit(sp). From splitter(W ′, sp) =

{(W0, p0), . . . , (Wk, pk)} by Lem. 83 we know W ′ = λ(C, σ).
∑k
i=0 pi ·

Wi(C, σ), thus

RemoveSplit(W ′)
= λ(C, σ).

∑
C′ δ(RemoveSplit(C′))(C) ·W ′(C′, σ) (by Lem. 79)

= λ(C, σ).
∑

C′ δ(RemoveSplit(C′))(C) ·
∑k
i=0 pi ·Wi(C′, σ)

= λ(C, σ).
∑k
i=0 pi ·

∑
C′ δ(RemoveSplit(C′))(C) ·Wi(C′, σ)

= λ(C, σ).
∑k
i=0 pi ·RemoveSplit(Wi)(C, σ). (by Lem. 79)

By Lem. 67 we know for all i, there exists
→
W i such thatHistory(RemoveSplit(Wi), ϕ

′,
→
W i).

FromW ′ = λ(C, σ).
∑k
i=0 pi·Wi(C, σ),History(RemoveSplit(W ′), ϕ′,

→
W
′
),

Nosplit(RemoveSplit(W ′)) and ∀i. Nosplit(RemoveSplit(Wi)) by
Lem. 87 we know
→
W
′
[n] = λ(C, σ).

∑k
i=0 pi ·

→
W i[n](C, σ).

For all i, from History(RemoveSplit(Wi), ϕ
′,
→
W i) and HistoryT (p ·

pi,Wi, ϕ
′, Γi) by IH we know for all C and σ,

→
W i[n

′](C, σ) · p · pi =∑
C′ δ(RemoveSplit(C′))(C)·

∑
s prob(Γi, s, n

′)·traverse(Γi, s, n′)(C′, σ).
For all C and σ, we have

→
W [n](C, σ) · p

= (RemoveSplit(W) ::
→
W
′
)[n′ + 1](C, σ) · p

=
→
W
′
[n′](C, σ) · p

=
∑k
i=0 pi ·

→
W i[n

′](C, σ) · p
=
∑k
i=0

∑
C′ δ(RemoveSplit(C′))(C) ·

∑
s prob(Γi, s, n

′) · traverse(Γi, s, n′)(C′, σ)

=
∑

C′ δ(RemoveSplit(C′))(C) ·
∑k
i=0

∑
s prob(Γi, s, n

′) · traverse(Γi, s, n′)(C′, σ)
=
∑

C′ δ(RemoveSplit(C′))(C) ·
∑
i

∑
s prob(Γ, i :: s, n′ + 1) · traverse(Γ, i :: s, n′ + 1)(C′, σ)

=
∑

C′ δ(RemoveSplit(C′))(C) ·
∑
s prob(Γ, s, n) · traverse(Γ, s, n)(C′, σ).

• Γ = Tree(p,W, Γ ′),W t
;W ′, #nextsplit(W, t) > 1 andHistoryT (p,W ′, ϕ′, Γ ′).

FromW
t
;W ′ by Lem. 85 we knowRemoveSplit(W)

t
; RemoveSplit(W ′).

FromRemoveSplit(W)
t
;W ′′ by Lem. 57 we knowW ′′ = RemoveSplit(W ′).

FromHistory(W ′′, ϕ′,
→
W
′
) we knowHistory(RemoveSplit(W ′), ϕ′,

→
W
′
).

For all C and σ, FromHistory(RemoveSplit(W ′), ϕ′,
→
W
′
) andHistoryT (p,W ′, ϕ′, Γ ′)

by IH we know
→
W
′
[n′](C, σ)·p =

∑
C′ δ(RemoveSplit(C′))(C)·

∑
s prob(Γ

′, s, n′)·traverse(Γ ′, s, n′)(C′, σ),
thus

→
W [n](C, σ) · p

= (RemoveSplit(W) ::
→
W
′
)[n′ + 1](C, σ) · p

=
→
W
′
[n′](C, σ) · p

=
∑

C′ δ(RemoveSplit(C′))(C) ·
∑
s prob(Γ

′, s, n′) · traverse(Γ ′, s, n′)(C′, σ)
=
∑

C′ δ(RemoveSplit(C′))(C) ·
∑
s prob(Γ, 0 :: s, n′ + 1) · traverse(Γ, 0 :: s, n′ + 1)(C′, σ)

=
∑

C′ δ(RemoveSplit(C′))(C) ·
∑
s prob(Γ, s, n) · traverse(Γ, s, n)(C′, σ).

Lemma 89. For all n, p,W,ϕ, Γ, s, σ, if HistoryT (p,W,ϕ, Γ), then prob(Γ, s, n+
1)·traverse(Γ, s, n+1)(skip ‖ · · · ‖ skip, σ) ≥ prob(Γ, s, n)·traverse(Γ, s, n)(skip ‖
· · · ‖ skip, σ).

Proof. by induction on n.

– base case: n = 0.
For all p,W,ϕ, Γ, s, σ such that HistoryT (p,W,ϕ, Γ), there are two cases.

• ϕ = t :: ϕ′, Γ = Tree(p,W, Γ0, . . . , Γk), W t
; W ′, nextsplit(W, t) =

{sp}, splitter(W ′, sp) = {(W0, p0), . . . , (Wk, pk)} and ∀i. HistoryT (p ·
pi,Wi, ϕ

′, Γi).
traverse(Γ, s, n) = traverse(Tree(p,W, Γ0, . . . , Γk), s, 0) = W .
prob(Γ, s, n) = prob(Tree(p,W, Γ0, . . . , Γk), s, 0) = χ(s = zeros) · p.
If s 6= zeros, then prob(Γ, s, n) = 0, so prob(Γ, s, n)·traverse(Γ, s, n)(skip ‖
· · · ‖ skip, σ) = 0 ≤ prob(Γ, s, n + 1) · traverse(Γ, s, n + 1)(skip ‖ · · · ‖
skip, σ).
Otherwise s = zeros, then prob(Γ, s, n) = p. FromHistoryT (p·p0,W0, ϕ

′, Γ0)
by Lem. 84 we know prob(Γ0, zeros, 0) = χ(zeros = zeros)·p·p0 = p·p0 and
traverse(Γ0, zeros, 0) = W0, thus traverse(Γ, s, n+1) = traverse(Tree(p,W, Γ0, . . . , Γk), 0 ::
zeros, 1) = traverse(Γ0, zeros, 0) = W0.
prob(Γ, s, n+1) = prob(Tree(p,W, Γ0, . . . , Γk), 0 :: zeros, 1) = prob(Γ0, zeros, 0) =
p · p0.
It is obvious that W (Prog)(skip ‖ · · · ‖ skip) = 0 or W (Prog)(skip ‖ · · · ‖
skip) > 0, we prove the two cases respectively.
∗ W (Prog)(skip ‖ · · · ‖ skip) = 0.

From W (Prog)(skip ‖ · · · ‖ skip) = 0 we know
∑
σW (skip ‖ · · · ‖

skip, σ) = 0, thus W (skip ‖ · · · ‖ skip, σ) = 0 for all σ. Therefore
prob(Γ, s, n) · traverse(Γ, s, n)(skip ‖ · · · ‖ skip, σ) = prob(Γ, s, n) ·
W (skip ‖ · · · ‖ skip, σ) = 0 ≤ prob(Γ, s, n + 1) · traverse(Γ, s, n +
1)(skip ‖ · · · ‖ skip, σ).

∗ W (Prog)(skip ‖ · · · ‖ skip) > 0.
FromW (Prog)(skip ‖ · · · ‖ skip) > 0 by Lem. 38 we know nextsplit(W) ⊇
{split(true)}. From nextsplit(W, t) = {sp} we know sp = split(true).
From splitter(W ′, sp) = {(W0, p0), . . . , (Wk, pk)} we know k = 0,
W0 = W ′|true = W ′ and p0 = JPr(true)KW ′(State) = 1. From W

t
;

W ′ by Lem. 31 we know W ′(skip ‖ · · · ‖ skip, σ) ≥ W (skip ‖
· · · ‖ skip, σ), thus prob(Γ, s, n + 1) · traverse(Γ, s, n + 1)(skip ‖
· · · ‖ skip, σ) = p · p0 ·W0(skip ‖ · · · ‖ skip, σ) = p ·W ′(skip ‖ · · · ‖
skip, σ) ≥ p·W (skip ‖ · · · ‖ skip, σ) = prob(Γ, s, n)·traverse(Γ, s, n)(skip ‖
· · · ‖ skip, σ).

• ϕ = t :: ϕ′, Γ = Tree(p,W, Γ ′), W t
; W ′, #nextsplit(W, t) > 1 and

HistoryT (p,W ′, ϕ′, Γ ′).
traverse(Γ, s, n) = traverse(Tree(p,W, Γ ′), s, 0) = W .
prob(Γ, s, n) = prob(Tree(p,W, Γ ′), s, 0) = χ(s = zeros) · p.
If s 6= zeros, then prob(Γ, s, n) = 0, so prob(Γ, s, n)·traverse(Γ, s, n)(skip ‖
· · · ‖ skip, σ) = 0 ≤ prob(Γ, s, n + 1) · traverse(Γ, s, n + 1)(skip ‖ · · · ‖
skip, σ).
Otherwise s = zeros, then prob(Γ, s, n) = p. FromHistoryT (p,W ′, ϕ′, Γ ′)
by Lem. 84 we know prob(Γ ′, zeros, 0) = χ(zeros = zeros) · p = p and
traverse(Γ ′, zeros, 0) = W ′, so
traverse(Γ, s, n+1) = traverse(Tree(p,W, Γ ′), 0 :: zeros, 1) = traverse(Γ ′, zeros, 0) =
W ′.
prob(Γ, s, n+1) = prob(Tree(p,W, Γ ′), 0 :: zeros, 1) = prob(Γ ′, zeros, 0) =
p.
From W

t
; W ′ by Lem. 31 we know W ′(skip ‖ · · · ‖ skip, σ) ≥

W (skip ‖ · · · ‖ skip, σ), thus prob(Γ, s, n+1)·traverse(Γ, s, n+1)(skip ‖
· · · ‖ skip, σ) = p · W ′(skip ‖ · · · ‖ skip, σ) ≥ p · W (skip ‖ · · · ‖
skip, σ) = prob(Γ, s, n) · traverse(Γ, s, n)(skip ‖ · · · ‖ skip, σ).

– inductive case: n = n′ + 1.
IH: for all p,W,ϕ, Γ, s, σ, if HistoryT (p,W,ϕ, Γ), then prob(Γ, s, n′ + 1) ·
traverse(Γ, s, n′+1)(skip ‖ · · · ‖ skip, σ) ≥ prob(Γ, s, n′)·traverse(Γ, s, n′)(skip ‖
· · · ‖ skip, σ).
For all p,W,ϕ, Γ, s, σ such that HistoryT (p,W,ϕ, Γ), there are two cases.
• ϕ = t :: ϕ′, Γ = Tree(p,W, Γ0, . . . , Γk), W t

; W ′, nextsplit(W, t) =

{sp}, splitter(W ′, sp) = {(W0, p0), . . . , (Wk, pk)} and ∀i. HistoryT (p ·
pi,Wi, ϕ

′, Γi).
There exists m and s′ such that s = m :: s′.
traverse(Γ, s, n) = traverse(Tree(p,W, Γ0, . . . , Γk),m :: s′, n′ + 1) =
traverse(Γm, s, n′).
prob(Γ, s, n) = prob(Tree(p,W, Γ0, . . . , Γk),m :: s′, n′+1) = prob(Γm, s′, n′).
traverse(Γ, s, n + 1) = traverse(Tree(p,W, Γ0, . . . , Γk),m :: s′, n′ + 2) =
traverse(Γm, s, n′ + 1).
prob(Γ, s, n+1) = prob(Tree(p,W, Γ0, . . . , Γk),m :: s′, n′+2) = prob(Γm, s′, n′+
1).

From HistoryT (p · pm,Wm, ϕ
′, Γm) by IH we know prob(Γm, s′, n′ +

1) · traverse(Γm, s′, n′ + 1)(skip ‖ · · · ‖ skip, σ) ≥ prob(Γm, s′, n′) ·
traverse(Γm, s′, n′)(skip ‖ · · · ‖ skip, σ), thus prob(Γ, s, n+1)·traverse(Γ, s, n+
1)(skip ‖ · · · ‖ skip, σ) ≥
prob(Γ, s, n) · traverse(Γ, s, n)(skip ‖ · · · ‖ skip, σ).
• ϕ = t :: ϕ′, Γ = Tree(p,W, Γ ′), W t

; W ′, #nextsplit(W, t) > 1 and
HistoryT (p,W ′, ϕ′, Γ ′).
There exists m and s′ such that s = m :: s′.
traverse(Γ, s, n) = traverse(Tree(p,W, Γ ′),m :: s′, n′+1) = traverse(Γ ′, s, n′).
prob(Γ, s, n) = prob(Tree(p,W, Γ ′),m :: s′, n′ + 1) = prob(Γ ′, s′, n′).
traverse(Γ, s, n+1) = traverse(Tree(p,W, Γ ′),m :: s′, n′+2) = traverse(Γ ′, s, n′+
1).
prob(Γ, s, n+ 1) = prob(Tree(p,W, Γ ′),m :: s′, n′+ 2) = prob(Γ ′, s′, n′+
1).
FromHistoryT (p,W ′, ϕ′, Γ ′) by IH we know prob(Γ ′, s′, n′+1)·traverse(Γ ′, s′, n′+
1)(skip ‖ · · · ‖ skip, σ) ≥ prob(Γ ′, s′, n′) · traverse(Γ ′, s′, n′)(skip ‖ · · · ‖
skip, σ), thus prob(Γ, s, n+1)·traverse(Γ, s, n+1)(skip ‖ · · · ‖ skip, σ) ≥
prob(Γ, s, n) · traverse(Γ, s, n)(skip ‖ · · · ‖ skip, σ).

Lemma 90. For all n, p,W,ϕ, Γ , if HistoryT (p,W,ϕ, Γ), then
∑
s prob(Γ, s, n) =

p.

Proof. By induction on n.

– base case: n = 0.
For all p,W,ϕ, Γ such that HistoryT (p,W,ϕ, Γ), there are two cases.
• ϕ = t :: ϕ′, Γ = Tree(p,W, Γ0, . . . , Γk), W t

; W ′, nextsplit(W, t) =

{sp}, splitter(W ′, sp) = {(W0, p0), . . . , (Wk, pk)} and ∀i. HistoryT (p ·
pi,Wi, ϕ

′, Γi).∑
s prob(Γ, s, 0) =

∑
s prob(Tree(p,W, Γ0, . . . , Γk), s, 0) =

∑
s χ(s = zeros)·

p = p.
• ϕ = t :: ϕ′, Γ = Tree(p,W, Γ ′), W t

; W ′, #nextsplit(W, t) > 1 and
HistoryT (p,W ′, ϕ′, Γ ′).∑
s prob(Γ, s, 0) =

∑
s prob(Tree(p,W, Γ ′), s, 0) =

∑
s χ(s = zeros) · p =

p.
– inductive case: n = n′ + 1.

IH: for all p,W,ϕ, Γ , if HistoryT (p,W,ϕ, Γ), then
∑
s prob(Γ, s, n

′) = p.
For all p,W,ϕ, Γ such that HistoryT (p,W,ϕ, Γ), there are two cases.
• ϕ = t :: ϕ′, Γ = Tree(p,W, Γ0, . . . , Γk), W t

; W ′, nextsplit(W, t) =

{sp}, splitter(W ′, sp) = {(W0, p0), . . . , (Wk, pk)} and ∀i. HistoryT (p ·
pi,Wi, ϕ

′, Γi).
From ∀i.HistoryT (p·pi,Wi, ϕ

′, Γi) by IH we have ∀i.
∑
s′ prob(Γi, s

′, n′) =
p · pi.
From nextsplit(W, t) = {sp} we know validsplit(sp). From validsplit(sp)

and splitter(W ′, sp)

= {(W0, p0), . . . , (Wk, pk)} by Lem. 83 we know
∑k
i=0 pi = 1, so∑

s prob(Γ, s, n)
=
∑
i,s′{prob(Tree(p,W, Γ0, . . . , Γk), i :: s′, n′ + 1) | i ≤ k}

=
∑k
i=0

∑
s′ prob(Γi, s

′, n′)

=
∑k
i=0 p · pi

= p ·
∑k
i=0 pi

= p.

• ϕ = t :: ϕ′, Γ = Tree(p,W, Γ ′), W t
; W ′, #nextsplit(W, t) > 1 and

HistoryT (p,W ′, ϕ′, Γ ′).
From HistoryT (p,W ′, ϕ′, Γ ′) by IH we have

∑
s′ prob(Γ

′, s′, n′) = p,
thus ∑

s prob(Γ, s, n)
=
∑
i,s′{prob(Tree(p,W, Γ ′), i :: s′, n′ + 1) | i ≤ 0}

=
∑
s′ prob(Γi, s

′, n′)
= p.

Lemma 91. For all P,C, Q, if |=AT {P}C{Q} and closed(Q), then |=a′ {P}RemoveSplit(C){Q}.

Proof. For all P,C, Q such that |=AT {P}C{Q} and closed(Q), by Def. H.3 we
need to prove for all µ, ϕ, µ′, if µ |= P and init(RemoveSplit(C), µ) ⇓′ϕ µ′, then
µ′ |= Q. For all µ, ϕ, µ′ such that µ |= P and init(RemoveSplit(C), µ) ⇓′ϕ µ′,
by Lem. 80 we know RemoveSplit(init(C, µ)) = init(RemoveSplit(C), µ), so

RemoveSplit(init(C, µ)) ⇓′ϕ µ′. By Def. H.2 there exists
→
W such that

History(RemoveSplit(init(C, µ)), ϕ,
→
W), lim

n→∞

→
W [n]

(Prog)

(skip ‖ · · · ‖ skip) =

1 and for all σ, lim
n→∞

→
W [n](skip ‖ · · · ‖ skip, σ) = µ′(σ). By Lem. 81 there exists

Γ such thatHistoryT (1,W, ϕ, Γ). FromHistory(RemoveSplit(init(C, µ)), ϕ,
→
W)

by Lem. 88 we know for all σ and n,
→
W [n](skip ‖ · · · ‖ skip, σ) =∑

C′ δ(RemoveSplit(C′))(skip ‖ · · · ‖ skip)·
∑
s prob(Γ, s, n)·traverse(Γ, s, n)(C′, σ)

=
∑
s prob(Γ, s, n) · traverse(Γ, s, n)(skip ‖ · · · ‖ skip, σ), i.e.,

∀σ, n.
→
W [n](skip ‖ · · · ‖ skip, σ) =

∑
s

prob(Γ, s, n)·traverse(Γ, s, n)(skip ‖ · · · ‖ skip, σ).

(H.12)
From HistoryT (1,W, ϕ, Γ) by Lem. 89 we know

∀s, n, σ.prob(Γ, s, n+ 1) · traverse(Γ, s, n+ 1)(skip ‖ · · · ‖ skip, σ) ≥
prob(Γ, s, n) · traverse(Γ, s, n)(skip ‖ · · · ‖ skip, σ),

(H.13)

thus

∀s, n.
∑
σ prob(Γ, s, n+ 1) · traverse(Γ, s, n+ 1)(skip ‖ · · · ‖ skip, σ) ≥∑
σ prob(Γ, s, n) · traverse(Γ, s, n)(skip ‖ · · · ‖ skip, σ).

By Monotone Convergence Theorem for Series we know

∀s. lim
n→∞

∑
s

∑
σ prob(Γ, s, n) · traverse(Γ, s, n)(skip ‖ · · · ‖ skip, σ) =∑

s lim
n→∞

∑
σ prob(Γ, s, n) · traverse(Γ, s, n)(skip ‖ · · · ‖ skip, σ).

(H.14)

Therefore

1 = lim
n→∞

→
W [n]

(Prog)

(skip ‖ · · · ‖ skip)

= lim
n→∞

∑
σ

→
W [n](skip ‖ · · · ‖ skip, σ)

= lim
n→∞

∑
σ

∑
s prob(Γ, s, n) · traverse(Γ, s, n)(skip ‖ · · · ‖ skip, σ) (by Eqn. (H.12))

= lim
n→∞

∑
s

∑
σ prob(Γ, s, n) · traverse(Γ, s, n)(skip ‖ · · · ‖ skip, σ) (by Tonelli’s Theorem)

=
∑
s lim
n→∞

∑
σ prob(Γ, s, n) · traverse(Γ, s, n)(skip ‖ · · · ‖ skip, σ) (by Eqn. (H.14))

=
∑
s lim
n→∞

prob(Γ, s, n) · traverse(Γ, s, n)
(Prog)

(skip ‖ · · · ‖ skip)

=
∑
s lim
n→∞

prob(Γ, s, n) · lim
n→∞

traverse(Γ, s, n)
(Prog)

(skip ‖ · · · ‖ skip)

From History(1,W, ϕ, Γ) by Lem. 90 we know
∑
s prob(Γ, s, n) = 1 for all n.

By Fatou’s Lemma we know
∑
s lim
n→∞

prob(Γ, s, n) ≤ lim
n→∞

∑
s prob(Γ, s, n) =

lim
n→∞

1 = 1. Thus
∑
s lim
n→∞

prob(Γ, s, n) · lim
n→∞

traverse(Γ, s, n)
(Prog)

(skip ‖ · · · ‖

skip) ≥
∑
s lim
n→∞

prob(Γ, s, n), so
∑
s lim
n→∞

prob(Γ, s, n)·(1− lim
n→∞

traverse(Γ, s, n)
(Prog)

(skip ‖
· · · ‖ skip)) ≤ 0.
From ∀s, n. traverse(Γ, s, n)

(Prog)
(skip ‖ · · · ‖ skip) ≤ 1 we know lim

n→∞
traverse(Γ, s, n)

(Prog)
(skip ‖

· · · ‖ skip) ≤ 1 for all s, so 1− lim
n→∞

traverse(Γ, s, n)
(Prog)

(skip ‖ · · · ‖ skip) ≥ 0

for all s. From ∀s, n. prob(Γ, s, n) ≥ 0 we know lim
n→∞

prob(Γ, s, n) ≥ 0 for all s,

so lim
n→∞

prob(Γ, s, n) · (1− lim
n→∞

traverse(Γ, s, n)
(Prog)

(skip ‖ · · · ‖ skip)) ≥ 0 for

all s. From
∑
s lim
n→∞

prob(Γ, s, n) · (1 − lim
n→∞

traverse(Γ, s, n)
(Prog)

(skip ‖ · · · ‖

skip)) ≤ 0 we know for all s, lim
n→∞

prob(Γ, s, n)·(1− lim
n→∞

traverse(Γ, s, n)
(Prog)

(skip ‖
· · · ‖ skip)) = 0. Thus

∀s. lim
n→∞

prob(Γ, s, n) = 0 ∨ lim
n→∞

traverse(Γ, s, n)
(Prog)

(skip ‖ · · · ‖ skip) = 1.

(H.15)
From Eqn. (H.13) by Monotone Convergence Theorem for Series we know

∀σ. lim
n→∞

∑
s prob(Γ, s, n) · traverse(Γ, s, n)(skip ‖ · · · ‖ skip, σ) =∑

s lim
n→∞

prob(Γ, s, n) · traverse(Γ, s, n)(skip ‖ · · · ‖ skip, σ).
(H.16)

Let µ′′ def
= λν ∈ DState.

∑
s δ(λσ. lim

n→∞
traverse(Γ, s, n)(skip ‖ · · · ‖ skip, σ))(ν) ·

lim
n→∞

prob(Γ, s, n), then

µ′′ = λσ.
∑
ν µ
′′(ν) · ν(σ)

= λσ.
∑
ν

∑
s δ(λσ. lim

n→∞
traverse(Γ, s, n)(skip ‖ · · · ‖ skip, σ))(ν) · lim

n→∞
prob(Γ, s, n) · ν(σ)

= λσ.
∑
s lim
n→∞

prob(Γ, s, n) · lim
n→∞

traverse(Γ, s, n)(skip ‖ · · · ‖ skip, σ)

= λσ.
∑
s lim
n→∞

prob(Γ, s, n) · traverse(Γ, s, n)(skip ‖ · · · ‖ skip, σ)

= λσ. lim
n→∞

∑
s prob(Γ, s, n) · traverse(Γ, s, n)(skip ‖ · · · ‖ skip, σ) (by Eqn. (H.16))

= λσ. lim
n→∞

→
W [n](skip ‖ · · · ‖ skip, σ) (by Eqn. (H.12))

= µ′.

From µ′′ = µ′ and closed(Q), to prove µ′ |= Q, it suffices to prove for all ν ∈
supp(µ′′), ν |= Q. For all ν ∈ supp(µ′′), we have µ′′(ν) > 0, i.e.,

∑
s δ(λσ. lim

n→∞
traverse(Γ, s, n)(skip ‖

· · · ‖ skip, σ))(ν) · lim
n→∞

prob(Γ, s, n) > 0, so there exists s such that ν =

λσ. lim
n→∞

traverse(Γ, s, n)(skip ‖ · · · ‖ skip, σ) and lim
n→∞

prob(Γ, s, n) > 0. From

Eqn. (H.15) we know lim
n→∞

traverse(Γ, s, n)
(Prog)

(skip ‖ · · · ‖ skip) = 1. From
HistoryT (1, init(C, µ), ϕ, Γ) and ν = λσ. lim

n→∞
traverse(Γ, s, n)(skip ‖ · · · ‖

skip, σ) we know init(C, µ) ⇓sϕ ν. From |=AT {P}C{Q} and µ |= P we have
ν |= Q.

Lemma 92 (Soundness of (removesplit) Rule). For all P,C, Q, if |=a
{P}C{Q} and closed(Q), then |=a {P}RemoveSplit(C){Q}.

Proof. For all P,C, Q such that |=a {P}C{Q} and closed(Q), by Lem. 44 we
know |=a′ {P}C{Q}. By Lem. 78 we know |=AT {P}C{Q}. From closed(Q)
by Lem. 91 we have |=a′ {P}RemoveSplit(C){Q}. By Lem. 44 we know |=a
{P}RemoveSplit(C){Q}.

lazycoin(skip) def
= skip

lazycoin(x := e)
def
= x := e

lazycoin(C1;C2)
def
= lazycoin(C1); lazycoin(C2)

lazycoin(if (b) then C1 else C2)
def
= if (b) then lazycoin(C1) else lazycoin(C2)

lazycoin(while (b) do C)
def
= while (b) do lazycoin(C)

lazycoin(〈C〉) def
= 〈C〉

lazycoin(〈C〉 sp) def
= 〈C〉 sp

lazycoin(〈C1〉 ⊕p 〈C2〉)
def
= skip; 〈〈C1〉 ⊕p 〈C2〉〉

Fig. 34: Definition of lazycoin(C)

Definition H.17. lazycoin(C1 ‖ · · · ‖ Cn)
def
= lazycoin(C1) ‖ · · · ‖ lazycoin(Cn).

The definition of lazycoin(C) is given in Fig. 34.

Definition H.18. lazycoin(W)
def
= E(C,σ)∼W {δ(lazycoin(C))⊗ δ(σ)}.

Definition H.19. lazycoin(η)
def
= E(C,σ)∼η{δ(lazycoin(C))⊗ δ(σ)}.

Definition H.20. ρ ∈ DStmt.

Definition H.21. lazycoin(ρ)
def
= EC∼ρ{δ(lazycoin(C))}.

Definition H.22. ρ1 ‖ · · · ‖ ρn
def
= λ(C1 ‖ · · · ‖ Cn). ρ1(C1) · · · ρn(Cn).

Definition H.23. η;C2
def
= λ(C, σ).

{
η(C1, σ), if C = C1;C2

0, otherwise
.

Definition H.24. ρ;C2
def
= λC.

{
ρ(C1), if C = C1;C2

0, otherwise
.

Definition H.25. splitAtom(C)
def
=

δ(〈C1〉)⊕p δ(〈C2〉), if C = 〈〈C1〉 ⊕p 〈C2〉〉
δ(〈C1〉 sp)⊕p δ(〈C2〉 sp), if C = 〈〈C1〉 ⊕p 〈C2〉〉 sp
splitAtom(C1);C2, if C = C1;C2

δ(C), otherwise

Definition H.26. splitAtom(C1 ‖ · · · ‖ Cn)
def
= splitAtom(C1) ‖ · · · ‖

splitAtom(Cn).

Definition H.27. splitAtom(W)
def
= E(C,σ)∼W {splitAtom(C)⊗ δ(σ)}.

Definition H.28. splitAtom(η)
def
= E(C,σ)∼η{splitAtom(C)⊗ δ(σ)}.

Definition H.29. splitAtom(ρ)
def
= EC∼ρ{splitAtom(C)}.

Definition H.30. W1 ∼W2 if and only if lazycoin(W1) = splitAtom(W2).

Definition H.31. ρ1 ‖ · · · ‖ ρt−1 ‖ η ‖ ρt+1 ‖ · · · ‖ ρn
def
= λ(C1 ‖ · · · ‖

Cn, σ). ρ1(C1) · · · ρt−1(Ct−1) · η(Ct, σ) · ρt+1(Ct+1) · · · ρn(Cn).

Definition H.32. step(C, σ)
def
= λ(C ′, σ′).

{
p, if (C, σ)

p−→ (C ′, σ′)

0, otherwise

Definition H.33. step(C1 ‖ · · · ‖ Cn, σ, t)
def
= δ(C1) ‖ . . . δ(Ct−1) ‖ step(Ct, σ) ‖

δ(Ct+1) ‖ · · · ‖ δ(Cn).

Definition H.34. step(W, t)
def
= E(C,σ)∼W {step(C, σ, t)}.

Definition H.35. step(η)
def
= E(C,σ)∼η{step(C, σ)}.

Lemma 93. For all ρ, µ, C2, (ρ⊗ µ);C2 = (ρ;C2)⊗ µ.

Proof. For all ρ, µ, C2,

(ρ⊗ µ);C2

= λ(C, σ).

{
(ρ⊗ µ)(C1, σ), if C = C1;C2

0, otherwise

= λ(C, σ).

{
ρ(C1) · µ(σ), if C = C1;C2

0, otherwise

= λ(C, σ). µ(σ) ·

{
ρ(C1), if C = C1;C2

0, otherwise
= λ(C, σ). µ(σ) · (ρ;C2)(C)
= (ρ;C2)⊗ µ.

Lemma 94. For all C and µ, lazycoin(δ(C)⊗ µ) = δ(lazycoin(C))⊗ µ.

Proof. For all C and µ, we have

lazycoin(δ(C)⊗ µ)
= E(C1,σ)∼δ(C)⊗µ{δ(lazycoin(C1))⊗ δ(σ)}
= λ(C′, σ′).

∑
C1,σ

δ(C)(C1) · µ(σ) · δ(lazycoin(C1))(C′) · δ(σ)(σ′)

= λ(C′, σ′). δ(lazycoin(C))(C′) · µ(σ′)
= δ(lazycoin(C))⊗ µ.

Lemma 95. For all C and µ, splitAtom(δ(C)⊗ µ) = splitAtom(C)⊗ µ.

Proof. For all C and µ, we have

splitAtom(δ(C)⊗ µ)
= E(C1,σ)∼δ(C)⊗µ{splitAtom(C1)⊗ δ(σ)}
= λ(C′, σ′).

∑
C1,σ

δ(C)(C1) · µ(σ) · splitAtom(C1)(C′) · δ(σ)(σ′)

= λ(C′, σ′). splitAtom(C)(C′) · µ(σ′)
= splitAtom(C)⊗ µ.

Lemma 96. For all C1 and C2, δ(C1);C2 = δ(C1;C2).

Proof. For all C1 and C2,

δ(C1);C2 = λC ′.

{
δ(C1)(C ′1), if C ′ = C ′1;C2

0, otherwise
= λC ′.

{
1, if C ′ = C1;C2

0, otherwise
= δ(C1;C2).

Lemma 97. For all C, splitAtom(lazycoin(C)) = δ(lazycoin(C)).

Proof. by induction on C.

– C = skip.
splitAtom(lazycoin(C)) = splitAtom(lazycoin(skip)) = splitAtom(skip) =
δ(skip) = δ(lazycoin(skip)) = δ(lazycoin(C)).

– C = x := e.
splitAtom(lazycoin(C)) = splitAtom(lazycoin(x := e)) = splitAtom(x :=
e) = δ(x := e) = δ(lazycoin(x := e)) = δ(lazycoin(C)).

– C = C1;C2.
IH: splitAtom(lazycoin(C1)) = δ(lazycoin(C1)).

splitAtom(lazycoin(C))
= splitAtom(lazycoin(C1;C2))
= splitAtom(lazycoin(C1); lazycoin(C2))
= splitAtom(lazycoin(C1)); lazycoin(C2)
= δ(lazycoin(C1)); lazycoin(C2) (by IH)
= δ(lazycoin(C1); lazycoin(C2)) (by Lem. 96)
= δ(lazycoin(C1;C2))
= δ(lazycoin(C)).

– C = if (b) then C1 else C2.

splitAtom(lazycoin(C))
= splitAtom(lazycoin(if (b) then C1 else C2))
= splitAtom(if (b) then lazycoin(C1) else lazycoin(C2))
= δ(if (b) then lazycoin(C1) else lazycoin(C2))
= δ(lazycoin(if (b) then C1 else C2))
= δ(lazycoin(C)).

– C = while (b) do C1.

splitAtom(lazycoin(C))
= splitAtom(lazycoin(while (b) do C1))
= splitAtom(while (b) do lazycoin(C1))
= δ(while (b) do lazycoin(C1))
= δ(lazycoin(while (b) do C1))
= δ(lazycoin(C)).

– C = 〈C1〉.

splitAtom(lazycoin(C))
= splitAtom(lazycoin(〈C1〉))
= splitAtom(〈C1〉)
= δ(〈C1〉)
= δ(lazycoin(〈C1〉))
= δ(lazycoin(C)).

– C = 〈C1〉 sp.
splitAtom(lazycoin(C))

= splitAtom(lazycoin(〈C1〉 sp))
= splitAtom(〈C1〉 sp)
= δ(〈C1〉 sp)
= δ(lazycoin(〈C1〉 sp))
= δ(lazycoin(C)).

– C = 〈C1〉 ⊕p 〈C2〉.

splitAtom(lazycoin(C))
= splitAtom(lazycoin(〈C1〉 ⊕p 〈C2〉))
= splitAtom(skip; 〈〈C1〉 ⊕p 〈C2〉〉)
= splitAtom(skip); 〈〈C1〉 ⊕p 〈C2〉〉
= δ(skip); 〈〈C1〉 ⊕p 〈C2〉〉
= δ(skip; 〈〈C1〉 ⊕p 〈C2〉〉) (by Lem. 96)
= δ(lazycoin(〈C1〉 ⊕p 〈C2〉))
= δ(lazycoin(C)).

Lemma 98. For all C1, . . . , Cn, δ(C1) ‖ · · · ‖ δ(Cn) = δ(C1 ‖ · · · ‖ Cn)..

Proof. For all C1, . . . , Cn,

δ(C1) ‖ · · · ‖ δ(Cn)
= λ(C ′1 ‖ · · · ‖ C ′n). δ(C1)(C ′1) · · · δ(Cn)(C ′n)
= λ(C ′1 ‖ · · · ‖ C ′n). δ(C1 ‖ · · · ‖ Cn)(C ′1 ‖ · · · ‖ C ′n)
= δ(C1 ‖ · · · ‖ Cn).

Lemma 99. For all C, splitAtom(lazycoin(C)) = δ(lazycoin(C)).

Proof. For all C, by definition of Prog there exists C1, . . . , Cn such that C =
C1 ‖ · · · ‖ Cn.

splitAtom(lazycoin(C))
= splitAtom(lazycoin(C1 ‖ · · · ‖ Cn))
= splitAtom(lazycoin(C1) ‖ · · · ‖ lazycoin(Cn))
= splitAtom(lazycoin(C1)) ‖ · · · ‖ splitAtom(lazycoin(Cn))
= δ(lazycoin(C1)) ‖ · · · ‖ δ(lazycoin(Cn)) (by Lem. 97)
= δ(lazycoin(C1) ‖ · · · ‖ lazycoin(Cn)) (by Lem. 98)
= δ(lazycoin(C1 ‖ · · · ‖ Cn))
= δ(lazycoin(C)).

Lemma 100. For all C and µ, init(C, µ) ∼ init(lazycoin(C), µ).

Proof. For all C and µ, we have

splitAtom(init(lazycoin(C), µ))
= splitAtom(δ(lazycoin(C))⊗ µ)
= splitAtom(lazycoin(C))⊗ µ (by Lem. 95)
= δ(lazycoin(C))⊗ µ (by Lem. 99)
= lazycoin(δ(C)⊗ µ) (by Lem. 94)
= lazycoin(init(C, µ)).

Therefore init(C, µ) ∼ init(lazycoin(C), µ).

Lemma 101. For all C, nextsplit(lazycoin(C)) = nextsplit(C).

Proof. by induction on the structure of C.

– case 1: C = 〈C1〉 sp.
nextsplit(lazycoin(C)) = nextsplit(lazycoin(〈C1〉 sp)) = nextsplit(〈C〉1 sp) =
nextsplit(C).

– case 2: C = C1;C2.
IH: nextsplit(lazycoin(C1)) = nextsplit(C1).
nextsplit(lazycoin(C)) = nextsplit(lazycoin(C1;C2)) = nextsplit(lazycoin(C1); lazycoin(C2))
= nextsplit(lazycoin(C1)) = nextsplit(C1).

– othercases.
nextsplit(lazycoin(C)) = {split(true)} = nextsplit(C).

Lemma 102. For all W and t, nextsplit(lazycoin(W), t) = nextsplit(W, t).

Proof. For all W and t,

nextsplit(lazycoin(W), t)
= {nextsplit(Ct) | ∃C1, . . . , Ct−1, Ct+1, . . . , Cn, σ. (C1 ‖ · · · ‖ Cn, σ) ∈ supp(lazycoin(W))}
= {nextsplit(Ct) | ∃C1, . . . , Ct−1, Ct+1, . . . , Cn, σ. lazycoin(W)(C1 ‖ · · · ‖ Cn, σ) > 0}
= {nextsplit(Ct) | ∃C1, . . . , Ct−1, Ct+1, . . . , Cn, σ.

E(C′,σ′)∼W {δ(lazycoin(C′))⊗ δ(σ′)}(C1 ‖ · · · ‖ Cn, σ) > 0}
= {nextsplit(Ct) | ∃C1, . . . , Ct−1, Ct+1, . . . , Cn, σ.∑

C′,σ′W (C′, σ′) · δ(lazycoin(C′))(C1 ‖ · · · ‖ Cn) · δ(σ′)(σ) > 0}
= {nextsplit(Ct) | ∃C1, . . . , Ct−1, Ct+1, . . . , Cn, σ.∑

C′W (C′, σ) · δ(lazycoin(C′))(C1 ‖ · · · ‖ Cn) > 0}
= {nextsplit(Ct) | ∃C1, . . . , Ct−1, Ct+1, . . . , Cn, σ,C′.

W (C′, σ) > 0 ∧ lazycoin(C′) = C1 ‖ · · · ‖ Cn}
= {nextsplit(Ct) | ∃C1, . . . , Ct−1, Ct+1, . . . , Cn, σ, C

′
1, . . . , C

′
k.

W (C ′1 ‖ · · · ‖ C ′k, σ) > 0 ∧ lazycoin(C ′1 ‖ · · · ‖ C ′k) = C1 ‖ · · · ‖ Cn}
= {nextsplit(Ct) | ∃C1, . . . , Ct−1, Ct+1, . . . , Cn, σ, C

′
1, . . . , C

′
k. W (C ′1 ‖ · · · ‖ C ′k, σ) > 0 ∧

lazycoin(C ′1) ‖ · · · ‖ lazycoin(C ′k) = C1 ‖ · · · ‖ Cn}
= {nextsplit(Ct) | ∃C1, . . . , Ct−1, Ct+1, . . . , Cn, σ, C

′
1, . . . , C

′
n. W (C ′1 ‖ · · · ‖ C ′n, σ) > 0 ∧

lazycoin(C ′1) = C1 ∧ · · · ∧ lazycoin(C ′n) = Cn}
= {nextsplit(Ct) | ∃C ′1, . . . , C ′n, σ. W (C ′1 ‖ · · · ‖ C ′n, σ) > 0 ∧ lazycoin(C ′t) = Ct}
= {nextsplit(lazycoin(C ′t)) | ∃C ′1, . . . , C ′t−1, C

′
t+1, . . . , C

′
n, σ. W (C ′1 ‖ · · · ‖ C ′n, σ) > 0}

= {nextsplit(C ′t) | ∃C ′1, . . . , C ′t−1, C
′
t+1, . . . , C

′
n, σ. W (C ′1 ‖ · · · ‖ C ′n, σ) > 0} (by Lem. 101)

= {nextsplit(C ′t) | ∃C ′1, . . . , C ′t−1, C
′
t+1, . . . , C

′
n, σ. (C ′1 ‖ · · · ‖ C ′n, σ) ∈ supp(W)}

= nextsplit(W, t).

Lemma 103. For all C and C ′, if splitAtom(C)(C ′) > 0, then nextsplit(C) =
nextsplit(C ′).

Proof. by induction on the structure of C.

– case 1: C = 〈〈C1〉 ⊕p 〈C2〉〉.
For all C ′ such that splitAtom(C)(C ′) > 0, we have 0 < splitAtom(C)(C ′) =

splitAtom(〈〈C1〉⊕p〈C2〉〉)(C ′) = (δ(〈C1〉)⊕pδ(〈C2〉))(C ′) = p·δ(〈C1〉)(C ′)+
(1 − p) · δ(〈C2〉)(C ′) we know δ(〈C1〉)(C ′) > 0 or δ(〈C2〉)(C ′) > 0, so C ′ =
〈C1〉 or C ′ = 〈C2〉, thus nextsplit(C ′) = {split(true)} = nextsplit(〈〈C1〉 ⊕p
〈C2〉〉) = nextsplit(C).

– case 2: C = 〈〈C1〉 ⊕p 〈C2〉〉 sp.
For all C ′ such that splitAtom(C)(C ′) > 0, we have 0 < splitAtom(C)(C ′) =

splitAtom(〈〈C1〉 ⊕p 〈C2〉〉 sp)(C ′) = (δ(〈C1〉 sp) ⊕p δ(〈C2〉) sp)(C ′) =
p · δ(〈C1〉 sp)(C ′) + (1 − p) · δ(〈C2〉)(C ′ sp) we know δ(〈C1〉 sp)(C ′) > 0
or δ(〈C2〉 sp)(C ′) > 0, so C ′ = 〈C1〉 sp or C ′ = 〈C2〉 sp, thus nextsplit(C ′) =
{sp} = nextsplit(〈〈C1〉 ⊕p 〈C2〉〉 sp) = nextsplit(C).

– case 3: C = C1;C2.
IH: for all C ′, if splitAtom(C1)(C ′), then nextsplit(C1) = nextsplit(C ′).
From 0 < splitAtom(C)(C ′) = splitAtom(C1;C2)(C ′) = (splitAtom(C1);C2)(C ′)
we know there exists C ′1 such that C ′ = C ′1;C2 and splitAtom(C1)(C ′1) > 0,
by IH we have nextsplit(C1) = nextsplit(C ′1), thus nextsplit(C) = nextsplit(C1;C2) =
nextsplit(C1) = nextsplit(C ′1) =
nextsplit(C ′1;C2) = nextsplit(C ′).

– other cases.
By definition of splitAtom we know splitAtom(C) = δ(C). For all C ′ such
that
splitAtom(C)(C ′) > 0, we have δ(C)(C ′) > 0, so C = C ′, thus nextsplit(C) =
nextsplit(C ′).

Lemma 104. For all W and t, nextsplit(splitAtom(W), t) = nextsplit(W, t).

Proof. For all W and t,

nextsplit(splitAtom(W), t)
= {nextsplit(Ct) | ∃C1, . . . , Ct−1, Ct+1, . . . , Cn, σ. (C1 ‖ · · · ‖ Cn, σ) ∈ supp(splitAtom(W))}
= {nextsplit(Ct) | ∃C1, . . . , Ct−1, Ct+1, . . . , Cn, σ. splitAtom(W)(C1 ‖ · · · ‖ Cn, σ) > 0}
= {nextsplit(Ct) | ∃C1, . . . , Ct−1, Ct+1, . . . , Cn, σ.

E(C′,σ′)∼W {splitAtom(C′)⊗ δ(σ′)}(C1 ‖ · · · ‖ Cn, σ) > 0}
= {nextsplit(Ct) | ∃C1, . . . , Ct−1, Ct+1, . . . , Cn, σ.∑

C′,σ′W (C′, σ′) · splitAtom(C′)(C1 ‖ · · · ‖ Cn) · δ(σ′)(σ) > 0}
= {nextsplit(Ct) | ∃C1, . . . , Ct−1, Ct+1, . . . , Cn, σ.∑

C′W (C′, σ) · splitAtom(C′)(C1 ‖ · · · ‖ Cn) > 0}
= {nextsplit(Ct) | ∃C1, . . . , Ct−1, Ct+1, . . . , Cn, σ,C′.

W (C′, σ) > 0 ∧ splitAtom(C′)(C1 ‖ · · · ‖ Cn) > 0}
= {nextsplit(Ct) | ∃C1, . . . , Ct−1, Ct+1, . . . , Cn, σ, C

′
1, . . . , C

′
k.

W (C ′1 ‖ · · · ‖ C ′k, σ) > 0 ∧ splitAtom(C ′1 ‖ · · · ‖ C ′k)(C1 ‖ · · · ‖ Cn) > 0}
= {nextsplit(Ct) | ∃C1, . . . , Ct−1, Ct+1, . . . , Cn, σ, C

′
1, . . . , C

′
n. W (C ′1 ‖ · · · ‖ C ′k, σ) > 0 ∧∏n

i=1 splitAtom(C ′i)(Ci) > 0}
= {nextsplit(Ct) | ∃C1, . . . , Ct−1, Ct+1, . . . , Cn, σ, C

′
1, . . . , C

′
n. W (C ′1 ‖ · · · ‖ C ′n, σ) > 0 ∧

splitAtom(C ′1)(C1) > 0 ∧ · · · ∧ splitAtom(C ′n)(Cn) > 0}
= {nextsplit(Ct) | ∃C ′1, . . . , C ′n, σ. W (C ′1 ‖ · · · ‖ C ′n, σ) > 0 ∧ splitAtom(C ′t)(Ct) > 0}
= {nextsplit(Ct) | ∃C ′1, . . . , C ′t−1, C

′
t+1, . . . , C

′
n, σ. W (C ′1 ‖ · · · ‖ C ′n, σ) > 0 ∧

splitAtom(C ′t)(Ct) > 0 ∧ nextsplit(Ct) = nextsplit(C ′t)} (by Lem. 103)
= {nextsplit(C ′t) | ∃C ′1, . . . , C ′t−1, C

′
t+1, . . . , C

′
n, σ, Ct. W (C ′1 ‖ · · · ‖ C ′n, σ) > 0 ∧

splitAtom(C ′t)(Ct) > 0 ∧ nextsplit(Ct) = nextsplit(C ′t)}
= {nextsplit(C ′t) | ∃C ′1, . . . , C ′t−1, C

′
t+1, . . . , C

′
n, σ. W (C ′1 ‖ · · · ‖ C ′n, σ) > 0}

= {nextsplit(C ′t) | ∃C ′1, . . . , C ′t−1, C
′
t+1, . . . , C

′
n, σ. (C ′1 ‖ · · · ‖ C ′n, σ) ∈ supp(W)}

= nextsplit(W, t).

Lemma 105. For allW1,W2, t, ifW1 ∼W2, then nextsplit(W1, t) = nextsplit(W2, t).

Proof. For allW1,W2, t, ifW1 ∼W2, we know lazycoin(W1) = splitAtom(W2).
By Lem. 102 we know nextsplit(lazycoin(W), t) = nextsplit(W, t).
By Lem. 104 we know nextsplit(splitAtom(W), t) = nextsplit(W, t).
Thus nextsplit(W1, t) = nextsplit(lazycoin(W), t) = nextsplit(splitAtom(W), t) =
nextsplit(W2, t).

Lemma 106. For all W , lazycoin(W)
(State)

= W (State).

Proof. For all W ,

lazycoin(W)
(State)

= λσ.
∑

C lazycoin(W)(C, σ)
= λσ.

∑
C E(C1,σ1)∼W {δ(lazycoin(C1))⊗ δ(σ1)}(C, σ)

= λσ.
∑

C
∑

C1,σ1
W (C1, σ1) · δ(lazycoin(C1))(C) · δ(σ1)(σ)

= λσ.
∑

C1
W (C1, σ)

= W (State).

Lemma 107. For all W , splitAtom(W)
(State)

= W (State).

Proof. For all W ,

splitAtom(W)
(State)

= λσ.
∑

C splitAtom(W)(C, σ)
= λσ.

∑
C E(C1,σ1)∼W {splitAtom(C1)⊗ δ(σ1)}(C, σ)

= λσ.
∑

C
∑

C1,σ1
W (C1, σ1) · splitAtom(C1)(C) · δ(σ1)(σ)

= λσ.
∑

C1
W (C1, σ)

= W (State).

Lemma 108. For all W1,W2, if W1 ∼W2, then W1
(State) = W2

(State).

Proof. For allW1,W2 such thatW1 ∼W2, we know lazycoin(W1) = splitAtom(W2).
By Lem. 106 we know lazycoin(W1)

(State)
= W1

(State). By Lem. 107 we know
splitAtom(W2)

(State)
= W2

(State). ThereforeW1
(State) = lazycoin(W1)

(State)
=

splitAtom(W2)
(State)

= W2
(State).

Lemma 109. For all W, t,W ′, if W t
;W ′, then W ′ = step(W, t).

Proof. For all W, t,W ′ such that W t
;W ′, we have

W ′ = λ(C′, σ′).
∑

C,σ{W (C, σ) · p | (C, σ)
p−→
t

(C′, σ′)}
= λ(C ′1 ‖ . . . C ′n, σ′).

∑
C1,...,Cn,σ

{W (C1 ‖ · · · ‖ Cn, σ) · p |
(C1 ‖ · · · ‖ Cn, σ)

p−→
t

(C ′1 ‖ · · · ‖ C ′n, σ′)}

= λ(C ′1 ‖ . . . C ′n, σ′).
∑
C1,...,Cn,σ

{W (C1 ‖ · · · ‖ Cn, σ) · p | (Ct, σ)
p−→ (C ′t, σ

′) ∧
C ′1 = C1 ∧ · · · ∧ C ′t−1 = Ct−1 ∧ C ′t+1 = Ct+1 ∧ · · · ∧ C ′n = Cn}

= λ(C ′1 ‖ . . . C ′n, σ′).
∑
C1,...,Cn,σ

W (C1 ‖ · · · ‖ Cn, σ) · step(Ct, σ)(C ′t, σ
′) ·

δ(C1)(C ′1) · · · δ(Ct−1)(C ′t−1) · δ(Ct+1)(C ′t+1) · · · δ(Cn)(C ′n)
= λ(C ′1 ‖ . . . C ′n, σ′).

∑
C1,...,Cn,σ

W (C1 ‖ · · · ‖ Cn, σ) ·
(δ(C1) ‖ · · · ‖ δ(Ct−1) ‖ step(Ct, σ) ‖ δ(Ct+1) ‖ · · · ‖ δ(Cn))(C ′1 ‖ · · · ‖ C ′n, σ′)

= λ(C ′1 ‖ . . . C ′n, σ′).
∑
C1,...,Cn,σ

W (C1 ‖ · · · ‖ Cn, σ) ·
step(C1 ‖ · · · ‖ Cn, σ, t)(C ′1 ‖ · · · ‖ C ′n, σ′)

= λ(C′, σ′).
∑

C,σW (C, σ) · step(C, σ, t)(C′, σ′)
= E(C,σ)∼W {step(C, σ, t)}
= step(W, t).

Lemma 110. For all W, t,W ′, W t
;W ′ if and only if W ′ = step(W, t).

Proof. For all W, t,W ′, we prove the two directions respectively.

– if W t
;W ′, then W ′ = step(W, t).

By Lemma. 109.
– if W ′ = step(W, t), then W t

;W ′.

Let W ′′ def
= λ(C′, σ′).

∑
C,σ{W (C, σ) · p | (C, σ)

p−→
t

(C′, σ′)}, then W t
; W ′′.

By Lem. 109 we know W ′′ = step(W, t), so W t
; step(W, t).

Lemma 111. For allW, f, t, step(E(C,σ)∼W {f(C, σ)}, t) = E(C,σ)∼W {step(f(C, σ), t)}.

Proof. For all W, f, t, we have

step(E(C,σ)∼W {f(C, σ)}, t)
= E(C′,σ′)∼E(C,σ)∼W {f(C,σ)}{step(C′, σ′, t)}
= E(C,σ)∼W {E(C′,σ′)∼f(C,σ){step(C′, σ′, t)}} (by Lem. 15)
= E(C,σ)∼W {step(f(C, σ), t)}.

Lemma 112. For allW, f , splitAtom(E(C,σ)∼W {f(C, σ)}) = E(C,σ)∼W {splitAtom(f(C, σ))}.

Proof. For all W, f , we have

splitAtom(E(C,σ)∼W {f(C, σ)})
= E(C′,σ′)∼E(C,σ)∼W {f(C,σ)}{splitAtom(C′)⊗ δ(σ′)}
= E(C,σ)∼W {E(C′,σ′)∼f(C,σ){splitAtom(C′)⊗ δ(σ′)}} (by Lem. 15)
= E(C,σ)∼W {splitAtom(f(C, σ))}.

Lemma 113. For allW, f , lazycoin(E(C,σ)∼W {f(C, σ)}) = E(C,σ)∼W {lazycoin(f(C, σ))}.

Proof. For all W, f , we have

lazycoin(E(C,σ)∼W {f(C, σ)})
= E(C′,σ′)∼E(C,σ)∼W {f(C,σ)}{δ(lazycoin(C′))⊗ δ(σ′)}
= E(C,σ)∼W {E(C′,σ′)∼f(C,σ){δ(lazycoin(C′))⊗ δ(σ′)}} (by Lem. 15)
= E(C,σ)∼W {lazycoin(f(C, σ))}.

Lemma 114. For all ρ1, . . . , ρt−1, η, ρt+1, . . . , ρn, splitAtom(ρ1 ‖ · · · ‖ ρt−1 ‖
η ‖ ρt+1 ‖ · · · ‖ ρn) = splitAtom(ρ1) ‖ · · · ‖ splitAtom(ρt−1) ‖ splitAtom(η) ‖
splitAtom(ρt+1) ‖ · · · ‖ splitAtom(ρn).

Proof. For all ρ1, . . . , ρt−1, η, ρt+1, . . . , ρn,

splitAtom(ρ1 ‖ · · · ‖ ρt−1 ‖ η ‖ ρt+1 ‖ · · · ‖ ρn)
= E(C,σ)∼ρ1‖···‖ρt−1‖η‖ρt+1‖···‖ρn{splitAtom(C)⊗ δ(σ)}
= λ(C′, σ′).

∑
C,σ(ρ1 ‖ · · · ‖ ρt−1 ‖ η ‖ ρt+1 ‖ · · · ‖ ρn)(C, σ) · splitAtom(C)(C′) · δ(σ)(σ′)

= λ(C′1 ‖ · · · ‖ C′n, σ′).
∑
C1,...,Cn,σ

(ρ1 ‖ · · · ‖ ρt−1 ‖ η ‖ ρt+1 ‖ · · · ‖ ρn)(C1 ‖ · · · ‖ Cn, σ) ·
splitAtom(C1 ‖ · · · ‖ Cn)(C′1 ‖ · · · ‖ C′n) · δ(σ)(σ′)

= λ(C′1 ‖ · · · ‖ C′n, σ′).
∑
C1,...,Cn,σ

ρ1(C1) · · · ρt−1(Ct−1) · η(Ct, σ) · ρt+1(Ct+1) · · · ρn(Cn) ·
splitAtom(C1)(C

′
1) · · · splitAtom(Cn)(C

′
n) · δ(σ)(σ′)

= λ(C′1 ‖ · · · ‖ C′n, σ′). (
∑
C1
ρ1(C1) · splitAtom(C1)(C

′
1)) · · ·

(
∑
Ct−1

ρt−1(Ct−1) · splitAtom(Ct−1)(C
′
t−1)) · (

∑
Ct,σ

η(Ct, σ) · splitAtom(Ct)(C
′
t) · δ(σ)(σ′)) ·

(
∑
Ct+1

ρt+1(Ct+1) · splitAtom(Ct+1)(C
′
t+1)) · · · (

∑
Cn

ρn(Cn) · splitAtom(Cn)(C
′
n))

= λ(C′1 ‖ · · · ‖ C′n, σ′). EC1∼ρ1{splitAtom(C1)}(C′1) · · ·ECt−1∼ρt−1{splitAtom(Ct−1)}(C′t−1) ·
E(Ct,σ)∼η{splitAtom(Ct)⊗ δ(σ)}(C′t, σ′) · ECt+1∼ρt+1{splitAtom(Ct+1)}(C′t+1) · · ·
ECn∼ρn{splitAtom(Cn)}(C′n)

= λ(C′1 ‖ · · · ‖ C′n, σ′). splitAtom(ρ1)(C
′
1) · · · splitAtom(ρt−1)(C

′
t−1) · splitAtom(η)(C′t, σ

′) ·
splitAtom(ρt+1)(C

′
t+1)(C

′
t+1) · · · splitAtom(ρn)(C

′
n)(C

′
n)

= splitAtom(ρ1) ‖ · · · ‖ splitAtom(ρt−1) ‖ splitAtom(η) ‖ splitAtom(ρt+1) ‖ · · · ‖ splitAtom(ρn).

Lemma 115. For all ρ1, . . . , ρt−1, η, ρt+1, . . . , ρn, lazycoin(ρ1 ‖ . . . ρt−1 ‖ η ‖
ρt+1 ‖ · · · ‖ ρn) = lazycoin(ρ1) ‖ . . . lazycoin(ρt−1) ‖ lazycoin(η) ‖ lazycoin(ρt+1) ‖
· · · ‖ lazycoin(Cn).

Proof. For all ρ1, . . . , ρt−1, η, ρt+1, . . . , ρn,

lazycoin(ρ1 ‖ · · · ‖ ρt−1 ‖ η ‖ ρt+1 ‖ · · · ‖ ρn)
= E(C,σ)∼ρ1‖···‖ρt−1‖η‖ρt+1‖···‖ρn{δ(lazycoin(C))⊗ δ(σ)}
= λ(C′, σ′).

∑
C,σ(ρ1 ‖ · · · ‖ ρt−1 ‖ η ‖ ρt+1 ‖ · · · ‖ ρn)(C, σ) · δ(lazycoin(C))(C′) · δ(σ)(σ′)

= λ(C′1 ‖ · · · ‖ C′n, σ′).
∑
C1,...,Cn,σ

(ρ1 ‖ · · · ‖ ρt−1 ‖ η ‖ ρt+1 ‖ · · · ‖ ρn)(C1 ‖ · · · ‖ Cn, σ) ·
δ(lazycoin(C1 ‖ · · · ‖ Cn))(C′1 ‖ · · · ‖ C′n) · δ(σ)(σ′)

= λ(C′1 ‖ · · · ‖ C′n, σ′).
∑
C1,...,Cn,σ

ρ1(C1) · · · ρt−1(Ct−1) · η(Ct, σ) · ρt+1(Ct+1) · · · ρn(Cn) ·
δ(lazycoin(C1))(C

′
1) · · · δ(lazycoin(Cn))(C′n) · δ(σ)(σ′)

= λ(C′1 ‖ · · · ‖ C′n, σ′). (
∑
C1
ρ1(C1) · δ(lazycoin(C1))(C

′
1)) · · ·

(
∑
Ct−1

ρt−1(Ct−1) · δ(lazycoin(Ct−1))(C
′
t−1)) · (

∑
Ct,σ

η(Ct, σ) · δ(lazycoin(Ct))(C′t) · δ(σ)(σ′)) ·
(
∑
Ct+1

ρt+1(Ct+1) · δ(lazycoin(Ct+1))(C
′
t+1)) · · · (

∑
Cn

ρn(Cn) · δ(lazycoin(Cn))(C′n))
= λ(C′1 ‖ · · · ‖ C′n, σ′). EC1∼ρ1{δ(lazycoin(C1))}(C′1) · · ·ECt−1∼ρt−1{δ(lazycoin(Ct−1))}(C′t−1) ·

E(Ct,σ)∼η{δ(lazycoin(Ct))⊗ δ(σ)}(C
′
t, σ
′) · ECt+1∼ρt+1{δ(lazycoin(Ct+1))}(C′t+1) · · ·

ECn∼ρn{δ(lazycoin(Cn))}(C′n)
= λ(C′1 ‖ · · · ‖ C′n, σ′). lazycoin(ρ1)(C′1) · · · lazycoin(ρt−1)(C

′
t−1) · lazycoin(η)(C′t, σ′) ·

lazycoin(ρt+1)(C
′
t+1)(C

′
t+1) · · · lazycoin(ρn)(C′n)(C′n)

= lazycoin(ρ1) ‖ · · · ‖ lazycoin(ρt−1) ‖ lazycoin(η) ‖ lazycoin(ρt+1) ‖ · · · ‖ lazycoin(ρn).

Lemma 116. For all ρ, µ, splitAtom(ρ⊗ µ) = splitAtom(ρ)⊗ µ.

Proof. For all ρ, µ,

splitAtom(ρ⊗ µ)
= E(C,σ)∼ρ⊗µ{splitAtom(C)⊗ δ(σ)}
= λ(C ′, σ′).

∑
C,σ ρ(C) · µ(σ) · splitAtom(C)(C ′) · δ(σ)(σ′)

= λ(C ′, σ′). (
∑
C ρ(C) · splitAtom(C)(C ′)) · µ(σ′)

= λ(C ′, σ′). EC∼ρ{splitAtom(C)}(C ′) · µ(σ′)
= λ(C ′, σ′). splitAtom(ρ)(C ′) · µ(σ′)
= splitAtom(ρ)⊗ µ.

Lemma 117. For all ρ, µ, lazycoin(ρ⊗ µ) = lazycoin(ρ)⊗ µ.

Proof. For all ρ, µ,

lazycoin(ρ⊗ µ)
= E(C,σ)∼ρ⊗µ{δ(lazycoin(C))⊗ δ(σ)}
= λ(C ′, σ′).

∑
C,σ ρ(C) · µ(σ) · δ(lazycoin(C))(C ′) · δ(σ)(σ′)

= λ(C ′, σ′). (
∑
C ρ(C) · δ(lazycoin(C))(C ′)) · µ(σ′)

= λ(C ′, σ′). EC∼ρ{δ(lazycoin(C))}(C ′) · µ(σ′)
= λ(C ′, σ′). lazycoin(ρ)(C ′) · µ(σ′)
= lazycoin(ρ)⊗ µ.

Lemma 118. For all C, splitAtom(δ(C)) = splitAtom(C).

Proof. For all C,
splitAtom(δ(C))

= EC′∼δ(C){splitAtom(C ′)}
= splitAtom(C). (by Lem. 17)

Lemma 119. For all C, lazycoin(δ(C)) = δ(lazycoin(C)).

Proof. For all C,

lazycoin(δ(C))
= EC′∼δ(C){δ(lazycoin(C ′))}
= δ(lazycoin(C)). (by Lem. 17)

Lemma 120. For all C and σ, step(δ(C)⊗ δ(σ)) = step(C, σ).

Proof. For all C and σ,

step(δ(C)⊗ δ(σ))
= E(C′,σ′)∼δ(C)⊗δ(σ){step(C ′, σ′)}
= λ(C ′′, σ′′).

∑
C′,σ′ δ(C)(C ′) · δ(σ)(σ′) · step(C ′, σ′)(C ′′, σ′′)

= λ(C ′′, σ′′).step(C, σ)(C ′′, σ′′).
= step(C, σ).

Lemma 121. For all C, σ, t, step(δ(C)⊗ δ(σ), t) = step(C, σ, t).

Proof. For all C, σ, t,

step(δ(C)⊗ δ(σ), t)
= E(C′,σ′)∼δ(C)⊗δ(σ){step(C′, σ′, t)}
= λ(C′′, σ′′).

∑
C′,σ′ δ(C)(C′) · δ(σ)(σ′) · step(C′, σ′, t)(C′′, σ′′).

= λ(C′′, σ′′).step(C, σ)(C′′, σ′′).
= step(C, σ, t).

Lemma 122. For all η1, η2, p, splitAtom(η1⊕pη2) = splitAtom(η1)⊕psplitAtom(η2).

Proof. For all η1, η2, p,

splitAtom(η1 ⊕p η2)
= E(C,σ)∼η1⊕pη2{splitAtom(C)⊗ δ(σ)}
= E(C,σ)∼η1{splitAtom(C)⊗ δ(σ)} ⊕p E(C,σ)∼η2{splitAtom(C)⊗ δ(σ)} (by Lem. 16)
= splitAtom(η1)⊕p splitAtom(η2).

Lemma 123. For all η1, η2, p, lazycoin(η1⊕pη2) = lazycoin(η1)⊕plazycoin(η2).

Proof. For all η1, η2, p,

lazycoin(η1 ⊕p η2)
= E(C,σ)∼η1⊕pη2{δ(lazycoin(C))⊗ δ(σ)}
= E(C,σ)∼η1{δ(lazycoin(C))⊗ δ(σ)} ⊕p E(C,σ)∼η2{δ(lazycoin(C))⊗ δ(σ)} (by Lem. 16)
= lazycoin(η1)⊕p lazycoin(η2).

Lemma 124. For all η1, η2, p, step(η1 ⊕p η2) = step(η1)⊕p step(η2).

Proof. For all η1, η2, p,

splitAtom(η1 ⊕p η2)
= E(C,σ)∼η1⊕pη2{splitAtom(C)⊗ δ(σ)}
= E(C,σ)∼η1{splitAtom(C)⊗ δ(σ)} ⊕p E(C,σ)∼η2{splitAtom(C)⊗ δ(σ)} (by Lem. 16)
= splitAtom(η1)⊕p splitAtom(η2).

Lemma 125. For all C1, C2, σ, if C1 6= skip, then step(C1;C2, σ) = step(C1, σ);C2.

Proof. For all C1, C2, σ such that C1 6= skip, we have

step(C1;C2, σ)

= λ(C ′, σ′).

{
p, if (C1;C2, σ)

p−→ (C ′, σ′)

0, otherwise

= λ(C ′, σ′).

{
p, if (C1, σ)

p−→ (C ′1, σ
′) ∧ C ′ = C ′1;C2

0, otherwise

= λ(C ′, σ′).

{
step(C1, σ)(C ′1, σ

′), if C ′ = C ′1;C2

0, otherwise
= step(C1, σ);C2.

Lemma 126. For all η, C2, splitAtom(η;C2) = splitAtom(η);C2.

Proof. For all η, C2,

splitAtom(η;C2)
= E(C,σ)∼η;C2

{splitAtom(C)⊗ δ(σ)}
= λ(C ′, σ′).

∑
C,σ(η;C2)(C, σ) · splitAtom(C)(C ′) · δ(σ)(σ′)

= λ(C ′, σ′).
∑
C1,σ

η(C1, σ) · splitAtom(C1;C2)(C ′) · δ(σ)(σ′)

= λ(C ′, σ′).
∑
C1,σ

η(C1, σ) · (splitAtom(C1);C2)(C ′) · δ(σ)(σ′)

= λ(C ′, σ′).

{∑
C1,σ

η(C1, σ) · splitAtom(C1)(C ′1) · δ(σ)(σ′), if C ′ = C ′1;C2

0, otherwise

= λ(C ′, σ′).

{
E(C1,σ)∼η{splitAtom(C1)⊗ δ(σ)}(C ′1, σ′), if C ′ = C ′1;C2

0, otherwise

= λ(C ′, σ′).

{
splitAtom(η)(C ′1, σ

′), if C ′ = C ′1;C2

0, otherwise
= splitAtom(η);C2.

Lemma 127. For all η, C2, lazycoin(η;C2) = lazycoin(η); lazycoin(C2).

Proof.

lazycoin(η;C2)
= E(C,σ)∼η;C2

{δ(lazycoin(C))⊗ δ(σ)}
= λ(C ′, σ′).

∑
C,σ(η;C2)(C, σ) · δ(lazycoin(C))(C ′) · δ(σ)(σ′)

= λ(C ′, σ′).
∑
C1,σ

η(C1, σ) · δ(lazycoin(C1;C2))(C ′) · δ(σ)(σ′)

= λ(C ′, σ′).
∑
C1,σ

η(C1, σ) · δ(lazycoin(C1); lazycoin(C2))(C ′) · δ(σ)(σ′)

= λ(C ′, σ′).

{∑
C1,σ

η(C1, σ) · δ(lazycoin(C1))(C ′1) · δ(σ)(σ′), if C ′ = C ′1; lazycoin(C2)

0, otherwise

= λ(C ′, σ′).

{
E(C1,σ)∼η{δ(lazycoin(C1))⊗ δ(σ)}(C ′1, σ′), if C ′ = C ′1;C2

0, otherwise

= λ(C ′, σ′).

{
lazycoin(η)(C ′1, σ

′), if C ′ = C ′1;C2

0, otherwise
= lazycoin(η);C2.

Lemma 128. For all C, σ, splitAtom(step(lazycoin(C), σ)) = lazycoin(step(C, σ)).

Proof. by induction on C.

– case 1: C = 〈C1〉 ⊕p 〈C2〉.
For all σ, we have

splitAtom(step(lazycoin(C), σ))
= splitAtom(step(lazycoin(〈C1〉 ⊕p 〈C2〉), σ))
= splitAtom(step(skip; 〈〈C1〉 ⊕p 〈C2〉〉, σ))
= splitAtom(δ(〈〈C1〉 ⊕p 〈C2〉〉)⊗ δ(σ))
= splitAtom(δ(〈〈C1〉 ⊕p 〈C2〉〉))⊗ δ(σ) (by Lem. 116)
= splitAtom(〈〈C1〉 ⊕p 〈C2〉〉)⊗ δ(σ) (by Lem. 118)
= δ(〈C1〉)⊕p δ(〈C2〉)⊗ δ(σ)
= (δ(〈C1〉)⊗ δ(σ))⊕p (δ(〈C2〉)⊗ δ(σ)). (by Lem. 14)

and

lazycoin(step(C, σ))
= lazycoin(step(〈C1〉 ⊕p 〈C2〉, σ))
= lazycoin((δ(〈C1〉)⊗ δ(σ))⊕p (δ(〈C2〉)⊗ δ(σ)))
= lazycoin(δ(〈C1〉)⊗ δ(σ))⊕p lazycoin(δ(〈C2〉)⊗ δ(σ)) (by Lem. 123)
= (lazycoin(δ(〈C1〉))⊗ δ(σ))⊕p (lazycoin(δ(〈C2〉))⊗ δ(σ)) (by Lem. 117)
= (δ(lazycoin(〈C1〉))⊗ δ(σ))⊕p (δ(lazycoin(〈C2〉))⊗ δ(σ)) (by Lem. 119)
= (δ(〈C1〉)⊗ δ(σ))⊕p (δ(〈C2〉)⊗ δ(σ)).

Therefore splitAtom(step(lazycoin(C), σ)) = lazycoin(step(C, σ)).
– case 2: C = C1;C2.

IH: for all σ, splitAtom(step(lazycoin(C1), σ)) = lazycoin(step(C1, σ)).
For all σ, we have splitAtom(step(lazycoin(C), σ)) = splitAtom(step(lazycoin(C1;C2), σ))
= splitAtom(step(lazycoin(C1); lazycoin(C2), σ)). It is obvious that C1 =
skip or C1 6= skip, we prove the two cases respectively.

• C1 = skip.
We have

splitAtom(step(lazycoin(C), σ))
= splitAtom(step(lazycoin(skip); lazycoin(C2), σ))
= splitAtom(step(skip; lazycoin(C2), σ))
= splitAtom(δ(lazycoin(C2))⊗ δ(σ))
= splitAtom(δ(lazycoin(C2)))⊗ δ(σ) (by Lem. 116)
= splitAtom(lazycoin(C2))⊗ δ(σ) (by Lem. 118)
= δ(lazycoin(C2))⊗ δ(σ) (by Lem. 97)

and
lazycoin(step(C, σ))

= lazycoin(step(skip;C2, σ))
= lazycoin(δ(C2)⊗ δ(σ))
= lazycoin(δ(C2))⊗ δ(σ) (by Lem. 117)
= δ(lazycoin(C2))⊗ δ(σ). (by Lem. 119)

Therefore splitAtom(step(lazycoin(C), σ)) = lazycoin(step(C, σ)).
• C1 6= skip.

From C1 6= skip we know lazycoin(C1) 6= skip.
By Lem. 125 we know step(C1;C2, σ) = step(C1, σ);C2 and
step(lazycoin(C1); lazycoin(C2), σ) = step(lazycoin(C1), σ); lazycoin(C2),
thus

splitAtom(step(lazycoin(C), σ))
= splitAtom(step(lazycoin(C1); lazycoin(C2), σ))
= splitAtom(step(lazycoin(C1), σ); lazycoin(C2))
= splitAtom(step(lazycoin(C1), σ)); lazycoin(C2) (by Lem. 126)
= lazycoin(step(C1, σ)); lazycoin(C2) (by IH)
= lazycoin(step(C1, σ);C2) (by Lem. 127)
= lazycoin(step(C1;C2, σ))
= lazycoin(step(C, σ)).

– case 3: C = if (b) then C1 else C2.
For all σ, it is obvious that σ |= b or σ 6|= b. We only prove the case σ |= b, the
other case is similar. From σ |= b we know step(if (b) then C1 else C2) =
δ(C1) ⊗ δ(σ) and step(if (b) then lazycoin(C1) else lazycoin(C2)) =
δ(lazycoin(C1))⊗ δ(σ), thus

splitAtom(step(lazycoin(C), σ))
= splitAtom(step(lazycoin(if (b) then C1 else C2), σ))
= splitAtom(step(if (b) then lazycoin(C1) else lazycoin(C2), σ))
= splitAtom(δ(lazycoin(C1))⊗ δ(σ))
= splitAtom(δ(lazycoin(C1)))⊗ δ(σ) (by Lem. 116)
= splitAtom(lazycoin(C1))⊗ δ(σ) (by Lem. 118)
= δ(lazycoin(C1))⊗ δ(σ). (by Lem. 97)
= lazycoin(step(C, σ))

and
lazycoin(step(C, σ))

= lazycoin(step(if (b) then C1 else C2, σ))
= lazycoin(δ(C1)⊗ δ(σ))
= lazycoin(δ(C1))⊗ δ(σ) (by Lem. 117)
= δ(lazycoin(C1))⊗ δ(σ). (by Lem. 119)

Therefore splitAtom(step(lazycoin(C), σ)) = lazycoin(step(C, σ)).
– case 4: C = while (b) do C1.

For all σ, it is obvious that σ |= b or σ 6|= b. We prove the two cases respec-
tively.
• σ |= b.

We have step(while (b) do C1, σ) = δ(C1;while (b) do C1)⊗ δ(σ) and
step(while (b) do lazycoin(C1), σ) = δ(lazycoin(C1);while (b) do lazycoin(C1))⊗
δ(σ), thus

splitAtom(step(lazycoin(C), σ))
= splitAtom(step(lazycoin(while (b) do C1), σ))
= splitAtom(step(while (b) do lazycoin(C1), σ))
= splitAtom(δ(lazycoin(C1);while (b) do lazycoin(C1))⊗ δ(σ))
= splitAtom(δ(lazycoin(C1);while (b) do lazycoin(C1)))⊗ δ(σ) (by Lem. 116)
= splitAtom(lazycoin(C1);while (b) do lazycoin(C1))⊗ δ(σ) (by Lem. 118)
= splitAtom(lazycoin(C1));while (b) do lazycoin(C1)⊗ δ(σ) (by Lem. 126)
= δ(lazycoin(C1));while (b) do lazycoin(C1)⊗ δ(σ) (by Lem. 97)
= δ(lazycoin(C1);while (b) do lazycoin(C1))⊗ δ(σ) (by Lem. 96)
= δ(lazycoin(C1;while (b) do C1))⊗ δ(σ)

and

lazycoin(step(C, σ))
= lazycoin(step(while (b) do C1, σ))
= lazycoin(δ(C1;while (b) do C1)⊗ δ(σ))
= lazycoin(δ(C1;while (b) do C1))⊗ δ(σ) (by Lem. 117)
= δ(lazycoin(C1;while (b) do C1))⊗ δ(σ) (by Lem. 119)

Therefore splitAtom(step(lazycoin(C), σ)) = lazycoin(step(C, σ)).
• σ 6|= b.

We have step(while (b) do C1, σ) = δ(skip)⊗ δ(σ) and
step(while (b) do lazycoin(C1), σ) = δ(skip)⊗ δ(σ), thus

splitAtom(step(lazycoin(C), σ))
= splitAtom(step(lazycoin(while (b) do C1), σ))
= splitAtom(step(while (b) do lazycoin(C1), σ))
= splitAtom(δ(skip)⊗ δ(σ))
= splitAtom(δ(skip))⊗ δ(σ) (by Lem. 116)
= splitAtom(skip)⊗ δ(σ) (by Lem. 118)
= δ(skip)⊗ δ(σ)

and
lazycoin(step(C, σ))

= lazycoin(step(while (b) do C1, σ))
= lazycoin(δ(skip)⊗ δ(σ))
= lazycoin(δ(skip))⊗ δ(σ) (by Lem. 117)
= δ(skip)⊗ δ(σ). (by Lem. 119)

Therefore splitAtom(step(lazycoin(C), σ)) = lazycoin(step(C, σ)).
– other cases: C = skip | x := e | 〈C1〉 | 〈C1〉 sp.

We can see lazycoin(C) = C and there exists µ such that step(C, σ) =
δ(skip)⊗ µ, thus

splitAtom(step(lazycoin(C), σ))
= splitAtom(δ(skip)⊗ µ)
= splitAtom(δ(skip))⊗ µ (by Lem. 116)
= splitAtom(skip)⊗ µ. (by Lem. 118)
= δ(skip)⊗ µ

and
lazycoin(step(C, σ))

= lazycoin(δ(skip)⊗ µ
= lazycoin(δ(skip))⊗ µ (by Lem. 117)
= δ(skip)⊗ µ. (by Lem. 119)

Therefore splitAtom(step(lazycoin(C), σ)) = lazycoin(step(C, σ)).

Lemma 129. For all C, σ, t, splitAtom(step(lazycoin(C), σ, t)) = lazycoin(step(C, σ, t)).

Proof. For all C, σ, t, by definition of Prog there exists C1, . . . , Cn such that
C = C1 ‖ · · · ‖ Cn.

splitAtom(step(lazycoin(C), σ, t))
= splitAtom(step(lazycoin(C1 ‖ · · · ‖ Cn), σ, t))
= splitAtom(step(lazycoin(C1) ‖ · · · ‖ lazycoin(Cn), σ, t))
= splitAtom(δ(lazycoin(C1)) ‖ · · · ‖ δ(lazycoin(Ct−1)) ‖ step(lazycoin(Ct), σ) ‖

δ(lazycoin(Ct+1)) ‖ · · · ‖ δ(lazycoin(Cn)))
= splitAtom(δ(lazycoin(C1))) ‖ · · · ‖ splitAtom(δ(lazycoin(Ct−1))) ‖ splitAtom(step(lazycoin(Ct), σ)) ‖

splitAtom(δ(lazycoin(Ct+1))) ‖ · · · ‖ splitAtom(δ(lazycoin(Cn))) (by Lem. 114)
= splitAtom(lazycoin(C1)) ‖ · · · ‖ splitAtom(lazycoin(Ct−1)) ‖ splitAtom(step(lazycoin(Ct), σ)) ‖

splitAtom(lazycoin(Ct+1)) ‖ · · · ‖ splitAtom(lazycoin(Cn)) (by Lem. 118)
= δ(lazycoin(C1)) ‖ · · · ‖ δ(lazycoin(Ct−1)) ‖ lazycoin(step(Ct, σ)) ‖
δ(lazycoin(Ct+1)) ‖ · · · ‖ δ(lazycoin(Cn)) (by Lem. 97 and Lem. 128)

= lazycoin(δ(C1)) ‖ · · · ‖ lazycoin(δ(Ct−1)) ‖ lazycoin(step(Ct, σ)) ‖
lazycoin(δ(Ct+1)) ‖ · · · ‖ lazycoin(δ(Cn)) (by Lem. 119)

= lazycoin(δ(C1) ‖ · · · ‖ δ(Ct−1) ‖ step(Ct, σ) ‖ δ(Ct+1) ‖ · · · ‖ δ(Cn)) (by Lem. 115)
= lazycoin(step(C1 ‖ · · · ‖ Cn, σ, t))
= lazycoin(step(C, σ, t)).

Lemma 130. For allW and t, splitAtom(step(lazycoin(W), t)) = lazycoin(step(W, t)).

Proof. For all W and t, we have

splitAtom(step(lazycoin(W), t))
= splitAtom(step(E(C,σ)∼W {δ(lazycoin(C))⊗ δ(σ)}, t))
= splitAtom(E(C,σ)∼W {step(δ(lazycoin(C))⊗ δ(σ), t)}) (by Lem. 111)
= splitAtom(E(C,σ)∼W {step(lazycoin(C), σ, t)}) (by Lem. 121)
= E(C,σ)∼W {splitAtom(step(lazycoin(C), σ, t))} (by Lem. 112)
= E(C,σ)∼W {lazycoin(step(C, σ, t))} (by Lem. 129)
= lazycoin(E(C,σ)∼W {step(C, σ, t)}) (by Lem. 113)
= lazycoin(step(W, t)).

Lemma 131. For all ρ1, . . . , ρn, µ, t, (ρ1 ‖ · · · ‖ ρn)⊗µ = ρ1 ‖ . . . ρt−1 ‖ ρt⊗µ ‖
ρt+1 ‖ · · · ‖ ρn.

Proof. For all ρ1, . . . , ρn, µ, t,

(ρ1 ‖ · · · ‖ ρn)⊗ µ
= λ(C1 ‖ · · · ‖ Cn, σ). ρ1(C1) · · · ρn(Cn) · µ(σ)
= λ(C1 ‖ · · · ‖ Cn, σ). ρ1(C1) · · · ρt−1(Ct−1) · (ρt(Ct) · µ(σ)) · ρt+1(Ct+1) · · · ρn(Cn)
= λ(C1 ‖ · · · ‖ Cn, σ). ρ1(C1) · · · ρt−1(Ct−1) · (ρt ⊗ µ)(Ct, σ) · ρt+1(Ct+1) · · · ρn(Cn)
= ρ1 ‖ . . . ρt−1 ‖ ρt ⊗ µ ‖ ρt+1 ‖ · · · ‖ ρn.

Lemma 132. For all ρ1, . . . , ρt−1, η, ρt+1, . . . , ρn, step(ρ1 ‖ · · · ‖ ρt−1 ‖ η ‖
ρt+1 ‖ · · · ‖ ρn, t) = ρ1 ‖ · · · ‖ ρt−1 ‖ step(η) ‖ ρt+1 ‖ · · · ‖ ρn.

Proof. For all ρ1, . . . , ρt−1, η, ρt+1, . . . , ρn,

step(ρ1 ‖ · · · ‖ ρt−1 ‖ η ‖ ρt+1 ‖ · · · ‖ ρn, t)
= E(C,σ)∼ρ1‖···‖ρt−1‖η‖ρt+1‖···‖ρn{step(C, σ, t)}
= λ(C′, σ′).

∑
C,σ(ρ1 ‖ · · · ‖ ρt−1 ‖ η ‖ ρt+1 ‖ · · · ‖ ρn)(C, σ) · step(C, σ, t)(C′, σ′)

= λ(C ′1 ‖ · · · ‖ C ′n, σ′).
∑
C1,...Cn,σ

ρ1(C1) · · · ρt−1(Ct−1) · η(Ct, σ) · ρt+1(Ct+1) · · · ρn(Cn) ·
step(C1 ‖ · · · ‖ Cn, σ, t)(C ′1 ‖ · · · ‖ C ′n, σ′)

= λ(C ′1 ‖ · · · ‖ C ′n, σ′).
∑
C1,...Cn,σ

ρ1(C1) · · · ρt−1(Ct−1) · η(Ct, σ) · ρt+1(Ct+1) · · · ρn(Cn) ·
δ(C1)(C ′1) · · · δ(Ct−1)(C ′t−1) · step(Ct, σ)(C ′t, σ

′) · δ(Ct+1)(C ′t+1) · · · δ(Cn)(C ′n)
= λ(C ′1 ‖ · · · ‖ C ′n, σ′).

∑
Ct,σ

ρ1(C ′1) · · · ρt−1(C ′t−1) · η(Ct, σ) · step(Ct, σ)(C ′t, σ
′) ·

ρt+1(C ′t+1) · · · ρn(C ′n)
= λ(C ′1 ‖ · · · ‖ C ′n, σ′).ρ1(C ′1) · · · ρt−1(C ′t−1) · (

∑
Ct,σ

η(Ct, σ) · step(Ct, σ)(C ′t, σ
′)) ·

ρt+1(C ′t+1) · · · ρn(C ′n)
= λ(C ′1 ‖ · · · ‖ C ′n, σ′).ρ1(C ′1) · · · ρt−1(C ′t−1) · E(Ct,σ)∼η{step(Ct, σ)}(C ′t, σ′) ·

ρt+1(C ′t+1) · · · ρn(C ′n)
= λ(C ′1 ‖ · · · ‖ C ′n, σ′).ρ1(C ′1) · · · ρt−1(C ′t−1) · step(η)(C ′t, σ

′) · ρt+1(C ′t+1) · · · ρn(C ′n)
= ρ1 ‖ · · · ‖ ρt−1 ‖ step(η) ‖ ρt+1 ‖ · · · ‖ ρn.

Lemma 133. For all C, splitAtom(splitAtom(C)) = splitAtom(C).

Proof. by induction on C.

– case 1: C = 〈〈C1〉 ⊕p 〈C2〉〉.

splitAtom(splitAtom(C))
= splitAtom(splitAtom(〈〈C1〉 ⊕p 〈C2〉〉))
= splitAtom(δ(〈C1〉)⊕p δ(〈C2〉))
= splitAtom(δ(〈C1〉))⊕p splitAtom(δ(〈C2〉)) (by Lem. 122)
= splitAtom(〈C1〉)⊕p splitAtom(〈C2〉) (by Lem. 118)
= δ(〈C1〉)⊕p δ(〈C2〉)
= splitAtom(〈〈C1〉 ⊕p 〈C2〉〉)
= splitAtom(C).

– case 2: C = 〈〈C1〉 ⊕p 〈C2〉〉 sp.

splitAtom(splitAtom(C))
= splitAtom(splitAtom(〈〈C1〉 ⊕p 〈C2〉〉 sp))
= splitAtom(δ(〈C1〉 sp)⊕p δ(〈C2〉 sp))
= splitAtom(δ(〈C1〉 sp))⊕p splitAtom(δ(〈C2〉 sp)) (by Lem. 122)
= splitAtom(〈C1〉 sp)⊕p splitAtom(〈C2〉 sp) (by Lem. 118)
= δ(〈C1〉 sp)⊕p δ(〈C2〉 sp)
= splitAtom(〈〈C1〉 ⊕p 〈C2〉〉 sp)
= splitAtom(C).

– case 3: C = C1;C2.
IH: splitAtom(splitAtom(C1)) = splitAtom(C1).

splitAtom(splitAtom(C))
= splitAtom(splitAtom(C1;C2))
= splitAtom(splitAtom(C1);C2)
= splitAtom(splitAtom(C1));C2

= splitAtom(C1);C2 (by IH)
= splitAtom(C1;C2)
= splitAtom(C).

– other cases.
We have splitAtom(C) = δ(C), thus

splitAtom(splitAtom(C))
= splitAtom(δ(C))
= splitAtom(C). (by Lem. 118)

Lemma 134. For all σ, σ′, p, n, (skip, σ)
p−→n(skip, σ′) if and only if σ′ = σ ∧

p = 1 or σ′ 6= σ ∧ p = 0.

Proof. For all σ, σ′, p, n, we prove by induction on n.

– base case: n = 0. trivial.

– inductive case: n = k + 1.
IH: (skip, σ)

p−→k(skip, σ′) if and only if σ′ = σ ∧ p = 1 or σ′ 6= σ ∧ p = 0.

(skip, σ)
p−→n(skip, σ′)

⇐⇒ (skip, σ)
p−→k+1(skip, σ′)

⇐⇒ p =
∑
C′′,σ′′ .{p1 · p2 | (skip, σ)

p1−→ (C ′′, σ′′) ∧ (C ′′, σ′′)
p2−→k(skip, σ′)}

⇐⇒ (skip, σ)
p2−→k(skip, σ′)

⇐⇒ (σ′ = σ ∧ p = 1) ∨ (σ′ 6= σ ∧ p = 0). (by IH)

Lemma 135. For all C, σ, σ′, p, n such that n ≥ 1, (〈C〉, σ)
p−→n(skip, σ′) if and

only if (〈C〉, σ)
p−→ (skip, σ′).

Proof. For all C, σ, σ′, p, n such that n ≥ 1, we have

(〈C〉, σ)
p−→n(skip, σ′)

⇐⇒ p =
∑
C′′,σ′′{p1 · p2 | (〈C〉, σ)

p1−→ (C ′′, σ′′) ∧ (C ′′, σ′′)
p2−→n−1(skip, σ′)}

⇐⇒ p =
∑
σ′′{p1 · p2 | (〈C〉, σ)

p1−→ (skip, σ′′) ∧ (skip, σ′′) p2−→n−1(skip, σ′)}
⇐⇒ p =

∑
σ′′{p1 · p2 | (〈C〉, σ)

p1−→ (skip, σ′′) ∧ p2 = 1 ∧ σ′′ = σ′} (by Lem. 134)
⇐⇒ (〈C〉, σ)

p−→ (skip, σ′).

Lemma 136. For all C, σ, σ′, p, (〈C〉, σ)
p−→ (skip, σ′) if and only if there exists

k such that (〈C〉, σ)
p−→n(skip, σ′) for all n ≥ k.

Proof. For all C, σ, σ′, p, we prove the two directions respectively.

– (〈C〉, σ)
p−→ (skip, σ′).

Let k def
= 1. For all n ≥ k, we know n ≥ 1, by Lem. 135 we have (〈C〉, σ)

p−→
n(skip, σ′).

– there exists k such that (〈C〉, σ)
p−→n(skip, σ′) for all n ≥ k.

We know (〈C〉, σ)
p−→k+1(skip, σ′). From k + 1 ≥ 1 by Lem. 135 we have

(〈C〉, σ)
p−→ (skip, σ′).

Lemma 137. For all C1, C2, σ, step(〈〈C1〉 ⊕p 〈C2〉〉, σ) = step(〈C1〉, σ) ⊕p
step(〈C2〉, σ).

Proof. For all C1, C2, σ, we have

step(〈〈C1〉 ⊕p 〈C2〉〉, σ)

= λ(C ′, σ′).

{
p′, if (〈〈C1〉 ⊕p 〈C2〉〉, σ)

p′−→ (C ′, σ′)

0, otherwise

= λ(C ′, σ′).

{
p′, if C ′ = skip ∧ ∃k.∀n ≥ k.(〈C1〉 ⊕p 〈C2〉, σ)

p′−→n(skip, σ′)
0, otherwise

= λ(C ′, σ′).

p · p1 + (1− p) · p2, if C ′ = skip ∧ ∃k ≥ 1.∀n ≥ k.(〈C1〉, σ)

p1−→n−1(skip, σ′) ∧
(〈C2〉, σ)

p2−→n−1(skip, σ′)
0, otherwise

= λ(C ′, σ′).

p · p1 + (1− p) · p2, if C ′ = skip ∧ ∃k ≥ 1.∀n ≥ k − 1.(〈C1〉, σ)

p1−→n(skip, σ′) ∧
(〈C2〉, σ)

p2−→n(skip, σ′)
0, otherwise

= λ(C ′, σ′).

p · p1 + (1− p) · p2, if C ′ = skip ∧ ∃k.∀n ≥ k.(〈C1〉, σ)

p1−→n(skip, σ′) ∧
(〈C2〉, σ)

p2−→n(skip, σ′)
0, otherwise

= λ(C ′, σ′).

p · p1 + (1− p) · p2, if C ′ = skip ∧ (∃k.∀n ≥ k.(〈C1〉, σ)

p1−→n(skip, σ′)) ∧
(∃k.∀k.(〈C2〉, σ)

p2−→n(skip, σ′))
0, otherwise

= λ(C ′, σ′). p ·

{
p1, if C ′ = skip ∧ (∃k.∀n ≥ k.(〈C1〉, σ)

p1−→n(skip, σ′))
0, otherwise

+(1− p) ·

{
p2, if C ′ = skip ∧ (∃k.∀n ≥ k.(〈C2〉, σ)

p2−→n(skip, σ′))
0, otherwise

= λ(C ′, σ′). p ·

{
p1, if (〈C1〉, σ)

p1−→ (C ′, σ′)

0, otherwise
+ (1− p) ·

{
p2, if (〈C2〉, σ)

p2−→ (C ′, σ′)

0, otherwise
(by Lem. 136)

= λ(C ′, σ′). p · step(〈C1〉, σ)(C ′, σ′) + (1− p) · step(〈C2〉, σ)(C ′, σ′)
= step(〈C1〉, σ)⊕p step(〈C2〉, σ).

Lemma 138. For all σ, σ, sp, step(〈C〉 sp, σ) = step(〈C〉, σ).

Proof. For all σ, σ, sp, we have

step(〈C〉 sp, σ)

= λ(C ′, σ′).

{
p, if (〈C〉 sp, σ)

p−→ (C ′, σ′)

0, otherwise

= λ(C ′, σ′).

{
p, if C ′ = skip ∧ (〈C〉, σ)

p−→ (skip, σ′)
0, otherwise

= λ(C ′, σ′).

{
p, if (〈C〉, σ)

p−→ (C ′, σ′)

0, otherwise
= step(〈C〉, σ).

Lemma 139. For all η and C2, if η(Stmt)(skip) = 0, then step(η;C2) = step(η);C2.

Proof. For all η and C2 such that η(Stmt)(skip) = 0, we know
∑
σ η(skip, σ) = 0,

so η(skip, σ) = 0 for all σ, thus

step(η;C2)
= E(C,σ)∼η;C2

{step(C, σ)}
= λ(C ′, σ′).

∑
C,σ(η;C2)(C, σ) · step(C, σ)(C ′, σ′)

= λ(C ′, σ′).
∑
C1,σ

η(C1, σ) · step(C1;C2, σ)(C ′, σ′)

= λ(C ′, σ′).
∑
C1,σ
{η(C1, σ) · step(C1;C2, σ)(C ′, σ′) | C1 6= skip}

= λ(C ′, σ′).

{∑
C1,σ

η(C1, σ) · step(C1, σ)(C ′1, σ), if C ′ = C ′1;C2

0, otherwise
(by Lem. 125)

= λ(C ′, σ′).

{
E(C1,σ)∼η{step(C1, σ)}(C ′1, σ), if C ′ = C ′1;C2

0, otherwise

= λ(C ′, σ′).

{
step(η)(C ′1, σ), if C ′ = C ′1;C2

0, otherwise
= step(η);C2.

Lemma 140. For all C, σ, step(splitAtom(C)⊗ δ(σ)) = step(C, σ).

Proof. by induction on C.

– case 1: C = 〈〈C1〉 ⊕p 〈C2〉〉.
For all σ, we have

step(splitAtom(C)⊗ δ(σ))
= step(splitAtom(〈〈C1〉 ⊕p 〈C2〉〉)⊗ δ(σ))
= step((δ(〈C1〉)⊕p δ(〈C2〉))⊗ δ(σ))
= step((δ(〈C1〉)⊗ δ(σ))⊕p (δ(〈C2〉)⊗ δ(σ))) (by Lem. 14)
= step(δ(〈C1〉)⊗ δ(σ))⊕p step(δ(〈C2〉)⊗ δ(σ)) (by Lem. 124)
= step(〈C1〉, σ)⊕p step(〈C2〉, σ) (by Lem. 120)
= step(〈〈C1〉 ⊕p 〈C2〉〉, σ) (by Lem. 137)
= step(C, σ).

– case 2: C = 〈〈C1〉 ⊕p 〈C2〉〉 sp.
For all σ, we have

step(splitAtom(C)⊗ δ(σ))
= step(splitAtom(〈〈C1〉 ⊕p 〈C2〉〉 sp)⊗ δ(σ))
= step((δ(〈C1〉 sp)⊕p δ(〈C2〉 sp))⊗ δ(σ))
= step((δ(〈C1〉 sp)⊗ δ(σ))⊕p (δ(〈C2〉 sp)⊗ δ(σ))) (by Lem. 14)
= step(δ(〈C1〉 sp)⊗ δ(σ))⊕p step(δ(〈C2〉 sp)⊗ δ(σ)) (by Lem. 124)
= step(〈C1〉 sp, σ)⊕p step(〈C2〉 sp, σ) (by Lem. 120)
= step(〈C1〉, σ)⊕p step(〈C2〉, σ) (by Lem. 138)
= step(〈〈C1〉 ⊕p 〈C2〉〉, σ) (by Lem. 137)
= step(〈〈C1〉 ⊕p 〈C2〉〉 sp, σ) (by Lem. 138)
= step(C, σ).

– case 3: C = C1;C2.
IH: for all σ, step(splitAtom(C1)⊗ δ(σ)) = step(C1, σ).
It is obvious that C1 = skip or C1 6= skip, we prove the two cases respec-
tively.

• C1 = skip.
For all σ, we have

step(splitAtom(C)⊗ δ(σ))
= step(splitAtom(skip;C2)⊗ δ(σ))
= step((splitAtom(skip);C2)⊗ δ(σ))
= step((δ(skip);C2)⊗ δ(σ))
= step(δ(skip;C2)⊗ δ(σ))
= step(skip;C2, σ) (by Lem. 120)
= step(C, σ).

• C1 6= skip.
For all σ, from C1 6= skip by Lem. 125 we know step(C1;C2, σ) =
step(C1, σ);C2.
By Lem. 152 we know splitAtom(C1)⊗ δ(σ)

(Stmt)
(skip) = splitAtom(C1)(skip) =

δ(C1)(skip) = 0, by Lem. 139 we know step((splitAtom(C1)⊗δ(σ));C2) =

step(splitAtom(C1)⊗ δ(σ));C2, thus

step(splitAtom(C)⊗ δ(σ))
= step(splitAtom(C1;C2)⊗ δ(σ))
= step((splitAtom(C1);C2)⊗ δ(σ))
= step((splitAtom(C1)⊗ δ(σ));C2) (by Lem. 93)
= step(splitAtom(C1)⊗ δ(σ));C2

= step(C1, σ);C2 (by IH)
= step(C1;C2, σ)
= step(C, σ).

– other cases.
We have splitAtom(C) = δ(C), thus

step(splitAtom(C)⊗ δ(σ))
= step(δ(C)⊗ δ(σ))
= step(C, σ). (by Lem.120)

Lemma 141. For all C, σ, t, splitAtom(step(splitAtom(C)⊗δ(σ), t)) = splitAtom(step(C, σ, t)).

Proof. For all C, σ, t, by definition of Prog there exists C1, . . . , Cn such that
C = C1 ‖ · · · ‖ Cn.

splitAtom(step(splitAtom(C)⊗ δ(σ), t))
= splitAtom(step(splitAtom(C1 ‖ · · · ‖ Cn)⊗ δ(σ), t))
= splitAtom(step(splitAtom(C1) ‖ · · · ‖ splitAtom(Cn)⊗ δ(σ), t))
= splitAtom(step(splitAtom(C1) ‖ · · · ‖ splitAtom(Ct−1) ‖ splitAtom(Ct)⊗ δ(σ) ‖

splitAtom(Ct+1) ‖ · · · ‖ splitAtom(Cn)⊗ δ(σ), t)) (by Lem. 131)
= splitAtom(splitAtom(C1) ‖ · · · ‖ splitAtom(Ct−1) ‖ step(splitAtom(Ct)⊗ δ(σ)) ‖

splitAtom(Ct+1) ‖ · · · ‖ splitAtom(Cn)) (by Lem. 132)
= splitAtom(splitAtom(C1)) ‖ · · · ‖ splitAtom(splitAtom(Ct−1)) ‖ splitAtom(step(splitAtom(Ct)⊗ δ(σ))) ‖

splitAtom(splitAtom(Ct+1)) ‖ · · · ‖ splitAtom(splitAtom(Cn)) (by Lem. 114)
= splitAtom(C1) ‖ · · · ‖ splitAtom(Ct−1) ‖ splitAtom(step(Ct, σ)) ‖

splitAtom(Ct+1) ‖ · · · ‖ splitAtom(Cn) (by Lem. 133 and Lem. 140)
= splitAtom(C1 ‖ · · · ‖ Ct−1 ‖ step(Ct, σ) ‖ Ct+1 ‖ · · · ‖ Cn) (by Lem. 114)
= splitAtom(step(C1 ‖ . . . Cn, σ, t))
= splitAtom(step(C, σ, t)).

Lemma 142. For allW and t, splitAtom(step(splitAtom(W), t)) = splitAtom(step(W, t)).

Proof. For all W and t, we have

splitAtom(step(splitAtom(W), t))
= splitAtom(step(E(C,σ)∼W {splitAtom(C)⊗ δ(σ)}, t))
= splitAtom(E(C,σ)∼W {step(splitAtom(C)⊗ δ(σ), t)}) (by Lem. 111)
= E(C,σ)∼W {splitAtom(step(splitAtom(C)⊗ δ(σ), t))} (by Lem. 112)
= E(C,σ)∼W {splitAtom(step(C, σ, t))} (by Lem. 141)
= splitAtom(E(C,σ)∼W {step(C, σ, t)}) (by Lem. 112)
= splitAtom(step(W, t)).

Lemma 143. For all W1,W2,W
′
1, if W1 ∼W2 and W1

t
;W ′1, then there exists

W ′2 such that W2
t
;W ′2 and W ′1 ∼W ′2.

Proof. For all W1,W2,W
′
1 such that W1 ∼ W2 and W1

t
; W ′1, from W1 ∼ W2

we know
lazycoin(W1) = splitAtom(W2). From W1

t
;W ′1 by Lem. 110 we know W ′1 =

step(W, t). Let W ′2
def
= step(W1, t), by Lem. 110 we know W2

t
;W ′2.

lazycoin(W ′1)
= lazycoin(step(W1, t))
= splitAtom(step(lazycoin(W1), t)) (by Lem. 130)
= splitAtom(step(splitAtom(W2), t))
= splitAtom(step(W2, t)) (by Lem. 142)
= splitAtom(W ′2),

thus W ′1 ∼W ′2.

Lemma 144. For all W and b, if JPrbKW (State) > 0, then lazycoin(W |b) =
lazycoin(W)|b.

Proof. For all W and b such that JPrbKW (State) > 0, by Lem. 82 we know
W |b = λ(C, σ).W (C,σ)·χ(σ|=b)

JPr(b)K
W (State)

, thus

lazycoin(W |b)
= E(C,σ)∼W |b{δ(lazycoin(C))⊗ δ(σ)}
= λ(C′, σ′).

∑
C,σW |b(C, σ) · δ(lazycoin(C))(C′) · δ(σ)(σ′)

= λ(C′, σ′).
∑

C,σW |b(C, σ′) · δ(lazycoin(C))(C′) · δ(σ)(σ′)

= λ(C′, σ′).
∑

C
W (C,σ′)·χ(σ′|=b)
JPr(b)K

W (State)
· δ(lazycoin(C))(C′) · δ(σ)(σ′)

= λ(C′, σ′). χ(σ′|=b)·
∑

C,σW (C,σ)·δ(lazycoin(C))(C′)·δ(σ)(σ′)

JPr(b)K
W (State)

= λ(C′, σ′). χ(σ′|=b)·E(C,σ)∼W {δ(lazycoin(C))⊗δ(σ)}(C′,σ′)
JPr(b)K

W (State)

= λ(C′, σ′). χ(σ′|=b)·lazycoin(W)(C′,σ′)
JPr(b)K

W (State)

= λ(C′, σ′). χ(σ′|=b)·lazycoin(W)(C′,σ′)
JPr(b)K

lazycoin(W)(State)
(by Lem. 106)

= lazycoin(W)|b. (by Lem. 82)

Lemma 145. For all W and b, if JPrbKW (State) > 0, then splitAtom(W |b) =
splitAtom(W)|b.

Proof. For all W and b such that JPrbKW (State) > 0, by Lem. 82 we know
W |b = λ(C, σ).W (C,σ)·χ(σ|=b)

JPr(b)K
W (State)

, thus

splitAtom(W |b)
= E(C,σ)∼W |b{splitAtom(C)⊗ δ(σ)}
= λ(C′, σ′).

∑
C,σW |b(C, σ) · δ(splitAtom(C))(C′) · δ(σ)(σ′)

= λ(C′, σ′).
∑

C,σW |b(C, σ′) · splitAtom(C)(C′) · δ(σ)(σ′)

= λ(C′, σ′).
∑

C
W (C,σ′)·χ(σ′|=b)
JPr(b)K

W (State)
· splitAtom(C)(C′) · δ(σ)(σ′)

= λ(C′, σ′). χ(σ′|=b)·
∑

C,σW (C,σ)·splitAtom(C)(C′)·δ(σ)(σ′)

JPr(b)K
W (State)

= λ(C′, σ′). χ(σ′|=b)·E(C,σ)∼W {splitAtom(C)⊗δ(σ)}(C′,σ′)
JPr(b)K

W (State)

= λ(C′, σ′). χ(σ′|=b)·splitAtom(W)(C′,σ′)
JPr(b)K

W (State)

= λ(C′, σ′). χ(σ′|=b)·splitAtom(W)(C′,σ′)
JPr(b)K

splitAtom(W)(State)
(by Lem. 107)

= splitAtom(W)|b. (by Lem. 82)

Lemma 146. For all W1,W2, if W1 ∼W2 and JPrbKW1
(State) > 0, then W1|b ∼

W2|b.

Proof. For allW1,W2 such thatW1 ∼W2 and JPrbKW1
(State) > 0, fromW1 ∼W2

by Lem. 108 we know W1
(State) = W2

(State), so JPrbKW2
(State) = JPrbKW1

(State) >
0. FromW1 ∼W2 we know lazycoin(W1) = splitAtom(W2). From JPrbKW1

(State) >
0 by Lem. 144 we know lazycoin(W1|b) = lazycoin(W1)|b. From JPrbKW2

(State) >
0 by Lem. 145 we know splitAtom(W2|b) = splitAtom(W2)|b, thus lazycoin(W1|b) =
lazycoin(W1)|b = splitAtom(W2)|b = splitAtom(W2|b), so W1|b ∼W2|b.

Lemma 147. For all W1,W2,W
′
1, if W1 ∼W2 and W1

t
↪→W ′1, then there exists

W ′2 such that W2
t
↪→W ′2 and W ′1 ∼W ′2.

Proof. For all W1,W2,W
′
1 such that W1 ∼ W2 and W1

t
↪→ W ′1, there are two

cases.

– nextsplit(W1) = {split(b1, . . . , bk)}, W1
t
;W ′′1 and W ′′1 |bi = W ′1.

From W1 ∼ W2 by Lem.105 we know nextsplit(W2, t) = nextsplit(W1, t) =

{split(b1, . . . , bk)}. From W1 ∼W2 and W1
t
;W ′′1 by Lem. 143 there exists

W ′′2 such that W2
t
; W ′′2 and W ′′1 ∼ W ′′2 . From W ′′1 |bi = W ′1 by Lem. 63

we know JPr(bi)KW ′′1 (State) > 0. From W ′′1 ∼ W ′′2 by Lem. 146 we know

W ′′1 |bi ∼ W ′′2 |bi . Let W ′2
def
= W ′′2 |bi , then W ′1 ∼ W ′2. From nextsplit(W2, t) =

{split(b1, . . . , bk)}, W2
t
;W ′′2 and W ′′2 |bi = W ′2 we have W2

t
↪→W ′2.

– #nextsplit(W1, t) = 1 and W1
t
;W ′1.

From W1 ∼ W2 by Lem.105 we know nextsplit(W2, t) = nextsplit(W1, t), so
#nextsplit(W2, t) = #nextsplit(W1, t) = 1. From W1 ∼ W2 and W1

t
; W ′1

by Lem. 143 there exists W ′2 such that W2
t
; W ′2 and W ′1 ∼ W ′2. From

#nextsplit(W2, t) = 1 we know W2
t
↪→W ′2.

Lemma 148. For allW1,W2, ϕ,
→
W 1,

→
W2, ifW1 ∼W2 and History(W1, ϕ,

→
W 1),

then there exists
→
W 2 such that History(W2, ϕ,

→
W 2) and

→
W 1[n] ∼

→
W 2[n] for all

n.

Proof. by coinduction. For all W1,W2, ϕ,
→
W 1,

→
W2 such that W1 ∼ W2 and

History(W1, ϕ,
→
W 1), there exists t, ϕ′,W ′1,

→
W
′

1 such that ϕ = t :: ϕ′, W1
t
↪→

W ′1, History(W ′1, ϕ
′,
→
W
′

1) and
→
W 1 = W1 ::

→
W
′

1. From W1 ∼ W2 and W1
t
↪→

W ′1 by Lem. 147 there exists W ′2 such that W2
t
↪→ W ′2 and W ′1 ∼ W ′2. From

History(W ′1, ϕ
′,
→
W
′

1) by coinduction hypothesis there exists
→
W
′

2 such thatHistory(W ′2, ϕ
′,
→
W
′

2)

and
→
W
′

1[n] ∼
→
W
′

2[n] for all n. Let
→
W 2

def
= W2 ::

→
W
′

2, from W2
t
↪→ W ′2 and

History(W ′2, ϕ
′,
→
W
′

2) we knowHistory(W2, t :: ϕ′,W2 ::
→
W
′

2), i.e.,History(W2, ϕ,
→
W 2).

For all n, it is obvious that n = 0 or n > 0, we prove
→
W 1[n] ∼

→
W 2 in the two

cases respectively.

– n = 0.
→
W 1[0] = (W1 ::

→
W
′

1)[0] = W1.
→
W 2[0] = (W2 ::

→
W
′

2)[0] = W2. From W1 ∼W2

we know
→
W 1[0] ∼

→
W 2[0].

– n > 0.
→
W 1[n] = (W1 ::

→
W
′

1)[n] =
→
W
′

1[n − 1].
→
W 2[n] = (W2 ::

→
W
′

2)[n] =
→
W
′

1[n − 1].

From
→
W
′

1[n− 1] ∼
→
W
′

2[n− 1] we know
→
W 1[n] ∼

→
W 2[n].

Lemma 149. For all C, lazycoin(C) = skip if and only if C = skip.

Proof. For all C, it is obvious that C = skip or C 6= skip, we prove the two
cases respectively.

– C = skip.
Both lazycoin(C) = skip and C = skip are true.

– C 6= skip.
Both lazycoin(C) = skip and C = skip are false.

Lemma 150. For all C, lazycoin(C) = skip ‖ · · · ‖ skip if and only if C =
skip ‖ · · · ‖ skip.

Proof. For all C, there exists C1, . . . , Cn such that C = C1 ‖ · · · ‖ Cn.

lazycoin(C) = skip ‖ · · · ‖ skip
⇐⇒ lazycoin(C1 ‖ · · · ‖ Cn) = skip ‖ · · · ‖ skip
⇐⇒ lazycoin(C1) ‖ · · · ‖ lazycoin(Cn) = skip ‖ · · · ‖ skip
⇐⇒ lazycoin(C1) = skip ∧ · · · ∧ lazycoin(Cn) = skip
⇐⇒ C1 = skip ∧ · · · ∧ Cn = skip (by Lem. 149)
⇐⇒ C1 ‖ · · · ‖ Cn = skip ‖ · · · ‖ skip
⇐⇒ C = skip ‖ · · · ‖ skip.

Lemma 151. For all W and σ, lazycoin(W)(skip ‖ · · · ‖ skip, σ) = W (skip ‖
· · · ‖ skip, σ).

Proof. For all W and σ,

lazycoin(W)(skip ‖ · · · ‖ skip, σ)
= E(C,σ1)∼W {δ(lazycoin(W))⊗ δ(σ1)}(skip ‖ · · · ‖ skip, σ)
=
∑

C,σ1
W (C, σ1) · δ(lazycoin(C))(skip ‖ · · · ‖ skip) · δ(σ1)(σ)

=
∑

CW (C, σ) · δ(lazycoin(C))(skip ‖ · · · ‖ skip)
=
∑

C{W (C, σ) | lazycoin(C) = skip ‖ · · · ‖ skip}
=
∑

C{W (C, σ) | C = skip ‖ · · · ‖ skip} (by Lem. 150)
= W (skip ‖ · · · ‖ skip, σ).

Lemma 152. For all C, splitAtom(C)(skip) = δ(C)(skip).

Proof. For all C, it is obvious that C = skip or C 6= skip, we prove the two
cases respectively.

– C = skip.
splitAtom(C)(skip) = splitAtom(skip)(skip) = δ(skip)(skip) = δ(C)(skip).

– C 6= skip.
splitAtom(C)(skip) = 0 = δ(C)(skip).

Lemma 153. For all C, splitAtom(C)(skip ‖ · · · ‖ skip) = δ(C)(skip ‖ · · · ‖
skip).

Proof. For all C, there exists C1, . . . , Cn such that C = C1 ‖ · · · ‖ Cn.

splitAtom(C)(skip ‖ · · · ‖ skip)
= splitAtom(C1 ‖ · · · ‖ Cn)(skip ‖ · · · ‖ skip)
= (splitAtom(C1) ‖ · · · ‖ splitAtom(Cn))(skip ‖ · · · ‖ skip)
= splitAtom(C1)(skip) ∗ · · · ∗ splitAtom(Cn)(skip)
= δ(C1)(skip) ∗ · · · ∗ δ(Cn)(skip) (by Lem. 152)
= (δ(C1) ‖ · · · ‖ δ(Cn))(skip ‖ · · · ‖ skip)
= δ(C1 ‖ · · · ‖ Cn)(skip ‖ · · · ‖ skip) (by Lem. 98)
= δ(C)(skip ‖ · · · ‖ skip).

Lemma 154. For allW and σ, splitAtom(W)(skip ‖ · · · ‖ skip, σ) = W (skip ‖
· · · ‖ skip, σ).

Proof. For all W and σ,

splitAtom(W)(skip ‖ · · · ‖ skip, σ)
= E(C,σ1)∼W {splitAtom(W)⊗ δ(σ1)}(skip ‖ · · · ‖ skip, σ)
=
∑

C,σ1
W (C, σ1) · splitAtom(C)(skip ‖ · · · ‖ skip) · δ(σ1)(σ)

=
∑

CW (C, σ) · splitAtom(C)(skip ‖ · · · ‖ skip)
=
∑

CW (C, σ) · δ(C)(skip ‖ · · · ‖ skip) (by Lem. 153)
= W (skip ‖ · · · ‖ skip, σ).

Lemma 155. For all W1 and W2, if W1 ∼W2, then W1(skip ‖ · · · ‖ skip, σ) =
W2(skip ‖ · · · ‖ skip, σ) for all σ.

Proof. For all W1 and W2 such that W1 ∼ W2, we know lazycoin(W1) =
splitAtom(W2). For all σ, we have

W1(skip ‖ · · · ‖ skip, σ)
= lazycoin(W1)(skip ‖ · · · ‖ skip, σ) (by Lem. 151)
= splitAtom(W2)(skip ‖ · · · ‖ skip, σ)
= W2(skip ‖ · · · ‖ skip, σ). (by Lem. 154)

Lemma 156 (Soundness of (lazycoin) Rule). For all P,C, Q, if |=a
{P}lazycoin(C){Q}, then |=a {P}C{Q}.

Proof. For all P,C, Q such that |=a {P}lazycoin(C){Q}, by Lem. 44 we have
|=a′ {P}lazycoin(C){Q} and we need to prove |=a′ {P}C{Q}. By Def. H.3, we
need to prove for all µ, ϕ, µ′, if µ |= P and init(C, µ) ⇓′ϕ µ′, then µ′ |= Q. For
all µ, ϕ, µ′ such that µ |= P and init(C, µ) ⇓′ϕ µ′. from init(C, µ) ⇓′ϕ µ′ we know

there exists
→
W such thatHistory(init(C, µ), ϕ,

→
W), lim

n→∞

→
W [n]

(Prog)

(skip ‖ · · · ‖

skip) = 1 and ∀σ. lim
n→∞

→
W [n](skip ‖ · · · ‖ skip, σ) = µ′(σ). By Lem. 100 we

know init(C, µ) ∼ init(lazycoin(C), µ). From History(W,ϕ,
→
W) by Lem. 148

we know there exists
→
W
′
such that History(init(lazycoin(C), µ), ϕ,

→
W
′
) and

→
W [n] ∼

→
W
′
[n] for all n. For all n, from

→
W [n] ∼

→
W
′
[n] by Lem. 155 we know

→
W [n](skip ‖ · · · ‖ skip, σ) =

→
W
′
[n](skip ‖ · · · ‖ skip, σ) for all σ, thus

→
W [n]

(Prog)

(skip ‖ · · · ‖ skip) =
∑
σ

→
W [n](skip ‖ · · · ‖ skip, σ) =

∑
σ

→
W
′
[n](skip ‖

· · · ‖ skip, σ) =
→
W
′
[n]

(Prog)

(skip ‖ · · · ‖ skip). Therefore lim
n→∞

→
W
′
[n]

(Prog)

(skip ‖

· · · ‖ skip) = lim
n→∞

→
W [n]

(Prog)

(skip ‖ · · · ‖ skip) = 1 and

lim
n→∞

→
W
′
[n](skip ‖ · · · ‖ skip, σ) = lim

n→∞

→
W [n](skip ‖ · · · ‖ skip, σ) = µ′(σ) for

all σ, so init(lazycoin(C), µ) ⇓′ϕ µ′. From |=a′ {P}lazycoin(C){Q} and µ |= P
we know µ′ |= Q.

Lemma 157 (Soundness of (p-csq) rule). For all P, P1,C, Q1, Q, if P ⇒
P1, |=a {P1}C{Q1}, and Q1 ⇒ Q, then |=a {P}C{Q}.

Proof. For all P, P1,C, Q1, Q such that P ⇒ P1, |=a {P1}C{Q1}, and Q1 ⇒
Q, to prove |=a {P}C{Q}, we need to prove for all µ, ϕ,W , if µ |= P and
init(C, µ) ⇓ϕ W , then W (State) |= Q. For all µ, ϕ,W such that µ |= P and
init(C, µ) ⇓ϕ W , from µ |= P and P ⇒ P1 we know µ |= P1. From |=a
{P1}C{Q1} and init(C, µ) ⇓ϕ W we know W (State) |= Q1. From Q1 ⇒ Q we
know W (State) |= Q.

Lemma 158 (Soundness of (bigconj) rule). For all C, P1, . . . , Pn, Q1, . . . , Qn,
if |=a {P1}C{Q1}, . . . , |=a {Pn}C{Qn}, then |=a {P1∧· · ·∧Pn}C{Q1∧· · ·∧Qn}.

Proof. For all C, P1, . . . , Pn, Q1, . . . , Qn such that |=a {P1}C{Q1}, . . . , |=a {Pn}C{Qn},
to prove |=a {P1 ∧ · · · ∧ Pn}C{Q1 ∧ · · · ∧Qn}, we need to prove for all µ, ϕ,W ,
if µ |= P1 ∧ · · · ∧Pn and init(C, µ) ⇓ϕ W , then W (State) |= Q1 ∧ · · · ∧Qn. For all
µ, ϕ,W such that µ |= P1∧· · ·∧Pn and init(C, µ) ⇓ϕ W , from µ |= P1∧· · ·∧Pn we
know µ |= P1, . . . , µ |= Pn. For all i ∈ {1, . . . , n}, from |=a {Pi}C{Qi}, µ |= Pi
and init(C, µ) ⇓ϕ W we knowW (State) |= Qi. ThereforeW (State) |= Q1∧· · ·∧Qn.

Lemma 159 (Soundness of (bigdisj) rule). For all C, P1, . . . , Pn, Q1, . . . , Qn,
if |=a {P1}C{Q1}, . . . , |=a {Pn}C{Qn}, then |=a {P1∨· · ·∨Pn}C{Q1∨· · ·∨Qn}.

Proof. For all C, P1, . . . , Pn, Q1, . . . , Qn such that |=a {P1}C{Q1}, . . . , |=a {Pn}C{Qn},
to prove |=a {P1 ∨ · · · ∨ Pn}C{Q1 ∨ · · · ∨Qn}, we need to prove for all µ, ϕ,W ,
if µ |= P1 ∨ · · · ∨Pn and init(C, µ) ⇓ϕ W , then W (State) |= Q1 ∨ · · · ∨Qn. For all
µ, ϕ,W such that µ |= P1 ∨ · · · ∨Pn and init(C, µ) ⇓ϕ W , from µ |= P1 ∨ · · · ∨Pn
we know there exists i such that µ |= Pi. From |=a {Pi}C{Qi}, µ |= Pi and
init(C, µ) ⇓ϕ W we know W (State) |= Qi. Therefore W (State) |= Q1 ∨ · · · ∨Qn.

Definition H.36. W Z=⇒n
ϕ (I,Q) is inductively defined as follows: W Z=⇒0

ϕ

(I,Q) always holds; W Z=⇒n+1
t::ϕ (I,Q) holds if and and only if the following are

true:

1. W (State) |= I;
2. if W (Prog)(skip ‖ · · · ‖ skip) > 0, then W |skip‖···‖skip

(State) |= Q;

3. for all W ′, if W
t
↪→W ′, then W ′ Z=⇒n

ϕ (I,Q).

Here W |skip‖···‖skip = W |λ(C,σ).C=skip‖···‖skip.

Definition H.37. I |=ANL {P}C{Q} iff for all µ, if µ |= I∧P , then init(C, µ) Z=⇒n
ϕ

(I,Q) for all ϕ and n.

Definition H.38. Let W ∈ DProgn×State, where Progn means “programs with n
threads”. We define πi(W)

def
= λ(C, σ′). Pr(C1‖···‖Cn,σ)∼W [Ci = C ∧ σ = σ′].

Lemma 160. For allW ∈ DProgn×State and i, πi(W) = λ(Ci, σ).
∑
C1,...,Ci−1,Ci+1,...,Cn

W (C1 ‖
· · · ‖ Cn, σ).

Proof. For all W ∈ DProgn×State and i,

πi(W) = λ(C, σ′). Pr(C1‖···‖Cn,σ)∼W [Ci = C ∧ σ = σ′]
= λ(C, σ′).

∑
C1,...,Cn,σ

{W (C1 ‖ · · · ‖ Cn, σ) | Ci = C ∧ σ = σ′}
= λ(C, σ′).

∑
C1,...,Ci−1,Ci+1,...,Cn

W (C1 ‖ . . . Ct−1 ‖ C ‖ Ct+1 ‖ · · · ‖ Cn, σ′)
= λ(Ci, σ).

∑
C1,...,Ci−1,Ci+1,...,Cn

W (C1 ‖ · · · ‖ Cn, σ).

Lemma 161. For all C1, . . . , Cn, µ, i, πi(init(C1 ‖ · · · ‖ Cn, µ)) = init(Ci, µ)
for all i.

Proof. For all C1, . . . , Cn, µ, i,

πi(init(C1 ‖ · · · ‖ Cn, µ))
= πi(δ(C1 ‖ · · · ‖ Cn)⊗ µ)
= λ(C ′i, σ).

∑
C′1,...,C

′
i−1,C

′
i+1,...,C

′
n
(δ(C1 ‖ · · · ‖ Cn)⊗ µ)(C ′1 ‖ · · · ‖ C ′n, σ) (by Lem. 160)

= λ(C ′i, σ).
∑
C′1,...,C

′
i−1,C

′
i+1,...,C

′
n
δ(C1 ‖ · · · ‖ Cn)(C ′1 ‖ · · · ‖ C ′n) · µ(σ)

= λ(C ′i, σ).
∑
C′1,...,C

′
i−1,C

′
i+1,...,C

′
n
(δ(C1) ‖ · · · ‖ δ(Cn))(C ′1 ‖ · · · ‖ C ′n) · µ(σ) (by Lem. 98)

= λ(C ′i, σ).
∑
C′1,...,C

′
i−1,C

′
i+1,...,C

′
n
δ(C1)(C ′1) · · · δ(Cn)(C ′n) · µ(σ)

= λ(C ′i, σ). δ(Ci)(C
′
i) · µ(σ)

= init(Ci, µ).

Lemma 162. For all W ∈ DProgn×State and i, πi(W)
(State)

= W (State).

Proof. For all W ∈ DProgn×State and i,

πi(W)
(State)

= λσ.
∑
Ci
πi(W)(Ci, σ)

= λσ.
∑
Ci

∑
C1,...,Ct−1,Ct+1,...,Cn

W (C1 ‖ · · · ‖ Cn, σ) (by Lem. 160)
= λσ.

∑
C1,...,Cn

W (C1 ‖ · · · ‖ Cn, σ)

= λσ.
∑

CW (C, σ)
= W (State).

Lemma 163. For allW ∈ DProgn×State and i, πi(W)
(Stmt)

(skip) ≥W (Prog)(skip ‖
· · · ‖ skip).

Proof. For all W ∈ DProgn×State and i,

πi(W)
(Stmt)

(skip)
=
∑
σ πi(W)(skip, σ)

=
∑
σ

∑
C1,...,Ci−1,Ci+1,...,Cn

W (C1 ‖ · · · ‖ Ct−1 ‖ skip ‖ Ct+1 ‖ · · · ‖ Cn, σ) (by Lem. 160)
≥
∑
σW (skip ‖ · · · ‖ skip, σ)

= W (Prog)(skip ‖ · · · ‖ skip).

Lemma 164. For allW , ifW (Prog)(skip ‖ · · · ‖ skip) > 0, thenW |skip‖···‖skip =

λ(C, σ).χ(C=skip‖···‖skip)·W (skip‖···‖skip,σ)
W (Prog)(skip‖···‖skip)

.

Proof. For all W such that W (Prog)(skip ‖ · · · ‖ skip) > 0,

W |skip‖···‖skip = λ(C, σ). W |λ(C,σ).C=skip‖···‖skip(C, σ)

= λ(C, σ).

{
W (C,σ)

Pr(C,σ)∼W [C=skip‖···‖skip] , if C = skip ‖ · · · ‖ skip
0, otherwise

= λ(C, σ). χ(C=skip‖···‖skip)·η(skip‖···‖skip,σ)
Pr(C,σ)∼W [C=skip‖···‖skip]

= λ(C, σ). χ(C=skip‖···‖skip)·η(skip‖···‖skip,σ)
W (Prog)(skip‖···‖skip)

.

Lemma 165. For all η, if η(Stmt)(skip) > 0, then η|skip = λ(C, σ).χ(C=skip)·η(skip,σ)
η(Stmt)(skip)

.

Proof. For all η such that η(Stmt)(skip) > 0,

η|skip = λ(C, σ). η|λ(C,σ).C=skip(C, σ)

= λ(C, σ).

{
η(C,σ)

Pr(C,σ)∼η[C=skip] , if C = skip

0, otherwise

= λ(C, σ). χ(C=skip)·η(skip,σ)
Pr(C,σ)∼η [C=skip]

= λ(C, σ). χ(C=skip)·η(skip,σ)
η(Stmt)(skip)

.

Lemma 166. For all W ∈ DProgn×State and i, if W (Prog)(skip ‖ · · · ‖ skip) >
0,
then supp(W |skip‖···‖skip

(State)
) ⊆ supp(πi(W)|skip(State)

).

Proof. For all W ∈ DProgn×State and i such that W (Prog)(skip ‖ · · · ‖ skip) > 0,
by Lem. 163 we know πi(W)

(Stmt)
(skip) ≥W (Prog)(skip ‖ · · · ‖ skip) > 0, thus

supp(W |skip‖···‖skip
(State)

)

= {σ |W |skip‖···‖skip
(State)

(σ) > 0}
= {σ |

∑
CW |skip‖···‖skip(C, σ) > 0}

= {σ |
∑

C
χ(C=skip‖···‖skip)·W (skip‖···‖skip,σ)

W (Prog)(skip‖···‖skip)
> 0} (by Lem. 164)

= {σ |W (skip ‖ · · · ‖ skip, σ) > 0}
⊆ {σ |

∑
C1,...,Ci−1,Ci+1,...,Cn

W (C1 ‖ · · · ‖ Ci−1 ‖ skip ‖ Ci+1 ‖ · · · ‖ Cn, σ) > 0}
= {σ | πi(W)(skip, σ) > 0} (by Lem. 160)
= {σ |

∑
C
χ(C=skip)·πi(W)(skip,σ)

πi(W)(Stmt)(skip)
> 0}

= {σ |
∑
C πi(W)|skip(C, σ) > 0} (by Lem. 165)

= {σ | πi(W)|skip
(State)

(σ) > 0}
= supp(πi(W)|skip

(State)
).

Definition H.39. Ψ ∈ P((Prog× State)× (Prog× State)).

Definition H.40. Ψ (State) def
= {(σ, σ′) | ∃C,C′. ((C, σ), (C′, σ′)) ∈ Ψ}.

Definition H.41. Let Ψ ∈ P((Progn × State)× (Progn × State)), we define
πi(Ψ)

def
= {((Ci, σ), (C ′i, σ

′)) | ∃C1, . . . , Ct−1, Ct+1, . . . , Cn, C
′
1, . . . , C

′
t−1, C

′
t+1, . . . , C

′
n. ((C1 ‖

· · · ‖ Cn), (C ′1 ‖ · · · ‖ C ′n)) ∈ Ψ}.

Lemma 167. For allW,W ′ ∈ DProgn×State, Ψ ∈ P((Progn × State)× (Progn × State))
and t, if W t

; W ′ and Ψ = {((C, σ), (C′, σ′)) | W (C, σ) > 0 ∧ (C, σ)
p−→
t

(C′, σ′) ∧ p > 0}, then πt(W) ; (Ψ (State), πt(W
′)).

Proof. For all W,W ′ ∈ DProgn×State, Ψ ∈ P((Progn × State)× (Progn × State))
and t such that W t

; W ′ and Ψ = {((C, σ), (C′, σ′)) | W (C, σ) > 0 ∧ (C, σ)
p−→
t

(C′, σ′) ∧ p > 0}, we have

πt(W
′′)

= λ(C ′, σ′). Pr(C′1‖···‖C′n,σ′′)∼W ′′ [C
′
t = C ′]

= λ(C, σ′).
∑
C′1,...,C

′
n,σ
′′{W ′′(C ′1 ‖ · · · ‖ C ′n, σ′′) | C ′t = C ′}

= λ(C ′, σ′).
∑
C′1,...,C

′
n,σ
′′{
∑

C,σ{W (C, σ) · p | (C, σ)
p−→
t

(C ′1 ‖ · · · ‖ C ′n, σ′)} | C ′t = C ′}
= λ(C ′, σ′).

∑
C′1,...,C

′
n,σ
′′,C1,...,Cn,σ

{W (C1 ‖ · · · ‖ Cn, σ) · p | C1 = C ′1 ∧ · · · ∧ Ct−1 = C ′t−1 ∧
Ct+1 = C ′t+1 ∧ · · · ∧ Cn = C ′n ∧ (Ct, σ)

p−→ (C ′t, σ
′) ∧ C ′t = C ′}

= λ(C ′, σ′).
∑
C1,...,Cn,σ

{W (C1 ‖ · · · ‖ Cn, σ) · p | (Ct, σ)
p−→ (C ′, σ′)}

= λ(C ′, σ′).
∑
C,σ′′,C1,...,Cn,σ

{W (C1 ‖ · · · ‖ Cn, σ) · p | (C, σ′′) p−→ (C ′, σ′) ∧ Ct = C ∧ σ = σ′′}
= λ(C ′, σ′).

∑
C,σ′′{

∑
C1,...,Cn,σ

{W (C1 ‖ · · · ‖ Cn, σ) | Ct = C ∧ σ = σ′′} · p | (C, σ′′) p−→ (C ′, σ′)}
= λ(C ′, σ′).

∑
C,σ′′{Pr(C1‖···‖Cn,σ)∼W [Ct = C ∧ σ = σ′′] · p | (C, σ′′) p−→ (C ′, σ′)}

= λ(C ′, σ′).
∑
C,σ′′{πt(W) · p | (C, σ′′) p−→ (C ′, σ′)}

and

Ψ (State)

= {(σ, σ′) | ∃C,C′. ((C, σ), (C′, σ′)) ∈ Ψ}
= {(σ, σ′) | ∃C,C′. W (C, σ) > 0 ∧ (C, σ)

p−→
t

(C′, σ′) ∧ p > 0}

= {(σ, σ′) | ∃C1, . . . , Cn, C
′. W (C1 ‖ · · · ‖ Cn, σ) > 0 ∧ (Ct, σ)

p−→ (C ′, σ′) ∧ p > 0}
= {(σ, σ′) | ∃C1, . . . , Cn, C

′, C, σ′′. Ct = C ∧ σ = σ′′ ∧W (C1 ‖ · · · ‖ Cn, σ) > 0 ∧
(C, σ)

p−→ (C ′, σ′) ∧ p > 0}
= {(σ, σ′) | ∃C,C ′. (∃C1, . . . , Cn, σ

′′. Ct = C ∧ σ = σ′′ ∧W (C1 ‖ · · · ‖ Cn, σ) > 0) ∧
(C, σ)

p−→ (C ′, σ′) ∧ p > 0}
= {(σ, σ′) | ∃C,C ′.

∑
C1,...,Cn,σ′′

{W (C1 ‖ · · · ‖ Cn, σ) | Ct = C ∧ σ′′ = σ} > 0 ∧
(C, σ)

p−→ (C ′, σ′) ∧ p > 0}
= {(σ, σ′) | ∃C,C ′. Pr(C1‖···‖Cn,σ′′)∼W [Ct = C ∧ σ′′ = σ] > 0 ∧ (C, σ)

p−→ (C ′, σ′) ∧ p > 0}
= {(σ, σ′) | ∃C,C ′. πt(W)(C, σ) > 0 ∧ (C, σ)

p−→ (C ′, σ′) ∧ p > 0},

thus πt(W)
t
; (Ψ (State), πt(W

′′)).

Lemma 168. For allW,W ′ ∈ DProgn×State, Ψ ∈ P((Progn × State)× (Progn × State))
and t, if W t

; W ′ and Ψ = {((C, σ), (C′, σ′)) | W (C, σ) > 0 ∧ (C, σ)
p−→
t

(C′, σ′) ∧ p > 0}, then for all i 6= t, dom(πi(Ψ)) = supp(πi(W)), range(πi(Ψ)) =
supp(πi(W

′)) and ∀((Ci, σ), (C ′i, σ
′)) ∈ πi(Ψ). C ′i = Ci ∧ (σ, σ′) ∈ Ψ (State).

Proof. For all W,W ′ ∈ DProgn×State, Ψ ∈ P((Progn × State)× (Progn × State))
and t such that W t

; W ′ and Ψ = {((C, σ), (C′, σ′)) | W (C, σ) > 0 ∧ (C, σ)
p−→
t

(C′, σ′) ∧ p > 0}, for all i 6= t, we have

dom(πi(Ψ))
= {(Ci, σ) | ∃C ′i, σ′. ((Ci, σ), (C ′i, σ

′)) ∈ πi(Ψ)}
= {(Ci, σ) | ∃C1, . . . , Ci−1, Ci+1, . . . , Cn, C

′
1, . . . , C

′
n, σ

′.
((C1 ‖ · · · ‖ Cn, σ), (C ′1 ‖ · · · ‖ C ′n, σ′)) ∈ Ψ}

= {(Ci, σ) | ∃C1, . . . , Ci−1, Ci+1, . . . , Cn, C
′
1, . . . , C

′
n, σ

′. W (C1 ‖ · · · ‖ Cn, σ) > 0 ∧
(C1 ‖ · · · ‖ Cn, σ)

p−→
t

(C ′1 ‖ · · · ‖ C ′n, σ′) ∧ p > 0}
= {(Ci, σ) | ∃C1, . . . , Ci−1, Ci+1, . . . , Cn. W (C1 ‖ · · · ‖ Cn, σ) > 0}
= {(Ci, σ) |

∑
C1,...,Ci−1,Ci+1,...,Cn

W (C1 ‖ · · · ‖ Cn, σ) > 0}
= {(Ci, σ) | πi(W)(Ci, σ) > 0} (by Lem. 160)
= supp(πi(W)).

range(πi(Ψ))
= {(C ′i, σ′) | ∃Ci, σ. ((Ci, σ), (C ′i, σ

′)) ∈ πi(Ψ)}
= {(C ′i, σ′) | ∃C1, . . . , Cn, C

′
1, . . . , C

′
i−1, C

′
i+1, . . . , C

′
n, σ.

((C1 ‖ · · · ‖ Cn, σ), (C ′1 ‖ · · · ‖ C ′n, σ′)) ∈ Ψ}
= {(C ′i, σ′) | ∃C1, . . . , Cn, C

′
1, . . . , C

′
i−1, C

′
i+1, . . . , C

′
n, σ. W (C1 ‖ · · · ‖ Cn, σ) > 0 ∧

(C1 ‖ · · · ‖ Cn, σ)
p−→
t

(C ′1 ‖ · · · ‖ C ′n, σ′) ∧ p > 0}
= {(C ′i, σ′) |

∑
C′1,...,C

′
i−1,C

′
i+1,...,C

′
n

∑
C1,...,Cn,σ

{W (C1 ‖ · · · ‖ Cn, σ) · p |
(C1 ‖ · · · ‖ Cn, σ)

p−→
t

(C ′1 ‖ · · · ‖ C ′n, σ′)} > 0}

= {(C ′i, σ′) |
∑
C′1,...,C

′
i−1,C

′
i+1,...,C

′
n
W ′′(C ′1 ‖ · · · ‖ C ′n, σ′) > 0} (from W

t
;W ′′)

= {(C ′i, σ′) | πi(W ′)(C ′i, σ′) > 0} (by Lem. 160)
= supp(πi(W

′)).

For all Ci, σ, C ′i, σ′ such that ((Ci, σ), (C ′i, σ
′)) ∈ πi(Ψ), there exists C1, . . . , Ct−1, Ct+1,

. . . , Cn, C
′
1, . . . , C

′
t−1, C

′
t+1, . . . , C

′
n such that ((C1 ‖ · · · ‖ Cn, σ), (C ′1 ‖ · · · ‖

C ′n, σ
′)) ∈ Ψ , thus (σ, σ′) ∈ Ψ (State) and (C1 ‖ · · · ‖ Cn, σ)

p−→
t

(C ′1 ‖ · · · ‖ C ′n, σ′).
From i 6= t we know C ′i = Ci. Therefore, ∀((Ci, σ), (C ′i, σ

′)) ∈ πi(Ψ). C ′i =
Ci ∧ (σ, σ′) ∈ Ψ (State).

Lemma 169. For allW,W ′ ∈ DProgn×State and b, i, ifW |b = W ′, then πi(W)|b =
πi(W

′).

Proof. For all W,W ′ ∈ DProgn×State and b, i such that W |b = W ′, by Lem. 82
we know W ′ = λ(C, σ).χ(σ|=b)·W (C,σ)

JPr(b)K
W (State)

, by Lem. 63 we know JPr(b)KW (State) >

0. By Lem. 162 we know πi(W)
(State)

= W (State), thus JPr(b)Kπi(W)(State) =

JPr(b)KW (State) > 0, so

πi(W)|b
= λ(Ci, σ).χ(σ|=b)·πi(W)(Ci,σ)

JPr(b)K
πi(W)(State)

= λ(C, σ).
χ(σ|=b)·

∑
C1,...,Ct−1,Ct+1,...,Cn

W (C1‖···‖Cn,σ)

JPr(b)K
πi(W)(State)

(by Lem. 160)

= λ(C, σ).
∑
C1,...,Ct−1,Ct+1,...,Cn

χ(σ|=b)·W (C1‖···‖Cn,σ)
JPr(b)K

W (State)

= λ(C, σ).
∑
C1,...,Ct−1,Ct+1,...,Cn

W ′(C1 ‖ · · · ‖ Cn, σ) (by Lem. 160)
= πi(W

′).

Lemma 170. For allW ∈ DProgn×State and t, nextsplit(W, t) = nextsplit(πt(W)).

Proof. For all W ∈ DProgn×State and t,

nextsplit(W, t)
= {nextsplit(Ct) | ∃C1, . . . , Ct−1, Ct+1, . . . , Cn, σ. (C1 ‖ · · · ‖ Cn, σ) ∈ supp(W)}
= {nextsplit(Ct) | ∃C1, . . . , Ct−1, Ct+1, . . . , Cn, σ. W (C1 ‖ · · · ‖ Cn, σ) > 0}
= {nextsplit(Ct) | ∃σ,C1, . . . , Ct−1, Ct+1, . . . , Cn. W (C1 ‖ · · · ‖ Cn, σ) > 0}
= {nextsplit(Ct) | ∃σ.

∑
C1,...,Ct−1,Ct+1,...,Cn,σ

W (C1 ‖ · · · ‖ Cn, σ) > 0}
= {nextsplit(Ct) | ∃σ. πt(W)(Ct, σ) > 0} (by Lem. 160)
= {nextsplit(Ct) | ∃σ. (Ct, σ) ∈ supp(πt(W))}
= nextsplit(πt(W)).

Lemma 171. For all η, η|true = η.

Proof. For all η, η|true = η|λ(C,σ).σ|=true = η|λ(C,σ).true = W . The last step is by
Lem. 5.

Lemma 172. For all R1, . . . , Rn, G1, . . . , Gn, if Gj ⇒ Ri for all i and j such
that i 6= j, then for all k, ϕ and W ∈ DProgn×State, if (πi(W), Ri, I) Z=⇒k

nst
(Gi, Qi) for all i, then W Z=⇒k

ϕ (I,Q1 ∧ · · · ∧Qn).

Proof. For all R1, . . . , Rn, G1, . . . , Gn such that Gj ⇒ Ri for all i and j such
that i 6= j, we prove by induction on k.

– base case: k = 0. trivial.
– inductive case: k = k′ + 1.

IH: for all ϕ and W ∈ DProgn×State, if (πi(W), Ri, I) Z=⇒k′

nst (Gi, Qi) for all
i, then W Z=⇒k′

ϕ (I,Q1 ∧ · · · ∧Qn).
For all ϕ and W ∈ DProgn×State such that (πi(W), Ri, I) Z=⇒k′+1

nst (Gi, Qi)
for all i, by definition of Schedule there exists t and ϕ′ such that ϕ = t :: ϕ′.
To prove W Z=⇒k′+1

ϕ (I,Q1 ∧ · · · ∧ Qn), i.e., W Z=⇒k′+1
t::ϕ′ (I,Q1 ∧ · · · ∧ Qn),

we need to prove
• W (State) |= I.

From (π1(W), R1, I) Z=⇒k′+1
nst (G1, Q1) we know π1(W)

(State) |= I. By
Lem. 162 we know π1(W)

(State)
= W (State), thus W (State) |= I.

• if W (Prog)(skip ‖ · · · ‖ skip) > 0, then W |skip‖···‖skip
(State) |= Q1 ∧ · · · ∧

Qn.
For all i, by Lem. 163 we know πi(W)

(Stmt)
(skip) ≥W (Prog)(skip ‖ · · · ‖

skip) > 0. From (πi(W), Ri, I) Z=⇒k′+1
nst (Gi, Qi) we know πi(W)|skip

(State) |=
Qi. By Lem. 166 we know supp(W |skip‖···‖skip

(State)
) ⊆ supp(πi(W)|skip

(State)
).

From scl(Qi) we know
W |skip‖···‖skip

(State) |= Qi. Therefore W |skip‖···‖skip
(State) |= Q1 ∧ · · · ∧

Qn.
• for all W ′, if W

t
↪→W ′, then W ′ Z=⇒k′

ϕ (I,Q1 ∧ · · · ∧Qn).

For all W ′ such that W
t
↪→W ′, there are two cases.

∗ there exists W ′′, b1, . . . , bk, i such that W t
; W ′′, nextsplit(W, t) =

split(b1, . . . , bk) and W ′′|bi = W ′.
Let Ψ def

= {((C, σ), (C′, σ′)) |W (C, σ) > 0∧(C, σ)
p−→
t

(C′, σ′)∧p > 0}.

From W
t
; W ′′ by Lem. 167 we know πt(W)

t
; (Ψ (State), πt(W

′′)).
By Lem. 170 we know nextsplit(πt(W))
= nextsplit(W, t) = split(b1, . . . , bk). From W ′′|bi = W ′ by Lem. 169
we know πt(W

′′)|bi
= πt(W

′). From πt(W)
t
; (Ψ (State), πt(W

′′)) and nextsplit(πt(W)) =

split(b1, . . . , bk) we know πt(W)
t
↪→ (Ψ (State), πt(W

′)). From (πt(W), Rt, I) Z=⇒k′+1
nst

(Gt, Qt) we know Ψ (State) ⊆ JGtK, πt(W ′)
(State) |= I and (πt(W

′), Rt, I) Z=⇒k′

nst
(Gt, Qt).
For all i 6= t, by Lem. 168 we know dom(πi(Ψ)) = supp(πi(W)),
range(πi(Ψ)) = supp(πi(W

′′)) and ∀((Ci, σ), (C ′i, σ
′)) ∈ πi(Ψ). C ′i =

Ci∧(σ, σ′) ∈ Ψ (State). From i 6= t we know Gt ⇒ Ri, thus Gt ⊆ JRiK.
From Ψ (State) ⊆ JGtK we know Ψ (State) ⊆ Ri, thus ∀((Ci, σ), (C ′i, σ

′)) ∈
πi(Ψ). C ′i = Ci ∧ (σ, σ′) |= Ri. From dom(πi(Ψ)) = supp(πi(W))

and range(πi(Ψ)) = supp(πi(W
′′)) we know πi(W)

Ri7→ πi(W
′′). From

W ′′|bi = W ′ by Lem. 169 we know πi(W
′′)|bi = πi(W

′). By Lem. 162
we know πi(W

′)
(State)

= W ′
(State)

= πt(W
′)

(State). From πt(W
′)

(State) |=
I we have πi(W ′)

(State) |= I. From πi(W)
Ri7→ πi(W

′′) and πi(W ′′)|bi =

πi(W
′) we know πi(W)

Ri
�
I

πi(W
′). From (πi(W), Ri, I) Z=⇒k′+1

nst

(Gi, Qi) we know πi(W
′), Ri, I Z=⇒k′

nst (Gi, Qi).
From πt(W

′), Rt, I Z=⇒k′

nst (Gt, Qt) and πi(W ′), Ri, I Z=⇒k′

nst (Gi, Qi)
for all i 6= t we know πi(W

′), Ri, I Z=⇒k′

nst (Gi, Qi) for all i. By IH
we have W ′ Z=⇒k′

ϕ (I,Q1 ∧ · · · ∧Qn).

∗ W t
;W ′ and |nextsplit(W)| > 1.

Let Ψ def
= {((C, σ), (C′, σ′)) |W (C, σ) > 0∧(C, σ)

p−→
t

(C′, σ′)∧p > 0}.

From W
t
; W ′ by Lem. 167 we know πt(W)

t
; (Ψ (State), πt(W

′)).
By Lem. 170 we know nextsplit(πt(W))
= nextsplit(W, t), thus #nextsplit(πt(W)) = #nextsplit(W, t) > 1,
therefore πt(W)

t
↪→ (Ψ (State), πt(W

′)). From (πt(W), Rt, I) Z=⇒k′+1
nst

(Gt, Qt) we know Ψ (State) ⊆ JGtK,
πt(W

′)
(State) |= I and (πt(W

′), Rt, I) Z=⇒k′

nst (Gt, Qt).
For all i 6= t, from W

t
; W ′ by Lem. 168 we know dom(πi(Ψ)) =

supp(πi(W)), range(πi(Ψ)) = supp(πi(W
′)) and ∀((Ci, σ), (C ′i, σ

′)) ∈
πi(Ψ). C ′i = Ci ∧ (σ, σ′) ∈ Ψ (State). From i 6= t we know Gt ⇒ Ri,
thus Gt ⊆ JRiK. From Ψ (State) ⊆ JGtK we know Ψ (State) ⊆ Ri,
thus ∀((Ci, σ), (C ′i, σ

′)) ∈ πi(Ψ). C ′i = Ci ∧ (σ, σ′) |= Ri. From
dom(πi(Ψ)) = supp(πi(W)) and range(πi(Ψ)) = supp(πi(W

′)) we
know πi(W)

Ri7→ πi(W
′). By Lem. 171 we know πi(W

′)|true = πi(W
′).

By Lem. 162 we know πi(W
′)

(State)
= W ′

(State)
= πt(W

′)
(State).

From πt(W
′)

(State) |= I we have πi(W ′)
(State) |= I. From πi(W)

Ri7→

πi(W
′) and πi(W ′)|true = πi(W

′) we know πi(W)
Ri
�
I
πi(W

′). From

(πi(W), Ri, I) Z=⇒k′+1
nst (Gi, Qi) we know πi(W

′), Ri, I Z=⇒k′

nst (Gi, Qi).
From πt(W

′), Rt, I Z=⇒k′

nst (Gt, Qt) and πi(W ′), Ri, I Z=⇒k′

nst (Gi, Qi)
for all i 6= t we know πi(W

′), Ri, I Z=⇒k′

nst (Gi, Qi) for all i. By IH
we have W ′ Z=⇒k′

ϕ (I,Q1 ∧ · · · ∧Qn).

Lemma 173. For all C1, . . . , Cn, P1, . . . , Pn, Q1, . . . , Qn, R1, . . . , Rn, G1, . . . , Gn, I,
if Ri, Gi, I |=nst {Pi}Ci{Qi} for all i and Gj ⇒ Ri for all i and j such that i 6= j,
then I |=ANL {P1 ∧ · · · ∧ Pn}C1 ‖ · · · ‖ Cn{Q1 ∧ · · · ∧Qn}.

Proof. For all C1, . . . , Cn, P1, . . . , Pn, Q1, . . . , Qn, R1, . . . , Rn, G1, . . . , Gn, I such
that Ri, Gi, I |=nst {Pi}Ci{Qi} for all i and Gj ⇒ Ri for all i and j such that
i 6= j, we need to prove for all µ, ϕ, k, if µ |= I ∧ P1 ∧ · · · ∧ Pn, then init(C1 ‖
· · · ‖ Cn, µ) Z=⇒k

ϕ (I,Q). For all µ, ϕ, k such that µ |= I ∧ P1 ∧ · · · ∧ Pn, from
Ri, Gi, I |=nst {Pi}Ci{Qi} for all i we know (init(Ci, µ), Ri, I) Z=⇒n

nst (Gi, Qi)
for all i. By Lem. 161 we know πi(init(C1 ‖ · · · ‖ Cn, µ)) = init(Ci, µ) for all i,
thus (πi(init(C1 ‖ · · · ‖ Cn, µ)), Ri, I) Z=⇒n

nst (Gi, Qi) for all i. From Gj ⇒ Ri
for all i and j such that i 6= j by Lem. 172 we know init(C1 ‖ · · · ‖ Cn, µ) Z=⇒k

ϕ

(I,Q1 ∧ · · · ∧Qn).

Lemma 174. For all n,W,
→
W,ϕ, if History(W,ϕ,

→
W) and W Z=⇒n+1

ϕ (I,Q),

then
→
W [n]

(State)

|= I and if
→
W [n]

(Prog)

(skip ‖ · · · ‖ skip) > 0, then
→
W [n]|skip‖···‖skip

(State)

|=
Q.

Proof. by induction on n.

– base case: n = 0.
For allW,

→
W,ϕ such thatHistory(W,ϕ,

→
W) andW Z=⇒1

ϕ (I,Q), by Def. H.36
we knowW (State) |= I and ifW (Prog)(skip ‖ · · · ‖ skip) > 0 thenW |skip‖···‖skip

(State) |=
Q.

From History(W,ϕ,
→
W) by Lem. 50 we know

→
W [0] = W , thus

→
W [0]

(State)

|=

I and if
→
W [0]

(Prog)

(skip ‖ · · · ‖ skip) > 0 then
→
W [0]|skip‖···‖skip

(State)

|= Q.
– inductive case: n = k + 1.

IH: for allW,
→
W,ϕ, ifHistory(W,ϕ,

→
W) andW Z=⇒k+1

ϕ (I,Q), then
→
W [k]

(State)

|=

I and if
→
W [k]

(Prog)

(skip ‖ · · · ‖ skip) > 0, then
→
W [k]|skip‖···‖skip

(State)

|= Q.

For all W,
→
W,ϕ such that History(W,ϕ,

→
W) and W Z=⇒n+1

ϕ (I,Q), from

History(W,ϕ,
→
W) there exists t, ϕ′,W ′,

→
W
′
such that ϕ = t :: ϕ′, W

t
↪→W ′,

History(W ′, ϕ′,
→
W
′
) and

→
W = W ::

→
W
′
. FromW Z=⇒n+1

ϕ (I,Q) and ϕ = t ::

ϕ′ we knowW Z=⇒n+1
t::ϕ′ (I,Q). FromW

t
↪→W ′ we knowW ′ Z=⇒n

ϕ′ (I,Q), i.e.,

W ′ Z=⇒k+1
ϕ′ (I,Q). FromHistory(W ′, ϕ′,

→
W
′
) by IH we have

→
W
′
[k]

(State)

|= I

and if
→
W
′
[k]

(Prog)

(skip ‖ · · · ‖ skip) > 0, then
→
W
′
[k]|skip‖···‖skip

(State)

|= Q.

From
→
W [n] = (W ::

→
W
′
)[k + 1] =

→
W
′
[k] we know

→
W [n]

(State)

|= I and if
→
W [n]

(Prog)

(skip ‖ · · · ‖ skip) > 0, then
→
W [n]|skip‖···‖skip

(State)

|= Q.

Lemma 175. For allW , ifW (Prog)(skip ‖ · · · ‖ skip) = 1, thenW |skip‖···‖skip =
W .

Proof. For allW such thatW (Prog)(skip ‖ · · · ‖ skip) = 1, we havePr(C,σ)∼W [C =
skip ‖ · · · ‖ skip] = 1. By Lem. 4 we know W |λ(C,σ).C=skip‖···‖skip = W , i.e.,
W |skip‖···‖skip = W .

Lemma 176. For all C, P,Q, I, if I |=ANL {P}C{Q}, lclosed(I) and lclosed(Q),
then |=a {I ∧ P}C{I ∧Q}.

Proof. For all C, P,Q, I such that I |=ANL {P}C{Q}, lclosed(I) and lclosed(Q),
we need to prove for all µ, ϕ,W such that µ |= I ∧ P and init(C, µ) ⇓ϕ W , then
W (State) |= I ∧Q. For all µ, ϕ,W such that µ |= I ∧P and init(C, µ) ⇓ϕ W , from
I |=ANL {P}C{Q} and µ |= I ∧P we know init(C, µ) Z=⇒n

ϕ (I,Q) for all n. From

init(C, µ) ⇓ϕ W we know there exists
→
W such that History(init(C, µ), ϕ,

→
W),

lim
→
W = W andW (Prog)(skip ‖ · · · ‖ skip) = 1. FromHistory(init(C, µ), ϕ,

→
W)

and init(C, µ) Z=⇒n
ϕ (I,Q) for all n by Lem. 174 we know for all n,

→
W [n]

(State)

|= I

and if
→
W [n]

(Prog)

(skip ‖ · · · ‖ skip) > 0, then
→
W [n]|skip‖···‖skip

(State)

|= Q.

From lim
→
W = W by Lem. 7 we know lim

→
W

(Prog)

= W (Prog) and lim
→
W

(State)

=

W (State). From lim
→
W

(State)

= W (State),
→
W

(State)

[n] =
→
W [n]

(State)

|= I for all

n, and lclosed(I) we have W (State) |= I. From lim
→
W

(Prog)

= W (Prog) by

Lem. 6 we know lim
n→∞

→
W [n]

(Prog)

(skip ‖ · · · ‖ skip) = 1. By definition of

limit, then there exists N such that |
→
W [n]

(Prog)

(skip ‖ · · · ‖ skip) − 1| < 1

for all n ≥ N , so
→
W [n]

(Prog)

(skip ‖ · · · ‖ skip) > 0 for all n ≥ N , thus
→
W [n+N]|skip‖···‖skip

(State)

|= Q for all n. From lim
→
W = W by Lem.10 we

know lim(λn.
→
W [n + N]) = W . From

→
W [n]

(Prog)

(skip ‖ · · · ‖ skip) > 0 for all
n ≥ N we know Pr

(C,σ)∼
→
W [n+N]

(C = skip ‖ · · · ‖ skip) > 0 for all n. From

History(init(C, µ), ϕ,
→
W) by Lem. 33 we know

→
W [n+ 1](skip ‖ · · · ‖ skip, σ) ≥

→
W [n](skip ‖ · · · ‖ skip, σ) for all n and σ. From lim

n→∞

→
W [n]

(Prog)

(skip ‖ · · · ‖
skip) = 1 we know lim

n→∞
Pr

(C,σ)∼
→
W [n+N]

[C = skip ‖ · · · ‖ skip] = 1. From

lim(λn.
→
W [n + N]) = W , Pr

(C,σ)∼
→
W [n+N]

(C = skip ‖ · · · ‖ skip) > 0 for

all n,
→
W [n + 1](skip ‖ · · · ‖ skip, σ) ≥

→
W [n](skip ‖ · · · ‖ skip, σ) for all

n and σ, and lim
n→∞

Pr
(C,σ)∼

→
W [n+N]

[C = skip ‖ · · · ‖ skip] = 1 by Lem. 9

we know lim (λn.
→
W [n+N])|skip‖···‖skip = W |skip‖···‖skip. By Lem. 8 we know

lim (λn.
→
W [n+N])|skip‖···‖skip

(State)

= W |skip‖···‖skip
(State), i.e.,

lim

(
λn.

→
W [n+N]|skip‖···‖skip

(State)
)

= W |skip‖···‖skip
(State). From lclosed(Q)

and
→
W [n+N]|skip‖···‖skip

(State)

|= Q for all n we know
W |skip‖···‖skip

(State) |= Q. From W (Prog)(skip ‖ · · · ‖ skip) = 1 by Lem. 175 we
knowW (State) = W |skip‖···‖skip

(State) |= Q. FromW (State) |= I andW (State) |= Q

we have W (State) |= I ∧Q.

Lemma 177 (Soundness of (par) rule). For all C1, . . . , Cn, P,Q, I, P1, . . . , Pn, Q1, . . . , Qn, R1, . . . ,
Rn, G1, . . . , Gn, if P ⇒ I∧P1∧· · ·∧Pn, I∧Q1∧· · ·∧Qn ⇒ Q, lclosed(I), lclosed(Q1), . . . , lclosed(Qn),
Ri, Gi, I |=nst {Pi}Ci{Qi} for all i, and Gj ⇒ Ri for all i and j such that i 6= j,
then |=a {P}C1 ‖ · · · ‖ Cn{Q}.

Proof. For all C1, . . . , Cn, P,Q, I, P1, . . . , Pn, Q1, . . . , Qn, R1, . . . , Rn, G1, . . . , Gn
such that P ⇒ I∧P1∧· · ·∧Pn, I∧Q1∧· · ·∧Qn ⇒ Q, lclosed(I), lclosed(Q1), . . . , lclosed(Qn),
Ri, Gi, I |=nst {Pi}Ci{Qi} for all i, and Gj ⇒ Ri for all i and j such that i 6= j,
from Ri, Gi, I |=nst {Pi}Ci{Qi} for all i, and Gj ⇒ Ri for all i and j such that
i 6= j by Lem. 173 we know I |=ANL {P1∧· · ·∧Pn}C1 ‖ · · · ‖ Cn{Q1∧· · ·∧Qn}.
From lclosed(Q1), . . . , lclosed(Qn) we know lclosed(Q1∧· · ·∧Qn). By Lem. 176
we know |=a {I ∧ P1 ∧ · · · ∧ Pn}C1 ‖ · · · ‖ Cn{I ∧ Q1 ∧ · · · ∧ Qn}. From
P ⇒ I ∧ P1 ∧ · · · ∧ Pn and I ∧ Q1 ∧ · · · ∧ Qn ⇒ Q by Lem. 157 we know
|=a {P}C1 ‖ · · · ‖ Cn{Q}.

Definition H.42. ψ(State) def
= {(σ, σ′) | ∃C,C ′. ((C, σ), (C ′, σ′)) ∈ ψ}.

Lemma 178. For all R, η, η′, if η R7→ η′, then η(State) R7→ η′
(State).

Proof. For all R, η, η′ such that η R7→ η′, there exists ψ such that dom(ψ) =

supp(η), range(ψ) = supp(η′) and for all ((C, σ), (C ′, σ′)) ∈ ψ, C ′ = C and
(σ, σ′) |= R, thus ψ(State) = {(σ, σ′) | ∃C,C ′. ((C, σ), (C ′, σ′)) ∈ ψ} ⊆ {(σ, σ′) |
(σ, σ′) |= R} = JRK,

dom(ψ(State)) = {σ | ∃σ′. (σ, σ′) ∈ ψ(State)}
= {σ | ∃σ′, C, C ′. ((C, σ), (C ′, σ′)) ∈ ψ}
= {σ | ∃C. (C, σ) ∈ dom(ψ)}
= {σ | ∃C. (C, σ) ∈ supp(η)}
= {σ | ∃C. η(C, σ) > 0}
= {σ |

∑
C η(C, σ) > 0}

= {σ | η(State)(σ) > 0}
= {σ | σ ∈ supp(η(State))}
= supp(η(State)),

and
range(ψ(State)) = {σ′ | ∃σ. (σ, σ′) ∈ ψ(State)}

= {σ′ | ∃σ,C,C ′. ((C, σ), (C ′, σ′)) ∈ ψ}
= {σ′ | ∃C ′. (C ′, σ′) ∈ range(ψ)}
= {σ′ | ∃C ′. (C ′, σ′) ∈ supp(η′)}
= {σ′ | ∃C ′. η′(C ′, σ′) > 0}
= {σ′ |

∑
C′ η

′(C ′, σ′) > 0}
= {σ′ | η′(State)

(σ′) > 0}
= {σ′ | σ′ ∈ supp(η′

(State)
)}

= supp(η′
(State)

),

therefore η(State) R7→ η′
(State).

Lemma 179. For all R, I,G,Q, n, η, if (η,R, I) Z=⇒n
st (G,Q), then (η,R, I) Z=⇒n

nst
(G,Q).

Proof. For all R, I,G,Q, n, we prove for all η, if (η,R, I) Z=⇒n
st (G,Q), then

(η,R, I) Z=⇒n
nst (G,Q) by induction on n.

– base case: n = 0. trivial.
– inductive case: n = k + 1.

IH: for all η, if (η,R, I) Z=⇒k
st (G,Q), then (η,R, I) Z=⇒k

st (G,Q).
For all η such that (η,R, I) Z=⇒k+1

st (G,Q), to prove (η,R, I) Z=⇒k+1
nst (G,Q),

we need to prove
• if η(Stmt)(skip) > 0, then η|skip

(State) |= Q.
From (η,R, I) Z=⇒k+1

st (G,Q) we know if η(Stmt)(skip) > 0, then η|skip
(State) |=

Q.
• η(State) |= I.

From (η,R, I) Z=⇒k+1
st (G,Q) we know η(State) |= I.

• for all η′, if η
R
�
I
η′, then (η′, R, I) Z=⇒k

nst (G,Q).

For all η′ such that η
R
�
I

η′, from (η,R, I) Z=⇒k+1
st (G,Q) we know

(η′, R, I) Z=⇒k
st (G,Q). By IH we have (η′, R, I) Z=⇒k

nst (G,Q).
• for all θ and η′, if η ↪→ (θ, η′), then θ ⊆ JGK, η′(State) |= I and (η′, R, I) Z=⇒k

nst
(G,Q).
For all θ and η′ such that η ↪→ (θ, η′), from (η,R, I) Z=⇒k+1

st (G,Q) we
know θ ⊆ JGK, η′(State) |= I and (η′, R, I) Z=⇒k

st (G,Q). By IH we have
(η′, R, I) Z=⇒k

nst (G,Q).

Lemma 180 (Soundness of (st-nst) rule). For all C,R,G, I, P,Q, if R,G, I `st
{P}C{Q}, then R,G, I |=nst {P}C{Q}.

Proof. For all C,R,G, I, P,Q such thatR,G, I `st {P}C{Q}, to proveR,G, I |=nst
{P}C{Q}, we need to prove for all µ, if µ |= I ∧P , then (init(C, µ), R, I) Z=⇒n

nst
(G,Q) for all n. For all µ and n such that µ |= I ∧P , from R,G, I `st {P}C{Q}
we know (init(C, µ), R, I) Z=⇒n

st (G,Q).

Lemma 181. For all R, I,G,Q,R1, G1, Q1, n, η, if R⇒ R1, G1 ⇒ G, Q1 ⇒ Q
and (η,R1, I) Z=⇒n

� (G1, Q1), then (η,R, I) Z=⇒n
� (G,Q).

Proof. For all R, I,G,Q,R1, G1, Q1, n such that R ⇒ R1, G1 ⇒ G, Q1 ⇒ Q,
we prove for all η, if (η,R1, I) Z=⇒n

� (G1, Q1), then (η,R, I) Z=⇒n
� (G,Q) by

induction on n.

– base case: n = 0. trivial.
– inductive case: n = k + 1.

IH: for all η, if (η,R1, I) Z=⇒k
� (G1, Q1), then (η,R, I) Z=⇒k

� (G,Q).
For all η such that (η,R1, I) Z=⇒k+1

� (G1, Q1), to prove (η,R, I) Z=⇒k+1
�

(G,Q), we need to prove
• (when � = st) η(Stmt)(skip) = 0 or η(Stmt)(skip) = 1.

From (η,R1, I) Z=⇒k+1
st (G1, Q1) we know η(Stmt)(skip) = 0 or η(Stmt)(skip) =

1.
• if η(Stmt)(skip) > 0, then η|skip

(State) |= Q.
From (η,R1, I) Z=⇒k+1

� (G1, Q1) and η(Stmt)(skip) > 0 we know η|skip
(State) |=

Q1. From Q1 ⇒ Q we know η|skip
(State) |= Q.

• η(State) |= I.
From (η,R1, I) Z=⇒k+1

� (G1, Q1) we know η(State) |= I.

• for all η′, if η
R
�
I
η′, then (η′, R, I) Z=⇒k

� (G,Q).

For all η′ such that η
R
�
I
η′, from (η,R1, I) Z=⇒k+1

� (G1, Q1) we know

(η′, R1, I) Z=⇒k
� (G1, Q1). By IH we have (η′, R, I) Z=⇒k

� (G,Q).
• for all θ and η′, if η ↪→ (θ, η′), then θ ⊆ JGK, η′(State) |= I and (η′, R, I) Z=⇒k

�
(G,Q).
For all θ and η′ such that η ↪→ (θ, η′), from (η,R1, I) Z=⇒k+1

� (G1, Q1)

we know θ ⊆ JG1K, η′
(State) |= I and (η′, R1, I) Z=⇒k

� (G1, Q1). From
θ ⊆ JG1K and G1 ⇒ G we know θ ⊆ JG1K ⊆ JGK. From (η′, R1, I) Z=⇒k

�
(G1, Q1) by IH we know By IH we have (η′, R, I) Z=⇒k

� (G,Q).

Lemma 182 (Soundness of (csq) rule). For all C, I,R,G, P,Q,R1, G1, P1, Q1,
if P ⇒ P1, R ⇒ R1, G1 ⇒ G, Q1 ⇒ Q and R1, G1, I |=� {P1}C{Q1}, then
R,G, I |=� {P}C{Q}.

Proof. For all C, I,R,G, P,Q,R1, G1, P1, Q1 such that P ⇒ P1, R⇒ R1, G1 ⇒
G, Q1 ⇒ Q and R1, G1, I |=� {P1}C{Q1}, to prove R,G, I |=� {P}C{Q}, we
need to prove for all µ, if µ |= P , then (init(C, µ), R, I) Z=⇒n

� (G,Q) for all n. For
all µ and n such that µ |= P , from P ⇒ P1 we know µ |= P1. From R1, G1, I |=�

{P1}C{Q1} we know (init(C, µ), R1, I) Z=⇒n
� (G1, Q1). From R ⇒ R1, G1 ⇒ G

and Q1 ⇒ Q by Lem. 181 we know (init(C, µ), R, I) Z=⇒n
� (G,Q).

Lemma 183 (Soundness of (disj) rule). For all C,R,G, I, P1, P2, Q1, Q2,
if R,G, I |=� {P1}C{Q1} and R,G, I |=� {P2}C{Q2}, then R,G, I |=� {P1 ∨
P2}C{Q1 ∨ P2}.

Proof. For all C,R,G, I, P1, P2, Q1, Q2 such that R,G, I |=� {P1}C{Q1} and
R,G, I |=� {P2}C{Q2}, to prove R,G, I |=� {P1 ∨ P2}C{Q1 ∨ P2}, we need to
prove for all µ, if µ |= I ∧ (P1 ∨ P2), then (init(C, µ), R, I) Z=⇒n

� (G,Q1 ∨ Q2).
For all µ such that µ |= I ∧ (P1 ∨ P2), we know µ |= I ∧ P1 or µ |= I ∧ P2. We
prove the two cases respectively.

– case 1: µ |= I ∧ P1.
From µ |= I∧P1 and R,G, I |=� {P1}C{Q1} we know (init(C, µ), R, I) Z=⇒n

�
(G,Q1). From Q1 ⇒ Q1 ∨ Q2 by Lem. 181 we know (init(C, µ), R, I) Z=⇒n

�
(G,Q1 ∨Q2).

– case 2: µ |= I ∧ P2.
From µ |= I∧P2 and R,G, I |=� {P2}C{Q2} we know (init(C, µ), R, I) Z=⇒n

�
(G,Q2). From Q2 ⇒ Q1 ∨ Q2 by Lem. 181 we know (init(C, µ), R, I) Z=⇒n

�
(G,Q1 ∨Q2).

Lemma 184. For all R, I,G,Q1, Q2, n, η, if (η,R, I) Z=⇒n
� (G,Q1) and (η,R, I) Z=⇒n

�
(G,Q2), then (η,R, I) Z=⇒n

� (G,Q1 ∧Q2).

Proof. For all R, I,G,Q1, Q2, n, we prove for all η, if (η,R, I) Z=⇒n
� (G,Q1) and

(η,R, I) Z=⇒n
� (G,Q2), then (η,R, I) Z=⇒n

� (G,Q1 ∧Q2) by induction on n.

– base case: n = 0. trivial.
– inductive case: n = k + 1.

IH: for all η, if (η,R, I) Z=⇒k
� (G,Q1) and (η,R, I) Z=⇒n

� (G,Q2), then
(η,R, I) Z=⇒k

� (G,Q1 ∧Q2).
For all η such that (η,R, I) Z=⇒k+1

� (G,Q1) and (η,R, I) Z=⇒n
� (G,Q2), to

prove (η,R, I) Z=⇒k+1
� (G,Q1 ∧Q2), we need to prove

• (when � = st) η(Stmt)(skip) = 0 or η(Stmt)(skip) = 1.
From (η,R, I) Z=⇒k+1

st (G,Q1) we know η(Stmt)(skip) = 0 or η(Stmt)(skip) =
1.
• if η(Stmt)(skip) > 0, then η|skip

(State) |= Q1 ∧Q2.
From (η,R, I) Z=⇒k+1

� (G,Q1) and η(Stmt)(skip) > 0 we know η|skip
(State) |=

Q1. From (η,R, I) Z=⇒k+1
� (G,Q2) and η(Stmt)(skip) > 0 we know

η|skip
(State) |= Q2. Therefore η|skip

(State) |= Q1 ∧Q2.
• η(State) |= I.

From (η,R, I) Z=⇒k+1
� (G,Q1) we know η(State) |= I.

• for all η′, if η
R
�
I
η′, then (η′, R, I) Z=⇒k

� (G,Q).

For all η′ such that η
R
�
I
η′, from (η,R, I) Z=⇒k+1

� (G,Q1) we know

(η′, R, I) Z=⇒k
� (G,Q1). From (η,R, I) Z=⇒k+1

� (G,Q2) we know (η′, R, I) Z=⇒k
�

(G,Q2). By IH we have
(η′, R, I) Z=⇒k

� (G,Q1 ∧Q2).
• for all θ and η′, if η ↪→ (θ, η′), then θ ⊆ JGK, η′(State) |= I and (η′, R, I) Z=⇒k

�
(G,Q1 ∧Q2).
For all θ and η′ such that η ↪→ (θ, η′), from (η,R, I) Z=⇒k+1

� (G,Q1)

we know θ ⊆ JGK, η′(State) |= I and (η′, R, I) Z=⇒k
� (G,Q1). From

(η,R, I) Z=⇒k+1
� (G,Q1) we know (η′, R, I) Z=⇒k

� (G,Q2). By IH we
have (η′, R, I) Z=⇒k

� (G,Q1 ∧Q2).

Lemma 185 (Soundness of (conj) rule). For all C,R,G, I, P1, P2, Q1, Q2,
if R,G, I |=� {P1}C{Q1} and R,G, I |=� {P2}C{Q2}, then R,G, I |=� {P1 ∧
P2}C{Q1 ∧ P2}.

Proof. For all C,R,G, I, P1, P2, Q1, Q2 such that R,G, I |=� {P1}C{Q1} and
R,G, I |=� {P2}C{Q2}, to prove R,G, I |=� {P1 ∧ P2}C{Q1 ∧ P2}, we need to
prove for all µ, if µ |= I ∧ (P1 ∧ P2), then (init(C, µ), R, I) Z=⇒n

� (G,Q1 ∧ Q2).
For all µ such that µ |= I ∧ (P1∨P2), we know µ |= I ∧P1 and µ |= I ∧P2. From
µ |= I ∧P1 and R,G, I |=� {P1}C{Q1} we know (init(C, µ), R, I) Z=⇒n

� (G,Q1).
From µ |= I ∧ P2 and R,G, I |=� {P2}C{Q2} we know (init(C, µ), R, I) Z=⇒n

�
(G,Q2). By Lem. 184 we know (init(C, µ), R, I) Z=⇒n

� (G,Q1 ∧Q2)

Lemma 186. For all Q,R, I, η, η′, if Sta(Q,R, I), η(State) |= I∧Q and η
R
�
I
η′,

then η′(State) |= I ∧Q.

Proof. For all Q,R, I, η, η′ such that Sta(Q,R, I), η(State) |= I ∧Q and η
R
�
I
η′,

from η
R
�
I
η′ there exists η′′ and b such that η R7→ η′′, η′′|b = η′ and η′(State) |= I.

From η
R7→ η′′ by Lem. 178 we know η(State) R7→ η′′

(State). From η′′|b = η′ by

Lem. 20 we have supp(η′) ⊆ supp(η′′). By Lem. 24 we know supp(η′
(State)

) ⊆
supp(η′′

(State)
). From η(State) |= I, η′(State) |= I and η(State) R7→ η′′

(State) we have

η(State)
R
�
I
η′

(State). From Sta(Q,R, I) and η(State) |= Q we have η′(State) |= Q.

Lemma 187. For all R, η, η′, if η R7→ η′, then supp(η′
(Stmt)

) = supp(η(Stmt)).

Proof. For all R, η, η′ such that η R7→ η′, there exists ψ such that dom(ψ) =

supp(η), range(ψ) = supp(η′) and for all ((C, σ), (C ′, σ′)) ∈ ψ, C ′ = C and
(σ, σ′) |= R, thus

supp(η′
(Stmt)

) = dom(supp(η′)) (by Lem. 21)
= dom(range(ψ))
= {C ′ | ∃σ′. (C ′, σ′) ∈ range(ψ)}
= {C ′ | ∃σ′, C, σ. ((C, σ), (C ′, σ′)) ∈ ψ}
= {C ′ | ∃σ′, C, σ. ((C, σ), (C ′, σ′)) ∈ ψ ∧ C ′ = C}
= {C | ∃σ′, C ′, σ. ((C, σ), (C ′, σ′)) ∈ ψ}
= {C | ∃σ. (C, σ) ∈ dom(ψ)}
= dom(dom(ψ))
= dom(supp(η))
= supp(η(Stmt)). (by Lem. 21)

Lemma 188. For all R, I, η, η′, if η
R
�
I
η′, then supp(η′

(Stmt)
) ⊆ supp(η(Stmt)).

Proof. For all R, I, η, η′ such that η
R
�
I
η′, there exists η′′ and b such that η R7→ η′′,

η′′|b = η′ and η′(State) |= I. From η
R7→ η′′ by Lem. 187 we know supp(η′′

(Stmt)
) =

supp(η(Stmt)). From η′′|b = η′ by Lem. 20 we know supp(η′) ⊆ supp(η′′). By
Lem. 23 we know supp(η′

(Stmt)
) ⊆ supp(η′′

(Stmt)
), thus supp(η′

(Stmt)
) ⊆ supp(η(Stmt)).

Lemma 189. For all η and C1, η(Stmt) = δ(C1) if and only if ∀(C, σ) ∈ supp(η). C =
C1.

Proof. For all η and C1, we have

η(Stmt) = δ(C1)
⇐⇒ supp(η(Stmt)) = {C1} (by Lem. 26)
⇐⇒ dom(supp(η)) = {C1} (by Lem. 21)
⇐⇒ {C | ∃σ. (C, σ) ∈ supp(η)} = {C1}
⇐⇒ {C | ∃σ. (C, σ) ∈ supp(η)} ⊆ {C1}
⇐⇒ ∀(C, σ) ∈ supp(η). C = C1.

Lemma 190. For all η and C1, if η(Stmt) = δ(C1), then nextsplit(η) = {nextsplit(C1)}.

Proof. For all η and C1 such that η(Stmt) = δ(C1),

nextsplit(η)
= {nextsplit(C) | ∃σ. (C, σ) ∈ supp(η)}
= {nextsplit(C) | ∃σ. (C, σ) ∈ supp(η) ∧ C = C1} (by Lem. 189)
= {nextsplit(C1) | ∃σ. (C, σ) ∈ supp(η) ∧ C = C1}
= {nextsplit(C1)}.

Lemma 191. For all η and η′, if nextsplit(η) ⊇ {split(true)}, then η ; η′ if
and only if η ↪→ η′.

Proof. For all η and η′ such that nextsplit(η) ⊇ {split(true)}, we prove the two
directions respectively.

– if η ; η′, from nextsplit(η) ⊇ {split(true)} we know nextsplit(η) = {split(true)}
or
nextsplit(η) ⊃ {split(true)}. We prove the two cases respectively.
• nextsplit(η) = {split(true)}.

By Lem. 171 we know η′|true = η′. From η ; η′, nextsplit(η) = {split(true)}
and η′|true = η′ we have η ↪→ η′.

• nextsplit(W, t) ⊃ {split(true)}.
#nextsplit(W, t) > 1, so W

t
↪→W ′.

– if η ↪→ η′, there are two cases.

• case 1: there exists η′′, b1, . . . , bk, i such that η ; η′′, nextsplit(η) =
{split(b1, . . . , bk)} and η′′|bi = η′.
From nextsplit(η) ⊇ {split(true)} we know k = i = 1, b1 = true. By
Lem. 171 we know η′′|true = η′′, so η′ = η′′|bi = η′′|true = η′′. From
η ; η′′ we have η ; η′.

• case 2: #nextsplit(η) > 1 and η ; η′. trivial.

Lemma 192. For all η, if η(Stmt) = δ(skip), then η ; ({(σ, σ) | σ ∈ supp(η(State))}, δ(skip)⊗
η(State)).

Proof. For all η such that η(Stmt) = δ(skip), by Lem. 189 we know C = skip
for all (C, σ) ∈ supp(η), thus

λ(C ′, σ′).
∑
C,σ{η(C, σ) · p | (C, σ)

p−→ (C ′, σ′)}
= λ(C ′, σ′).

∑
C,σ{η(C, σ) · p | (C, σ) ∈ supp(η) ∧ (C, σ)

p−→ (C ′, σ′)}
= λ(C ′, σ′).

∑
C,σ{η(C, σ) · p | (C, σ) ∈ supp(η) ∧ C = skip ∧ (C, σ)

p−→ (C ′, σ′)}
= λ(C ′, σ′).

∑
σ{η(State)(σ) · p | σ ∈ supp(η(State)) ∧ (skip, σ)

p−→ (C ′, σ′)}
= λ(C ′, σ′).

∑
σ{η(State)(σ) | σ ∈ supp(η(State)) ∧ C ′ = skip ∧ σ′ = σ}

= λ(C ′, σ′).
∑
σ{η(State)(σ) | C ′ = skip ∧ σ′ = σ}

= λ(C ′, σ′). δ(skip)(C ′) · η(State)(σ′)
= δ(skip)⊗ η(State)

and

{(σ, σ′) | ∃C,C ′. η(C, σ) > 0 ∧ (C, σ)
p−→ (C ′, σ′) ∧ p > 0}

= {(σ, σ′) | ∃C,C ′. (C, σ) ∈ supp(η) ∧ (C, σ)
p−→ (C ′, σ′) ∧ p > 0}

= {(σ, σ′) | ∃C,C ′. (C, σ) ∈ supp(η) ∧ (C = skip) ∧ (C, σ)
p−→ (C ′, σ′) ∧ p > 0}

= {(σ, σ′) | σ ∈ supp(η(State)) ∧ ∃C ′. (skip, σ)
p−→ (C ′, σ′) ∧ p > 0}

= {(σ, σ′) | σ ∈ supp(η(State)) ∧ ∃C ′. C ′ = skip ∧ σ′ = σ}
= {(σ, σ) | σ ∈ supp(η(State))}.

Therefore η ; ({(σ, σ) | σ ∈ supp(η(State))}, δ(skip)⊗ η(State)).

Lemma 193. For all η, θ1, η1, θ2, η2, if η ; (θ1, η1) and η ; (θ2, η2), then
θ1 = θ2 and η1 = η2.

Proof. For all η, θ1, η1, θ2, η2 such that η ; (θ1, η1) and η ; (θ2, η2), from
η ; (θ1, η1) we know η1 = λ(C ′, σ′).

∑
C,σ{η(C, σ) · p | (C, σ)

p−→ (C ′, σ′)}
and θ1 = {(σ, σ′) | ∃C,C ′. (C, σ)

p−→ (C ′, σ′) ∧ p > 0}. From η ; (θ2, η2) we
know η2 = λ(C ′, σ′).

∑
C,σ{η(C, σ) · p | (C, σ)

p−→ (C ′, σ′)} and θ2 = {(σ, σ′) |
∃C,C ′. (C, σ)

p−→ (C ′, σ′) ∧ p > 0}. Therfore θ1 = θ2 and η1 = η2.

Lemma 194. For all Q,R,G, I, if Sta(Q,R, I) and Id⇒ G, then for all n and
η, if η(Stmt) = δ(skip) and η(State) |= I ∧Q, then (η,R, I) Z=⇒n

st (G,Q).

Proof. For all Q,R,G, I, if Sta(Q,R, I) and Id⇒ G, we prove by induction on
n.

– base case: n = 0. trivial.
– inductive case: n = k + 1.

IH: for all η, if η(Stmt) = δ(skip) and η(State) |= I ∧ Q, then (η,R, I) Z=⇒k
st

(G,Q).
For all η such that η(Stmt) = δ(skip) and η(State) |= I∧Q, to prove (η,R, I) Z=⇒k+1

st
(G,Q), by Def. F.1 we need to prove
• η(Stmt)(skip) = 0 or η(Stmt)(skip) = 1.

by assumption we know η(Stmt)(skip) = 1.
• if η(Stmt)(skip) > 0, then η(State) |= Q.

From η(Stmt)(skip) = 1 we know Pr(C,σ)∼η[C = skip] = 1. By Lem. 4
we know η|skip = η|λ(C,σ).C=skip = η. From η(State) |= I ∧ Q we know
η|skip

(State) |= Q.
• η(State) |= I.

From η(State) |= I ∧Q we know η(State) |= I.

• for all η′, if η
R
�
I
η′, then (η′, R, I) Z=⇒k

st (G,Q).

For all η′ such that η
R
�
I
η′, by Lem. 188 we know supp(η′

(Stmt)
) ⊆

supp(η(Stmt)). From η(Stmt) = δ(skip) by Lem. 27 we know η′
(Stmt)

=

δ(skip). From Sta(Q,R, I), η(State) |= I ∧ Q and η
R
�
I
η′ by Lem. 186

we have η′
(State) |= I ∧ Q. From η′

(Stmt)
= δ(skip) by IH we have

(η′, R, I) Z=⇒k
st (G,Q).

• for all θ and η′, if η ↪→ (θ, η′), then θ ⊆ JGK, η′(State) |= I and (η′, R, I) Z=⇒k
st

(G,Q).
For all θ and η′ such that η ↪→ (θ, η′), from η(Stmt) = δ(skip) by
Lem. 190 we have nextsplit(η) = {nextsplit(skip)} = {split(true)}. From
η ↪→ (θ, η′) by Lem. 191 we know η ; (θ, η′). From η(Stmt) = δ(skip)
by Lem. 192 we know η ; ({(σ, σ) | σ ∈ supp(η(State))}, δ(skip) ⊗
η(State)). From η ; (θ, η′) by Lem. 193 we know θ = {(σ, σ) | σ ∈
supp(η(State))} and η′ = δ(skip) ⊗ η(State), thus θ ⊆ JIdK ⊆ JGK. From
η′ = δ(skip) ⊗ η(State) by Lem. 18 and Lem. 19 we know η′

(Stmt)
=

δ(skip) and η′(State)
= η(State) |= I ∧Q. By IH we have (η′, R, I) Z=⇒k

st
(G,Q).

Lemma 195 (Soundness of (skip) rule). For all Q,R,G, I, if Sta(Q,R, I)
and Id⇒ G, then R,G, I |=st {Q}skip{Q}.

Proof. For all Q,R,G, I such that Sta(Q,R, I) and Id⇒ G, by Def. F.2 we need
to prove for all µ, if µ |= I ∧Q, then for all n, (init(skip, µ), R, I) Z=⇒n

st (G,Q).
For all µ such that µ |= I∧Q, by Lem. 18 we know (δ(skip)⊗ µ)

(Stmt)
= δ(skip).

From Sta(Q,R, I) and Id⇒ G by Lem. 194 we have (init(skip, µ), R, I) Z=⇒n
st

(G,Q) for all n.

Lemma 196. For all η and b, η(State) |= dbe if and only if ∀(C, σ) ∈ supp(η). σ |=
b.

Proof. For all η and b, by Lem. 22 we know supp(η(State)) = range(supp(η)), thus

η(State) |= dbe
⇐⇒ ∀σ ∈ supp(η(State)). σ |= b
⇐⇒ ∀σ ∈ range(supp(η)). σ |= b
⇐⇒ ∀(C, σ) ∈ supp(η). σ |= b.

Lemma 197. For all η, b, C1, C2, if η(Stmt) = δ(if (b) then C1 else C2) and
η(State) |= dbe, then η ; ({(σ, σ) | σ ∈ supp(η(State))}, δ(C1)⊗ η(State)).

Proof. For all η, b, C1, C2 such that η(Stmt) = δ(if (b) then C1 else C2) and
η(State) |= dbe, by Lem. 189 and Lem. 196 we know C = if (b) then C1 else C2

and σ |= b for all (C, σ) ∈ supp(η), thus

λ(C ′, σ′).
∑
C,σ{η(C, σ) · p | (C, σ)

p−→ (C ′, σ′)}
= λ(C ′, σ′).

∑
C,σ{η(C, σ) · p | (C, σ) ∈ supp(η) ∧ (C, σ)

p−→ (C ′, σ′)}
= λ(C ′, σ′).

∑
C,σ{η(C, σ) · p | (C, σ) ∈ supp(η) ∧ C = if (b) then C1 else C2 ∧

σ |= b ∧ (C, σ)
p−→ (C ′, σ′)}

= λ(C ′, σ′).
∑
σ{η(State)(σ) · p | σ ∈ supp(η(State)) ∧ σ |= b ∧

(if (b) then C1 else C2, σ)
p−→ (C ′, σ′)}

= λ(C ′, σ′).
∑
σ{η(State)(σ) | σ ∈ supp(η(State)) ∧ σ |= b ∧ C ′ = C1 ∧ σ′ = σ}

= λ(C ′, σ′).
∑
σ{η(State)(σ) | C ′ = C1 ∧ σ′ = σ}

= λ(C ′, σ′). δ(C1)(C ′) · η(State)(σ′)
= δ(C1)⊗ η(State).

and

{(σ, σ′) | ∃C,C ′. η(C, σ) > 0 ∧ (C, σ)
p−→ (C ′, σ′) ∧ p > 0}

= {(σ, σ′) | ∃C,C ′. (C, σ) ∈ supp(η) ∧ (C, σ)
p−→ (C ′, σ′) ∧ p > 0}

= {(σ, σ′) | ∃C,C ′. (C, σ) ∈ supp(η) ∧ (C = if (b) then C1 else C2) ∧
σ |= b ∧ (C, σ)

p−→ (C ′, σ′) ∧ p > 0}
= {(σ, σ′) | σ ∈ supp(η(State)) ∧ σ |= b ∧ ∃C ′. (if (b) then C1 else C2, σ)

p−→ (C ′, σ′) ∧ p > 0}
= {(σ, σ′) | σ ∈ supp(η(State)) ∧ ∃C ′. C ′ = C1 ∧ σ′ = σ}
= {(σ, σ) | σ ∈ supp(η(State))}.

Therefore η ; ({(σ, σ) | σ ∈ supp(η(State))}, δ(C1)⊗ η(State)).

Lemma 198. For all η, b, C1, C2, if η(Stmt) = if (b) then C1 else C2 and
η(State) |= d¬be, then η ; ({(σ, σ) | σ ∈ supp(η(State))}, δ(C2)⊗ η(State)).

Proof. For all η, b, C1, C2 such that η(Stmt) = δ(if (b) then C1 else C2) and
η(State) |= d¬be, by Lem. 189 and Lem. 196 we know C = if (b) then C1 else C2

and σ |= ¬b for all (C, σ) ∈ supp(η), thus

λ(C ′, σ′).
∑
C,σ{η(C, σ) · p | (C, σ)

p−→ (C ′, σ′)}
= λ(C ′, σ′).

∑
C,σ{η(C, σ) · p | (C, σ) ∈ supp(η) ∧ (C, σ)

p−→ (C ′, σ′)}
= λ(C ′, σ′).

∑
C,σ{η(C, σ) · p | (C, σ) ∈ supp(η) ∧ C = if (b) then C1 else C2 ∧

σ |= b ∧ (C, σ)
p−→ (C ′, σ′)}

= λ(C ′, σ′).
∑
σ{η(State)(σ) · p | σ ∈ supp(η(State)) ∧ σ |= ¬b ∧

(if (b) then C1 else C2, σ)
p−→ (C ′, σ′)}

= λ(C ′, σ′).
∑
σ{η(State)(σ) | σ ∈ supp(η(State)) ∧ σ |= ¬b ∧ C ′ = C1 ∧ σ′ = σ}

= λ(C ′, σ′).
∑
σ{η(State)(σ) | C ′ = C2 ∧ σ′ = σ}

= λ(C ′, σ′). δ(C2)(C ′) · η(State)(σ′)
= δ(C2)⊗ η(State)

and

{(σ, σ′) | ∃C,C ′. η(C, σ) > 0 ∧ (C, σ)
p−→ (C ′, σ′) ∧ p > 0}

= {(σ, σ′) | ∃C,C ′. (C, σ) ∈ supp(η) ∧ (C, σ)
p−→ (C ′, σ′) ∧ p > 0}

= {(σ, σ′) | ∃C,C ′. (C, σ) ∈ supp(η) ∧ (C = if (b) then C1 else C2) ∧
σ |= b ∧ (C, σ)

p−→ (C ′, σ′) ∧ p > 0}
= {(σ, σ′) | σ ∈ supp(η(State)) ∧ σ |= ¬b ∧ ∃C ′. (if (b) then C1 else C2, σ)

p−→ (C ′, σ′) ∧ p > 0}
= {(σ, σ′) | σ ∈ supp(η(State)) ∧ ∃C ′. C ′ = C2 ∧ σ′ = σ}
= {(σ, σ) | σ ∈ supp(η(State))}.

Therefore η ; ({(σ, σ) | σ ∈ supp(η(State))}, δ(C2)⊗ η(State)).

Lemma 199. For allW , ifW (Prog)(skip ‖ · · · ‖ skip) = 1, thenW |skip‖···‖skip =
W .

Proof. For all η such that η(Stmt)(skip) = 1, we have Pr(C,σ)∼η[C = skip] = 1.
By Lem. 4 we know η|λ(C,σ).C=skip = η, i.e., η|skip = η.

Lemma 200 (Soundness of (cond) rule). For all b, C1, C2, R,G, I, P1, P2, Q,
if Sta(P1∨P2, R, I), P1 ⇒ dbe, P2 ⇒ d¬be, Id⇒ G, R,G, I |=� {P1}C1{Q} and
R,G, I |=� {P2}C2{Q}, then R,G, I |=� {P1 ∨ P2}if (b) then C1 else C2{Q}.

Proof. For all b, C1, C2, R,G, I, P1, P2, Q such that Sta(P1∨P2, R, I), P1 ⇒ dbe,
P2 ⇒ d¬be, Id ⇒ G, R,G, I |=� {P1}C1{Q} and R,G, I |=� {P2}C2{Q}, we
need to prove for all µ, if µ |= I∧(P1∨P2), then (init(if (b) then C1 else C2, µ), R, I) Z=⇒n

st
(G,Q) for all n. For all µ such that µ |= I ∧ (P1 ∨ P2), by Lem. 18 we know
init(if (b) then C1 else C2, µ)

(Stmt)
= (δ(if (b) then C1 else C2)⊗ µ)

(Stmt)
=

δ(if (b) then C1 else C2). To prove (init(if (b) then C1 else C2, µ), R, I) Z=⇒n
st

(G,Q) for all n, it suffices to prove for all n and η, if η(Stmt) = δ(if (b) then C1 else C2)
and η(State) |= I ∧ (P1 ∨ P2), then (η,R, I) Z=⇒n

st (G,Q). We prove by induction
on n.

– base case: n = 0. trivial.

– inductive case: n = k + 1.
IH: for all η, if η(Stmt) = δ(if (b) then C1 else C2) and η(State) |= I∧(P1∨P2),
then (η,R, I) Z=⇒k

st (G,Q).
For all η such that η(Stmt) = δ(if (b) then C1 else C2) and η(State) |=
I ∧ (P1 ∨ P2), to prove (η,R, I) Z=⇒k+1

st (G,Q), we need to prove
• η(Stmt)(skip) = 0 or η(Stmt)(skip) = 1.

From η(Stmt) = δ(if (b) then C1 else C2) we have
η(Stmt)(skip) = δ(if (b) then C1 else C2)(skip) = 0.

• if η(Stmt)(skip) > 0, then η|skip
(State) |= Q.

η(Stmt)(skip) > 0 contradicts with η(Stmt)(skip) = 0.
• η(State) |= I.

From η(State) |= I ∧ (P1 ∨ P2) we have η(State) |= I.

• for all η′, if η
R
�
I
η′, then (η′, R, I) Z=⇒k

st (G,Q).

For all η′ such that η
R
�
I
η′, by Lem. 188 we know supp(η′

(Stmt)
) ⊆

supp(η(Stmt)). From η(Stmt) = δ(if (b) then C1 else C2) by Lem. 27 we
know η′

(Stmt)
= δ(if (b) then C1 else C2). From Sta(P1 ∨ P2, R, I),

η(State) |= I ∧ (P1 ∨ P2) and η
R
�
I
η′ by Lem. 186 we have η′(State) |=

I ∧ (P1 ∨ P2). From η′
(Stmt)

= δ(if (b) then C1 else C2) by IH we have
(η′, R, I) Z=⇒k

st (G,Q).
• for all θ and η′, if η ↪→ (θ, η′), then θ ⊆ JGK, η′(State) |= I and (η′, R, I) Z=⇒k

st
(G,Q).
For all θ and η′ such that η ↪→ (θ, η′), from η(Stmt) = δ(if (b) then C1 else C2)
by Lem. 190 we have nextsplit(η) = {nextsplit(if (b) then C1 else C2)} =
{split(true)}. From η ↪→ (θ, η′) by Lem. 191 we know η ; (θ, η′). From
η(State) |= I ∧ (P1 ∨ P2) we know η(State) |= I ∧ P1 or η(State) |= I ∧ P2.
We prove the two cases respectively.
∗ case 1: η(State) |= I ∧ P1.

From P1 ⇒ dbe we know η(State) |= dbe. By Lem. 197 we know η ;

({(σ, σ) | σ ∈ supp(η(State))}, δ(C1) ⊗ η(State)). From η ; (θ, η′) by
Lem. 193 we have θ = {(σ, σ) | σ ∈ supp(η(State))} and η′ = δ(C1)⊗
η(State), thus θ ⊆ JIdK ⊆ JGK and η′

(State)
= η(State) |= I. From

R,G, I |=� {P1}C1{Q}, η′ = δ(C1)⊗ η(State) = init(C1, η
(State)) and

η(State) |= I ∧ P1 we have (η′, R, I) Z=⇒k
� (G,Q).

∗ case 2: η(State) |= I ∧ P2.
From P2 ⇒ d¬be we know η(State) |= d¬be. By Lem. 198 we know η ;

({(σ, σ) | σ ∈ supp(η(State))}, δ(C2) ⊗ η(State)). From η ; (θ, η′) by
Lem. 193 we have θ = {(σ, σ) | σ ∈ supp(η(State))} and η′ = δ(C2)⊗
η(State), thus θ ⊆ JIdK ⊆ JGK and η′

(State)
= η(State) |= I. From

R,G, I |=� {P2}C2{Q}, η′ = δ(C2)⊗ η(State) = init(C2, η
(State)) and

η(State) |= I ∧ P2 we have (η′, R, I) Z=⇒k
� (G,Q).

Lemma 201. For all η, C2, η;C2
(State) = η(State).

Proof. For all η, C2,

η;C2
(State) = λσ.

∑
C η;C2(C, σ)

= λσ.
∑
C1
η;C2(C1;C2, σ)

= λσ.
∑
C1
η(C1, σ)

= η(State).

Lemma 202. For all η, C2, η
′, if η′ = λ(C, σ). η(C;C2, σ) and for all C ∈

supp(η(Stmt)), there exists C1 such that C = C1;C2, then η′;C2 = η.

Proof. For all η, C2, η
′ such that η′ = λ(C, σ). η(C;C2, σ) and for all C ∈

supp(η(Stmt)), there exists C1 such that C = C1;C2, we have for all C, if there is
no C1 such that C = C1;C2, then C /∈ supp(η(Stmt)), i.e., η(C, σ) = 0 for all σ.

η′;C2 = λ(C, σ).

{
η′(C1, σ), if C = C1;C2

0, otherwise

= λ(C, σ).

{
η(C1;C2, σ), if C = C1;C2

0, otherwise

= λ(C, σ).

{
η(C, σ), if C = C1;C2

η(C, σ), otherwise
= η.

Lemma 203. For all R, η, C2, η
′, if η;C2

R7→ η′, then there exists η′′ such that

η
R7→ η′′ and η′ = η′′;C2.

Proof. For allR, η, C2, η
′ such that η;C2

R7→ η′, there exists ψ such that dom(ψ) =

supp(η;C2), range(ψ) = supp(η′) and for all ((C, σ), (C ′, σ′)) ∈ ψ, C ′ = C

and (σ, σ′) |= R. From η;C2
R7→ η′ by Lem. 187 we know supp(η′

(Stmt)
) =

supp(η;C2
(Stmt)), thus for all C ∈ η′

(Stmt), we have η;C2
(Stmt) > 0, so there

exists C1 such that C = C1;C2. Let η′′
def
= λ(C, σ). η′(C;C2, σ), by Lem. 202

we know η′ = η′′;C2. For all ((C, σ), (C ′, σ′)) ∈ ψ, we have C ′ = C and
(C, σ) ∈ dom(ψ) = supp(η;C2), so there exists C1 such that C ′ = C = C1;C2.
Let ψ′ def

= {((C, σ), (C ′, σ′)) | ((C;C2, σ), (C ′;C2, σ
′)) ∈ ψ}, we have

dom(ψ′) = {(C, σ) | ∃C ′, σ′. ((C, σ), (C ′, σ′)) ∈ ψ′}
= {(C, σ) | ∃C ′, σ′. ((C;C2, σ), (C ′;C2, σ

′)) ∈ ψ}
= {(C, σ) | ∃C ′, σ′. ((C;C2, σ), (C ′, σ′)) ∈ ψ}
= {(C, σ) | (C;C2, σ) ∈ dom(ψ)}
= {(C, σ) | (C;C2, σ) ∈ supp(η)}
= {(C, σ) | (η;C2)(C;C2, σ) > 0}
= {(C, σ) | η(C, σ) > 0}
= supp(η),

range(ψ′) = {(C ′, σ′) | ∃C, σ. ((C, σ), (C ′, σ′)) ∈ ψ′}
= {(C ′, σ′) | ∃C, σ. ((C;C2, σ), (C ′;C2, σ

′)) ∈ ψ}
= {(C ′, σ′) | ∃C, σ. ((C, σ), (C ′;C2, σ

′)) ∈ ψ}
= {(C ′, σ′) | (C ′;C2, σ

′) ∈ dom(ψ)}
= {(C ′, σ′) | (C ′;C2, σ

′) ∈ supp(η′)}
= {(C ′, σ′) | η′(C ′;C2, σ

′) > 0}
= {(C ′, σ′) | η′′(C ′, σ′) > 0}
= supp(η′′),

and for all ((C, σ), (C ′, σ′)) ∈ ψ′, we have ((C;C2, σ), (C ′;C2, σ
′)) ∈ ψ, so

C ′;C2 = C;C2 and (σ, σ′) |= R, thus C ′ = C and (σ, σ′) |= R.

Lemma 204. For all η and b, JPr(b)Kη(State) = Pr(C,σ)∼η[σ |= b].

Proof. For all η and b, by Lem. 3 we know JPr(b)Kη(State) = Prσ∼η(State) [σ |= b] =
Pr(C,σ)∼η[σ |= b].

Lemma 205. For all η and b, η|b exists if and only if JPr(b)Kη(State) > 0.

Proof. For all η and b, by definition of η|b we know η|b exists if and only
if η|λ(C,σ). σ|=b exists. By Def. 2.2 we know η|λ(C,σ). σ|=b exists if and only if
Pr(C,σ)∼W [σ |= b] > 0. By Lem. 204 we know Pr(C,σ)∼η[σ |= b] > 0 if and only
if JPr(b)Kη(State) > 0. Therefore, η|b exists if and only if JPr(b)Kη(State) > 0.

Lemma 206. For all η and b, if JPr(b)Kη(State) > 0, then η(State)|b = η|b(State).

Proof. For all η and b, if JPr(b)Kη(State) > 0,

η(State)|b

= λσ.

η(State)(σ)

JPr(b)K
η(State)

, if σ |= b

0, otherwise

= λσ.

{ ∑
C η(C,σ)

JPr(b)K
η(State)

, if σ |= b

0, otherwise

= λσ.
∑
C

{
η(C,σ)

JPr(b)K
η(State)

, if σ |= b

0, otherwise
= λσ.

∑
C η|b(C, σ)

= η|b(State)
.

Lemma 207. For all η and b, if JPr(b)Kη(State) > 0, then η|b = λ(C, σ).χ(σ|=bi)·η(C,σ)
JPr(b)K

η(State)
.

Proof. For all η, b such that JPr(b)Kη(State) > 0, we have Pr(C,σ)∼W [σ |= b] > 0,
thus

η|b = η|λ(C,σ).σ|=b

= λ(C, σ).

{
W (C,σ)

Pr(C,σ)∼W [σ|=b] , if σ |= b

0, otherwise

= λ(C, σ). χ(σ|=b)·W (C,σ)
Pr(C,σ)∼W [σ|=b]

= λ(C, σ). χ(σ|=b)·W (C,σ)
JPr(b)K

W (State)
. (by Lem. 204)

Lemma 208. For all η, b, C2, if JPr(b)Kη(State) > 0, then (η;C2)|b = η|b;C2.

Proof. For all η, b, C2 such that JPr(b)Kη(State) > 0, by Lem. 201 we know η;C2
(State) =

η(State), thus JPr(b)Kη;C2
(State) > 0. By Lem. 205 we know both (η;C2)|b and η|b

exists.

η|b;C2

= λ(C, σ).

{
η|b(C1, σ), if C = C1;C2

0, otherwise

= λ(C, σ).

{
χ(σ|=b)·η(C1,σ)
JPr(b)K

η(State)
, if C = C1;C2

0, otherwise
(by Lem. 207)

= λ(C, σ).

{
η(C1,σ)

JPr(b)K
η(State)

, if C = C1;C2 ∧ σ |= b

0, otherwise

= λ(C, σ).

{
η;C2(C1;C2,σ)

JPr(b)K
η;C2

(State)
, if C = C1;C2 ∧ σ |= b

0, otherwise

= λ(C, σ).

{
η;C2(C,σ)

JPr(b)K
η;C2

(State)
, if σ |= b

0, otherwise
= (η;C2)|b.

Lemma 209. For all R, I, η1, C2, η
′, if η1;C2

R
�
I
η′, then there exists η′1 such

that η1
R
�
I
η′1 and η′ = η′1;C2.

Proof. For all R, I, η1, C2, η
′ such that η1;C2

R
�
I
η′, there exists η′′ and b such

that η1;C2
R7→ η′′, η′′|b = η′, η′(State) |= I. From η1;C2

R7→ η′′ by Lem. 203 there

exists η′′1 such that η R7→ η′′1 and η′′ = η′′1 ;C2. From η′′|b = η′ by Lem. 205 we know

JPr(b)Kη′′(State) > 0. By Lem. 201 we know η′′1
(State)

= η′′1 ;C2
(State)

= η′′
(State),

thus JPr(b)Kη′′1 (State) > 0. By Lem. 208 we know η′ = η′′|b = (η′′1 ;C2)|b = η′′1 |b;C2.

Let η′1
def
= η′′1 |b, then η′ = η′1;C2. From η

R7→ η′′1 and η′′1 |b = η′1 we know η
R
�
I
η′1.

Lemma 210. For all η, C2, θ, η
′, if η(Stmt) = δ(skip), then η;C2 ; ({(σ, σ) |

σ ∈ supp(η(State))},
δ(C2)⊗ η(State)).

Proof. For all η such that η(Stmt) = δ(skip), by Lem. 189 we know C = skip
for all (C, σ) ∈ supp(η), thus

λ(C ′, σ′).
∑
C,σ{η;C2(C, σ) · p | (C, σ)

p−→ (C ′, σ′)}
= λ(C ′, σ′).

∑
C1,σ
{η(C1, σ) · p | (C1, σ) ∈ supp(η) ∧ (C1;C2, σ)

p−→ (C ′, σ′)}
= λ(C ′, σ′).

∑
C1,σ
{η(C1, σ) · p | (C1, σ) ∈ supp(η) ∧ C1 = skip ∧ (C1;C2, σ)

p−→ (C ′, σ′)}
= λ(C ′, σ′).

∑
σ{η(State)(σ) · p | σ ∈ supp(η(State)) ∧ (skip;C2, σ)

p−→ (C ′, σ′)}
= λ(C ′, σ′).

∑
σ{η(State)(σ) | σ ∈ supp(η(State)) ∧ C ′ = C2 ∧ σ′ = σ}

= λ(C ′, σ′).
∑
σ{η(State)(σ) | C ′ = C2 ∧ σ′ = σ}

= λ(C ′, σ′). δ(C2)(C ′) · η(State)(σ′)
= δ(C2)⊗ η(State)

and

{(σ, σ′) | ∃C,C ′. η;C2(C, σ) > 0 ∧ (C, σ)
p−→ (C ′, σ′) ∧ p > 0}

= {(σ, σ′) | ∃C1, C
′. (C1, σ) ∈ supp(η) ∧ (C1;C2, σ)

p−→ (C ′, σ′) ∧ p > 0}
= {(σ, σ′) | ∃C1, C

′. (C1, σ) ∈ supp(η) ∧ (C1 = skip) ∧ (C1;C2, σ)
p−→ (C ′, σ′) ∧ p > 0}

= {(σ, σ′) | σ ∈ supp(η(State)) ∧ ∃C ′. (skip;C2, σ)
p−→ (C ′, σ′) ∧ p > 0}

= {(σ, σ′) | σ ∈ supp(η(State)) ∧ ∃C ′. C ′ = C2 ∧ σ′ = σ}
= {(σ, σ) | σ ∈ supp(η(State))}.

Therefore η ; ({(σ, σ) | σ ∈ supp(η(State))}, δ(C2)⊗ η(State)).

Lemma 211. For all R,G, I,Q, n, η, if (η,R, I) Z=⇒n+1
� (G,Q), then (η,R, I) Z=⇒n

�
(G,Q).

Proof. For all R,G, I,Q, we prove for all n, η, if (η,R, I) Z=⇒n+1
� (G,Q), then

(η,R, I) Z=⇒n
� (G,Q) by induction on n.

– base case: n = 0. trivial.
– inductive case: n = k + 1.

IH: for all η, if (η,R, I) Z=⇒k+1
� (G,Q), then (η,R, I) Z=⇒k

� (G,Q).
For all η such that (η,R, I) Z=⇒n+1

� (G,Q), to prove (η,R, I) Z=⇒n
� (G,Q),

i.e., (η,R, I) Z=⇒k+1
� (G,Q), we need to prove

• (when � = st) η(Stmt)(skip) = 1 or η(Stmt)(skip) = 0.
From (η,R, I) Z=⇒n+1

� (G,Q) we know η(Stmt)(skip) = 1 or η(Stmt)(skip) =
0.

• if η(Stmt)(skip) > 0, then η|skip
(State) |= Q.

From (η,R, I) Z=⇒n+1
� (G,Q) we know if η(Stmt)(skip) > 0, then η|skip

(State) |=
Q.

• η(State) |= I.
From (η,R, I) Z=⇒n+1

� (G,Q) we know η(State) |= I.

• for all η′, if η
R
�
I
η′, then (η′, R, I) Z=⇒k

� (G,Q).

For all η′ such that η
R
�
I
η′, from (η,R, I) Z=⇒n+1

� (G,Q) we know

(η′, R, I) Z=⇒n
� (G,Q), i.e., (η′, R, I) Z=⇒k+1

� (G,Q). By IH we have
(η′, R, I) Z=⇒k

� (G,Q).

• for all θ and η′, if η ↪→ (θ, η′), then θ ⊆ JGK, η′(State) |= I and (η′, R, I) Z=⇒k
�

(G,Q).
For all θ and η′ such that η ↪→ (θ, η′), from (η,R, I) Z=⇒n+1

� (G,Q) we
know θ ⊆ JGK, η′(State) |= I and (η′, R, I) Z=⇒n

� (G,Q), thus (η′, R, I) Z=⇒k+1
�

(G,Q). By IH we have (η′, R, I) Z=⇒k
� (G,Q).

Lemma 212. For all η and C1, η(Stmt)(C1) = 0 if and only if ∀(C, σ) ∈ supp(η). C 6=
C1.

Proof. For all η and C1, we have

η(Stmt)(C1) = 0
⇐⇒ C1 /∈ supp(η(Stmt))
⇐⇒ C1 /∈ dom(supp(η)) (by Lem. 21)
⇐⇒ C1 /∈ {C | ∃σ. (C, σ) ∈ supp(η)}
⇐⇒ ∀(C, σ) ∈ supp(η). C 6= C1.

Lemma 213. For all η1, C2, θ, η
′, if η1

(Stmt)(skip) = 0 and η1;C2 ; (θ, η′),
then there exists η′1 such that η′ = η′1;C2 and η1 ; (θ, η′1).

Proof. For all η1, C2, θ, η
′ such that η(Stmt)(skip) = 0 and η1;C2 ; (θ, η′),

from η(Stmt)(skip) = 0 by Lem. 212 we know ∀(C, σ) ∈ supp(η). C 6= C1. Let
η′1

def
= λ(C ′, σ′).

∑
C,σ{η1(C, σ) · p | (C, σ)

p−→ (C ′, σ′)}. From η1;C2 ; (θ, η′) we
have

η′ = λ(C ′, σ′).
∑
C,σ{η1;C2(C, σ) · p | (C, σ)

p−→ (C ′, σ′)}
= λ(C ′, σ′).

∑
C1,σ
{η1(C1, σ) · p | (C1, σ) ∈ supp(η) ∧ (C1;C2, σ)

p−→ (C ′, σ′)}
= λ(C ′, σ′).

∑
C1,σ
{η1(C1, σ) · p | (C1, σ) ∈ supp(η) ∧ C1 6= skip ∧ (C1;C2, σ)

p−→ (C ′, σ′)}

= λ(C ′, σ′).

{∑
C1,σ
{η1(C1, σ) · p | (C1, σ)

p−→ (C ′1, σ
′)}, if C ′ = C ′1;C2

0, otherwise

= λ(C ′, σ′).

{
η′1(C ′1, σ

′), if C ′ = C ′1;C2

0, otherwise
= η′1;C2

and

θ = {(σ, σ′) | ∃C,C ′. η1;C2(C, σ) > 0 ∧ (C, σ)
p−→ (C ′, σ′) ∧ p > 0}

= {(σ, σ′) | ∃C1, C
′. η1(C1, σ) > 0 ∧ (C1;C2, σ)

p−→ (C ′, σ′) ∧ p > 0}
= {(σ, σ′) | ∃C1, C

′. (C1, σ) ∈ supp(η1) ∧ (C1;C2, σ)
p−→ (C ′, σ′) ∧ p > 0}

= {(σ, σ′) | ∃C1, C
′. (C1, σ) ∈ supp(η1) ∧ C1 6= skip ∧ (C1;C2, σ)

p−→ (C ′, σ′) ∧ p > 0}
= {(σ, σ′) | ∃C1, C

′
1. η1(C1, σ) > 0 ∧ (C1, σ)

p−→ (C ′1, σ
′) ∧ p > 0},

thus η1 ; (θ, η′1).

Lemma 214. For all η and C2, nextsplit(η;C2) = nextsplit(η).

Proof. For all η and C2, we have

nextsplit(η;C2) = {nextsplit(C) | ∃σ. (C, σ) ∈ supp(η;C2)}
= {nextsplit(C) | ∃σ. (η;C2)(C, σ) > 0}
= {nextsplit(C) | ∃σ,C1. C = C1;C2 ∧ η(C1, σ) > 0}
= {nextsplit(C1;C2) | ∃σ. η(C1, σ) > 0}
= {nextsplit(C1;C2) | ∃σ. (C1, σ) ∈ supp(η)}
= nextsplit(η).

Lemma 215. For all η1, C2, θ, η
′, if η1

(Stmt)(skip) = 0 and η1;C2 ↪→ (θ, η′),
then there exists η′1 such that η′ = η′1;C2 and η1 ↪→ (θ, η′1).

Proof. For all η1, C2, θ, η
′ such that η(Stmt)(skip) = 0 and η1;C2 ↪→ (θ, η′), there

are two cases.

– there exists η′′, b1, . . . , bk, i such that η1;C2 ; (θ, η′′), nextsplit(η1;C2) =
split(b1, . . . , bk) and η′′|bi = η′.
From η1

(Stmt)(skip) = 0 and η1;C2 ; (θ, η′′) by Lem. 213 we know there
exists η′′1 such that η′′ = η′′1 ;C2 and η1 ; (θ, η′′1). From η′′|bi = η′ by
Lem. 205 we know JPr(bi)Kη′′(State) > 0. By Lem. 201 we know η′′1 ;C2

(State)
=

η′′1
(State), thus JPr(bi)Kη′′1 (State) = JPr(bi)Kη′′1 ;C2

(State) = JPr(bi)Kη′′(State) > 0.

By Lem. 205 we know η′′1 |bi exists. Let η′1
def
= η′′1 |bi , from JPr(bi)Kη′′1 (State) > 0

by Lem. 208 we know η′1;C2 = η′′1 |bi ;C2 = (η′′1 ;C2)|bi = η′′|bi = η′. By
Lem. 214 we know nextsplit(η1) = nextsplit(η1;C2) = split(b1, . . . , bk). From
η1 ; (θ, η′′1) and η′′1 |bi = η′1 we know η1 ↪→ (θ, η′′1).

– η1;C2 ; (θ, η′) and #nextsplit(η1;C2) > 1.
From η1

(Stmt)(skip) = 0 and η1;C2 ; (θ, η′) by Lem. 213 we know there
exists η′1 such that η′ = η′1;C2 and η1 ; (θ, η′1). By Lem. 214 we know
nextsplit(η1) = nextsplit(η1;C2), thus #nextsplit(η1) = #nextsplit(η1;C2) >
1. From η1 ; (θ, η′1) we know η1 ↪→ (θ, η′1).

Lemma 216. For all R,G, I, P,Q,C2, n, if Id⇒ G and (δ(C2)⊗µ,R, I) Z=⇒n
�

(G,Q) for all µ such that µ |= I ∧ P , then for all η, if (η,R, I) Z=⇒n
st (G,P),

then (η;C2, R, I) Z=⇒n
� (G,Q).

Proof. For all R,G, I, P,Q,C2, n such that Id ⇒ G and (δ(C2) ⊗ µ,R, I) Z=⇒n
�

(G,Q) for all µ such that µ |= I ∧P , we prove for all η, if (η,R, I) Z=⇒n
st (G,P),

then (η;C2, R, I) Z=⇒n
� (G,Q) by induction on n.

– base case: n = 0. trivial.
– inductive case: n = k + 1.

IH: for all η, if (η,R, I) Z=⇒k
st (G,P), then (η;C2, R, I) Z=⇒k

� (G,Q).
For all η such that (η,R, I) Z=⇒k+1

st (G,P), we need to prove
• (when � = st) η;C2

(Stmt)(skip) = 1 or η;C2
(Stmt)(skip) = 0.

η;C2
(Stmt)(skip) =

∑
σ(η;C2)(skip, σ) = 0.

• if η;C2
(Stmt)(skip) > 0, then η;C2|skip

(State) |= Q.
η;C2

(Stmt)(skip) > 0 contradicts with η;C2
(Stmt) = 0.

• η;C2
(State) |= I.

From (η,R, I) Z=⇒k+1
st (G,P) we know η(State) |= I. By Lem. 201 we

know η;C2
(State) = η(State) |= I.

• for all η′, if η;C2
R
�
I
η′, then (η′, R, I) Z=⇒k

� (G,Q).

For all η′ such that η;C2
R
�
I

η′, by Lem. 209 there exists η′′ such

that η
R
�
I
η′′ and η′ = η′′;C2. From (η,R, I) Z=⇒k+1

st (G,P) we know

(η′′, R, I) Z=⇒k
st (G,P). By IH we have (η′′;C2, R, I) Z=⇒k

� (G,Q). From
η′ = η′′;C2 we know (η′, R, I) Z=⇒k

� (G,Q).

• for all θ and η′, if η;C2 ↪→ (θ, η′), then θ ⊆ JGK, η′(State) |= I and
(η′, R, I) Z=⇒k

� (G,Q).
For all θ and η′ such that η;C2 ↪→ (θ, η′), from (η,R, I) Z=⇒k+1

st (G,P)
we know η(Stmt)(skip)
= 1 or η(Stmt)(skip) = 0. We prove the two cases respectively.

∗ η(Stmt)(skip) = 1.
By Lem. 25 we know η(Stmt) = δ(skip). By Lem. 190 we know
nextsplit(η) = {nextsplit(skip)} = {split(true)}. From η;C2 ↪→
(θ, η′) by Lem. 191 we know η;C2 ; (θ, η′). From η(Stmt) = δ(skip)
by Lem. 210 we know η;C2 ; ({(σ, σ) | σ ∈ supp(η)}, δ(C2) ⊗
η(State)). From η;C2 ; (θ, η′) by Lem. 193 we know θ = {(σ, σ) |
σ ∈ supp(η)} ⊆ JIdK ⊆ JGK and η′ = δ(C2) ⊗ η(State). By Lem. 18
we know η′

(State)
= η(State) |= I. From (η,R, I) Z=⇒k+1

st (G,P) and
η(Stmt)(skip) = 1 > 0 we know η|skip

(State) |= P . By Lem. 199 we
know η|skip = η, thus η(State) |= I ∧ P . From (δ(C2)⊗ µ,R, I) Z=⇒n

�
(G,Q) for all µ such that µ |= I∧P we know (δ(C2)⊗η(State), R, I) Z=⇒n

�

(G,Q), i.e., (η′, R, I) Z=⇒k+1
� (G,Q). By Lem. 211 we know

(η,R, I) Z=⇒k
� (G,Q).

∗ η(Stmt)(skip) = 0.
From η;C2 ↪→ (θ, η′) by Lem. 215 there exists η′′ such that η′ =
η′′;C2 and η ↪→ (θ, η′′). From (η,R, I) Z=⇒k+1

st (G,P) we know θ ⊆
JGK, η′′(State) |= I and (η′, R, I) Z=⇒k

st (G,P). From η′ = η′′;C2 and
Lem. 201 we know η′

(State)
= η′′;C2

(State)
= η′′

(State) |= I. From
(η′, R, I) Z=⇒k

st (G,P) by IH we have (η′;C2, R, I) Z=⇒k
� (G,Q), i.e.,

(η′, R, I) Z=⇒k
� (G,Q).

Lemma 217. For all C1, C2, µ, init(C1;C2, µ) = init(C1, µ);C2.

Proof. For all C1, C2, µ,

init(C1;C2, µ)
= δ(C1;C2)⊗ µ
= λ(C, σ). δ(C1;C2)(C) · µ(σ)

= λ(C, σ).

{
µ(σ), if C = C1;C2

0, otherwise

= λ(C, σ).

{
δ(C1)(C ′1) · µ(σ), if C = C ′1;C2

0, otherwise
= (δ(C1)⊗ µ);C2

= init(C1, µ);C2.

Lemma 218 (Soundness of (seq-st) rule). For all C1, C2, R,G, I, P,M,Q,
if R,G, I |=st {P}C1{M}, R,G, I |=� {M}C2{Q} and Id⇒ G, then R,G, I |=�

{P}C1;C2{Q}.

Proof. For all C1, C2, R,G, I, P,M,Q such thatR,G, I |=st {P}C1{M},R,G, I |=�

{M}C2{Q} and Id ⇒ G, we need to prove for all µ, if µ |= I ∧ P , then
(init(C1;C2, µ), R, I) Z=⇒n

� (G,Q) for all n. For all n, fromR,G, I |=st {P}C1{M}
and µ |= I ∧ P we know (init(C1, µ), R, I) Z=⇒n

st (G,P). From R,G, I |=�

{M}C2{Q} we know (δ(C2) ⊗ µ,R, I) Z=⇒n
� (G,Q) for all µ such that µ |=

I ∧ P . From (init(C1, µ), R, I) Z=⇒n
st (G,P) and Id ⇒ G by Lem. 216 we

know (init(C1, µ);C2, R, I) Z=⇒n
� (G,Q). By Lem. 217 we know init(C1;C2, µ) =

init(C1, µ);C2, thus (init(C1;C2, µ), R, I) Z=⇒n
� (G,Q).

Lemma 219. For all η, b, C, if η(Stmt) = δ(while (b) do C) and η(State) |= dbe,
then η ; ({(σ, σ) | σ ∈ supp(η(State))}, δ(C;while (b) do C)⊗ η(State)).

Proof. For all η, b, C such that η(Stmt) = δ(while (b) do C) and η(State) |= dbe,
by Lem. 189 and Lem. 196 we know C1 = while (b) do C and σ |= b for all
(C1, σ) ∈ supp(η), thus

λ(C ′, σ′).
∑
C1,σ
{η(C1, σ) · p | (C1, σ)

p−→ (C ′, σ′)}
= λ(C ′, σ′).

∑
C1,σ
{η(C1, σ) · p | (C1, σ) ∈ supp(η) ∧ (C1, σ)

p−→ (C ′, σ′)}
= λ(C ′, σ′).

∑
C1,σ
{η(C1, σ) · p | (C1, σ) ∈ supp(η) ∧ C1 = while (b) do C ∧

σ |= b ∧ (C1, σ)
p−→ (C ′, σ′)}

= λ(C ′, σ′).
∑
σ{η(State)(σ) · p | σ ∈ supp(η(State)) ∧ σ |= b ∧

(while (b) do C, σ)
p−→ (C ′, σ′)}

= λ(C ′, σ′).
∑
σ{η(State)(σ) | σ ∈ supp(η(State)) ∧ σ |= b ∧ C ′ = C;while (b) do C ∧ σ′ = σ}

= λ(C ′, σ′).
∑
σ{η(State)(σ) | C ′ = C;while (b) do C ∧ σ′ = σ}

= λ(C ′, σ′). δ(C;while (b) do C)(C ′) · η(State)(σ′)
= δ(C;while (b) do C)⊗ η(State)

and

{(σ, σ′) | ∃C1, C
′. η(C1, σ) > 0 ∧ (C1, σ)

p−→ (C ′, σ′) ∧ p > 0}
= {(σ, σ′) | ∃C1, C

′. (C1, σ) ∈ supp(η) ∧ (C1, σ)
p−→ (C ′, σ′) ∧ p > 0}

= {(σ, σ′) | ∃C1, C
′. (C1, σ) ∈ supp(η) ∧ (C1 = while (b) do C) ∧

σ |= b ∧ (C1, σ)
p−→ (C ′, σ′) ∧ p > 0}

= {(σ, σ′) | σ ∈ supp(η(State)) ∧ σ |= b ∧ ∃C ′. (while (b) do C, σ)
p−→ (C ′, σ′) ∧ p > 0}

= {(σ, σ′) | σ ∈ supp(η(State)) ∧ ∃C ′. C ′ = C;while (b) do C ∧ σ′ = σ}
= {(σ, σ) | σ ∈ supp(η(State))}.

Therefore η ; ({(σ, σ) | σ ∈ supp(η(State))}, δ(C;while (b) do C)⊗ η(State)).

Lemma 220. For all η, b, C, if η(Stmt) = δ(while (b) do C) and η(State) |= dbe,
then η ; ({(σ, σ) | σ ∈ supp(η(State))}, δ(skip)⊗ η(State)).

Proof. For all η, b, C such that η(Stmt) = δ(while (b) do C) and η(State) |= d¬be,
by Lem. 189 and Lem. 196 we know C1 = while (b) do C and σ |= ¬b for all
(C1, σ) ∈ supp(η), thus

λ(C ′, σ′).
∑
C1,σ
{η(C1, σ) · p | (C1, σ)

p−→ (C ′, σ′)}
= λ(C ′, σ′).

∑
C1,σ
{η(C1, σ) · p | (C1, σ) ∈ supp(η) ∧ (C1, σ)

p−→ (C ′, σ′)}
= λ(C ′, σ′).

∑
C1,σ
{η(C1, σ) · p | (C1, σ) ∈ supp(η) ∧ C1 = while (b) do C ∧

σ |= ¬b ∧ (C1, σ)
p−→ (C ′, σ′)}

= λ(C ′, σ′).
∑
σ{η(State)(σ) · p | σ ∈ supp(η(State)) ∧ σ |= ¬b ∧

(while (b) do C, σ)
p−→ (C ′, σ′)}

= λ(C ′, σ′).
∑
σ{η(State)(σ) | σ ∈ supp(η(State)) ∧ σ |= ¬b ∧ C ′ = skip ∧ σ′ = σ}

= λ(C ′, σ′).
∑
σ{η(State)(σ) | C ′ = skip ∧ σ′ = σ}

= λ(C ′, σ′). δ(skip)(C ′) · η(State)(σ′)
= δ(skip)⊗ η(State)

and

{(σ, σ′) | ∃C1, C
′. η(C1, σ) > 0 ∧ (C1, σ)

p−→ (C ′, σ′) ∧ p > 0}
= {(σ, σ′) | ∃C1, C

′. (C1, σ) ∈ supp(η) ∧ (C1, σ)
p−→ (C ′, σ′) ∧ p > 0}

= {(σ, σ′) | ∃C1, C
′. (C1, σ) ∈ supp(η) ∧ (C1 = while (b) do C) ∧

σ |= ¬b ∧ (C1, σ)
p−→ (C ′, σ′) ∧ p > 0}

= {(σ, σ′) | σ ∈ supp(η(State)) ∧ σ |= ¬b ∧ ∃C ′. (while (b) do C, σ)
p−→ (C ′, σ′) ∧ p > 0}

= {(σ, σ′) | σ ∈ supp(η(State)) ∧ ∃C ′. C ′ = skip ∧ σ′ = σ}
= {(σ, σ) | σ ∈ supp(η(State))}.

Therefore η ; ({(σ, σ) | σ ∈ supp(η(State))}, δ(skip)⊗ η(State)).

Lemma 221 (Soundness of (while-st) rule). For all b, C,R,G, I, P1, P2, Q,
if Sta(P1 ∨ P2, R, I), Sta(Q,R, I), P1 ⇒ dbe, P2 ⇒ d¬be ∧ Q, Id ⇒ G and
R,G, I |=st {P1}C{P1 ∨ P2}, then R,G, I |=st {P1 ∨ P2}while (b) do C{Q}.

Proof. For all b, C,R,G, I, P1, P2, Q such that Sta(P1 ∨ P2, R, I), Sta(Q,R, I),
P1 ⇒ dbe, P2 ⇒ d¬be ∧ Q, Id ⇒ G and R,G, I |=st {P1}C{P1 ∨ P2}, we
need to prove for all µ, if µ |= I ∧ P , then (init(while (b) do C, µ), R, I) Z=⇒n

st
(G,Q) for all n. For all µ such that µ |= I ∧ (P1 ∨ P2), by Lem. 18 we know
init(while (b) do C, µ)

(Stmt)
= (δ(while (b) do C)⊗ µ)

(Stmt)
= δ(while (b) do C).

To prove (init(while (b) do C, µ), R, I) Z=⇒n
st (G,Q) for all n, it suffices to prove

for all n and η, if η(Stmt) = δ(while (b) do C) and η(State) |= I ∧ (P1 ∨P2), then
(η,R, I) Z=⇒n

st (G,Q). We prove by induction on n.

– base case: n = 0. trivial.
– inductive case: n = k + 1.

IH: for all η, if η(Stmt) = δ(while (b) do C) and η(State) |= I ∧ (P1 ∨ P2),
then (η,R, I) Z=⇒k

st (G,Q).
For all η such that η(Stmt) = δ(while (b) do C) and η(State) |= I ∧ (P1 ∨P2),
to prove (η,R, I) Z=⇒k+1

st (G,Q), we need to prove
• η(Stmt)(skip) = 0 or η(Stmt)(skip) = 1.

From η(Stmt) = δ(while (b) do C) we have η(Stmt)(skip) = δ(while (b) do C)(skip) =
0.

• if η(Stmt)(skip) > 0, then η|skip
(State) |= Q.

η(Stmt)(skip) > 0 contradicts with η(Stmt)(skip) = 0.
• η(State) |= I.

From η(State) |= I ∧ (P1 ∨ P2) we have η(State) |= I.

• for all η′, if η
R
�
I
η′, then (η′, R, I) Z=⇒k

st (G,Q).

For all η′ such that η
R
�
I
η′, by Lem. 188 we know supp(η′

(Stmt)
) ⊆

supp(η(Stmt)). From η(Stmt) = δ(while (b) do C) by Lem. 27 we know
η′

(Stmt)
= δ(while (b) do C). From Sta(P1 ∨ P2, R, I), η(State) |= I ∧

(P1∨P2) and η
R
�
I
η′ by Lem. 186 we have η′(State) |= I∧(P1∨P2). From

η′
(Stmt)

= δ(while (b) do C) by IH we have (η′, R, I) Z=⇒k
st (G,Q).

• for all θ and η′, if η ↪→ (θ, η′), then θ ⊆ JGK, η′(State) |= I and (η′, R, I) Z=⇒k
st

(G,Q).
For all θ and η′ such that η ↪→ (θ, η′), from η(Stmt) = δ(while (b) do C)
by Lem. 190 we have nextsplit(η) = {nextsplit(while (b) do C)} =
{split(true)}. From η ↪→ (θ, η′) by Lem. 191 we know η ; (θ, η′). From
η(State) |= I ∧ (P1 ∨ P2) we know η(State) |= I ∧ P1 or η(State) |= I ∧ P2.
We prove the two cases respectively.
∗ case 1: η(State) |= I ∧ P1.

From P1 ⇒ dbe we know η(State) |= dbe. By Lem. 219 we know η ;

({(σ, σ) | σ ∈ supp(η(State))}, δ(C;while (b) do C)⊗ η(State)). From
η ; (θ, η′) by Lem. 193 we have θ = {(σ, σ) | σ ∈ supp(η(State))}
and η′ = δ(C;while (b) do C) ⊗ η(State), thus θ ⊆ JIdK ⊆ JGK and
η′

(State)
= η(State) |= I. From R,G, I |=st {P1}C{P1 ∨ P2} we know

η(State) |= I ∧ P1 we have (init(C, µ), R, I) Z=⇒k
st (G,P1 ∨ P2). From

IH we know (δ(while (b) do C)⊗µ,R, I) Z=⇒k
st (G,Q) for all µ such

that µ |= I ∧ (P1∨P2). From (init(C, µ), R, I) Z=⇒n
st (G,P1∨P2) and

Id⇒ G by Lem. 216 we know (init(C, µ);while (b) do C,R, I) Z=⇒n
st

(G,Q). By Lem. 217 we know η′ = δ(C;while (b) do C)⊗η(State) =
init(C;while (b) do C, η(State)) = init(C, η(State));while (b) do C,
thus (η′, R, I) Z=⇒k

st (G,Q).
∗ case 2: η(State) |= I ∧ P2.

From P2 ⇒ d¬be ∧ Q we know η(State) |= d¬be ∧ Q. By Lem. 220
we know η ; ({(σ, σ) | σ ∈ supp(η(State))}, δ(skip)⊗ η(State)). From
η ; (θ, η′) by Lem. 193 we have θ = {(σ, σ) | σ ∈ supp(η(State))} and
η′ = δ(skip)⊗ η(State), thus θ ⊆ JIdK ⊆ JGK, η′(Stmt)

= δ(skip) and
η′

(State)
= η(State) |= I ∧ Q. From Sta(Q,R, I), Id ⇒ G, η′(Stmt)

=

δ(skip) and η′(State) |= I ∧Q by Lem. 194 we know (η′, R, I) Z=⇒k
st

(G,Q).

Lemma 222. For all η, b, C, if η(Stmt) = δ(〈C〉), then η ; ({(σ, σ′) | σ ∈
supp(η(State)) ∧ σ′ ∈ supp(JCK(σ))}, δ(skip)⊗ JCK(η(State))).

Proof. For all η, b, C such that η(Stmt) = δ(〈C〉) and η(State) |= d¬be, by Lem. 189
and Lem. 196 we know C1 = 〈C〉 for all (C1, σ) ∈ supp(η), thus

λ(C ′, σ′).
∑
C1,σ
{η(C1, σ) · p | (C1, σ)

p−→ (C ′, σ′)}
= λ(C ′, σ′).

∑
C1,σ
{η(C1, σ) · p | (C1, σ) ∈ supp(η) ∧ (C1, σ)

p−→ (C ′, σ′)}
= λ(C ′, σ′).

∑
C1,σ
{η(C1, σ) · p | (C1, σ) ∈ supp(η) ∧ C1 = 〈C〉 ∧ (C1, σ)

p−→ (C ′, σ′)}
= λ(C ′, σ′).

∑
σ{η(State)(σ) · p | (〈C〉, σ)

p−→ (C ′, σ′)}
= λ(C ′, σ′). δ(skip)(C ′) ·

∑
σ{η(State)(σ) · p | ∃k.∀n ≥ k. (C, σ)

p−→n(skip, σ′)}
= λ(C ′, σ′). δ(skip)(C ′) ·

∑
σ η

(State)(σ) · JCK(σ)(σ′)
= λ(C ′, σ′). δ(skip)(C ′) · Eσ∼η(State){JCK(σ)}(σ′)
= λ(C ′, σ′). δ(skip)(C ′) · JCK(η(State))(σ′)
= δ(skip)⊗ JCK(η(State))

and

{(σ, σ′) | ∃C1, C
′. η(C1, σ) > 0 ∧ (C1, σ)

p−→ (C ′, σ′) ∧ p > 0}
= {(σ, σ′) | ∃C1, C

′. (C1, σ) ∈ supp(η) ∧ (C1, σ)
p−→ (C ′, σ′) ∧ p > 0}

= {(σ, σ′) | ∃C1, C
′. (C1, σ) ∈ supp(η) ∧ (C1 = 〈C〉) ∧ (C1, σ)

p−→ (C ′, σ′) ∧ p > 0}
= {(σ, σ′) | σ ∈ supp(η(State)) ∧ ∃C ′. (〈C〉, σ)

p−→ (C ′, σ′) ∧ p > 0}
= {(σ, σ′) | σ ∈ supp(η(State)) ∧ ∃k.∀n ≥ k. (C, σ)

p−→n(skip, σ′) ∧ p > 0}
= {(σ, σ) | σ ∈ supp(η(State)) ∧ JCK(σ)(σ′) > 0}
= {(σ, σ) | σ ∈ supp(η(State)) ∧ σ′ ∈ supp(JCK(σ))}.

Therefore η ; ({(σ, σ′) | σ ∈ supp(η(State)) ∧ σ′ ∈ supp(JCK(σ))}, δ(skip) ⊗
JCK(η(State))).

Lemma 223 (Soundness of (atom) rule). For all C,R,G, I, P,Q, if Sta(P,R, I),
Sta(Q,R, I), G |=sq {I∧P}C{I∧Q} and Id⇒ G, then R,G, I |=st {P}〈C〉{Q}.

Proof. For all C,R,G, I, P,Q such that Sta(P,R, I), Sta(Q,R, I), G |=sq {I ∧
P}C{I ∧ Q} and Id ⇒ G, to prove R,G, I |=st {P}〈C〉{Q}, we need to prove
for all µ, if µ |= I ∧ P , then (init(〈C〉, µ), R, I)
Z=⇒n

st (G,Q) for all n. For all µ such that µ |= I ∧ P , by Lem. 18 we know
init(〈C〉, µ)

(Stmt)
= (δ(〈C〉)⊗ µ)

(Stmt)
= δ(〈C〉). To prove (init(〈C〉, µ), R, I) Z=⇒n

st
(G,Q) for all n, it suffices to prove for all n and η, if η(Stmt) = δ(〈C〉) and
η(State) |= I ∧ P , then (η,R, I) Z=⇒n

st (G,Q). We prove by induction on n.

– base case: n = 0. trivial.
– inductive case: n = k + 1.

IH: for all η, if η(Stmt) = δ(〈C〉) and η(State) |= I ∧ P , then (η,R, I) Z=⇒k
st

(G,Q).
For all η such that η(Stmt) = δ(〈C〉) and η(State) |= I ∧ P , we need to prove
• η(Stmt)(skip) = 1 or η(Stmt)(skip) = 0.

From η(Stmt) = δ(〈C〉) we know η(Stmt)(skip) = δ(〈C〉)(skip) = 0.
• if η(Stmt)(skip) > 0, then η|skip

(State) |= Q.
η(Stmt)(skip) > 0 contradicts with η(Stmt)(skip) = 0.

• η(State) |= I.
From η(State) |= I ∧ P we know η(State) |= I.

• for all η′, if η
R
�
I
η′, then (η′, R, I) Z=⇒k

� (G,Q).

For all η′ such that η
R
�
I
η′, by Lem. 188 we know supp(η′

(Stmt)
) ⊆

supp(η(Stmt)). From η(Stmt) = δ(〈C〉) by Lem. 27 we know η′
(Stmt)

=

δ(〈C〉). From Sta(P,R, I), η(State) |= I ∧ P and η
R
�
I
η′ by Lem. 186

we have η′
(State) |= I ∧ P . From η′

(Stmt)
= δ(〈C〉) by IH we have

(η′, R, I) Z=⇒k
st (G,Q).

• for all θ and η′, if η ↪→ (θ, η′), then θ ⊆ JGK, η′(State) |= I and (η′, R, I) Z=⇒k
�

(G,Q).
For all θ and η′ such that η ↪→ (θ, η′), from η(Stmt) = δ(〈C〉) by Lem. 190
we have nextsplit(η) = {nextsplit(〈C〉)} = {split(true)}. From η ↪→
(θ, η′) by Lem. 191 we know η ; (θ, η′). From η(Stmt) = δ(〈C〉) by
Lem. 222 we know η ; ({(σ, σ′) | σ ∈ supp(η(State))∧σ′ ∈ supp(JCK(σ))}, δ(skip)⊗
JCK(η(State))). From η ; (θ, η′) by Lem. 193 we know θ = {(σ, σ′) | σ ∈
supp(η(State)) ∧ σ′ ∈ supp(JCK(σ))} and η′ = δ(skip) ⊗ JCK(η(State)).
By Lem. 18 and Lem. 19 we know η′

(Stmt)
= δ(skip) and η′

(State)
=

JCK(η(State)). From |η′(State)| = 1 we know |JCK(η(State))| = 1. From
|=sq {I∧P}C{I∧Q} and η(State) |= I∧P we know JCK(η(State)) |= I∧Q
and (σ, σ′) |= G for all σ ∈ supp(η(State)) and σ′ ∈ supp(JCK(σ)), thus θ =

{(σ, σ′) | σ ∈ supp(η(State)) ∧ σ′ ∈ supp(JCK(σ))} ⊆ JGK and η′(State)
=

JCK(η(State)) |= I ∧ Q. From Sta(Q,R, I), Id ⇒ G, η′(Stmt)
= δ(skip)

and η′(State) |= I ∧Q by Lem. 194 we know (η′, R, I) Z=⇒k
st (G,Q).

Lemma 224. For all η, b, C, if η(Stmt) = δ(〈C〉 split(b1, . . . , bk)), then η ;

({(σ, σ′) | σ ∈ supp(η(State)) ∧ σ′ ∈ supp(JCK(σ))}, δ(skip)⊗ JCK(η(State))).

Proof. For all η, b, C such that η(Stmt) = δ(〈C〉) and η(State) |= d¬be, by Lem. 189
and Lem. 196 we know C1 = 〈C〉 for all (C1, σ) ∈ supp(η), thus

λ(C ′, σ′).
∑
C1,σ
{η(C1, σ) · p | (C1, σ)

p−→ (C ′, σ′)}
= λ(C ′, σ′).

∑
C1,σ
{η(C1, σ) · p | (C1, σ) ∈ supp(η) ∧ (C1, σ)

p−→ (C ′, σ′)}
= λ(C ′, σ′).

∑
C1,σ
{η(C1, σ) · p | (C1, σ) ∈ supp(η) ∧

C1 = 〈C〉 split(b1, . . . , bk) ∧ (C1, σ)
p−→ (C ′, σ′)}

= λ(C ′, σ′).
∑
σ{η(State)(σ) · p | (〈C〉 split(b1, . . . , bk), σ)

p−→ (C ′, σ′)}
= λ(C ′, σ′). δ(skip)(C ′) ·

∑
σ{η(State)(σ) · p | (〈C〉, σ)

p−→ (skip, σ′)}
= λ(C ′, σ′). δ(skip)(C ′) ·

∑
σ{η(State)(σ) · p | ∃k.∀n ≥ k. (C, σ)

p−→n(skip, σ′)}
= λ(C ′, σ′). δ(skip)(C ′) ·

∑
σ η

(State)(σ) · JCK(σ)(σ′)
= λ(C ′, σ′). δ(skip)(C ′) · Eσ∼η(State){JCK(σ)}(σ′)
= λ(C ′, σ′). δ(skip)(C ′) · JCK(η(State))(σ′)
= δ(skip)⊗ JCK(η(State))

and

{(σ, σ′) | ∃C1, C
′. η(C1, σ) > 0 ∧ (C1, σ)

p−→ (C ′, σ′) ∧ p > 0}
= {(σ, σ′) | ∃C1, C

′. (C1, σ) ∈ supp(η) ∧ (C1, σ)
p−→ (C ′, σ′) ∧ p > 0}

= {(σ, σ′) | ∃C1, C
′. (C1, σ) ∈ supp(η) ∧ (C1 = 〈C〉 split(b1, . . . , bk)) ∧

(C1, σ)
p−→ (C ′, σ′) ∧ p > 0}

= {(σ, σ′) | σ ∈ supp(η(State)) ∧ ∃C ′. (〈C〉 split(b1, . . . , bk), σ)
p−→ (C ′, σ′) ∧ p > 0}

= {(σ, σ′) | σ ∈ supp(η(State)) ∧ (〈C〉, σ)
p−→ (skip, σ′) ∧ p > 0}

= {(σ, σ′) | σ ∈ supp(η(State)) ∧ ∃k.∀n ≥ k. (C, σ)
p−→n(skip, σ′) ∧ p > 0}

= {(σ, σ) | σ ∈ supp(η(State)) ∧ JCK(σ)(σ′) > 0}
= {(σ, σ) | σ ∈ supp(η(State)) ∧ σ′ ∈ supp(JCK(σ))}.

Therefore η ; ({(σ, σ′) | σ ∈ supp(η(State)) ∧ σ′ ∈ supp(JCK(σ))}, δ(skip) ⊗
JCK(η(State))).

Lemma 225. For all µ,Q1, . . . , Qn, if µ |= Q1 ⊕ · · · ⊕ Qn, then there exists
µ1, . . . , µn, p1, . . . , pn such that µ = λσ. p1 ·µ1(σ) + · · ·+ pn ·µn(σ) and µi |= Qi
for all i such that pi > 0.

Proof. by induction on k.

– base case: n = 1.
For all µ and Q1 such that µ |= Q1, let µ1

def
= µ and p1 = 1, we have

µ = λσ. p1 · µ1(σ) and µ1 |= Q1.
– inductive case: n = k + 1.

IH: for all µ,Q1, . . . , Qk, if µ |= Q1⊕· · ·⊕Qk, then there exists µ1, . . . , µk, p1, . . . , pk
such that µ = λσ. p1 ·µ1(σ) + · · ·+ pk ·µk(σ) and µi |= Qi for all i such that
pi > 0. For all µ,Q1, . . . , Qk+1 such that µ |= Q1 ⊕ · · · ⊕Qk+1, there exists
p such that µ |= (Q1 ⊕ · · · ⊕Qk)⊕p Qk+1. There are three cases.
• p = 1 and µ |= Q1 ⊕ · · · ⊕Qk.

From µ |= Q1 ⊕ · · · ⊕ Qk by IH there exists µ1, . . . , µk, p1, . . . , pk such

that µ = λσ. p1 · µ1(σ) + · · · + pk · µk(σ) and µi |= Qi for all i such
that pi > 0. Let µk+1 be any state distribution and pk+1

def
= 0, we have

µ = λσ. p1 · µ1(σ) + · · ·+ pk+1 · µk+1(σ) and µi |= Qi for all i such that
pi > 0.

• p = 0 and µ |= Qk+1.
Let pk+1 = 1, µk+1 = µ, p1 = · · · = pk = 0 and µ1, . . . , µk be any
state distributions, we have µ = λσ. p1 ·µ1(σ) + · · ·+ pk+1 ·µk+1(σ) and
µi |= Qi for all i such that pi > 0.

• 0 < p < 1 and there exists µ′ and µ′′ µ such that µ = µ′ ⊕p µ′′, µ′ |=
Q1 ⊕ · · · ⊕Qk and µ′′ |= Qk+1.
From µ′ |= Q1 ⊕ · · · ⊕ Qk by IH there exists µ1, . . . , µk, p

′
1, . . . , p

′
k such

that µ = λσ. p′1 · µ1(σ) + · · ·+ p′k · µk(σ) and µi |= Qi for all i such that
p′i > 0. Let p1

def
= p·p′1, . . . , pk

def
= p·p′k, pk+1 = 1−p and µk+1

def
= µ′′, then

µ = µ′⊕pµ′′ = λσ. p ·µ′(σ)+(1−p) ·µ′′(σ) = λσ. p ·(p′1 ·µ1(σ)+ · · ·+p′k ·
µk(σ))+(1−p)·µ′′(σ) = λσ. p1 ·µ1(σ)+· · ·+pk ·µk(σ)+pk+1 ·µk+1(σ). For
all i such that pi > 0, we have i ≤ k∧p′i > 0 or i = k+1. If i ≤ k∧p′i > 0,
we know µi |= Qi. Otherwise i = k + 1, we know µi = µk+1 = µ′′ and
Qi = Qk+1, from µ′′ |= Qk+1 we have µi |= Qi.

Lemma 226. For all µ and b, µ |= dbe if and only if JPr(b)Kµ = 1.

Proof. For all µ and b, we have

JPr(b)Kµ = 1
⇐⇒ Prσ∼µ[σ |= b] = |µ|
⇐⇒

∑
σ{µ(σ) | σ |= b} =

∑
σ µ(σ)

⇐⇒
∑
σ{µ(σ) | σ ∈ supp(µ) ∧ σ |= b} =

∑
σ{µ(σ) | σ ∈ supp(µ)}

⇐⇒
∑
σ{µ(σ) | σ ∈ supp(µ) ∧ σ |= b} =

∑
σ{µ(σ) | σ ∈ supp(µ) ∧ σ |= b}+∑

σ{µ(σ) | σ ∈ supp(µ) ∧ σ 6|= b}
⇐⇒

∑
σ{µ(σ) | σ ∈ supp(µ) ∧ σ 6|= b} = 0

⇐⇒ {σ | σ ∈ supp(µ) ∧ σ 6|= b} = ∅
⇐⇒ @σ ∈ supp(µ). σ 6|= b
⇐⇒ ∀σ ∈ supp(µ). σ |= b
⇐⇒ µ |= dbe.

Lemma 227. For all µ and b, µ |= d¬be if and only if JPr(b)Kµ = 0.

Proof. For all µ and b, we have

JPr(b)Kµ = 0
⇐⇒ Prσ∼µ[σ |= b] = |µ|
⇐⇒

∑
σ{µ(σ) | σ |= b} = 0

⇐⇒
∑
σ{µ(σ) | σ ∈ supp(µ) ∧ σ |= b} = 0

⇐⇒ {σ | σ ∈ supp(µ) ∧ σ |= b} = ∅
⇐⇒ @σ ∈ supp(µ). σ |= b
⇐⇒ ∀σ ∈ supp(µ). σ |= ¬b
⇐⇒ µ |= d¬be.

Lemma 228. For all µ and b, if µ |= dbe, then µ(σ) = 0 for all σ such that
σ 6|= b.

Proof. For all µ and b such that µ |= dbe, by Lem. 226 we know JPr(b)Kµ = 1.
From JPr(b)Kµ = Prσ∼µ[σ |= b] =

∑
σ{µ(σ) | σ |= b} and 1 = |µ| =

∑
σ µ(σ) =∑

σ{µ(σ) | σ |= b}+
∑
σ{µ(σ) | σ 6|= b} we know

∑
σ{µ(σ) | σ |= b} =

∑
σ{µ(σ) |

σ |= b} +
∑
σ{µ(σ) | σ 6|= b}, thus

∑
σ{µ(σ) | σ 6|= b} = 0. Therefore µ(σ) = 0

for all σ such that σ 6|= b.

Lemma 229. For all µ, µ1, . . . , µk, p1, . . . , pk, b1, . . . , bk, if µ = λσ. p1 · µ1(σ) +
· · · + pk · µk(σ), µi |= dbie for all i such that pi > 0, and σ |= ¬(bi ∧ bj) for all
σ, i, j such that i 6= j, then pj = 0 or µj(σ) = 0 for all i, j, σ such that i 6= j and
σ |= bi.

Proof. For all µ, µ1, . . . , µk, p1, . . . , pk, b1, . . . , bk such that µ = λσ. p1 · µ1(σ) +
· · · + pk · µk(σ), µi |= dbie for all i such that pi > 0, and σ |= ¬(bi ∧ bj) for all
σ, i, j such that i 6= j. For all i, j, σ such that i 6= j and σ |= bi, from i 6= j we
have σ |= ¬(bi ∧ bj), i.e., ¬(σ |= bi ∧ σ |= bj). From σ |= bi we know σ 6|= bj .
It is obvious that pj = 0 or pj > 0. To prove pj = 0 or µj(σ) = 0, we need to
prove if pj > 0 then µj(σ) = 0. From pj > 0 we know µj |= dbje. From σ 6|= bj
by Lem. 228 we have µj(σ) = 0.

Lemma 230. For all µ, µ1, . . . , µk, p1, . . . , pk, b1, . . . , bk, if µ = λσ. p1 · µ1(σ) +
· · · + pk · µk(σ), µi |= dbie for all i such that pi > 0, and σ |= ¬(bi ∧ bj) for all
σ, i, j such that i 6= j, then pj = 0 or JPr(bi)Kµj = 0 for all i, j such that i 6= j.

Proof. For all µ, µ1, . . . , µk, p1, . . . , pk, b1, . . . , bk such that µ = λσ. p1 · µ1(σ) +
· · · + pk · µk(σ), µi |= dbie for all i such that pi > 0, and σ |= ¬(bi ∧ bj)
for all σ, i, j such that i 6= j. For all i and j such that i 6= j, by Lem. 229
we know pj = 0 or µj(σ) = 0 for all σ such that σ |= bi, thus pj = 0 or
JPr(bi)Kµj = Prσ∼µj [σ |= bi] =

∑
σ{µj(σ) | σ |= bi} = 0.

Lemma 231. For all µ, µ1, . . . , µk, p1, . . . , pk, b1, . . . , bk, if µ = λσ. p1 · µ1(σ) +
· · · + pk · µk(σ), µi |= dbie for all i such that pi > 0, and σ |= ¬(bi ∧ bj) for all
σ, i, j such that i 6= j, then µ|bi = µi for all i such that JPr(bi)Kµ > 0.

Proof. For all µ, µ1, . . . , µk, p1, . . . , pk, b1, . . . , bk such that µ = λσ. p1 · µ1(σ) +
· · · + pk · µk(σ), µi |= dbie for all i such that pi > 0, and σ |= ¬(bi ∧ bj) for all
σ, i, j such that i 6= j. for all i such that JPr(bi)Kµ > 0, by Lem. 230 we know
pj = 0 or JPr(bi)Kµj = 0 for all j such that i 6= j, thus

JPr(bi)Kµ
= Prσ∼µ[σ |= bi]
=
∑
σ{µ(σ) | σ |= bi}

=
∑
σ{p1 · µ1(σ) + · · ·+ pk · µk(σ) | σ |= bi}

= p1 ·
∑
σ{µ1(σ) | σ |= bi}+ · · ·+ pk ·

∑
σ{µk(σ) | σ |= bi}

= p1 · JPr(bi)Kµ1
+ · · ·+ pk · JPr(bi)Kµk

= pi · JPr(bi)Kµi .

From JPr(bi)Kµ > 0 we know pi > 0, thus µi |= dbie. Therefore,

µ|bi = λσ.

{
µ(σ)

Prσ∼µ[σ|=bi] , if σ |= bi

0, otherwise

= λσ.

{
p1·µ1(σ)+···+pk·µk(σ)

JPr(bi)Kµ
, if σ |= bi

0, otherwise

= λσ.

{
pi·µi(σ)

pi·JPr(bi)Kµi
, if σ |= bi

0, otherwise
(by Lem. 229)

= λσ.

{
µi(σ), if σ |= bi

0, otherwise
(by Lem. 226)

= λσ.

{
µi(σ), if σ |= bi

µi(σ), otherwise
(by Lem. 228)

= µi.

Lemma 232 (Soundness of (atom-split) rule). For all C,R,G, I, P,Q, if
Sta(P,R, I), Sta(Q,R, I), G |=sq {I ∧P}C{(I ∧Q∧db1e)⊕· · ·⊕ (I ∧Q∧dbke)}
and Id⇒ G,
then R,G, I |=st {P}〈C〉 split(b1, . . . , bk){Q}.

Proof. For all C,R,G, I, P,Q such that Sta(P,R, I), Sta(Q,R, I), G |=sq {I ∧
P}C{(I ∧ Q ∧ db1e) ⊕ · · · ⊕ (I ∧ Q ∧ dbke)} and Id ⇒ G, to prove R,G, I |=st
{P}〈C〉 split(b1, . . . , bk){Q}, we need to prove for all µ, if µ |= I ∧ P , then
(init(〈C〉 split(b1, . . . , bk), µ), R, I) Z=⇒n

st (G,Q) for all n. For all µ such that µ |=
I∧P , by Lem. 18 we know init(〈C〉 split(b1, . . . , bk), µ)

(Stmt)
= (δ(〈C〉 split(b1, . . . , bk))⊗ µ)

(Stmt)
=

δ(〈C〉 split(b1, . . . , bk)).
To prove (init(〈C〉 split(b1, . . . , bk), µ), R, I) Z=⇒n

st (G,Q) for all n, it suffices to
prove for all n and η, if η(Stmt) = δ(〈C〉 split(b1, . . . , bk)) and η(State) |= I ∧ P ,
then (η,R, I) Z=⇒n

st (G,Q). We prove by induction on n.

– base case: n = 0. trivial.
– inductive case: n = k + 1.

IH: for all η, if η(Stmt) = δ(〈C〉 split(b1, . . . , bk)) and η(State) |= I ∧ P , then
(η,R, I) Z=⇒k

st (G,Q).
For all η such that η(Stmt) = δ(〈C〉 split(b1, . . . , bk)) and η(State) |= I ∧ P ,
we need to prove
• η(Stmt)(skip) = 1 or η(Stmt)(skip) = 0.

From η(Stmt) = δ(〈C〉 split(b1, . . . , bk)) we know
η(Stmt)(skip) = δ(〈C〉 split(b1, . . . , bk))(skip) = 0.

• if η(Stmt)(skip) > 0, then η|skip
(State) |= Q.

η(Stmt)(skip) > 0 contradicts with η(Stmt)(skip) = 0.
• η(State) |= I.

From η(State) |= I ∧ P we know η(State) |= I.

• for all η′, if η
R
�
I
η′, then (η′, R, I) Z=⇒k

� (G,Q).

For all η′ such that η
R
�
I
η′, by Lem. 188 we know supp(η′

(Stmt)
) ⊆

supp(η(Stmt)). From η(Stmt) = δ(〈C〉 split(b1, . . . , bk)) by Lem. 27 we
know η′

(Stmt)
= δ(〈C〉 split(b1, . . . , bk)). From Sta(P,R, I), η(State) |=

I ∧P and η
R
�
I
η′ by Lem. 186 we have η′(State) |= I ∧P . From η′

(Stmt)
=

δ(〈C〉 split(b1, . . . , bk)) by IH we have (η′, R, I) Z=⇒k
st (G,Q).

• for all θ and η′, if η ↪→ (θ, η′), then θ ⊆ JGK, η′(State) |= I and (η′, R, I) Z=⇒k
�

(G,Q).
For all θ and η′ such that η ↪→ (θ, η′), from η(Stmt) = δ(〈C〉 split(b1, . . . , bk))
by Lem. 190 we have nextsplit(η) = {nextsplit(〈C〉 split(b1, . . . , bk))} =
{split(b1, . . . , bk)}. From η ↪→ (θ, η′) we know there exists η′′ and i such
that η ; (θ, η′′) and η′′|bi = η′. From η(Stmt) = δ(〈C〉 split(b1, . . . , bk))
by Lem. 222 we know η ; ({(σ, σ′) | σ ∈ supp(η(State))∧σ′ ∈ supp(JCK(σ))}, δ(skip)⊗
JCK(η(State))). From η ; (θ, η′′) by Lem. 193 we know θ = {(σ, σ′) | σ ∈
supp(η(State)) ∧ σ′ ∈ supp(JCK(σ))} and η′′ = δ(skip) ⊗ JCK(η(State)).
By Lem. 18 and Lem. 19 we know η′′

(Stmt)
= δ(skip) and η′′

(State)
=

JCK(η(State)). From |η′′(State)| = 1 we know |JCK(η(State))| = 1. From
|=sq {I ∧ P}C{(I ∧ Q ∧ db1e) ⊕ · · · ⊕ (I ∧ Q ∧ dbke)} and η(State) |=
I ∧ P we know JCK(η(State)) |= (I ∧ Q ∧ db1e) ⊕ · · · ⊕ (I ∧ Q ∧ dbke)
and (σ, σ′) |= G for all σ ∈ supp(η(State)) and σ′ ∈ supp(JCK(σ)),
thus θ = {(σ, σ′) | σ ∈ supp(η(State)) ∧ σ′ ∈ supp(JCK(σ))} ⊆ JGK
and η′′

(State)
= JCK(η(State)) |= (I ∧ Q ∧ db1e) ⊕ · · · ⊕ (I ∧ Q ∧ dbke),

By Lem. 225 we know so there exists µ1, . . . , µk, p1, . . . , pk such that
η′′

(State)
= λσ. p1 · µ1(σ) + · · · + pk · µk(σ) and µj |= I ∧ Q ∧ dbje

for all j. From η′′|bi = η′ by Lem. 205 we know JPr(bi)Kη′′(State) >

0. By Lem. 206 we know η′
(State)

= η′′|bi
(State)

= η′′
(State)|bi . From

validsplit(split(b1, . . . , bk)) we know σ |= ¬(bi ∧ bj) for all σ, i, j such
that i 6= j. From η′′

(State)
= λσ. p1 ·µ1(σ)+ · · ·+pk ·µk(σ), µj |= dbje for

all j, and JPr(bi)Kη′′(State) > 0 by Lem. 231 we know η′′
(State)|bi = µi, thus

η′
(State)

= η′′
(State)|bi = µi |= I ∧ Q ∧ dbie. From η′′|bi = η′ by Lem. 20

we know supp(η′) ⊆ supp(η′′), thus dom(supp(η′)) ⊆ dom(supp(η′′)). By
Lem. 21 we know supp(η′

(Stmt)
) = dom(supp(η′)) ⊆ dom(supp(η′′)) =

supp(η′′
(Stmt)

). From η′′
(Stmt)

= δ(skip) by Lem. 27 we know η′
(Stmt)

=

δ(skip). From Sta(Q,R, I), Id ⇒ G, η′(Stmt)
= δ(skip) and η′(State) |=

I ∧Q by Lem. 194 we know (η′, R, I) Z=⇒k
st (G,Q).

Lemma 233. For all C,R,G, I, P,Q, if R,G, I `st {P}C{Q}, then R,G, I |=st
{P}C{Q}.

Proof. For all C,R,G, I, P,Q such thatR,G, I `st {P}C{Q}, we proveR,G, I |=st
{P}C{Q} by induction on the derivation of R,G, I `st {P}C{Q}.

– case (disj): P = P1 ∨ P2, Q = Q1 ∨ Q2, R,G, I `st {P1}C{Q1} and
R,G, I `st {P2}C{Q2}.
From R,G, I `st {P1}C{Q1} by induction hypothesis we know R,G, I |=st
{P1}C{Q1}. From R,G, I `st {P2}C{Q2} by induction hypothesis we know

R,G, I |=st {P2}C{Q2}. By Lem. 183 we know R,G, I `st {P1∨P2}C{Q1∨
Q2}, i.e., R,G, I `st {P}C{Q}.

– case (conj): P = P1 ∧ P2, Q = Q1 ∧ Q2, R,G, I `st {P1}C{Q1} and
R,G, I `st {P2}C{Q2}.
From R,G, I `st {P1}C{Q1} by induction hypothesis we know R,G, I |=st
{P1}C{Q1}. From R,G, I `st {P2}C{Q2} by induction hypothesis we know
R,G, I |=st {P2}C{Q2}. By Lem. 185 we know R,G, I `st {P1∧P2}C{Q1∧
Q2}, i.e., R,G, I `st {P}C{Q}.

– case (csq): P ⇒ P1, R ⇒ R1, G1 ⇒ G, Q1 ⇒ Q and R1, G1, I `st
{P1}C{Q1}.
FromR1, G1, I `st {P1}C{Q1} by induction hypothesis we knowR1, G1, I |=st
{P1}C{Q1}. From P ⇒ P1, R⇒ R1, G1 ⇒ G and Q1 ⇒ Q by Lem. 182 we
know R,G, I |=st {P}C{Q}.

– case (skip): P = Q, G = Id, Sta(Q,R, I).
From Sta(Q,R, I) andG = Id by Lem. 195 we haveR,G, I |=st {Q}skip{Q},
i.e., R,G, I |=st {P}skip{Q}.

– case (atom): C = 〈C1〉, Sta(P,R, I), Sta(Q,R, I) and G `sq {I ∧P}C1{I ∧
Q}.
From G `sq {I ∧ P}C1{I ∧Q} by Lem. 367 we know G |=sq {I ∧ P}C1{I ∧
Q}. From Sta(P,R, I) and Sta(Q,R, I) by Lem. 223 we know R,G, I `sq
{P}〈C1〉{Q}, i.e., R,G, I `sq {P}C{Q}.

– case (atom-split): C = 〈C1〉 split(b1, . . . , bk), Sta(P,R, I), Sta(Q,R, I)
and G `sq {I ∧ P}C1{(I ∧Q ∧ db1e)⊕ · · · ⊕ (I ∧Q ∧ dbke)}.
FromG `sq {I∧P}C1{(I∧Q∧db1e)⊕· · ·⊕(I∧Q∧dbke)} by Lem. 367 we know
G |=sq {I∧P}C1{(I∧Q∧db1e)⊕· · ·⊕(I∧Q∧dbke)}. From Sta(P,R, I) and
Sta(Q,R, I) by Lem. 232 we know R,G, I `sq {P}〈C1〉 split(b1, . . . , bk){Q},
i.e., R,G, I `sq {P}C{Q}.

– case (seq-st): C = C1;C2,R,G, I `st {P}C1{M} andR,G, I `st {M}C2{Q}.
From R,G, I `st {P}C1{M} by induction hypothesis we have R,G, I |=st
{P}C1{M}. From R,G, I `st {M}C1{Q} by induction hypothesis we have
R,G, I |=st {M}C1{Q}. By Lem. 218 we know R,G, I |=st {P}C1;C2{Q},
i.e., R,G, I |=st {P}C{Q}.

– case (cond): C = if (b) then C1 else C2, P = P1 ∨ P2, Sta(P1 ∨ P2, R, I),
P1 ⇒ dbe, P2 ⇒ d¬be, R,G, I `st {P1}C1{Q} and R,G, I `st {P2}C1{Q}.
From R,G, I `st {P1}C1{Q} by induction hypothesis we know R,G, I |=st
{P1}C1{Q}. From R,G, I `st {P2}C1{Q} by induction hypothesis we know
R,G, I |=st {P2}C2{Q}. From Sta(P1 ∨ P2, R, I), P1 ⇒ dbe and P2 ⇒ d¬be
by Lem. 200 we know R,G, I |=st {P1 ∨ P2}if (b) then C1 else C2{Q}, i.e.,
R,G, I |=st {P}C{Q}.

– case (while-st): C = while (b) do C1, P = P1 ∨ P2, Sta(P1 ∨ P2, R, I),
Sta(Q,R, I), P1 ⇒ dbe, P2 ⇒ d¬be ∧Q, R,G, I `st {P1}C1{P1 ∨ P2}.
FromR,G, I `st {P1}C1{P1∨P2} by induction hypothesis we knowR,G, I |=st
{P1}C1{P1∨P2}. From Sta(P1∨P2, R, I), Sta(Q,R, I), P1 ⇒ dbe and P2 ⇒
d¬be ∧Q by Lem. 221 we know R,G, I |=st {P1 ∨ P2}while (b) do C1{Q},
i.e., R,G, I |=st {P}C{Q}.

Lemma 234. For all η1, η2, p, if η1
(Stmt)(skip) = 0 and (η1 ⊕p η2)

(Stmt)
(skip) >

0,
then (η1 ⊕p η2)|skip = η2|skip.

Proof. For all η1, η2, p such that η1
(Stmt)(skip) = 0 and (η1 ⊕p η2)

(Stmt)
(skip) >

0,
from η1

(Stmt)(skip) = 0 we know
∑
σ η1(skip, σ) = 0, so η1(skip, σ) = 0 for all

σ, thus
(η1 ⊕p η2)|skip

= λ(C, σ).
χ(C=skip)·(η1⊕pη2)(skip,σ)

(η1⊕pη2)(Stmt)(skip)
(by Lem. 165)

= λ(C, σ).
χ(C=skip)·(η1⊕pη2)(skip,σ)

(η1(Stmt)⊕pη2(Stmt))(skip)
(by Lem. 11)

= λ(C, σ).χ(C=skip)·(p·η1(skip,σ)+(1−p)·η2(skip,σ))
p·η1(Stmt)(skip)+(1−p)·η2(Stmt)(skip)

= λ(C, σ).χ(C=skip)·η2(skip,σ)
η2(Stmt)(skip)

= η|skip. (by Lem. 165)

Lemma 235. For all η1, η2, p, R, η
′, if 0 < p < 1 and η1 ⊕p η2

R7→ η′, then there

exists η′1, η′2, p′ such that 0 < p′ < 1, η = η′1 ⊕p′ η′2, η1
R7→ η′1 and η2

R7→ η′2.

Proof. For all η1, η2, p, R, η
′ such that 0 < p < 1 and η1⊕pη2

R7→ η′, there exists ψ
such that dom(ψ) = supp(η1⊕pη2), range(ψ) = supp(η′) and ∀((C, σ), (C ′, σ′)) ∈
ψ. C ′ = C ∧ (σ, σ′) |= R. Let ψ1

def
= {((C, σ), (C ′, σ′)) | (C, σ) ∈ supp(η1) ∧

((C, σ), (C ′, σ′)) ∈ ψ}, ψ2
def
= {((C, σ), (C ′, σ′)) | (C, σ) ∈ supp(η2)∧((C, σ), (C ′, σ′)) ∈

ψ}, p′ def
= 0.5, and

η′1
def
= λ(C, σ).

η′(C, σ), if (C, σ) ∈ range(ψ1) ∩ range(ψ2)

2η′(C, σ), if (C, σ) ∈ range(ψ1)− range(ψ2)

0, otherwise

η′2
def
= λ(C, σ).

η′(C, σ), if (C, σ) ∈ range(ψ1) ∩ range(ψ2)

2η′(C, σ), if (C, σ) ∈ range(ψ2)− range(ψ1)

0, otherwise

From 0 < p < 1 by Lem. 275 we know supp(η) = supp(η1 ⊕p η2) = supp(η1) ∪
supp(η2), thus

ψ1 ∪ ψ2

= {((C, σ), (C ′, σ′)) | (C, σ) ∈ supp(η1) ∧ ((C, σ), (C ′, σ′)) ∈ ψ} ∪
{((C, σ), (C ′, σ′)) | (C, σ) ∈ supp(η2) ∧ ((C, σ), (C ′, σ′)) ∈ ψ}

= {((C, σ), (C ′, σ′)) | ((C, σ) ∈ supp(η1) ∨ (C, σ) ∈ supp(η1)) ∧ ((C, σ), (C ′, σ′)) ∈ ψ}
= {((C, σ), (C ′, σ′)) | ((C, σ) ∈ supp(η1) ∪ supp(η2)) ∧ ((C, σ), (C ′, σ′)) ∈ ψ}
= {((C, σ), (C ′, σ′)) | (C, σ) ∈ supp(η) ∧ ((C, σ), (C ′, σ′)) ∈ ψ}
= {((C, σ), (C ′, σ′)) | (C, σ) ∈ dom(ψ) ∧ ((C, σ), (C ′, σ′)) ∈ ψ}
= {((C, σ), (C ′, σ′)) | ((C, σ), (C ′, σ′)) ∈ ψ}
= ψ,

so range(ψ1) ∪ range(ψ2) = range(ψ1 ∪ ψ2) = range(ψ). Therefore,

η′1 ⊕p η′2 = λ(C, σ). p′ · η′1(C, σ) + (1− p′) · η′2(C, σ)
= λ(C, σ). 0.5 · η′1(C, σ) + 0.5 · η′2(C, σ)

= λ(C, σ).

η′(C, σ), if (C, σ) ∈ range(ψ1) ∩ range(ψ2)

η′(C, σ), if (C, σ) ∈ range(ψ1)− range(ψ2)

η′(C, σ), if (C, σ) ∈ range(ψ2)− range(ψ2)

0, if (C, σ) /∈ range(ψ1) ∪ range(ψ2)

= λ(C, σ).

{
η′(C, σ), if (C, σ) ∈ range(ψ)

0, if (C, σ) /∈ range(ψ)

= λ(C, σ).

{
η′(C, σ), if (C, σ) ∈ supp(η′)

0, if (C, σ) /∈ supp(η′)

= η′.

dom(ψ1) = {(C, σ) | ∃C ′, σ′. ((C, σ), (C ′, σ′)) ∈ ψ1}
= {(C, σ) | (C, σ) ∈ supp(η1) ∧ ∃C ′, σ′. ((C, σ), (C ′, σ′)) ∈ ψ}
= {(C, σ) | (C, σ) ∈ supp(η1) ∧ (C, σ) ∈ dom(ψ)}
= {(C, σ) | (C, σ) ∈ supp(η1) ∧ (C, σ) ∈ supp(η)}
= {(C, σ) | (C, σ) ∈ supp(η1) ∩ supp(η)}
= {(C, σ) | (C, σ) ∈ supp(η1) ∩ (supp(η1) ∪ supp(η2))}
= {(C, σ) | (C, σ) ∈ supp(η1)}
= supp(η1).

supp(η′1)
= {(C, σ) | η′1(C, σ) > 0}
= {(C, σ) | (η′(C, σ) > 0 ∧ (C, σ) ∈ range(ψ1) ∩ range(ψ2)) ∨

(2 · η′(C, σ) > 0 ∧ (C, σ) ∈ range(ψ1)− range(ψ2))}
= {(C, σ) | η′(C, σ) > 0 ∧ ((C, σ) ∈ range(ψ1) ∩ range(ψ2) ∨ (C, σ) ∈ range(ψ1)− range(ψ2))}
= {(C, σ) | η′(C, σ) > 0 ∧ (C, σ) ∈ (range(ψ1) ∩ range(ψ2)) ∪ (range(ψ1)− range(ψ2))}
= {(C, σ) | (C, σ) ∈ supp(η′) ∧ (C, σ) ∈ range(ψ1)}
= supp(η′) ∩ range(ψ1)
= range(ψ) ∩ range(ψ1)
= (range(ψ1) ∪ range(ψ2)) ∩ range(ψ1)
= range(ψ1).

From ψ = ψ1 ∪ ψ2 ⊇ ψ1 and ∀((C, σ), (C ′, σ′)) ∈ ψ. C ′ = C ∧ (σ, σ′) |= R we
know ∀((C, σ), (C ′, σ′)) ∈ ψ1. C

′ = C ∧ (σ, σ′) |= R. From dom(ψ1) = supp(η1)

and range(ψ1) = supp(η′1) we know η1
R7→ η′1. Similarly, we can prove η2

R7→ η′2.

Lemma 236. For all η1, η2, p, R, η
′
1, η
′
2, p
′, if 0 < p < 1, η1

R7→ η′1, η2
R7→ η′2 and

0 < p′ < 1, then η1 ⊕p η2
R7→ η′1 ⊕p′ η′2.

Proof. For all η1, η2, p, R, η
′
1, η
′
2, p
′ such that 0 < p < 1, η1

R7→ η′1, η2
R7→ η′2 and

0 < p′ < 1, from η1
R7→ η′1 we know there exists ψ1 such that dom(ψ1) = supp(η1),

range(ψ1) = supp(η′1) and ∀((C, σ), (C ′, σ′)) ∈ ψ1. C
′ = C ∧ (σ, σ′) |= R. From

η2
R7→ η′2 we know there exists ψ2 such that dom(ψ2) = supp(η2), range(ψ2) =

supp(η′2) and ∀((C, σ), (C ′, σ′)) ∈ ψ2. C
′ = C∧(σ, σ′) |= R. Let ψ = ψ1∪ψ2, then

dom(ψ) = dom(ψ1) ∪ dom(ψ2) = supp(η1) ∪ supp(η2), range(ψ) = range(ψ1) ∪
range(ψ2) = supp(η′1)∪supp(η′2) and ∀((C, σ), (C ′, σ′)) ∈ ψ. C ′ = C∧(σ, σ′) |= R.
From 0 < p < 1 and 0 < p′ < 1 by Lem. 275 we know supp(η1⊕pη2) = supp(η1)∪
supp(η2) and supp(η′1⊕p′η′2) = supp(η′1)∪supp(η′2). thus dom(ψ) = supp(η1⊕pη1)

and range(ψ) = supp(η′1 ⊕p′ η′2). Therefore, η1 ⊕p η2
R7→ η′1 ⊕p′ η′2.

Lemma 237. For all ξ, µ1, µ2, p, JξKµ1⊕pµ2
= p · JξKµ1

+ (1− p) · JξKµ2
.

Proof. For all ξ, µ1, µ2, p, we prove JξKµ1⊕pµ2 = p · JξKµ1 + (1 − p) · JξKµ2 by
induction on the structure of ξ.

– case ξ = r.
JξKµ1⊕pµ2

= JrKµ1⊕pµ2
= r = p · r + (1− p) · r = p · JrKµ1

+ (1− p) · JrKµ2
=

JξKµ1
+ (1− p) · JξKµ2

.
– case ξ = E(e).

JξKµ1⊕pµ2
= JE(e)Kµ1⊕pµ2

= Eσ∼µ1⊕pµ2
[JeKσ]

= p · Eσ∼µ1 [JeKσ] + (1− p) · Eσ∼µ2 [JeKσ] (by Lem. 16)
= p · JE(e)Kµ1 + (1− p) · JE(e)Kµ2

= p · JξKµ1
+ (1− p) · JξKµ2

.

– case ξ = Pr(q).

JξKµ1⊕pµ2 = JPr(q)Kµ1⊕pµ2

= Prσ∼µ1⊕pµ2
[σ |= q]

=
∑
σ{(µ1 ⊕p µ2)(σ) | σ |= q}

=
∑
σ{p · µ1(σ) + (1− p) · µ2(σ) | σ |= q}

= p ·
∑
σ{µ1(σ) | σ |= q}+ (1− p) ·

∑
σ{µ2(σ) | σ |= q}

= p ·Prσ∼µ1 [σ |= q] + (1− p) ·Prσ∼µ2 [σ |= q]
= p · JPr(q)Kµ1 + (1− p) · JPr(q)Kµ2

= p · JξKµ1
+ (1− p) · JξKµ2

.

– case ξ = ξ1 + ξ2.

JξKµ1⊕pµ2

= Jξ1 + ξ2Kµ1⊕pµ2

= Jξ1Kµ1⊕pµ2
+ Jξ2Kµ1⊕pµ2

= p · Jξ1Kµ1
+ (1− p) · Jξ1Kµ2

+ p · Jξ2Kµ1
+ (1− p) · Jξ2Kµ2

(by induction hypothesis)
= p · (Jξ1Kµ1 + Jξ2Kµ1) + (1− p) · (Jξ1Kµ2 + Jξ2Kµ2)
= p · Jξ1 + ξ2Kµ1 + (1− p) · Jξ1 + ξ2Kµ2

= p · JξKµ1
+ (1− p) · JξKµ2

.

Similarly, we can prove the case ξ = ξ1 − ξ2 and the case ξ = ξ1 ∗ ξ2.

Lemma 238. For all η1, η2, p, b, if 0 < p < 1, JPr(b)Kη1(State) = p1, and JPr(b)Kη2(State) =

p2, then (η1 ⊕p η2)|b =

η1|b ⊕ p·p1

p·p1+(1−p)·p2
η2|b, if p1 > 0 ∧ p2 > 0

η1|b, if p1 > 0 ∧ p2 = 0

η2|b, if p1 = 0 ∧ p2 > 0

undefined, otherwise.

Proof. For all η1, η2, p, b such that 0 < p < 1, JPr(b)Kη1(State) = p1, and JPr(b)Kη2(State) =
p2, we prove the four cases respectively.

– p1 > 0 ∧ p2 > 0.
By Lem. 12 and Lem. 237 we know JPr(b)K(η1⊕pη2)(State) = JPr(b)Kη1(State)⊕pη2(State) =

p · JPr(b)Kη1(State) + (1− p) · JPr(b)Kη2(State) = p · p1 + (1− p) · p2 > 0, thus

(η1 ⊕p η2)|b
= λ(C, σ).

χ(σ|=b)·(η1⊕pη2)(C,σ)
JPr(b)K

(η1⊕pη2)(State)
(by Lem. 207)

= λ(C, σ). χ(σ|=b)·(p·η1(C,σ)+(1−p)·η2(C,σ))
p·p1+(1−p)·p2

= λ(C, σ). p·p1
p·p1+(1−p)·p2 ·

χ(σ|=b)·η1(C,σ)
p1

+ (1−p)·p2
p·p1+(1−p)·p2 ·

χ(σ|=b)·η2(C,σ)
p2

= λ(C, σ). p·p1
p·p1+(1−p)·p2 ·

χ(σ|=b)·η1(C,σ)
JPr(b)K

η1
(State)

+ (1− p·p1
p·p1+(1−p)·p2) · χ(σ|=b)·η2(C,σ)

JPr(b)K
η2

(State)

= λ(C, σ). p·p1
p·p1+(1−p)·p2 · η1|b(C, σ) + (1− p·p1

p·p1+(1−p)·p2) · η1|b(C, σ) (by Lem. 207)
= η1|b ⊕ p·p1

p·p1+(1−p)·p2
η2|b.

– p1 > 0 ∧ p2 = 0.
By Lem. 12 and Lem. 237 we know JPr(b)K(η1⊕pη2)(State) = JPr(b)Kη1(State)⊕pη2(State) =

p · JPr(b)Kη1(State) + (1− p) · JPr(b)Kη2(State) = p · p1 + (1− p) · p2 = p · p1 > 0.
From 0 = p2 = JPr(b)Kη2(State) = Prσ∼η2(State) [σ |= b] = Pr(C,σ)∼η2 [σ |=
b] =

∑
C,σ{η2(C, σ) | σ |= b} we know σ 6|= b for all C and σ such that

η2(C, σ) > 0, thus

(η1 ⊕p η2)|b
= λ(C, σ).

χ(σ|=b)·(η1⊕pη2)(C,σ)
JPr(b)K

(η1⊕pη2)(State)
(by Lem. 207)

= λ(C, σ). χ(σ|=b)·(p·η1(C,σ)+(1−p)·η2(C,σ))
p·p1

= λ(C, σ). χ(σ|=b)·p·η1(C,σ)
p·p1

= λ(C, σ). χ(σ|=b)·η1(C,σ)
JPr(b)K

η1
(State)

= η1|b. (by Lem. 207)

– p1 = 0 ∧ p2 > 0.
By Lem. 12 and Lem. 237 we know JPr(b)K(η1⊕pη2)(State) = JPr(b)Kη1(State)⊕pη2(State) =

p·JPr(b)Kη1(State) +(1−p)·JPr(b)Kη2(State) = p·p1+(1−p)·p2 = (1−p)·p2 > 0.
From 0 = p1 = JPr(b)Kη1(State) = Prσ∼η1(State) [σ |= b] = Pr(C,σ)∼η1 [σ |=
b] =

∑
C,σ{η1(C, σ) | σ |= b} we know σ 6|= b for all C and σ such that

η1(C, σ) > 0, thus

(η1 ⊕p η2)|b
= λ(C, σ).

χ(σ|=b)·(η1⊕pη2)(C,σ)
JPr(b)K

(η1⊕pη2)(State)
(by Lem. 207)

= λ(C, σ). χ(σ|=b)·(p·η1(C,σ)+(1−p)·η2(C,σ))
(1−p)·p2

= λ(C, σ). χ(σ|=b)·(1p)·η2(C,σ)
(1−p)·p2

= λ(C, σ). χ(σ|=b)·η2(C,σ)
JPr(b)K

η2
(State)

= η2|b. (by Lem. 207)

– p1 = 0 ∧ p2 = 0.
By Lem. 12 and Lem. 237 we know JPr(b)K(η1⊕pη2)(State) = JPr(b)Kη1(State)⊕pη2(State) =

p · JPr(b)Kη1(State) + (1 − p) · JPr(b)Kη2(State) = p · p1 + (1 − p) · p2 = 0. By
Lem. 205 we know (η1 ⊕p η2)|b = undefined.

Definition H.43. Nosplit(η) if and only ifNosplit(C) for all C ∈ supp(η(Stmt)).

Lemma 239. For all η and η′, if supp(η′
(Stmt)

) ⊆ supp(η(Stmt)) and Nosplit(η),
then Nosplit(η′).

Proof. For all η and η′ such that supp(η′
(Stmt)

) ⊆ supp(η(Stmt)) and Nosplit(η),
to prove Nosplit(η′), we need to prove Nosplit(C) for all C ∈ supp(η′

(Stmt)
).

For all C ∈ supp(η′
(Stmt)

), from supp(η′
(Stmt)

) ⊆ supp(η(Stmt)) we know C ∈
supp(η(Stmt)). From Nosplit(η) we know Nosplit(C).

Lemma 240. For all R,µ, µ′, C, if µ R7→ µ′, then δ(C0)⊗ µ R7→ δ(C0)⊗ µ′.

Proof. For all R,µ, µ′, C such that µ R7→ µ′, there exists θ such that dom(θ) =

supp(µ), range(θ) = supp(µ′) and θ ⊆ JRK. Let ψ def
= {((C0, σ), (C0, σ

′)) |
(σ, σ′) ∈ θ}, then

dom(ψ) = {(C, σ) | ∃C ′, σ′. ((C, σ), (C ′, σ′)) ∈ ψ}
= {(C0, σ) | ∃σ′. (σ, σ′) ∈ θ}
= {(C0, σ) | σ ∈ dom(θ)}
= {(C0, σ) | σ ∈ supp(µ)}
= {(C0, σ) | µ(σ) > 0}
= {(C0, σ) | (δ(C)⊗ µ)(C, σ) > 0}
= supp(δ(C0)⊗ µ)

and
range(ψ) = {(C ′, σ′) | ∃C, σ. ((C, σ), (C ′, σ′)) ∈ ψ}

= {(C0, σ
′) | ∃σ. (σ, σ′) ∈ θ}

= {(C0, σ
′) | σ′ ∈ range(θ)}

= {(C0, σ
′) | σ′ ∈ supp(µ′)}

= {(C0, σ
′) | µ′(σ′) > 0}

= {(C0, σ
′) | (δ(C)⊗ µ′)(C, σ′) > 0}

= supp(δ(C0)⊗ µ′).

For all ((C, σ), (C ′, σ′)) ∈ ψ, we have C ′ = C = C0 and (σ, σ′) ∈ θ. From θ ⊆ JRK
we know (σ, σ′) ∈ JRK, thus (σ, σ′) |= R. Therefore, δ(C0)⊗ µ R7→ δ(C0)⊗ µ′.

Lemma 241. For all R, I,G,Q, η, if (η,R, I) Z=⇒n
nst (G,Q) for all n, then the

following are true:

– if η(Stmt)(skip) > 0, then η|skip(State) |= Q.
– η(State) |= I.

– for all η′, if η
R
�
I
η′, then (η′, R, I) Z=⇒n

nst (G,Q) for all n.

– for all θ and η′, if η ↪→ (θ, η′), then θ ⊆ JGK, η′(State) |= I and (η′, R, I) Z=⇒n
nst

(G,Q) for all n.

Proof. For all R, I,G,Q, η such that (η,R, I) Z=⇒n
nst (G,Q) for all n, we need to

prove

– if η(Stmt)(skip) > 0, then η|skip
(State) |= Q.

From (η,R, I) Z=⇒n
nst (G,Q) for all n we know (η,R, I) Z=⇒1

nst (G,Q). From
η(Stmt)(skip) > 0 we know η|skip

(State) |= Q.
– η(State) |= I.

From (η,R, I) Z=⇒n
nst (G,Q) for all n we know (η,R, I) Z=⇒1

nst (G,Q), thus
η(State) |= I.

– for all η′, if η
R
�
I
η′, then (η′, R, I) Z=⇒n

nst (G,Q) for all n.

For all η′ and n such that η
R
�
I
η′, from (η,R, I) Z=⇒n+1

nst (G,Q) we know

(η′, R, I) Z=⇒n
nst (G,Q).

– for all θ and η′, if η ↪→ (θ, η′), then θ ⊆ JGK, η′(State) |= I and (η′, R, I) Z=⇒n
nst

(G,Q) for all n. For all θ, η′, n such that η ↪→ (θ, η′), from (η,R, I) Z=⇒n+1
nst

(G,Q) we know θ ⊆ JGK, η′(State) |= I and (η′, R, I) Z=⇒n
nst (G,Q).

Lemma 242. For all ρ and µ, if JPr(b)Kµ > 0, then (ρ⊗ µ)|b = ρ⊗ µ|b.

Proof. For all ρ and µ such that JPr(b)Kµ > 0, by Lem. 19 we know (ρ⊗ µ)
(State)

=
µ, thus JPr(b)K(ρ⊗µ) = JPr(b)Kµ > 0. By Lem. 207 we have

(ρ⊗ µ)|b
= λ(C, σ). χ(σ|=b)·(ρ⊗µ)(C,σ)

JPr(b)Kµ

= λ(C, σ). χ(σ|=b)·ρ(C)·µ(σ)
JPr(b)Kµ

= λ(C, σ). ρ(C) · χ(σ|=b)·µ(σ)
Prσ′∼µ[σ′|=b]

= λ(C, σ). ρ(C) · µ|b(σ)
= ρ⊗ µ|b.

Lemma 243. For all η1, η2, p, if 0 < p < 1, then nextsplit(η1⊕pη2) = nextsplit(η1)∪
nextsplit(η2).

Proof. For all η1, η2, p such that 0 < p < 1, by Lem. 275 we have supp(η1⊕pη2) =
supp(η1) ∪ supp(η2), thus

nextsplit(η1 ⊕p η2)
= {nextsplit(C) | ∃σ. (C, σ) ∈ supp(η1 ⊕p η2)}
= {nextsplit(C) | ∃σ. (C, σ) ∈ supp(η1) ∪ supp(η2)}
= {nextsplit(C) | ∃σ. (C, σ) ∈ supp(η1) ∨ (C, σ) ∈ supp(η2)}
= {nextsplit(C) | (∃σ. (C, σ) ∈ supp(η1)) ∨ (∃σ. (C, σ) ∈ supp(η2))}
= {nextsplit(C) | ∃σ. (C, σ) ∈ supp(η1)} ∪ {nextsplit(C) | ∃σ. (C, σ) ∈ supp(η2)}
= nextsplit(η1) ∪ nextsplit(η2).

Lemma 244. For all η, if Nosplit(η), then nextsplit(η) = {split(true)}.

Proof. For all η such thatNosplit(η), we knowNosplit(C) for all C ∈ supp(η(Stmt)),
thus

nextsplit(η)
= {(nextsplit(C)) | ∃σ. (C, σ) ∈ supp(η)}
= {(nextsplit(C)) | ∃σ. η(C, σ) > 0}
= {(nextsplit(C) |

∑
σ η(C, σ) > 0}

= {(nextsplit(C) | η(Stmt)(C) > 0}
= {(nextsplit(C) | C ∈ supp(η(Stmt))}
= {(nextsplit(C) | C ∈ supp(η(Stmt)) ∧Nosplit(C)}
= {(nextsplit(C) | C ∈ supp(η(Stmt)) ∧Nosplit(C) ∧ nextsplit(C) = split(true)} (by Lem. 45)
= {split(true)}.

Lemma 245. For all η1, η2, p, θ, η
′, if 0 < p < 1 and (η1 ⊕p η2) ; (θ, η′), then

there exists θ1, θ2, η
′
1, η
′
2 such that θ = θ1 ∪ θ2, η′ = η′1 ⊕p η′2, η1 ; (θ1, η

′
1) and

η2 ; (θ2, η
′
2).

Proof. For all η1, η2, p, θ, η
′ such that 0 < p < 1 and (η1 ⊕p η2) ; (θ, η′), let

η′1
def
= λ(C ′, σ′).∑
C,σ{η1(C, σ) · p | (C, σ)

p−→ (C ′, σ′)}, θ1
def
= {(σ, σ′) | ∃C,C ′. η1(C, σ) > 0 ∧

(C, σ)
p−→ (C ′, σ′)∧ p > 0}, η′2

def
= λ(C ′, σ′).

∑
C,σ{η2(C, σ) · p | (C, σ)

p−→ (C ′, σ′)}
and θ2

def
= {(σ, σ′) | ∃C,C ′. η2(C, σ) > 0 ∧ (C, σ)

p−→ (C ′, σ′) ∧ p > 0}, we
have η1 ; (θ1, η

′
1) and η2 ; (θ2, η

′
2). From 0 < p < 1 by Lem. 246 we know

(η1 ⊕p η2) ; (θ1 ∪ θ2, η
′
1 ⊕p η′2). From (η1 ⊕p η2) ; (θ, η′) by Lem. 193 we have

θ = θ1 ∪ θ2 and η′ = η′1 ⊕p η′2.

Lemma 246. For all η1, η2, p, θ1, θ2, η
′
1, η
′
2, if 0 < p < 1, η1 ; (θ1, η

′
1) and

η2 ; (θ2, η
′
2), then (η1 ⊕p η2) ; (θ1 ∪ θ2, η

′
1 ⊕p η′2).

Proof. For all η1, η2, p, θ1, θ2, η
′
1, η
′
2 such that 0 < p < 1, η1 ; (θ1, η

′
1) and

η2 ; (θ2, η
′
2), we have η′1 = λ(C ′, σ′).

∑
C,σ{η1(C, σ) · p | (C, σ)

p−→ (C ′, σ′)},
θ1 = {(σ, σ′) | ∃C,C ′. η1(C, σ) > 0 ∧ (C, σ)

p−→ (C ′, σ′) ∧ p > 0}, η′2 =

λ(C ′, σ′).
∑
C,σ{η2(C, σ)·p | (C, σ)

p−→ (C ′, σ′)} and θ2 = {(σ, σ′) | ∃C,C ′. η2(C, σ) >

0 ∧ (C, σ)
p−→ (C ′, σ′) ∧ p > 0}, thus

η′1 ⊕p η′2 = λ(C ′, σ′). p · η′1(C ′, σ′) + (1− p) · η′2(C ′, σ′)

= λ(C ′, σ′). p ·
∑
C,σ{η1(C, σ) · p′ | (C, σ)

p′−→ (C ′, σ′)}+

(1− p) ·
∑
C,σ{η2(C, σ) · p′ | (C, σ)

p′−→ (C ′, σ′)}

= λ(C ′, σ′).
∑
C,σ{p · η1(C, σ) + (1− p) · η2(C, σ) · p′ | (C, σ)

p′−→ (C ′, σ′)}

= λ(C ′, σ′).
∑
C,σ{(η1 ⊕p η2)(C, σ) · p′ | (C, σ)

p′−→ (C ′, σ′)}.

From 0 < p < 1 by Lem. 275 we know supp(η1 ⊕p η2) = supp(η1) ∪ supp(η2),
thus

θ1 ∪ θ2

= {(σ, σ′) | ∃C,C ′. η1(C, σ) > 0 ∧ (C, σ)
p′−→ (C ′, σ′) ∧ p′ > 0} ∪

{(σ, σ′) | ∃C,C ′. η2(C, σ) > 0 ∧ (C, σ)
p′−→ (C ′, σ′) ∧ p′ > 0}

= {(σ, σ′) | ∃C,C ′. ((C, σ) ∈ supp(η1) ∨ (C, σ) ∈ supp(η2)) ∧ (C, σ)
p′−→ (C ′, σ′) ∧ p′ > 0}

= {(σ, σ′) | ∃C,C ′. (C, σ) ∈ supp(η1) ∪ supp(η2) ∧ (C, σ)
p′−→ (C ′, σ′) ∧ p′ > 0}

= {(σ, σ′) | ∃C,C ′. (C, σ) ∈ supp(η1 ⊕p η2) ∧ (C, σ)
p′−→ (C ′, σ′) ∧ p′ > 0}.

Therefore, (η1 ⊕p η2) ; (θ1 ∪ θ2, η
′
1 ⊕p η′2).

Lemma 247. For all η, if 0 < η(Stmt)(skip) < 1, then there exists η1 and η2

such that η = η1 ⊕η(Stmt)(skip) η2, η1
(Stmt)(skip) = 1 and η2

(Stmt)(skip) = 0.

Proof. For all η such that 0 < η(Stmt)(skip) < 1, let η1
def
= λ(C, σ).χ(C=skip)·η(C,σ)

η(Stmt)(skip)

and η2
def
= λ(C, σ).χ(C 6=skip)·η(C,σ)

1−η(Stmt)(skip)
, then

η1 ⊕η(Stmt)(skip) η2

= λ(C, σ). η(Stmt)(skip) · η1(C, σ) + (1− η(Stmt)(skip)) · η2(C, σ)

= λ(C, σ). η(Stmt)(skip) · χ(C=skip)·η(C,σ)
η(Stmt)(skip)

+ (1− η(Stmt)(skip)) · χ(C 6=skip)·η(C,σ)
1−η(Stmt)(skip)

= λ(C, σ). χ(C = skip) · η(C, σ) + χ(C 6= skip) · η(C, σ)
= λ(C, σ). η(C, σ)
= η,

η1
(Stmt)(skip) =

∑
σ η1(skip, σ)

=
∑
σ
χ(skip=skip)·η(skip,σ)

η(Stmt)(skip)

=
∑
σ η(skip,σ)

η(Stmt)(skip)

= 1,

and
η2

(Stmt)(skip) =
∑
σ η2(skip, σ)

=
∑
σ
χ(skip 6=skip)·η(skip,σ)

1−η(Stmt)(skip)

= 0.

Lemma 248. For all η1, η2, p, C2, (η1 ⊕p η2);C2 = η1;C2 ⊕p η2;C2.

Proof. For all η1, η2, p, C2,

(η1 ⊕p η2);C2

= λ(C, σ).

{
(η1 ⊕p η2)(C1, σ), if C = C1;C2

0, otherwise

= λ(C, σ).

{
p · η1(C1, σ) + (1− p) · η2(C1, σ), if C = C1;C2

0, otherwise

= λ(C, σ). p ·

{
η1(C1, σ), if C = C1;C2

0, otherwise
+ (1− p) ·

{
η2(C1, σ), if C = C1;C2

0, otherwise
= λ(C, σ). p · (η1;C2)(C, σ) + (1− p) · (η2;C2)(C, σ)
= η1;C2 ⊕p η2;C2.

We use VS ∈ P(PVar) to denote the set of program variables.

Definition H.44. σ|VS
def
= λx ∈ VS. σ(x).

Definition H.45. µ|VS
def
= λσ̂ ∈ VS→ R.

∑
σ{µ(σ) | σ|VS = σ̂}.

Lemma 249. For all η, θ, η′,VS, if η ; (θ, η′) and σ′(x) = σ(x) for all x, σ, σ′

such that x ∈ VS and (σ, σ′) ∈ θ, then η′(State)|VS = η(State)|VS.

Proof. For all η, θ, η′,VS such that η ; (θ, η′) and σ′(x) = σ(x) for all x, σ, σ′
such that x ∈ VS and (σ, σ′) ∈ θ, from η ; (θ, η′) we know η′ = λ(C ′, σ′).

∑
C,σ{η(C, σ)·

p | (C, σ)
p−→ (C ′, σ′)} and θ = {(σ, σ′) | η(C, σ) > 0∧ (C, σ)

p−→ (C ′, σ′)∧ p > 0}.
From σ′(x) = σ(x) for all x, σ, σ′ such that x ∈ VS and (σ, σ′) ∈ θ we have for
all (σ, σ′) ∈ θ, σ′|VS = λx ∈ VS. σ′(x) = λx ∈ VS. σ(x) = σ|VS, thus

η′
(State)|VS

= λσ̂ ∈ VS→ R.
∑
σ′{η′

(State)
(σ′) | σ′|VS = σ̂}

= λσ̂ ∈ VS→ R.
∑
σ′,C′{η′(C ′, σ′) | σ′|VS = σ̂}

= λσ̂ ∈ VS→ R.
∑
σ′,C′,C,σ{η(C, σ) · p | (C, σ)

p−→ (C ′, σ′) ∧ σ′|VS = σ̂}
= λσ̂ ∈ VS→ R.

∑
σ′,C′,C,σ{η(C, σ) · p | η(C, σ) > 0 ∧ (C, σ)

p−→ (C ′, σ′) ∧ p > 0 ∧ σ′|VS = σ̂}
= λσ̂ ∈ VS→ R.

∑
σ′,C′,C,σ{η(C, σ) · p | η(C, σ) > 0 ∧ (C, σ)

p−→ (C ′, σ′) ∧
p > 0 ∧ (σ, σ′) ∈ θ ∧ σ′|VS = σ̂}

= λσ̂ ∈ VS→ R.
∑
σ′,C′,C,σ{η(C, σ) · p | η(C, σ) > 0 ∧ (C, σ)

p−→ (C ′, σ′) ∧
p > 0 ∧ (σ, σ′) ∈ θ ∧ σ|VS = σ̂}

= λσ̂ ∈ VS→ R.
∑
σ′,C′,C,σ{η(C, σ) · p | (C, σ)

p−→ (C ′, σ′) ∧ σ|VS = σ̂}
= λσ̂ ∈ VS→ R.

∑
C,σ{η(C, σ) ·

∑
C′,σ′{p | (C, σ)

p−→ (C ′, σ′)} | σ|VS = σ̂}
= λσ̂ ∈ VS→ R.

∑
C,σ{η(C, σ) | σ|VS = σ̂}

= λσ̂ ∈ VS→ R.
∑
σ{η(State)(σ) | σ|VS = σ̂}

= η(State)|VS.

Lemma 250. For all µ1, µ2, p,VS, (µ1 ⊕p µ2)|VS = µ1|VS ⊕p µ2|VS.

Proof. For all µ1, µ2, p,VS, we have

(µ1 ⊕p µ2)|VS
= λσ̂ ∈ VS→ R.

∑
σ{(µ1 ⊕p µ2)(σ) | σ|VS = σ̂}

= λσ̂ ∈ VS→ R.
∑
σ{p · µ1(σ) + (1− p) · µ2(σ) | σ|VS = σ̂}

= λσ̂ ∈ VS→ R. p ·
∑
σ{µ1(σ) | σ|VS = σ̂}+ (1− p) ·

∑
σ{µ2(σ) | σ|VS = σ̂}

= λσ̂ ∈ VS→ R. p · µ1|VS(σ̂) + (1− p) · µ2|VS(σ̂)
= µ1|VS ⊕p µ2|VS.

Lemma 251. For all VS,VS′, σ1, σ2, if VS′ ⊆ VS and σ1|VS = σ2|VS, then
σ1|VS′ = σ2|VS′ .

Proof. For all VS,VS′, σ1, σ2 such that VS′ ⊆ VS and σ1|VS = σ2|VS, to prove
σ1|VS′ = σ2|VS′ , we need to prove σ1|VS′(x) = σ2|VS′(x) for all x ∈ VS′. For
all x ∈ VS′, from VS′ ⊆ VS we know x ∈ VS, thus σ1|VS′(x) = σ1(VS′) =
σ1|VS(x) = σ2|VS(x) = σ2|VS′ .

Lemma 252. For all e, σ1, σ2, if σ1|fv(e) = σ2|fv(e), then JeKσ1
= JeKσ2

.

Proof. by induction on e.

– case n.
For all σ1, σ2 such that σ1|fv(n) = σ2|fv(n), we have JnKσ1

= n = JnKσ2
.

– case x.
For all σ1, σ2 such that σ1|fv(x) = σ2|fv(x), thus σ1|fv(x)(x) = σ2|fv(x)(x).
From x ∈ fv(x) = {x} we know σ1|fv(x)(x) = σ1(x) and σ2|fv(x)(x) = σ2(x),
thus σ1(x) = σ2(x). Therefore JxKσ1 = σ1(x) = σ2(x) = JxKσ2 .

– case e1 + e2.
IH1: for all σ1, σ2, if σ1|fv(e1) = σ2|fv(e1), then Je1Kσ1

= Je1Kσ2
.

IH2: for all σ1, σ2, if σ1|fv(e2) = σ2|fv(e2), then Je2Kσ1
= Je2Kσ2

.
For all σ1, σ2 such that σ1|fv(e1+e2) = σ2|fv(e1+e2), from fv(e1 + e2) =
fv(e1)∪fv(e2) we know fv(e1) ⊆ fv(e1+e2). From σ1|fv(e1+e2) = σ2|fv(e1<e2)

by Lem. 251 we know σ1|fv(e1) = σ2|fv(e1). By IH1 we have Je1Kσ1
= Je1Kσ2

.
Similarly we can prove Je2Kσ1 = Je2Kσ2 . Therefore Je1 + e2Kσ1 = Je1Kσ1 +
Je2Kσ1 = Je1Kσ2 + Je2Kσ2 = Je1 < e2Kσ2 .

– case e1 − e2.
Similar to the case e1 + e2.

– case e1 ∗ e2.
Similar to the case e1 + e2.

Lemma 253. For all b, σ1, σ2, if σ1|fv(b) = σ2|fv(b), then JbKσ1 = JbKσ2 .

Proof. by induction on b.

– case true.
For all σ1, σ2 such that σ1|fv(true) = σ2|fv(true), we have JtrueKσ1

= tt =
JtrueKσ2

.

– case false.
For all σ1, σ2 such that σ1|fv(false) = σ2|fv(false), we have JfalseKσ1

= ff =
JfalseKσ2 .

– case e1 < e2.
For all σ1, σ2 such that σ1|fv(e1<e2) = σ2|fv(e1<e2), from fv(e1 < e2) =
fv(e1)∪fv(e2) we know fv(e1) ⊆ fv(e1 < e2). From σ1|fv(e1<e2) = σ2|fv(e1<e2)

by Lem. 251 we know σ1|fv(e1) = σ2|fv(e1). By Lem. 252 we have Je1Kσ1
=

Je1Kσ2
. Similarly we can prove Je2Kσ1

= Je2Kσ2
. Therefore Je1 < e2Kσ1

={
tt, if Je1Kσ1

< Je2Kσ1

ff, otherwise
=

{
tt, if Je1Kσ2

< Je2Kσ2

ff, otherwise
= Je1 < e2Kσ2 .

– case e1 = e2.
Similar to the case e1 < e2.

– case e1 ≤ e2.
Similar to the case e1 < e2.

– case ¬b.
IH: for all σ1, σ2, if σ1|fv(b) = σ2|fv(b), then JbKσ1

= JbKσ2
.

For all σ1, σ2 such that σ1|fv(¬b) = σ2|fv(¬b), from fv(¬b) = fv(b) we
know σ1|fv(b) = σ2|fv(b). By IH we have JbKσ1

= JbKσ2
. Therefore J¬bKσ1

={
ff, if JbKσ1

= tt
tt, otherwise

=

{
ff, if JbKσ2

= tt
tt, otherwise

= J¬bKσ2 .

– case b1 ∧ b2.
IH1: for all σ1, σ2, if σ1|fv(b1) = σ2|fv(b1), then Jb1Kσ1 = Jb1Kσ2 .
IH2: for all σ1, σ2, if σ1|fv(b2) = σ2|fv(b2), then Jb2Kσ1

= Jb2Kσ2
.

For all σ1, σ2 such that σ1|fv(b1∧b2) = σ2|fv(b1∧b2), from fv(b1∧b2) = fv(b1)∪
fv(b2) we know fv(b1) ⊆ fv(b1 ∧ b2). From σ1|fv(b1∧b2) = σ2|fv(b1∧b2) by
Lem. 251 we have σ1|fv(b1) = σ2|fv(b1). By IH1 we have Jb1Kσ1

= Jb1Kσ2
. Simi-

larly we can prove Jb2Kσ1 = Jb2Kσ2 . Therefore Jb1∧b2Kσ1 =

{
tt, if Jb1Kσ1

= tt and Jb2Kσ1
= tt

ff, otherwise

=

{
tt, if Jb1Kσ2 = tt and Jb2Kσ2 = tt
ff, otherwise

= Jb1 ∧ b2Kσ2
.

– case b1 ∨ b2.
Similar to the case b1 ∧ b2.

Lemma 254. For all VS, X, r, σ1, σ2, if σ1|VS−{X} = σ2|VS−{X}, then σ1{X ; r}|VS =
σ2{X ; r}|VS.

Proof. For allVS, X, r, σ1, σ2 such that σ1|VS−{X} = σ2|VS−{X}, to prove σ1{X ; r}|VS =

σ2{X ; r}|VS, we need to prove σ1{X ; r}|VS(x) = σ2{X ; r}|VS(x) for all
x ∈ VS. For all x ∈ VS, we need to prove σ1{X ; r}(x) = σ2{X ; r}(x). If
x = X, then σ1{X ; r}(x) = r = σ2{X ; r}(x). If x 6= X, then x ∈ VS−{X},
thus σ1{X ; r}(x) = σ1(x) = σ1|VS−{X}(x) = σ2|VS−{X}(x) = σ2(x) =
σ2{X ; r}(x).

Lemma 255. For all q, σ1, σ2, if σ1|fv(q) = σ2|fv(q), then σ1 |= q if and only
if σ2 |= q.

Proof. by induction on q. We only prove one direction (if σ1 |= q then σ2 |= q)
in each case. The other direction is similar.

– case b.
For all σ1, σ2 such that σ1|fv(b) = σ2|fv(b) and σ1 |= b, we know JbKσ1 = tt.
From σ1|fv(b) = σ2|fv(b) by Lem. 253 we know JbKσ2

= JbKσ1
= tt, thus

σ2 |= b.
– IH: for all σ1, σ2, if σ1|fv(q) = σ2|fv(q), then σ1 |= q iff σ2 |= q.

For all σ1, σ2 such that σ1|fv(¬q) = σ2|fv(¬q) and σ1 |= ¬q, from fv(¬q) =
fv(q) we know σ1|fv(q) = σ2|fv(q). From σ1 |= ¬q we know σ1 |= q does not
hold. By IH we know σ2 |= q does not hold, thus σ2 |= ¬q.

– case q1 ∧ q2.
IH1: for all σ1, σ2, if σ1|fv(q1) = σ2|fv(q1), then σ1 |= q1 iff σ2 |= q1.
IH2: for all σ1, σ2, if σ1|fv(q2) = σ2|fv(q2), then σ1 |= q2 iff σ2 |= q2.
For all σ1, σ2 such that σ1|fv(q1∧q2) = σ2|fv(q1∧q2) and σ1 |= q1 ∧ q2, we
know σ1 |= q1 and σ2 |= q2. From fv(q1 ∧ q2) = fv(q1) ∪ fv(q2) we know
fv(q1) ⊆ fv(q1∧q2). From σ1|fv(q1∧q2) = σ2|fv(q1∧q2) by Lem. 262 we know
σ1|fv(q1) = σ2|fv(q1). From σ1 |= q1 by IH1 we have σ2 |= q1. Similarly we
can prove σ2 |= q2, thus σ2 |= q1 ∧ q2.

– case q1 ∨ q2.
IH1: for all σ1, σ2, if σ1|fv(q1) = σ2|fv(q1), then σ1 |= q1 iff σ2 |= q1.
IH2: for all σ1, σ2, if σ1|fv(q2) = σ2|fv(q2), then σ1 |= q2 iff σ2 |= q2.
For all σ1, σ2 such that σ1|fv(q1∨q2) = σ2|fv(q1∨q2) and σ1 |= q1 ∨ q2, we
know σ1 |= q1 or σ1 |= q2. We only prove the case σ1 |= q1. The other case is
similar. From fv(q1∨q2) = fv(q1)∪fv(q2) we know fv(q1) ⊆ fv(q1∨q2).
From σ1|fv(q1∨q2) = σ2|fv(q1∨q2) by Lem. 262 we know σ1|fv(q1) = σ2|fv(q1).
From σ1 |= q1 by IH1 we have σ2 |= q1, thus σ2 |= q1 ∨ q2.

– case ∀X.q.
IH: for all σ1, µ2, if σ1|fv(q) = σ2|fv(q), then σ1 |= q iff σ2 |= q.
For all σ1, σ2 such that σ1|fv(∀X.q) = σ2|fv(∀X.q) and σ1 |= ∀X.q, from
fv(∀X.q) = fv(q) − {X} we know σ1|fv(q)−{X} = σ2|fv(q)−{X}. To prove
σ2 |= ∀X.q, we need to prove σ2{X ; r} |= q for all r. For all r, from
σ1 |= ∀X.q we know σ1{X ; r} |= q. From σ1|fv(q)−{X} = σ2|fv(q)−{X}
by Lem. 254 we have σ1{X ; r}|fv(q) = σ2{X ; r}|fv(q). From σ1{X ;

r} |= q by IH we have σ2{X ; r} |= q.
– case ∃X.q.

IH: for all σ1, σ2, if σ1|fv(q) = σ2|fv(q), then σ1 |= q iff σ2 |= q.
For all σ1, σ2 such that σ1|fv(∃X.q) = σ2|fv(∃X.q) and σ1 |= ∃X.q, we know
there exists r such that σ1{X ; r} |= q. From fv(∀X.q) = fv(q)−{X} we
know σ1|fv(q)−{X} = σ2|fv(q)−{X}. By Lem. 254 we have σ1{X ; r}|fv(q) =
σ2{X ; r}|fv(q). From σ1{X ; r} |= q by IH we have σ2{X ; r} |= q,
thus σ2 |= ∃X.q.

Definition H.46. Let σ̂ ∈ VS→ R, we define pad(σ̂)
def
= λx.

{
σ̂(x), if x ∈ VS
0, otherwise

.

Lemma 256. For all VS and σ̂ ∈ VS→ R, (pad(σ̂))|VS = σ̂.

Proof. For all VS and σ̂ ∈ VS→ R, to prove (pad(σ̂))|VS = σ̂, we need to prove
(pad(σ̂))|VS(x) = σ̂(x) for all x ∈ VS. For all x ∈ VS, we have (pad(σ̂))|VS(x) =
pad(σ̂)(x) = σ̂(x).

Lemma 257. For all e and σ, JeKpad(σ|fv(e)) = JeKσ.

Proof. For all e and σ, we know σ|fv(e) ∈ fv(e) → R. By Lem. 256 we know
(pad(σ|fv(e)))|fv(e)

= σ|fv(e). By Lem. 252 we have JeKpad(σ|fv(e)) = JeKσ.

Lemma 258. For all q and σ, pad(σ|fv(q)) |= q if and only if σ |= q.

Proof. For all q and σ, we know σ|fv(q) ∈ fv(q) → R. By Lem. 256 we know
(pad(σ|fv(q)))|fv(q)

= σ|fv(q). By Lem. 255 we have pad(σ|fv(q)) |= q if and only if σ |= q.

Lemma 259. For all ξ, µ1, µ2, if µ1|fv(ξ) = µ2|fv(ξ), then JξKµ1
= JξKµ2

.

Proof. by induction on ξ.

– case r.
For all µ1, µ2 such that µ1|fv(r) = µ2|fv(r), we have JrKµ1

= r = JrKµ2
.

– case E(e).
For all µ1, µ2 such that µ1|fv(E(e)) = µ2|fv(E(e)), from fv(E(e)) = fv(e) we
have µ1|fv(e) = µ2|fv(e). We have

JE(e)Kµ1

= Eσ∼µ1
[JeKσ]

=
∑
σ µ1(σ) · JeKσ

=
∑
σ µ1(σ) · JeKpad(σ|fv(e)) (by Lem. 257)

=
∑
σ

∑
σ̂∈fv(e)→R{µ1(σ) · JeKpad(σ̂) | σ|fv(e) = σ̂}

=
∑
σ̂∈fv(e)→RJeKpad(σ̂) ·

∑
σ{µ1(σ) | σ|fv(e) = σ̂}

=
∑
σ̂∈fv(e)→RJeKpad(σ̂) · µ1|fv(e).

Similarly we can prove JE(e)Kµ2 =
∑
σ̂∈fv(e)→RJeKpad(σ̂) · µ2|fv(e). From

µ1|fv(e) = µ2|fv(e) we have JE(e)Kµ1
= JE(e)Kµ2

.
– case Pr(q).

For all µ1, µ2 such that µ1|fv(Pr(q)) = µ2|fv(Pr(q)), from fv(Pr(q)) = fv(q)
we have µ1|fv(q) = µ2|fv(q). We have

JPr(q)Kµ1

= Prσ∼µ1
[σ |= q]

=
∑
σ{µ1(σ) | σ |= q}

=
∑
σ{µ1(σ) | pad(σ|fv(q)) |= q} (by Lem. 258)

=
∑
σ

∑
σ̂∈fv(e)→R{µ1(σ) | σ|fv(q) = σ̂ ∧ pad(σ̂) |= q}

=
∑
σ̂∈fv(e)→R{pad(σ̂) |= q} ·

∑
σ{σ|fv(q) = σ̂}

=
∑
σ̂∈fv(e)→R{pad(σ̂) |= q} · µ1|fv(q).

Similarly we can prove JPr(q)Kµ2 =
∑
σ̂∈fv(e)→R{pad(σ̂) |= q} · µ2|fv(q).

From µ1|fv(q) = µ2|fv(q) we have JPr(q)Kµ1
= JPr(q)Kµ2

.

– case ξ1 + ξ2.
IH1: For all µ1, µ2, if µ1|fv(ξ1) = µ2|fv(ξ1), then Jξ1Kµ1

= Jξ1Kµ2
.

IH1: For all µ1, µ2, if µ1|fv(ξ2) = µ2|fv(ξ2), then Jξ2Kµ1 = Jξ2Kµ2 .
For all µ1, µ2 such that µ1|fv(ξ1+ξ2) = µ2|fv(ξ1+ξ2), from fv(ξ1 + ξ2) =
fv(ξ1)∪fv(ξ2) we know fv(ξ1) ⊆ fv(ξ1+ξ2). From µ1|fv(ξ1+ξ2) = µ2|fv(ξ1+ξ2)

by Lem. 262 we know µ1|fv(ξ1) = µ2|fv(ξ1). By IH1 we have Jξ1Kµ1
= Jξ1Kµ2

.
Similarly we can prove Jξ2Kµ1

= Jξ2Kµ2
. Therefore Jξ1 + ξ2Kµ1

= Jξ1Kµ1
+

Jξ2Kµ1 = Jξ1Kµ2 + Jξ2Kµ2 = Jξ1 + ξ2Kµ2 .
– case ξ1 − ξ2.

Similar to the case ξ1 + ξ2.
– case ξ1 ∗ ξ2.

Similar to the case ξ1 + ξ2.

Lemma 260. For all VS,VS′, σ, if VS′ ⊆ VS, then (σ|VS)|VS′ = σ|VS′ .

Proof. For all VS,VS′, σ such that VS′ ⊆ VS, to prove (σ|VS)|VS′ = σ|VS′ , we
need to prove (σ|VS)|VS′(x) = σ|VS′(x) for all x ∈ VS′. For all x ∈ VS′, from
VS′ ⊆ VS we know x ∈ VS, thus (σ|VS)|VS′(x) = σ|VS(x) = σ(x) = σ|VS′(x).

Lemma 261. For all VS,VS′, µ, if VS′ ⊆ VS, then (µ|VS)|VS′ = µ|VS′ .

Proof. For all VS,VS′, µ such that VS′ ⊆ VS, by Lem. 260 we know (σ|VS)|VS′ =
σ|VS′ for all σ, thus

(µ|VS)|VS′

= λσ̂ ∈ VS′ → R.
∑
σ̄∈VS→R{µ|VS(σ̄) | σ̄|VS′ = σ̂}

= λσ̂ ∈ VS′ → R.
∑
σ̄∈VS→R{

∑
σ{µ(σ) | σ|VS = σ̄} | σ̄|VS′ = σ̂}

= λσ̂ ∈ VS′ → R.
∑
σ

∑
σ̄∈VS→R{µ(σ) | σ|VS = σ̄ ∧ σ̄|VS′ = σ̂}

= λσ̂ ∈ VS′ → R.
∑
σ{µ(σ) | (σ|VS)|VS′ = σ̂}

= λσ̂ ∈ VS′ → R.
∑
σ{µ(σ) | σ|VS′ = σ̂}

= µ|VS′ .

Lemma 262. For all VS,VS′, µ1, µ2, if VS′ ⊆ VS and µ1|VS = µ2|VS, then
µ1|VS′ = µ2|VS′ .

Proof. For all VS,VS′, µ1, µ2 such that VS′ ⊆ VS and µ1|VS = µ2|VS, by
Lem. 261 we know µ1|VS′ = (µ1|VS)|VS′ = (µ2|VS)|VS′ = µ2|VS′ .

Lemma 263. For all VS, X, r, σ, if X ∈ VS, then σ{X ; r}|VS = σ|VS−{X}{X ;

r}.

Proof. For allVS, X, r, σ such thatX ∈ VS, to prove σ{X ; r}|VS = σ|VS−{X}{X ;

r}, we need to prove σ{X ; r}|VS(x) = σ|VS−{X}{X ; r}(x) for all x ∈
VS. For all x ∈ VS, if x = X, then σ{X ; r}|VS(x) = σ{X ; r}(x) =
r = σ|VS−{X}{X ; r}(x). Otherwise x 6= X, then x ∈ VS − {X}, thus
σ{X ; r}|VS(x) = σ{X ; r}(x) = σ(x) = σ|VS−{X}(x) = σ|VS−{X}{X ;

r}(x).

Lemma 264. For all VS, X, r, µ, if X ∈ VS, then µ{X ; r}|VS = µ|VS−{X}{X ;

r}.

Proof. From X ∈ VS by Lem. 263 we know σ{X ; r}|VS = σ|VS−{X}{X ; r}
for all σ, thus

µ{X ; r}|VS
= λσ̂ ∈ VS→ R.

∑
σ{µ{X ; r}(σ) | σ|VS = σ̂}

= λσ̂ ∈ VS→ R.
∑
σ{
∑
σ′{µ(σ′) | σ′{X ; r} = σ} | σ|VS = σ̂}

= λσ̂ ∈ VS→ R.
∑
σ,σ′{µ(σ′) | σ′{X ; r} = σ ∧ σ|VS = σ̂}

= λσ̂ ∈ VS→ R.
∑
σ′{µ(σ′) | σ′{X ; r}|VS = σ̂}

= λσ̂ ∈ VS→ R.
∑
σ′{µ(σ′) | σ′|VS−{X}{X ; r} = σ̂}

= λσ̂ ∈ VS→ R.
∑
σ′
∑
σ̄∈(VS−{X})→R{µ(σ′) | σ′|VS−{X} = σ ∧ σ{X ; r} = σ̂}

= λσ̂ ∈ VS→ R.
∑
σ̄∈(VS−{X})→R{

∑
σ′{µ(σ′) | σ′|VS−{X} = σ} | σ{X ; r} = σ̂}

= λσ̂ ∈ VS→ R.
∑
σ̄∈(VS−{X})→R{µ|VS−{X}(σ) | σ{X ; r} = σ̂}

= µ|VS−{X}{X ; r}.

Lemma 265. For all VS, X, r, σ, if X /∈ VS, then σ{X ; r}|VS = σ|VS.

Proof. For all VS, X, r, σ such that X /∈ VS, to prove σ{X ; r}|VS = σ|VS, we
need to prove σ{X ; r}|VS(x) = σ|VS(x) for all x ∈ VS. For all x ∈ VS, from
X /∈ VS we know x 6= X, thus σ{X ; r}|VS(x) = σ{X ; r}(x) = σ(x) =
σ|VS(x).

Lemma 266. For all VS, X, r, µ, if X /∈ VS, then µ{X ; r}|VS = µ|VS.

Proof. From X /∈ VS by Lem. 265 we know σ{X ; r}|VS = σ|VS for all σ, thus

µ{X ; r}|VS
= λσ̂ ∈ VS→ R.

∑
σ{µ{X ; r}(σ) | σ|VS = σ̂}

= λσ̂ ∈ VS→ R.
∑
σ{
∑
σ′{µ(σ′) | σ′{X ; r} = σ} | σ|VS = σ̂}

= λσ̂ ∈ VS→ R.
∑
σ,σ′{µ(σ′) | σ′{X ; r} = σ ∧ σ|VS = σ̂}

= λσ̂ ∈ VS→ R.
∑
σ′{µ(σ′) | σ′{X ; r}|VS = σ̂}

= λσ̂ ∈ VS→ R.
∑
σ′{µ(σ′) | σ′|VS = σ̂}

= µ|VS.

Lemma 267. For all VS, X, r, µ1, µ2, if µ1|VS−{X} = µ2|VS−{X}, then µ1{X ; r}|VS =
µ2{X ; r}|VS.

Proof. For all VS, X, r, σ1, σ2 such that µ1|VS−{X} = µ2|VS−{X}, there are two
cases: X ∈ VS or X /∈ VS. We prove the two cases respectively.

– X ∈ VS.
From X ∈ VS by Lem. 264 we have µ1{X ; r}|VS = µ1|VS−{X}{X ; r} =
µ2|VS−{X}{X ; r} = µ2{X ; r}|VS.

– X /∈ VS.
We have VS− {X} = VS. From µ1|VS−{X} = µ2|VS−{X} we know µ1|VS =
µ2|VS. From X /∈ VS by Lem. 266 we have µ1{X ; r}|VS = µ1|VS =
µ2|VS = µ2{X ; r}|VS.

Lemma 268. For all p, µ1, µ2, µ
′,VS, if (µ1 ⊕p µ2)|VS = µ′|VS, then there ex-

ists µ′1 and µ′2 such that µ′ = µ′1 ⊕p µ′2, µ1|VS = µ′1|VS and µ2|VS = µ′2|VS.

Proof. For all p, µ1, µ2, µ
′,VS such that (µ1 ⊕p µ2)|VS = µ′|VS, by Lem. 268 we

know (µ1 ⊕p µ2)|VS

= µ1|VS⊕pµ2|VS, thus µ′|VS = µ1|VS⊕pµ2|VS. Let µ′1 = λσ.

{
µ1|VS(σ|VS)·µ′(σ)

µ′|VS(σ|VS) , if µ′|VS(σ|VS) > 0

0, otherwise

and µ′2 = λσ.

{
µ2|VS(σ|VS)·µ′(σ)

µ′|VS(σ|VS) , if µ′|VS(σ|VS) > 0

0, otherwise
. To prove µ′ = µ′1 ⊕p µ′2,

we need to prove µ′(σ) = p · µ′1(σ) + (1 − p) · µ′2(σ) for all σ. For all σ, if
µ′|VS(σ|VS) > 0, then

p · µ′1(σ) + (1− p) · µ′2(σ)

= p · µ1|VS(σ|VS)·µ′(σ)
µ′|VS(σ|VS) + (1− p) · µ2|VS(σ|VS)·µ′(σ)

µ′|VS(σ|VS)

= p·µ1|VS(σ|VS)+(1−p)·µ2|VS(σ|VS)
µ′|VS(σ|VS) · µ′(σ)

=
(µ1|VS⊕pµ2|VS)(σ|VS)

µ′|VS(σ|VS) · µ′(σ)

= µ′|VS(σ|VS)
µ′|VS(σ|VS) · µ

′(σ)

= µ′(σ).

Otherwise µ′|VS(σ|VS) = 0, then µ′1(σ) = µ′2(σ) = 0. From 0 = µ′|VS(σ|VS) =∑
σ′{µ′(σ′) | σ′|VS = σ|VS} ≥ µ′(σ) we know µ′(σ) = 0, thus µ′(σ) = p ·µ′1(σ) +

(1 − p) · µ′2(σ). From ∀σ. µ′|VS(σ|VS) ≥ µ′(σ) we know ∀σ. µ′(σ) > 0 =⇒
µ′|VS(σ|VS) > 0, thus

µ′1|VS

= λσ̂ ∈ VS→ R.
∑
σ{µ′1(σ) | σ|VS = σ̂}

= λσ̂ ∈ VS→ R.
∑
σ{

µ1|VS(σ|VS)·µ′(σ)
µ′|VS(σ|VS) | σ|VS = σ̂ ∧ µ′|VS(σ|VS) > 0}

= λσ̂ ∈ VS→ R.
∑
σ{

µ1|VS(σ̂)·µ′(σ)
µ′|VS(σ̂) | σ|VS = σ̂ ∧ µ′|VS(σ|VS) > 0}

= λσ̂ ∈ VS→ R. µ1|VS(σ̂)
µ′|VS(σ̂) ·

∑
σ{µ′(σ) | σ|VS = σ̂ ∧ µ′|VS(σ|VS) > 0}

= λσ̂ ∈ VS→ R. µ1|VS(σ̂)
µ′|VS(σ̂) ·

∑
σ{µ′(σ) | σ|VS = σ̂ ∧ µ′|VS(σ|VS) > 0 ∧ µ′(σ) > 0}

= λσ̂ ∈ VS→ R. µ1|VS(σ̂)
µ′|VS(σ̂) ·

∑
σ{µ′(σ) | σ|VS = σ̂ ∧ µ′(σ) > 0}

= λσ̂ ∈ VS→ R. µ1|VS(σ̂)
µ′|VS(σ̂) ·

∑
σ{µ′(σ) | σ|VS = σ̂}

= λσ̂ ∈ VS→ R. µ1|VS(σ̂)
µ′|VS(σ̂) · µ

′|VS(σ̂)

= λσ̂ ∈ VS→ R. µ1|VS(σ̂)

= µ1|VS.

Similarly we can prove µ′2|VS = µ2|VS.

Definition H.47. Let V ∈ DDState , we define V |VS
def
= λµ̂ ∈ DVS→R.

∑
µ{V (µ) |

µ|VS = µ̂}.

Lemma 269. For all V ∈ DDState and VS, V |VS = λσ̂ ∈ VS → R.
∑
ν V (ν) ·

ν|VS(σ̂).

Proof. For all V ∈ DDState and VS, we have

V |VS = λσ̂ ∈ VS→ R.
∑
σ{V (σ) | σ|VS = σ̂}

= λσ̂ ∈ VS→ R.
∑
σ,ν{V (ν) · ν(σ) | σ|VS = σ̂}

= λσ̂ ∈ VS→ R.
∑
ν V (ν) ·

∑
σ{ν(σ) | σ|VS = σ̂}

= λσ̂ ∈ VS→ R.
∑
ν V (ν) · ν|VS(σ̂)

Definition H.48. zoom(µ, µ′,VS)
def
= λσ. µ(σ)·µ′|VS(σ|VS)

µ|VS(σ|VS) .

Lemma 270. For all µ, µ′,VS, zoom(µ, µ′,VS)|VS = µ′|VS.

Proof. For all µ, µ′,VS, we have

zoom(µ, µ′,VS)|VS
= λσ̂ ∈ VS→ R.

∑
σ{zoom(µ, µ′)(σ) | σ|VS = σ̂}

= λσ̂ ∈ VS→ R.
∑
σ{

µ(σ)·µ′|VS(σ|VS)
µ|VS(σ|VS) | σ|VS = σ̂}

= λσ̂ ∈ VS→ R.
∑
σ{

µ(σ)·µ′|VS(σ̂)
µ|VS(σ̂) | σ|VS = σ̂}

= λσ̂ ∈ VS→ R. µ
′|VS(σ̂)
µ|VS(σ̂) ·

∑
σ{µ(σ) | σ|VS = σ̂}

= λσ̂ ∈ VS→ R. µ
′|VS(σ̂)
µ|VS(σ̂) · µ|VS(σ̂)

= λσ̂ ∈ VS→ R. µ′|VS(σ̂)
= µ′|VS.

Lemma 271. For all V ∈ DDState and VS, if V |VS = µ|VS, then there exists
V ′ ∈ DDState such that µ = V ′ and V |VS = V ′|VS.

Proof. For all V ∈ DDState andVS such that V |VS = µ|VS, let V ′
def
= λν′.

∑
ν{V (ν) |

zoom(µ, ν) = ν′}, then

V ′ = λσ.
∑
ν′ V

′(ν′) · ν′(σ)
= λσ.

∑
ν′
∑
ν{V (ν) · ν′(σ) | zoom(µ, ν) = ν′}

= λσ.
∑
ν V (ν) · zoom(µ, ν)(σ)

= λσ.
∑
ν V (ν) · µ(σ)·ν|VS(σ|VS)

µ|VS(σ|VS)

= λσ. µ(σ)
µ|VS(σ|VS) ·

∑
ν V (ν) · ν|VS(σ|VS)

= λσ. µ(σ)
µ|VS(σ|VS) · V |VS(σ|VS) (by Lem. 269)

= λσ. µ(σ)
µ|VS(σ|VS) · µ|VS(σ|VS)

= µ

and

V ′|VS = λν̂ ∈ DVS→R.
∑
ν′{V ′(ν′) | ν′|VS = ν̂}

= λν̂ ∈ DVS→R.
∑
ν′
∑
ν{V (ν) | zoom(µ, ν) = ν′ ∧ ν′|VS = ν̂}

= λν̂ ∈ DVS→R.
∑
ν{V (ν) | zoom(µ, ν)|VS = ν̂}

= λν̂ ∈ DVS→R.
∑
ν{V (ν) | ν|VS = ν̂} (by Lem. 270)

= V |VS.

Lemma 272. For all Q,µ1, µ2, if µ1|fv(Q) = µ2|fv(Q), then µ1 |= Q if and only
if µ2 |= Q.

Proof. by induction on Q. We only prove one direction (if µ1 |= Q then µ2 |= Q)
in each case. The other direction is similar.

– case dqe.
For all µ1, µ2 such that µ1|fv(dqe) = µ2|fv(dqe) and µ1 |= dqe, from fv(dqe) =
fv(q) we have µ1|fv(q) = µ2|fv(q). To prove µ2 |= dqe, we need to prove
σ |= q for all σ ∈ supp(µ2). For all σ ∈ supp(µ2), we have µ2(σ) > 0, thus
µ2|fv(q)(σ|fv(q)) =

∑
σ′{µ2(σ′) | σ′|fv(q) = σ|fv(q)} ≥ µ2(σ) > 0. From

µ1|fv(q) = µ2|fv(q) we know 0 < µ1|fv(q)(σ|fv(q)) =
∑
σ′{µ1(σ′) | σ′|fv(q) =

σ|fv(q)}, so there exists σ′ such that µ1(σ′) > 0 and σ′|fv(q) = σ|fv(q), thus
σ′ ∈ supp(µ1). From µ1 |= dqe we know σ′ |= q. From σ′|fv(q) = σ|fv(q) by
Lem. 255 we have σ |= q.

– case ξ1 < ξ2.
For all µ1, µ2 such that µ1|fv(ξ1<ξ2) = µ2|fv(ξ1<ξ2) and µ1 |= ξ1 < ξ2,
from fv(ξ1 < ξ2) = fv(ξ1) ∪ fv(ξ2) we know fv(ξ1) ⊆ fv(ξ1 < ξ2). From
µ1|fv(ξ1<ξ2) = µ2|fv(ξ1<ξ2) by Lem. 262 we know µ1|fv(ξ1) = µ2|fv(ξ1). By
Lem. 259 we have Jξ1Kµ1

= Jξ1Kµ2
. Similarly we can prove Jξ2Kµ1

= Jξ2Kµ2
.

From µ1 |= ξ1 < ξ2 we know Jξ1Kµ1 < Jξ2Kµ1 , thus Jξ1Kµ2 = Jξ1Kµ1 < Jξ2Kµ1 =
Jξ2Kµ2 .

– case ξ1 = ξ2.
Similar to the case ξ1 < ξ2.

– case ξ1 ≤ ξ2.
Similar to the case ξ1 < ξ2.

– case ¬Q.
IH: for all µ1, µ2, if µ1|fv(Q) = µ2|fv(Q), then µ1 |= Q iff µ2 |= Q.
For all µ1, µ2 such that µ1|fv(¬Q) = µ2|fv(¬Q) and µ1 |= ¬Q, from fv(¬Q) =
fv(Q) we know µ1|fv(Q) = µ2|fv(Q). From µ1 |= ¬Q we know µ1 |= Q does
not hold. By IH we know µ2 |= Q does not hold, thus µ2 |= ¬Q.

– case Q1 ∧Q2.
IH1: for all µ1, µ2, if µ1|fv(Q1) = µ2|fv(Q1), then µ1 |= Q1 iff µ2 |= Q1.
IH2: for all µ1, µ2, if µ1|fv(Q2) = µ2|fv(Q2), then µ1 |= Q2 iff µ2 |= Q2.
For all µ1, µ2 such that µ1|fv(Q1∧Q2) = µ2|fv(Q1∧Q2) and µ1 |= Q1 ∧ Q2,
we know µ1 |= Q1 and µ2 |= Q2. From fv(Q1 ∧Q2) = fv(Q1) ∪ fv(Q2) we
know fv(Q1) ⊆ fv(Q1∧Q2). From µ1|fv(Q1∧Q2) = µ2|fv(Q1∧Q2) by Lem. 262
we know µ1|fv(Q1) = µ2|fv(Q1). From µ1 |= Q1 by IH1 we have µ2 |= Q1.
Similarly we can prove µ2 |= Q2, thus µ2 |= Q1 ∧Q2.

– case Q1 ∨Q2.
IH1: for all µ1, µ2, if µ1|fv(Q1) = µ2|fv(Q1), then µ1 |= Q1 iff µ2 |= Q1.
IH2: for all µ1, µ2, if µ1|fv(Q2) = µ2|fv(Q2), then µ1 |= Q2 iff µ2 |= Q2.
For all µ1, µ2 such that µ1|fv(Q1∨Q2) = µ2|fv(Q1∨Q2) and µ1 |= Q1 ∨Q2, we
know µ1 |= Q1 or µ1 |= Q2. We only prove the case µ1 |= Q1. The other case
is similar. From fv(Q1∨Q2) = fv(Q1)∪fv(Q2) we know fv(Q1) ⊆ fv(Q1∨
Q2). From µ1|fv(Q1∨Q2) = µ2|fv(Q1∨Q2) by Lem. 262 we know µ1|fv(Q1) =
µ2|fv(Q1). From µ1 |= Q1 by IH1 we have µ2 |= Q1, thus µ2 |= Q1 ∨Q2.

– case ∀X.Q.
IH: for all µ1, µ2, if µ1|fv(Q) = µ2|fv(Q), then µ1 |= Q iff µ2 |= Q.
For all µ1, µ2 such that µ1|fv(∀X.Q) = µ2|fv(∀X.Q) and µ1 |= ∀X.Q, from
fv(∀X.Q) = fv(Q)− {X} we know µ1|fv(Q)−{X} = µ2|fv(Q)−{X}. To prove
µ2 |= ∀X.Q, we need to prove µ2{X ; r} |= Q for all r. For all r, from
µ1 |= ∀X.Q we know µ1{X ; r} |= Q. From µ1|fv(Q)−{X} = µ2|fv(Q)−{X}
by Lem. 267 we have µ1{X ; r}|fv(Q) = µ2{X ; r}|fv(Q). From µ1{X ;

r} |= Q by IH we have µ2{X ; r} |= Q.
– case ∃X.Q.

IH: for all µ1, µ2, if µ1|fv(Q) = µ2|fv(Q), then µ1 |= Q iff µ2 |= Q.
For all µ1, µ2 such that µ1|fv(∃X.Q) = µ2|fv(∃X.Q) and µ1 |= ∃X.Q, we know
there exists r such that µ1{X ; r} |= Q. From fv(∀X.Q) = fv(Q)−{X} we
know µ1|fv(Q)−{X} = µ2|fv(Q)−{X}. By Lem. 267 we have µ1{X ; r}|fv(Q) =
µ2{X ; r}|fv(Q). From µ1{X ; r} |= Q by IH we have µ2{X ; r} |= Q,
thus µ2 |= ∃X.Q.

– case Q1 ⊕p Q2.
IH1: for all µ1, µ2, if µ1|fv(Q1) = µ2|fv(Q1), then µ1 |= Q1 iff µ2 |= Q1.
IH2: for all µ1, µ2, if µ1|fv(Q2) = µ2|fv(Q2), then µ1 |= Q2 iff µ2 |= Q2.
For all µ1, µ2 such that µ1|fv(Q1⊕pQ2) = µ2|fv(Q1⊕pQ2) and µ1 |= Q1 ⊕p
Q2, from fv(Q1 ∧ Q2) = fv(Q1) ∪ fv(Q2) we know µ1|fv(Q1)∪fv(Q2) =
µ2|fv(Q1)∪fv(Q2). From µ1 |= Q1 ⊕p Q2 we know there are three cases. We
prove the three cases respectively.
• p = 1 and µ1 |= Q1.

From µ1|fv(Q1)∪fv(Q2) = µ2|fv(Q1)∪fv(Q2) and fv(Q1) ⊆ fv(Q1)∪fv(Q2)
by Lem. 262 we know µ1|fv(Q1) = µ2|fv(Q1). From µ1 |= Q1 by IH1 we
have µ2 |= Q1. From p = 1 we know µ2 |= Q1 ⊕p Q2.

• p = 0 and µ1 |= Q2.
From µ1|fv(Q1)∪fv(Q2) = µ2|fv(Q1)∪fv(Q2) and fv(Q2) ⊆ fv(Q1)∪fv(Q2)
by Lem. 262 we know µ1|fv(Q2) = µ2|fv(Q2). From µ1 |= Q2 by IH1 we
have µ2 |= Q2. From p = 0 we know µ2 |= Q1 ⊕p Q2.

• 0 < p < 1 and there exists µ11 and µ12 such that µ = µ11 ⊕p µ12,
µ11 |= Q1 and µ12 |= Q2.
From µ1|fv(Q1)∪fv(Q2) = µ2|fv(Q1)∪fv(Q2) we know (µ11 ⊕p µ12)|fv(Q1)∪fv(Q2) =
µ2|fv(Q1)∪fv(Q2). By Lem. 268 there exists µ21 and µ22 such that µ2 =
µ21⊕pµ22, µ11|fv(Q1)∪fv(Q2) = µ21|fv(Q1)∪fv(Q2) and µ12|fv(Q1)∪fv(Q2) =
µ22|fv(Q1)∪fv(Q2). From µ11|fv(Q1)∪fv(Q2) =
µ21|fv(Q1)∪fv(Q2) and fv(Q1) ⊆ fv(Q1) ∪ fv(Q2) by Lem. 262 we know
µ11|fv(Q1) = µ21|fv(Q1). From µ11 |= Q1 by IH1 we have µ21 |= Q1. Sim-
ilarly we can prove µ22 |= Q2. From 0 < p < 1 and µ2 = µ21 ⊕p µ22 we
know µ2 |= Q1 ⊕p Q2.

– case Q1 ⊕Q2.
IH1: for all µ1, µ2, if µ1|fv(Q1) = µ2|fv(Q1), then µ1 |= Q1 iff µ2 |= Q1.
IH2: for all µ1, µ2, if µ1|fv(Q2) = µ2|fv(Q2), then µ1 |= Q2 iff µ2 |= Q2.
For all µ1, µ2 such that µ1|fv(Q1⊕Q2) = µ2|fv(Q1⊕Q2) and µ1 |= Q1 ⊕ Q2,
we know there exists p such that µ1 |= Q1 ⊕p Q2. From fv(Q1 ⊕ Q2) =
fv(Q1) ∪ fv(Q2) we know µ1|fv(Q1)∪fv(Q2) = µ2|fv(Q1)∪fv(Q2). To prove

µ2 |= Q1 ⊕ Q2, it suffices to prove µ2 |= Q1 ⊕p Q2. The rest of the proof is
the same as the case Q1 ⊕p Q2.

– case
⊕
Q.

IH: for all µ1, µ2, if µ1|fv(Q) = µ2|fv(Q), then µ1 |= Q iff µ2 |= Q.
For all µ1, µ2 such that µ1|fv(

⊕
Q) = µ2|fv(

⊕
Q) and µ1 |=

⊕
Q, from

fv(
⊕
Q) = fv(Q) we know µ1|fv(Q) = µ2|fv(Q). From µ1 |=

⊕
Q we

know there exists V1 ∈ DDState such that µ1 = V1 and ν |= Q for all
ν ∈ supp(V1). From µ1|fv(Q) = µ2|fv(Q) we have V1|fv(Q) = µ2|fv(Q). By
Lem. 271 there exists V2 ∈ DDState such that µ2 = V2 and V1|fv(Q) = V2|fv(Q).
To prove µ2 |=

⊕
Q, it suffices to prove ν |= Q for all ν ∈ supp(V2). For

all ν ∈ supp(V2), we have V2(ν) > 0, thus V2|fv(Q)(ν|fv(Q)) =
∑
µ{V2(µ) |

µ|fv(Q) = ν|fv(Q)} ≥ V2(ν) > 0. From V1|fv(Q) = V2|fv(Q) we know 0 <
V2|fv(Q)(ν|fv(Q)) = V1|fv(Q)(ν|fv(Q)) =

∑
µ{V1(µ) | µ|fv(Q) = ν|fv(Q)}, so

there exists µ such that V1(µ) > 0 and µ|fv(Q) = ν|fv(Q), thus µ ∈ supp(V1).
From ν |= Q for all ν ∈ supp(V1) we know µ |= Q. From µ|fv(Q) = ν|fv(Q)

by IH we have ν |= Q.

Lemma 273. For all η and R, if Id⇒ R, then η R7→ η.

Proof. For all η and R such that Id ⇒ R, let ψ def
= {((C, σ), (C, σ)) | (C, σ) ∈

supp(η)}, then dom(ψ) = {(C, σ) | (C, σ) ∈ supp(η)} = supp(η) and range(ψ) =
{(C, σ) | (C, σ) ∈ supp(η)} = supp(η). For all ((C, σ), (C ′, σ′)) ∈ ψ, we have
C ′ = C and σ′ = σ, thus (σ, σ′) |= Id. From Id⇒ R we know (σ, σ′) |= R.

Lemma 274. For all η, θ, η′, R, if η ; (θ, η′) and θ ⊆ JRK, then δ(C0) ⊗
η(State) R7→ δ(C0)⊗ η′(State).

Proof. For all η, θ, η′, R such that η ; (θ, η′) and θ ⊆ JRK, we know η′ =

λ(C ′, σ′).
∑
C,σ{η(C, σ)·p | (C, σ)

p−→ (C, σ′)} and θ = {(σ, σ′) | ∃C,C ′. η(C, σ) >

0 ∧ (C, σ)
p−→ (C, σ′) ∧ p > 0}. Let ψ def

= {((C0, σ), (C0, σ
′)) | ∃C,C ′. η(C, σ) >

0 ∧ (C, σ)
p−→ (C ′, σ′) ∧ p > 0}, then

dom(ψ) = {(C, σ) | ∃C ′, σ′. ((C, σ), (C ′, σ′)) ∈ ψ}
= {(C0, σ) | ∃C,C ′, σ′. η(C, σ) > 0 ∧ (C, σ)

p−→ (C, σ′) ∧ p > 0}
= {(C0, σ) | ∃C. (C, σ) ∈ supp(η)}
= {(C0, σ) | σ ∈ range(supp(η))}
= {(C0, σ) | σ ∈ supp(η(State))} (by Lem. 22)
= {(C0, σ) | η(State)(σ) > 0}
= {(C0, σ) | δ(C0)(C0) · η(State)(σ) > 0}
= {(C0, σ) | (δ(C0)⊗ η(State))(C0, σ) > 0}
= supp(δ(C0)⊗ η(State))

and

range(ψ) = {(C ′, σ′) | ∃C, σ. ((C, σ), (C ′, σ′)) ∈ ψ}
= {(C0, σ

′) | ∃C,C ′, σ. η(C, σ) > 0 ∧ (C, σ)
p−→ (C, σ′) ∧ p > 0}

= {(C0, σ
′) | ∃C ′.

∑
C,σ{η(C, σ) · p | (C, σ)

p−→ (C, σ′)} > 0}
= {(C0, σ

′) | ∃C ′.η′(C ′, σ′) > 0}
= {(C0, σ

′) | ∃C ′.(C ′, σ′) ∈ supp(η′)}
= {(C0, σ

′) | σ ∈ range(supp(η′))}
= {(C0, σ

′) | σ ∈ supp(η′
(State)

)} (by Lem. 22)
= {(C0, σ

′) | η′(State)
(σ′) > 0}

= {(C0, σ
′) | δ(C0)(C0) · η′(State)

(σ′) > 0}
= {(C0, σ

′) | (δ(C0)⊗ η′(State)
)(C0, σ

′) > 0}
= supp(δ(C0)⊗ η′(State)

).

For all ((C, σ), (C ′, σ′)) ∈ ψ, we have C ′ = C = C0 and there exists C,C ′

such that η(C, σ) > 0 ∧ (C, σ)
p−→ (C ′, σ′) ∧ p > 0, thus (σ, σ′) ⊆ θ. From

θ ⊆ JRK we know (σ, σ′) ⊆ JRK, thus (σ, σ′) |= R. Therefore, δ(C0)⊗ η(State) R7→

δ(C0)⊗ η′(State).

Lemma 275. For all set A and µ1, µ2 ∈ DA, p ∈ (0, 1), supp(µ1 ⊕p µ2) =
supp(µ1) ∪ supp(µ2).

Proof. For all set A and µ1, µ2 ∈ DA, p ∈ (0, 1), we have

supp(µ1 ⊕p µ2)
= {a | (µ1 ⊕p µ2)(a) > 0}
= {a | p · µ1(a) + (1− p) · µ2(a) > 0}
= {a | µ1(a) > 0 ∨ µ(a) > 0}
= {a | µ1(a) > 0} ∪ {a | µ2(a) > 0}
= supp(µ1) ∪ supp(µ2).

Lemma 276. For all set A and µ1, µ2 ∈ DA, E ∈ A→ Prop, if Pra∼µ1 [E(a)] >
0, Pra∼µ1

[E(a)] > 0 and supp(µ1) ⊆ supp(µ2), then supp(µ1|E) ⊆ supp(µ2|E).

Proof. For all set A and µ1, µ2 ∈ DA, E ∈ A→ Prop such that Pra∼µ1
[E(a)] >

0, Pra∼µ1
[E(a)] > 0 and supp(µ1) ⊆ supp(µ2), we have

supp(µ1|E) = {a | µ1|E(a) > 0}
= {a | χ(E(a))·µ1(a)

Pra′∼µ1 [E(a′)] > 0}
= {a | E(a) ∧ µ1(a) > 0}
= {a | E(a) ∧ a ∈ supp(µ1)}
⊆ {a | E(a) ∧ a ∈ supp(µ2)}
= {a | E(a) ∧ µ2(a) > 0}
= {a | χ(E(a))·µ2(a)

Pra′∼µ2 [E(a′)] > 0}
= {a | µ2|E(a) > 0}
= supp(µ2|E).

Lemma 277. For all η1, η2, if η1
(Stmt)(skip) > 0, η2

(Stmt)(skip) > 0 and
supp(η1) ⊆ supp(η2), then supp(η1|skip) ⊆ supp(η2|skip).

Proof. For all η1, η2, if η1
(Stmt)(skip) > 0, η2

(Stmt)(skip) > 0 and supp(η1) ⊆
supp(η2), by Lem. 2 and we know Pr(C,σ)∼η1 [C = skip] = PrC∼η1(State) [C =

skip] = η1
(Stmt)(skip) > 0 and Pr(C,σ)∼η2 [C = skip] = PrC∼η2(State) [C =

skip] = η2
(Stmt)(skip) > 0. From supp(η1) ⊆ supp(η2) by Lem. 276 we have

supp(η1|λ(C,σ). C=skip) ⊆ supp(η2|λ(C,σ). C=skip), i.e., supp(η1|skip) = supp(η2|skip).

Lemma 278. For all set A and µ1, µ2 ∈ DA, p ∈ [0, 1], µ1 ⊕p µ2 = µ2 ⊕1−p µ1.

Proof. For all set A and µ1, µ2 ∈ DA, p ∈ [0, 1], µ1 ⊕p µ2 = λa. p · µ1(a) + (1−
p) · µ2(a) = λa. (1− p) · µ2(a) + p · µ1(a) = µ2 ⊕1−p µ1.

Lemma 279. For all set A and µ1, µ2, µ3 ∈ DA, p, p′ ∈ (0, 1), (µ1⊕pµ2)⊕p′µ3 =
µ1 ⊕p·p′ (µ2 ⊕ p′(1−p)

1−p·p′
µ3).

Proof. For all set A and µ1, µ2, µ3 ∈ DA, p, p′ ∈ (0, 1),

(µ1 ⊕p µ2)⊕p′ µ3

= λa. p′ · (µ1 ⊕p µ2)(a) + (1− p′)µ3(a)
= λa. p′ · (p · µ1(a) + (1− p) · µ2(a)) + (1− p′)µ3(a)
= λa. p · p′ · µ1(a) + p′(1− p) · µ2(a) + (1− p′)µ3(a)

= λa. p · p′ · µ1(a) + (1− p · p′) · (p
′(1−p)
1−p·p′ · µ2(a) + 1−p′

1−p·p′ · µ3(a))

= λa. p · p′ · µ1(a) + (1− p · p′) · (p
′(1−p)
1−p·p′ · µ2(a) + (1− p′(1−p)

1−p·p′) · µ3(a))

= λa. p · p′ · µ1(a) + (1− p · p′) · (µ2 ⊕ p′(1−p)
1−p·p′

µ3)(a)

= µ1 ⊕p·p′ (µ2 ⊕ p′(1−p)
1−p·p′

µ3).

Lemma 280. For all C and µ, if Nosplit(C), then Nosplit(δ(C)⊗ µ).

Proof. For all C and µ such thatNosplit(C), by Lem. 18 we know supp(δ(C)⊗ µ(Stmt)
) =

supp(δ(C)) = {C}. For all C ′ ∈ supp(δ(C)⊗ µ(Stmt)
), we have C ′ = C. From

Nosplit(C) we know Nosplit(C ′).

Lemma 281. For all η, θ, η′, if Nosplit(η) and η ; (θ, η′), then Nosplit(η′).

Proof. For all η, θ, η′ such that Nosplit(η) and η ; (θ, η′), we have η′ =

λ(C ′, σ′).
∑
C,σ{η(C, σ) · p | (C, σ)

p−→ (C ′, σ)}. For all C ′ ∈ supp(η′
(Stmt)

),
by Lem. 22 we know supp(η′

(Stmt)
) =

range(supp(η′)), thus C ′ ∈ range(supp(η′)), so there exists σ′ such that (C ′, σ′) ∈
supp(η′), i.e.,

∑
C,σ{η(C, σ) · p | (C, σ)

p−→ (C ′, σ)} > 0, thus there exists C and
σ such that η(C, σ) · p > 0 and (C, σ)

p−→ (C ′, σ). From η(C, σ) > 0 we know
(C, σ) ∈ supp(η), so C ∈ range(supp(η)). By Lem. 22 we know range(supp(η)) =
supp(η(Stmt)), thus C ∈ supp(η(Stmt)). From Nosplit(η) we know Nosplit(C).
From (C, σ)

p−→ (C ′, σ) by Lem. 51 we have Nosplit(C ′).

Definition H.49. disablesplit(Q, η) if and only if disablesplit(Q,C) for all
C ∈ supp(η(Stmt)).

Lemma 282. For all η and Q, if Nosplit(η), then disablesplit(Q, η).

Proof. For all η and Q such that Nosplit(η), for all C ∈ supp(η(Stmt)), we have
Nosplit(C), thus disablesplit(Q,C).

Lemma 283. For all η1, η2, p, if Nosplit(η1) and Nosplit(η2), then Nosplit(η1⊕p
η2).

Proof. For all η1, η2, p such that Nosplit(η1) and Nosplit(η2), there are three
cases: p = 0, p = 1 or 0 < p < 1. We prove the three cases respectively.

– p = 0.
η1 ⊕p η2 = η2. From Nosplit(η2) we know Nosplit(η1 ⊕p η2).

– p = 1.
η1 ⊕p η2 = η1. From Nosplit(η1) we know Nosplit(η1 ⊕p η2).

– 0 < p < 1.
By Lem. 11 we know η1 ⊕p η2

(Stmt) = η1
(Stmt)⊕pη2

(Stmt). From 0 < p < 1 we
know supp((η1 ⊕p η2)

(Stmt)
) = supp(η1

(Stmt) ⊕p η2
(Stmt)) = supp(η1

(Stmt)) ∪
supp(η2

(Stmt)). For all C ∈ supp((η1 ⊕p η2)
(Stmt)

), we have C ∈ supp(η1
(Stmt))∪

supp(η2
(Stmt)), thus C ∈ supp(η1

(Stmt)) or C ∈ supp(η2
(Stmt)). If C ∈ supp(η1

(Stmt)),
fromNosplit(η1) we knowNosplit(C). If C ∈ supp(η2

(Stmt)), fromNosplit(η2)
we know Nosplit(C).

Lemma 284 (Soundness of (seq-nst) rule). For all C1, C2, R,G1, G2, I, P,M,Q,
if R ∨ G2, G1, I |=nst {P}C1{M}, R,G2, true |=nst {M}C2{Q}, Nosplit(C2),
closed(Q), Id ⇒ R, Id ⇒ G2, scl(M) and ∀x ∈ fv(I). G2 ⇒ Inv(x), then
R,G1 ∨G2, I |=nst {P}C1;C2{Q}.

Proof. For all C1, C2, R,G1, G2, I, P,M,Q such thatR∨G2, G1, I |=nst {P}C1{M},
R,G2, true |=nst {M}C2{Q}, Nosplit(C2), closed(Q) and ∀x ∈ fv(I).G2 ⇒
Inv(x), to prove R,G1 ∨ G2, I |=nst {P}C1;C2{Q}, we need to prove for all
µ, if µ |= I ∧ P , then (init(C1;C2, µ), R, I) Z=⇒n

nst {P}C1;C2{Q} for all n.
For all µ such that µ |= I ∧ P , from R ∨ G2, G1, I |=nst {P}C1{M} we know
(init(C1, µ), R∨G2, I) Z=⇒m

nst (G1,M) for allm. By Lem. 217 we know init(C1;C2, µ) =
init(C1, µ);C2. For all n, to prove (init(C1;C2, µ), R, I) Z=⇒n

nst {P}C1;C2{Q},
it suffices to prove for all η, if there exists η1 such that η = η1;C2 and (η1, R ∨
G2, I) Z=⇒m

nst (G1,M) for all m, or there exists η1, η2, p such that η = (η1;C2)⊕p
η2, 0 < p < 1, (η2, R, true) Z=⇒n

nst (G2, Q), Nosplit(η2) and (η1 ⊕p (δ(skip) ⊗
η2

(State)), R ∨ G2, I) Z=⇒m
nst (G1,M) for all m, or (η,R, true) Z=⇒n

nst (G2, Q),
η(State) |= I and Nosplit(η), then (η,R, I) Z=⇒n

nst (G1 ∨G2, Q). We prove it by
induction on n.

– base case: n = 0. trivial.

– inductive case: n = k + 1.
IH: for all η, if there exists η1 such that η = η1;C2 and (η1, R∨G2, I) Z=⇒m

nst
(G1,M) for all m, or there exists η1, η2, p such that η = (η1;C2) ⊕p η2,
0 < p < 1, (η2, R, true) Z=⇒n

nst (G2, Q), Nosplit(η2) and (η1 ⊕p (δ(skip) ⊗
η2

(State)), R∨G2, I) Z=⇒m
nst (G1,M) for all m, or (η,R, true) Z=⇒k

nst (G2, Q),
η(State) |= I and Nosplit(η), then (η,R, I) Z=⇒k

nst (G1 ∨G2, Q).
For all η such that there exists η1 such that η = η1;C2 and (η1, R∨G2, I) Z=⇒m

nst
(G1,M) for all m, or there exists η1, η2, p such that η = (η1;C2) ⊕p η2,
0 < p < 1, (η2, R, true) Z=⇒k+1

nst (G2, Q), Nosplit(η2) and (η1 ⊕p (δ(skip)⊗
η2

(State)), R∨G2, I) Z=⇒m
nst (G1,M) for all m, or (η,R, true) Z=⇒k+1

nst (G2, Q),
η(State) |= I and Nosplit(η), we prove the three cases respectively.
• there exists η1 such that η = η1;C2 and (η1, R ∨ G2, I) Z=⇒m

nst (G1,M)
for all m.
To prove (η,R, I) Z=⇒k+1

nst (G1 ∨G2, Q), we need to prove
∗ if η(Stmt)(skip) > 0, then η|skip

(State) |= Q.
η(Stmt)(skip) = η1;C2

(Stmt)(skip) =
∑
σ η1;C2(skip, σ) = 0, which

contradicts with η(Stmt)(skip) > 0.
∗ η(State) |= I.

From (η1, R ∨ G2, I) Z=⇒m
nst (G1,M) for all m by Lem. 241 we

know η1
(State) |= I. By Lem. 201 we have η(State) = η1;C2

(State) =
η1

(State) |= I.

∗ for all η′, if η
R
�
I
η′, then (η′, R, I) Z=⇒k

nst (G1 ∨G2, Q).

For all η′ such that η
R
�
I
η′, from η = η1;C2 we have η1;C2

R
�
I
η′.

By Lem. 209 there exists η′1 such that η′ = η′1;C2 and η1
R
�
I
η′1.

From (η1, R ∨G2, I) Z=⇒m
nst (G1,M) for all m by Lem. 241 we know

(η′1, R ∨G2, I) Z=⇒m
nst (G1,M) for all m. From η′ = η′1;C2 by IH we

have (η′, R, I) Z=⇒k
nst (G1 ∨G2, Q).

∗ for all θ and η′, if η ↪→ (θ, η′), then θ ⊆ JG1 ∨G2K, η′
(State) |= I and

(η′, R, I) Z=⇒k
nst (G1 ∨G2, Q).

For all θ and η′ such that η ↪→ (θ, η′), from η = η1;C2 we have
η1;C2 ↪→ (θ, η′). There are three cases: η1

(Stmt)(skip) = 1, η1
(Stmt)(skip) =

0 or 0 < η1
(Stmt)(skip) < 1. We prove the three cases respectively.

· η1
(Stmt)(skip) = 1.

By Lem. 25 we know η1
(Stmt) = δ(skip). From η1;C2 ↪→ (θ, η′) by

Lem. 210 and Lem. 193 we know θ = {(σ, σ) | σ ∈ supp(η1
(State))} ⊆

JIdK ⊆ JG1 ∨ G2K. and η′ = δ(C2) ⊗ η1
(State). By Lem. 19

we know η′
(State)

= η1
(State) |= I. From (η1, R ∨ G2, I) Z=⇒m

nst
(G1,M) for all m and η(Stmt)(skip) = 1 > 0 by Lem. 241 we
know η1|skip

(State) |= M . From η(Stmt)(skip) = 1 by Lem. 199
we know η1|skip = η1, thus η1

(State) = η1|skip
(State) |= M .

From R,G2, true |=nst {M}C2{Q} and η′ = δ(C2) ⊗ η1
(State) =

init(C2, η1
(State)) we have (η′, R, true) Z=⇒k

nst (G2, Q). FromNosplit(C2)
by Lem. 280 we knowNosplit(δ(C2)⊗η1

(State)), i.e.,Nosplit(η′2).

From (η′, R, true) Z=⇒k
nst (G2, Q), η′(State) |= I and Nosplit(η′2)

by IH we have (η′, R, I) Z=⇒k
nst (G1 ∨G2, Q).

· η1
(Stmt)(skip) = 0.

From η1;C2 ↪→ (θ, η′) by Lem. 215 there exists η′1 such that
η′ = η′1;C2 and η1 ↪→ (θ, η′1). From (η1, R∨G2, I) Z=⇒m

nst (G1,M)

for allm by Lem. 241 we have θ ⊆ JG1K ⊆ JG1∨G2K, η′1
(State) |= I

and (η′1, R ∨ G2, I) Z=⇒m
nst (G1,M) for all m. By Lem. 201 we

know η′
(State)

= η′1;C2
(State)

= η′1
(State) |= I. From η′ = η′1;C2

and (η′1, R ∨ G2, I) Z=⇒m
nst (G1,M) for all m by IH we have

(η′, R, I) Z=⇒k
nst (G1 ∨G2, Q).

· 0 < η1
(Stmt)(skip) < 1.

Let p def
= η1

(Stmt)(skip), then 0 < p < 1. By Lem. 247 there exists
η11 and η12 such that η1 = η11 ⊕p η12, η11

(Stmt)(skip) = 1 and
η12

(Stmt)(skip) = 0. From η11
(Stmt)(skip) = 1 by Lem. 25 we

have η11
(Stmt) = δ(skip). By Lem. 190 we know nextsplit(η11) =

{nextsplit(skip)} = {split(true)}. From 0 < p < 1 by Lem. 243
we know nextsplit(η1)
= nextsplit(η11⊕pη12) = nextsplit(η11)∪nextsplit(η12) ⊇ nextsplit(η11) =
{split(true)}. By Lem. 214 we know nextsplit(η1;C2) = nextsplit(η1) ⊇
{split(true)}. From η1;C2 ↪→ (θ, η′) by Lem. 191 we have η1;C2 ;

(θ, η′). By Lem. 248 we know η1;C2 = (η11⊕pη12);C2 = (η11;C2)⊕p
(η12;C2), thus (η11;C2) ⊕p (η12;C2) ; (θ, η′). From 0 < p < 1
by Lem. 245 there exists θ1, θ2, η

′
1, η
′
2 such that η′ = η′1 ⊕p η′2,

θ = θ1 ∪ θ2, η11;C2 ; (θ1, η
′
1) and η12;C2 ; (θ2, η

′
2). From

η11
(Stmt)(skip) = 1 by Lem. 13 we know η11 = δ(skip)⊗η11

(State).
By Lem. 19 we have η11

(Stmt) = δ(skip). From η11;C2 ↪→ (θ1, η
′
1)

by Lem. 210 and Lem. 193 we know θ1 = {(σ, σ) | σ ∈ supp(η11
(State))} ⊆

JIdK ⊆ JG1 ∨ G2K. and η′ = δ(C2) ⊗ η11
(State). From η12;C2 ↪→

(θ2, η
′
2) by Lem. 215 there exists η′21 such that η′2 = η′21;C2 and

η12 ↪→ (θ2, η
′
21). From η11

(Stmt) = δ(skip) by Lem. 192 we know
η11 ; ({(σ, σ) | σ ∈ supp(η11

(State))}, δ(skip) ⊗ η11
(State)), i.e.,

η11 ; ({(σ, σ) | σ ∈ supp(η11
(State))}, η11). From η12 ↪→ (θ2, η

′
21)

and 0 < p < 1 by Lem. 246 we know η11 ⊕p η12 ; ({(σ, σ) |
σ ∈ supp(η11

(State))} ∪ θ2, η11 ⊕p η′21), i.e., η1 ; ({(σ, σ) | σ ∈
supp(η11

(State))}∪θ2, η11⊕pη′21). From nextsplit(η1) ⊇ {split(true)}
by Lem. 191 we know η1 ↪→ ({(σ, σ) | σ ∈ supp(η11

(State))} ∪
θ2, η11 ⊕p η′21). From (η1, R ∨ G2, I) Z=⇒m

nst (G1,M) for all m
by Lem. 241 we have {(σ, σ) | σ ∈ supp(η11

(State))} ∪ θ2 ⊆ JG1K,
(η11 ⊕p η′21)

(State) |= I and (η11⊕p η′21, R∨G2, I) Z=⇒m
nst (G1,M)

for all m, thus θ2 ⊆ JG1K ⊆ JG1 ∨ G2K. From θ1 ⊆ JG1 ∨ G2K
we have θ = θ1 ∪ θ2 ⊆ JG1 ∨ G2K. From η′ = η′1 ⊕p η′2 =
(δ(C2)⊗η11

(State))⊕p(η′21;C2) by Lem. 12, Lem. 19 and Lem. 201
we know η′

(State)
= (δ(C2)⊗ η11

(State))
(State)⊕p(η′21;C2)

(State)
=

η11
(State)⊕pη′21

(State)
= (η11 ⊕p η′21)

(State). From (η11 ⊕p η′21)
(State) |=

I we have η′(State) |= I. From η′ = (δ(C2)⊗η11
(State))⊕p(η′21;C2)

by Lem. 278 we know η′ = (η′21;C2) ⊕1−p (δ(C2) ⊗ η11
(State)).

From 0 < p < 1 we have 0 < 1 − p < 1. From (η1, R ∨
G2, I) Z=⇒m

nst (G1,M) for all m and η1
(Stmt)(skip) > 0 by

Lem. 241 we have η1|skip
(State) |= M . From η1 = η11 ⊕p η12 by

Lem. 278 we know η1 = η12 ⊕1−p η11. From η12
(Stmt)(skip) = 0

and (η12 ⊕1−p η11)
(Stmt)

(skip) = η1
(Stmt)(skip) > 0 by Lem. 234

we have η1|skip = (η12 ⊕1−p η11)|skip = η11|skip. From η11
(Stmt)(skip) =

1 by Lem. 199 we know η11|skip = η11, thus η1|skip = η11|skip =

η11. From η1|skip
(State) |= M we have η11

(State) |= M . From
R,G2, true |=nst {M}C2{Q} we know (δ(C2)⊗η11

(State), R, true) Z=⇒k
nst

(G2, Q). FromNosplit(C2) by Lem. 280 we haveNosplit(δ(C2)⊗
η11

(State)). By Lem. 278 we know η11 ⊕p η′21 = η′21 ⊕1−p η11.
From (η11 ⊕p η′21, R ∨G2, I) Z=⇒m

nst (G1,M) for all m and η11 =
δ(skip)⊗ η11

(State) we know (η′21⊕1−p (δ(skip)⊗ η11
(State)), R∨

G2, I) Z=⇒m
nst (G1,M) for allm. From η′ = (δ(C2)⊗η11

(State))⊕p
(η′21;C2), 0 < 1 − p < 1, (δ(C2) ⊗ η11

(State), R, true) Z=⇒k
nst

(G2, Q), Nosplit(δ(C2) ⊗ η11
(State)) and (η′21 ⊕1−p (δ(skip) ⊗

η11
(State)), R ∨ G2, I) Z=⇒m

nst (G1,M) for all m by IH we have
(η′, R, I) Z=⇒k

nst (G1 ∨G2, Q).
• there exists η1, η2, p such that η = (η1;C2)⊕pη2, 0 < p < 1, (η2, R, true) Z=⇒k+1

nst
(G2, Q), Nosplit(η2) and (η1 ⊕p (δ(skip)⊗ η2

(State)), R ∨G2, I) Z=⇒m
nst

(G1,M) for all m, to prove (η,R, I) Z=⇒k+1
nst (G1 ∨ G2, Q), we need to

prove
∗ if η(Stmt)(skip) > 0, then η|skip

(State) |= Q.
η1;C2

(Stmt)(skip) =
∑
σ η1;C2(skip, σ) = 0, thus η(Stmt)(skip) =

(η1;C2 ⊕p η2)
(Stmt)

(skip) = p·η1;C2
(Stmt)(skip)+(1−p)·η2

(Stmt)(skip) =
(1−p)·η2

(Stmt)(skip). From η(Stmt)(skip) > 0 we know η2
(Stmt)(skip) >

0. From (η2, R, true) Z=⇒k+1
nst (G2, Q) we know η2|skip

(State) |= Q.
From η1;C2

(Stmt)(skip) = 0 by Lem. 234 we know η|skip = (η1;C2 ⊕p η2)|skip =

η2|skip, thus η|skip
(State) |= Q.

∗ η(State) |= I.
From (η1 ⊕p (δ(skip) ⊗ η2

(State)), R ∨ G2, I) Z=⇒m
nst (G1,M) for all

m we know
(η1 ⊕p (δ(skip)⊗ η2

(State)))
(State) |= I. From

(η1 ⊕p (δ(skip)⊗ η2
(State)))

(State)

= η1
(State) ⊕p (δ(skip)⊗ η2

(State))
(State)

(by Lem. 12)
= η1

(State) ⊕p η2
(State) (by Lem. 19)

= η1;C2
(State) ⊕p η2

(State) (by Lem. 201)
= ((η1;C2)⊕p η2)

(State) (by Lem. 12)
= η(State)

we know η(State) |= I.

∗ for all η′, if η
R
�
I
η′, then (η′, R, I) Z=⇒k

nst (G1 ∨G2, Q).

For all η′ such that η
R
�
I
η′, there exists η′′ and b such that η R7→ η′′,

η′′|b = η′ and η′(State) |= I. From (η1;C2)⊕p η2
R7→ η′ and 0 < p < 1

we know there exists η′′1 , η′′2 , p′′ such that η1;C2
R7→ η′′1 , η2

R7→ η′′2 ,

0 < p′′ < 1 and η′′ = η′′1 ⊕p′′ η′′2 . From η1;C2
R7→ η′′1 by Lem. 203 there

exists η′′11 such that η′′1 = η′′11;C2 and η1
R7→ η′′11, thus η′ = η′′|b =

(η′′1 ⊕p′′ η′′2)|b = (η′′11;C2 ⊕p′′ η′′2)|b. Let p1
def
= JPr(b)Kη′′11(State) and

p2
def
= JPr(b)Kη′′2 (State) , by Lem. 201 we know η′′1 ;C2

(State)
= η′′1

(State),
thus JPr(b)Kη′′11;C2

(State) = JPr(b)Kη′′11(State) = p1. By Lem. 237 we
know JPr(b)Kη′′(State) = JPr(b)Kη′′1⊕p′′η′′2 (State) = p′′ · JPr(b)Kη′′1 (State) +

(1 − p′′) · JPr(b)Kη′′2 (State) = p′′ · p1 + (1− p′) · p2. From η′′|b = η′ by
Lem. 205 we know JPr(b)Kη′′(State) > 0, thus p′′ ·p1 + (1−p′) ·p2 > 0.
There are three cases: p1 = 0 ∧ p2 > 0, p1 > 0 ∧ p2 = 0, or p1 >
0 ∧ p2 > 0. We prove the three cases respectively.
· p1 = 0 ∧ p2 > 0.
From JPr(b)Kη′′11;C2

(State) = p1, JPr(b)Kη′′2 (State) = p2 and 0 < p′′ <

1 by Lem. 238 we know η′ = (η′′1 ;C2 ⊕p′′ η′′2)|b = η′′2 |b. From η2
R7→

η′′2 we know η2
R
�
true

η′. From (η2, R, true) Z=⇒k+1
nst (G2, Q) we have

(η′, R, true) Z=⇒k
nst (G2, Q). From η2

R
�
true

η′ by Lem. 188 we know

supp(η′
(Stmt)

) ⊆ supp(η2
(Stmt)). From Nosplit(η2) by Lem. 239

we knowNosplit(η′). From (η′, R, true) Z=⇒k
nst (G2, Q), η′(Stmt) |=

I and Nosplit(η′) by IH we have (η′, R, I) Z=⇒k
nst (G1 ∨G2, Q).

· p1 > 0 ∧ p2 = 0.
From JPr(b)Kη′′11;C2

(State) = p1, JPr(b)Kη′′2 (State) = p2 and 0 <

p′′ < 1 by Lem. 238 we know η′ = (η′′1 ;C2 ⊕p′′ η′′2)|b = η′′1 ;C2|b.
From JPr(b)Kη′′11(State) = p1 > 0 by Lem. 208 we know η′′1 ;C2|b =

η′′1 |b;C2, thus η′ = η′′1 |b;C2. From η2
R7→ η′′2 by Lem. 178 we know

η2
(State) R7→ η′′2

(State). By Lem. 240 we know δ(skip)⊗η2
(State) R7→

δ(skip)⊗ η′′2
(State). From η1

R7→ η′′11, 0 < p < 1 and 0 < p′′ < 1 by

Lem. 236 we know η1⊕p(δ(skip)⊗η2
(State))

R7→ η′′11⊕p′′ (δ(skip)⊗

η′′2
(State)

). By Lem. 19 we know (δ(skip)⊗ η′′2
(State)

)
(State)

=

η′′2
(State), thus JPr(b)K

(δ(skip)⊗η′′2
(State))

(State) = JPr(b)Kη′′2 (State) =

p2 = 0. From JPr(b)Kη′′11(State) = p1 > 0 and 0 < p′′ < 1 by

Lem. 238 we know (η′′11 ⊕p′′ (δ(skip)⊗ η′′2
(State)

))|b = η′′11|b. By

Lem. 201 we know η′′11|b
(State)

=

(η′′11|b;C2)
(State)

= η′
(State) |= I. From η1⊕p(δ(skip)⊗η2

(State))
R7→

η′′11 ⊕p′′ (δ(skip) ⊗ η′′2
(State)

), (η′′11 ⊕p′′ (δ(skip)⊗ η′′2
(State)

))|b =

η′′11|b and η′′11|b
(State) |= I we know η1 ⊕p (δ(skip)⊗ η2

(State))
R
�
I

η′′11|b. From (η1⊕p (δ(skip)⊗η2
(State)), R∨G2, I) Z=⇒m

nst (G1,M)
for all m by Lem. 241 we know (η′′11|b, R∨G2, I) Z=⇒m

nst (G1,M)
for all m. From η′ = η′′11|b;C2 by IH we have (η′, R, I) Z=⇒k

nst
(G1 ∨G2, Q).
· p1 > 0 ∧ p2 > 0.
Let p′ def

= p′′·p1
p′′·p1+(1−p′′)·p2 , then 0 < p′ < 1. From JPr(b)Kη′′11;C2

(State) =

p1, JPr(b)Kη′′2 (State) = p2 and 0 < p′′ < 1 by Lem. 238 we know
η′ = (η′′11;C2 ⊕p′′ η′′2)|b = (η′′11;C2)|b ⊕p′ η′′2 |b. By Lem. 208 we
know (η′′11;C2)|b = η′′11|b;C, thus η′ = (η′′11;C2)|b ⊕p′ η′′2 |b =

η′′11|b;C2⊕p′η′′2 |b. From η2
R7→ η′′2 by Lem. 178 we know η2

(State) R7→

η′′2
(State). By Lem. 240 we know δ(skip)⊗ η2

(State) R7→ δ(skip)⊗

η′′2
(State). From η1

R7→ η′′11, 0 < p < 1 and 0 < p′′ < 1 by

Lem. 236 we know η1⊕p(δ(skip)⊗η2
(State))

R7→ η′′11⊕p′′ (δ(skip)⊗

η′′2
(State)

). By Lem. 19 we know (δ(skip)⊗ η′′2
(State)

)
(State)

=

η′′2
(State), thus JPr(b)K

(δ(skip)⊗η′′2
(State))

(State) = JPr(b)Kη′′2 (State) =

p2 > 0. From JPr(b)Kη′′11(State) = p1 > 0 and 0 < p′′ < 1 by

Lem. 238 we know (η′′11 ⊕p′′ (δ(skip)⊗ η′′2
(State)

))|b = η′′11|b ⊕p′
(δ(skip)⊗ η′′2

(State)
)|b. From JPr(b)Kη′′2 (State) = p2 > 0 by Lem. 242

and Lem. 206 we know (δ(skip)⊗ η′′2
(State)

)|b = δ(skip)⊗η′′2
(State)|b =

δ(skip)⊗η′′2 |b
(State), thus (η′′11 ⊕p′′ (δ(skip)⊗ η′′2

(State)
))|b = η′′11|b⊕p′

(δ(skip)⊗ η′′2 |b
(State)

). By Lem. 19 and Lem. 201 we know

(η′′11|b ⊕p′ (δ(skip)⊗ η′′2 |b
(State)

))
(State)

= η′′11|b
(State) ⊕p′

(δ(skip)⊗ η′′2 |b
(State)

)
(State)

= (η′′11|b;C2)
(State) ⊕p′ η′′2 |b

(State)
=

(η′′11|b;C2 ⊕p′ η′′2 |b)
(State)

= η′
(State) |= I. From η1 ⊕p (δ(skip) ⊗

η2
(State))

R7→ η′′11 ⊕p′′ (δ(skip)⊗ η′′2
(State)

),

(η′′11 ⊕p′′ (δ(skip)⊗ η′′2
(State)

))|b = η′′11|b⊕p′ (δ(skip)⊗η′′2 |b
(State)

)
and
(η′′11|b ⊕p′ (δ(skip)⊗ η′′2 |b

(State)
))

(State)
|= I we know η1⊕p(δ(skip)⊗

η2
(State))

R
�
I
η′′11|b⊕p′(δ(skip)⊗η′′2 |b

(State)
). From (η1⊕p(δ(skip)⊗

η2
(State)), R ∨ G2, I) Z=⇒m

nst (G1,M) for all m by Lem. 241 we
know (η′′11|b⊕p′ (δ(skip)⊗ η′′2 |b

(State)
), R∨G2, I) Z=⇒m

nst (G1,M)

for allm. From η2
R7→ η′′2 we know η2

R
�
true

η′′2 |b. From (η2, R, true) Z=⇒k+1
nst

(G2, Q) we know (η′′2 |b, R, true) Z=⇒k
nst (G2, Q). From η2

R
�
true

η′′2 |b
by Lem. 188 we know
supp(η′′2 |b

(Stmt)
) ⊆ supp(η2

(Stmt)). FromNosplit(η2) by Lem. 239
we knowNosplit(η′′2 |b). From η′ = η′′11|b;C2⊕p′η′′2 |b, (η′′2 |b, R, true) Z=⇒k

nst

(G2, Q), Nosplit(η′′2 |b) and (η′′11|b⊕p′ (δ(skip)⊗ η′′2 |b
(State)

), R∨
G2, I) Z=⇒m

nst (G1,M) for all m by IH we have (η′, R, I) Z=⇒k
nst

(G1 ∨G2, Q).

∗ for all θ and η′, if η ↪→ (θ, η′), then θ ⊆ JG1 ∨G2K, η′
(State) |= I and

(η′, R, I) Z=⇒k
nst (G1 ∨G2, Q).

For all θ and η′ such that η ↪→ (θ, η′), by Lem. 243 and Lem. 214 we
know we have nextsplit(η) = nextsplit(η1;C2⊕η2) = nextsplit(η1;C2)∪
nextsplit(η2) = nextsplit(η1) ∪ nextsplit(η2) ⊇ nextsplit(η2). From
Nosplit(η2) by Lem. 244 we know nextsplit(η2) = {split(true)},
thus nextsplit(η) ⊇ nextsplit(η2) = {split(true)}. From η ↪→ (θ, η′)
by Lem. 191 we know η ; (θ, η′), thus η1;C2 ⊕p η2 ; (θ, η′), by
Lem. 245 we know there exists η′1, η′2, θ1, θ2 such that η′ = η′1 ⊕p η′2,
θ = θ1∪θ2, η1;C2 ; (θ1, η

′
1) and η2 ; (θ2, η

′
2). There are three cases:

η1
(Stmt)(skip) = 1, η1

(Stmt)(skip) = 0, or 0 < η1
(Stmt)(skip) < 1.

We prove the three cases respectively.

· η1
(Stmt)(skip) = 1.

By Lem. 13 we know η1 = δ(skip) ⊗ η1
(State). By Lem. 18 we

know η1
(Stmt) = δ(skip). From η1;C2 ; (θ1, η

′
1) by Lem. 210

and Lem. 193 we know θ1 = {(σ, σ) | σ ∈ supp(η1
(State))} ⊆ JIdK

and η′1 = δ(C2)⊗ η1
(State). By Lem. 192 we know η1 ; ({(σ, σ) |

σ ∈ supp(η1
(State))}, δ(skip)⊗η1

(State)), i.e., η1 ; (θ1, η1). From
(η1 ⊕p (δ(skip) ⊗ η2

(State)), R ∨G2, I) Z=⇒m
nst (G1,M) for all m

by Lem. 241 we know
(η1 ⊕p (δ(skip)⊗ η2

(State)))
(State) |= I. By Lem. 12 and Lem. 19

we know η1
(State)⊕pη2

(State) = (η1 ⊕p (δ(skip)⊗ η2
(State)))

(State) |=
I. FromNosplit(η2) by Lem. 244 we know nextsplit(η2) = {split(true)}.
From η2 ; (θ2, η

′
2) by Lem. 191 we have η2 ↪→ (θ2, η

′
2). From

(η2, R, true) Z=⇒k+1
nst (G2, Q) we know θ2 ⊆ JG2K and (η′2, R, true) Z=⇒k

nst
(G2, Q), thus θ = θ1 ∪ θ2 ⊆ JIdK ∪ JG2K = JG2K ⊆ JG1 ∨
G2K. From θ2 ⊆ JG2K and ∀x ∈ fv(I). G2 ⇒ Inv(x) we know
∀x ∈ fv(I), (σ, σ′) ∈ θ. σ′(x) = σ(x). From η2 ; (θ2, η

′
2) by

Lem. 249 we know η′2
(State)|fv(I) = η2

(State)|fv(I). From η′ =

η′1 ⊕p η′2 = (δ(C2)⊗ η1
(State))⊕p η′2 by Lem. 12 and Lem. 19 we

know η′
(State)

= (δ(C2)⊗ η1
(State))

(State)⊕pη′2
(State)

= η1
(State)⊕p

η′2
(State). By Lem. 250 we know η′

(State)|fv(I) = (η1
(State) ⊕p η′2

(State)
)|fv(I)

= η1
(State)|fv(I)⊕pη′2

(State)|fv(I) = η1
(State)|fv(I)⊕pη2

(State)|fv(I) =

(η1
(State) ⊕p η2

(State))|fv(I). From η1
(State) ⊕p η2

(State) |= I by

Lem. 272 we know η′
(State) |= I. From (η1⊕p(δ(skip)⊗η2

(State)), R∨
G2, I) Z=⇒m

nst (G1,M) for all m by Lem. 241 we have
(η1 ⊕p (δ(skip)⊗ η2

(State)))|skip
(State) |= M . From 0 < p < 1 by

Lem. 275 we know supp(η1⊕p (δ(skip)⊗η2
(State))) = supp(η1)∪

supp(δ(skip) ⊗ η2
(State)) ⊇ supp(η1). By Lem. 277 and Lem 24

we know supp(η1|skip
(State)

) ⊆
supp((η1 ⊕p (δ(skip)⊗ η2

(State)))|skip
(State)

). From (η1 ⊕p (δ(skip)⊗ η2
(State)))|skip

(State)

|= M and scl(M) we know η1|skip
(State) |= M . From η1

(Stmt)(skip) =

1 by Lem. 199 we know η1|skip = η1, thus η1
(State) = η1|skip

(State) |=
M . FromR,G2, true |=nst {M}C2{Q} we know (δ(C2)⊗η1

(State), R, true) Z=⇒k
nst

(G2, Q). FromNosplit(C2) by Lem. 280 we knowNosplit(δ(C2)⊗
η1

(State)). By Lem. 282 we know disablesplit(true, δ(C2)⊗η1
(State)).

From Nosplit(η2) and η2 ; (θ2, η
′
2) by Lem. 281 we know

Nosplit(η′2). By Lem. 282 we know disablesplit(true, η′2). From
(δ(C2) ⊗ η1

(State), R, true) Z=⇒k
nst (G2, Q), (η′2, R, true) Z=⇒k

nst
(G2, Q), closed(Q), disablesplit(true, δ(C2)⊗ η1

(State)),
disablesplit(true, η′2) and 0 < p < 1 by Lem. 298 we know
((δ(C2) ⊗ η1

(State)) ⊕p η′2, R, true) Z=⇒k
nst (G2, Q). From η′ =

(δ(C2)⊗ η1
(State))⊕p η′2 we know (η′, R, I) Z=⇒k

nst (G2, Q). From
Nosplit(δ(C2)⊗η1

(State)) andNosplit(η′2) by Lem. 283 we know
Nosplit((δ(C2)⊗η1

(State))⊕p2η′2), i.e.,Nosplit(η′). From (η′, R, I) Z=⇒k
nst

(G2, Q), η′(State) |= I andNosplit(η′) by IH we have (η′, R, I) Z=⇒k
nst

(G1 ∨G2, Q).
· η1

(Stmt)(skip) = 0.
From η1

(Stmt)(skip) = 0 and η1;C2 ; (θ1, η
′
1) by Lem. 213

and we know there exists η′11 such that η′1 = η′11;C2 and η1 ;

(θ1, η
′
11), thus η′ = η′1⊕pη′2 = η′11;C2⊕pη′2. By Lem. 192 we know

δ(skip) ⊗ η2
(State) ; ({(σ, σ) | σ ∈ supp(η2

(State))}, δ(skip) ⊗
η2

(State)). From η1 ; (θ1, η
′
11) and 0 < p < 1 by Lem. 246

we know (η1 ⊕p (δ(skip) ⊗ η2
(State))) ; (θ1 ∪ {(σ, σ) | σ ∈

supp(η2
(State))}, η′11 ⊕p (δ(skip) ⊗ η2

(State))). From 0 < p < 1
by Lem. 243 and Lem. 190 we know nextsplit(η1 ⊕p (δ(skip) ⊗
η2

(State))) = nextsplit(η1)∪nextsplit(δ(skip)⊗η2
(State)) ⊇ nextsplit(δ(skip)⊗

η2
(State)) = nextsplit(skip) = {split(true)}. From (η1⊕p(δ(skip)⊗

η2
(State))) ; (θ1∪{(σ, σ) | σ ∈ supp(η2

(State))}, η′11⊕p (δ(skip)⊗
η2

(State))) by Lem. 191 we know (η1 ⊕p (δ(skip)⊗ η2
(State))) ↪→

(θ1 ∪ {(σ, σ) | σ ∈ supp(η2
(State))}, η′11 ⊕p (δ(skip) ⊗ η2

(State))).
From (η1⊕p(δ(skip)⊗η2

(State)), R∨G2, I) Z=⇒m
nst (G1,M) for all

m by Lem. 241 we know θ1∪{(σ, σ) | σ ∈ supp(η2
(State))} ⊆ JG1K,

(η′11 ⊕p (δ(skip)⊗ η2
(State)))

(State) |= I and (η′11 ⊕p (δ(skip) ⊗
η2

(State)), R ∨ G2, I) Z=⇒m
nst (G1,M) for all m, thus θ1 ⊆ θ1 ∪

{(σ, σ) | σ ∈ supp(η2
(State))} ⊆ JG1K. By Lem. 12 and Lem. 19 we

know η′11
(State)⊕pη2

(State) = (η′11 ⊕p (δ(skip)⊗ η2
(State)))

(State) |=
I. FromNosplit(η2) by Lem. 244 we know nextsplit(η2) = {split(true)}.

From η2 ; (θ2, η
′
2) by Lem. 191 we have η2 ↪→ (θ2, η

′
2). From

(η2, R, true) Z=⇒k+1
nst (G2, Q) we know θ2 ⊆ JG2K and (η′2, R, true) Z=⇒k

nst
(G2, Q), thus θ = θ1 ∪ θ2 ⊆ JG1K ∪ JG2K = JG1 ∨ G2K. From
θ2 ⊆ JG2K and ∀x ∈ fv(I). G2 ⇒ Inv(x) we know ∀x ∈
fv(I), (σ, σ′) ∈ θ. σ′(x) = σ(x). From η2 ; (θ2, η

′
2) by Lem. 249

we know η′2
(State)|fv(I) = η2

(State)|fv(I). From η′ = η′11;C2 ⊕p η′2
by Lem. 12 and Lem. 201 we know η′

(State)
= η′11;C2

(State) ⊕p
η′2

(State)
= η′11

(State)⊕pη′2
(State). By Lem. 250 we know η′

(State)|fv(I) =

(η′11
(State) ⊕p η′2

(State)
)|fv(I) = η′11

(State)|fv(I) ⊕p η′2
(State)|fv(I) =

η′11
(State)|fv(I) ⊕p η2

(State)|fv(I) = (η′11
(State) ⊕p η2

(State))|fv(I).
From η′11

(State)⊕p η2
(State) |= I by Lem. 272 we know η′

(State) |=
I. From Id⇒ R ∨G2 by Lem. 273 we know η′11

R∨G27→ η′11. From
η2 ; (θ2, η

′
2) and θ2 ⊆ JG2K ⊆ JR ∨ G2K by Lem. 274 we know

η2
R∨G27→ η′2. By Lem. 178 we know η2

(State) R∨G27→ η′2
(State). By

Lem. 240 we know δ(skip) ⊗ η2
(State) R∨G27→ δ(skip) ⊗ η′2

(State).

From η′11
R7→ η′11 and 0 < p < 1 by Lem. 246 we know (η′11 ⊕p

(δ(skip)⊗η2
(State)))

R7→ η′11⊕p(δ(skip)⊗η′2
(State)

). By Lem. 12 we

know (η′11 ⊕p (δ(skip)⊗ η′2
(State)

))
(State)

= η′11
(State)⊕pη′2

(State)
=

η′
(State) |= I. By Lem. 171 we know (η′11 ⊕p (δ(skip)⊗ η′2

(State)
))|true =

η′11⊕p (δ(skip)⊗η′2
(State)

). From (η′11⊕p (δ(skip)⊗η2
(State)))

R7→

η′11 ⊕p (δ(skip)⊗ η′2
(State)

) and

(η′11 ⊕p (δ(skip)⊗ η′2
(State)

))
(State)

|= I we have (η′11⊕p(δ(skip)⊗
η2

(State)))
R
�
I
η′11⊕p (δ(skip)⊗η′2

(State)
). From (η′11⊕p (δ(skip)⊗

η2
(State)), R ∨ G2, I) Z=⇒m

nst (G1,M) for all m by Lem. 241 we
have (η′11 ⊕p (δ(skip) ⊗ η′2

(State)
), R ∨ G2, I) Z=⇒m

nst (G1,M)
for all m. From Nosplit(η2) and η2 ; (θ2, η

′
2) by Lem. 281

we know Nosplit(η′2). From η′ = η′′11;C2 ⊕p η′2, 0 < p1 < 1,
(η′2, R, true) Z=⇒k

nst (G2, Q), Nosplit(η′2) and (η′11⊕p (δ(skip)⊗
η′2

(State)
), R ∨ G2, I) Z=⇒m

nst (G1,M) for all m by IH we have
(η′, R, I) Z=⇒k

nst (G1 ∨G2, Q).
· 0 < η1

(Stmt)(skip) < 1.
Let p′ def

= η1
(Stmt)(skip), then 0 < p′ < 1. By Lem. 247 there

exists η11, η12 such that η1 = η11 ⊕p′ η12, η11
(Stmt)(skip) = 1

and η12
(Stmt)(skip) = 0, by Lem. 248 we know η1;C2 = (η11 ⊕p′

η12);C2 = η11;C2 ⊕p′ η12;C2. From η1;C2 ; (θ1, η
′
1) we know

η11;C2 ⊕p′ η12;C2 ; (θ1, η
′
1). From 0 < p′ < 1 by Lem. 245

there exists θ11, θ12, η
′
11, η

′
12 such that η′1 = η′11 ⊕p′ η′12, θ1 =

θ11 ∪ θ12, η11;C2 ; (θ11, η
′
11) and η12;C2 ; (θ12, η

′
12). From

η11
(Stmt)(skip) = 1 by Lem. 13 we know η11 = δ(skip)⊗η11

(State).
By Lem. 18 we know η11

(Stmt) = δ(skip). From η11;C2 ; (θ11, η
′
11)

by Lem. 210 and Lem. 193 we know θ11 = {(σ, σ) | σ ∈ supp(η11
(State))} ⊆

JIdK and η′11 = δ(C2) ⊗ η11
(State). By Lem. 192 we know η11 ;

({(σ, σ) | σ ∈ supp(η11
(State))}, δ(skip) ⊗ η11

(State)), i.e., η11 ;

(θ11, η11). From η12
(Stmt)(skip) = 0 and η12;C2 ; (θ12, η

′
12) by

Lem. 213 and we know there exists η′′12 such that η′12 = η′′12;C2

and η12 ; (θ12, η
′′
12). From η11 ; (θ11, η11) and 0 < p′ < 1

by Lem. 246 we know η11 ⊕p′ η12 ; (θ11 ∪ θ12, η11 ⊕p′ η′′12), i.e.,
η1 ; (θ1, η11⊕p′ η′′12). By Lem. 192 we know δ(skip)⊗η2

(State) ;

({(σ, σ) | σ ∈ supp(η2
(State))}, δ(skip) ⊗ η2

(State)). From η1 ;

(θ1, η11 ⊕p′ η′′12) and 0 < p < 1 by Lem. 246 we know (η1 ⊕p
(δ(skip)⊗η2

(State))) ; (θ1∪{(σ, σ) | σ ∈ supp(η2
(State))}, (η11⊕p′

η′′12) ⊕p (δ(skip) ⊗ η2
(State))). From 0 < p < 1 by Lem. 243

and Lem. 190 we know nextsplit(η1 ⊕p (δ(skip) ⊗ η2
(State))) =

nextsplit(η1)∪nextsplit(δ(skip)⊗η2
(State)) ⊇ nextsplit(δ(skip)⊗

η2
(State)) = nextsplit(skip) = {split(true)}. From (η1⊕p(δ(skip)⊗

η2
(State))) ; (θ1 ∪ {(σ, σ) | σ ∈ supp(η2

(State))}, (η11 ⊕p′ η′′12)⊕p
(δ(skip) ⊗ η2

(State))) by Lem. 191 we know (η1 ⊕p (δ(skip) ⊗
η2

(State))) ↪→ (θ1 ∪ {(σ, σ) | σ ∈ supp(η2
(State))}, (η11 ⊕p′ η′′12)⊕p

(δ(skip)⊗η2
(State))). From (η1⊕p(δ(skip)⊗η2

(State)), R∨G2, I) Z=⇒m
nst

(G1,M) for all m by Lem. 241 we know θ1 ∪ {(σ, σ) | σ ∈
supp(η2

(State))} ⊆ JG1K,
((η11 ⊕p′ η′′12)⊕p (δ(skip)⊗ η2

(State)))
(State) |= I and ((η11 ⊕p′

η′′12)⊕p (δ(skip)⊗ η2
(State)),

R ∨ G2, I) Z=⇒m
nst (G1,M) for all m, thus θ1 ⊆ θ1 ∪ {(σ, σ) |

σ ∈ supp(η2
(State))} ⊆ JG1K. By Lem. 12 and Lem. 19 we know

(η11
(State) ⊕p′ η′′12

(State)
)⊕p η2

(State) =

((η11 ⊕p′ η′′12)⊕p (δ(skip)⊗ η2
(State)))

(State) |= I. FromNosplit(η2)
by Lem. 244 we know nextsplit(η2) = {split(true)}. From η2 ;

(θ2, η
′
2) by Lem. 191 we have η2 ↪→ (θ2, η

′
2). From (η2, R, true) Z=⇒k+1

nst
(G2, Q) we know θ2 ⊆ JG2K and (η′2, R, true) Z=⇒k

nst (G2, Q), thus
θ = θ1∪θ2 ⊆ JG1K∪JG2K = JG1∨G2K. From θ2 ⊆ JG2K and ∀x ∈
fv(I). G2 ⇒ Inv(x) we know ∀x ∈ fv(I), (σ, σ′) ∈ θ. σ′(x) =

σ(x). From η2 ; (θ2, η
′
2) by Lem. 249 we know η′2

(State)|fv(I) =

η2
(State)|fv(I). From η′ = η′1 ⊕p η′2 = ((η′11 ⊕p′ η′12) ⊕p η′2) =

(((δ(C2) ⊗ η11
(State)) ⊕p′ η′′12;C2) ⊕p η′2) by Lem. 12 we know

η′
(State)

= (η11
(State) ⊕p′ η′′12

(State)
)⊕p η′2

(State). By Lem. 250 we
know η′

(State)|fv(I) = ((η11
(State) ⊕p′ η′′12

(State)
)⊕p η′2

(State)
)|fv(I) =

((η11
(State) ⊕p′ η′′12

(State)
)|fv(I)⊕pη′2

(State)|fv(I) = ((η11
(State) ⊕p′ η′′12

(State)
)|fv(I)⊕p

η2
(State)|fv(I) = ((η11

(State) ⊕p′ η′′12
(State)

)⊕p η2
(State))|fv(I). From

(η11
(State) ⊕p′ η′′12

(State)
) ⊕p η2

(State) |= I by Lem. 272 we know
η′

(State) |= I. From Id ⇒ R ∨ G2 by Lem. 273 we know η11 ⊕p′

η′′12
R∨G27→ η11 ⊕p′ η′′12. From η2 ; (θ2, η

′
2) and θ2 ⊆ JG2K ⊆

JR ∨ G2K by Lem. 274 we know η2
R∨G27→ η′2. By Lem. 178 we

know η2
(State) R∨G27→ η′2

(State). By Lem. 240 we know δ(skip) ⊗

η2
(State) R∨G27→ δ(skip)⊗ η′2

(State). From η11 ⊕p′ η′′12
R∨G27→ η11 ⊕p′

η′′12 and 0 < p < 1 by Lem. 246 we know ((η11 ⊕p′ η12) ⊕p
(δ(skip)⊗η2

(State)))
R∨G27→ (η11⊕p′η′′12)⊕p(δ(skip)⊗η′2

(State)
). By

Lem. 12 we know ((η11 ⊕p′ η′′12)⊕p (δ(skip)⊗ η′2
(State)

))
(State)

=

(η11
(State)⊕p′ η′′12

(State)
)⊕p η′2

(State)
= η′

(State) |= I. By Lem. 171
we know ((η11 ⊕p′ η′′12)⊕p (δ(skip)⊗ η′2

(State)
))|true = (η11 ⊕p′

η′′12) ⊕p (δ(skip) ⊗ η′2
(State)

). From ((η11 ⊕p′ η12) ⊕p (δ(skip) ⊗
η2

(State)))
R∨G27→ (η11 ⊕p′ η′′12)⊕p (δ(skip)⊗ η′2

(State)
) and

((η11 ⊕p′ η′′12)⊕p (δ(skip)⊗ η′2
(State)

))
(State)

|= I we have ((η11⊕p′

η12) ⊕p (δ(skip) ⊗ η2
(State)))

R∨G2

�
I

(η11 ⊕p′ η′′12) ⊕p (δ(skip) ⊗

η′2
(State)

). From ((η11⊕p′η′′12)⊕p(δ(skip)⊗η2
(State)), R∨G2, I) Z=⇒m

nst

(G1,M) for allm by Lem. 241 we have ((η11 ⊕p′ η′′12)⊕p (δ(skip)⊗ η2
(State)))|skip

(State) |=
M and ((η11 ⊕p′ η′′12) ⊕p (δ(skip) ⊗ η′2

(State)
), R ∨ G2, I) Z=⇒m

nst
(G1,M) for all m. From 0 < p < 1 and 0 < p′ < 1 by Lem. 275
we know supp((η11⊕p′ η′′12)⊕p (δ(skip)⊗η2

(State))) = supp(η11)∪
supp(η′′12) ∪ supp(δ(skip)⊗ η2

(State))) ⊇ supp(η11). By Lem. 277
and Lem 24 we know supp(η11|skip

(State)
) ⊆

supp(((η11 ⊕p′ η′′12)⊕p (δ(skip)⊗ η2
(State)))|skip

(State)
). From

((η11 ⊕p′ η′′12)⊕p (δ(skip)⊗ η2
(State)))|skip

(State) |= M and scl(M)

we know η11|skip
(State) |= M . From η11

(Stmt)(skip) = 1 by Lem. 199
we know η11|skip = η11, thus η11

(State) = η11|skip
(State) |= M .

FromR,G2, true |=nst {M}C2{Q} we know (δ(C2)⊗η11
(State), R, true)

Z=⇒k
nst (G2, Q). Let p1

def
= p · (1− p′) and p2

def
= p·p′

1−p·(1−p′) . From
0 < p < 1 and 0 < p′ < 1 we know 0 < p1 < 1 and 0 < p2 < 1.
By Lem. 278 and Lem. 279 we know η′ = (((δ(C2)⊗η11

(State))⊕p′
η′′12;C2) ⊕p η′2) = ((η′′12;C2 ⊕1−p′ (δ(C2) ⊗ η11

(State))) ⊕p η′2) =
η′′12;C2 ⊕p1 ((δ(C2) ⊗ η11

(State)) ⊕p2 η′2). From Nosplit(C2) by
Lem. 280 we know Nosplit(δ(C2)⊗ η11

(State)). By Lem. 282 we
know disablesplit(true, δ(C2) ⊗ η11

(State)). From Nosplit(η2)
and η2 ; (θ2, η

′
2) by Lem. 281 we knowNosplit(η′2). By Lem. 282

we know disablesplit(true, η′2). From (δ(C2)⊗η11
(State), R, true) Z=⇒k

nst
(G2, Q), (η′2, R, true) Z=⇒k

nst (G2, Q), closed(Q), disablesplit(true, δ(C2)⊗
η11

(State)),
disablesplit(true, η′2) and 0 < p2 < 1 by Lem. 298 we know
((δ(C2)⊗η11

(State))⊕p2η′2, R, true) Z=⇒k
nst (G2, Q). FromNosplit(δ(C2)⊗

η11
(State)) andNosplit(η′2) by Lem. 283 we knowNosplit((δ(C2)⊗

η11
(State))⊕p2 η′2). From η11 = δ(skip)⊗ η11

(State) we know

(η11 ⊕p′ η′′12)⊕p (δ(skip)⊗ η′2
(State)

)

= ((δ(skip)⊗ η11)⊕p′ η′′12)⊕p (δ(skip)⊗ η′2
(State)

)

= (η′′12 ⊕1−p′ (δ(skip)⊗ η11))⊕p (δ(skip)⊗ η′2
(State)

) (by Lem. 278)
= η′′12 ⊕p1 ((δ(skip)⊗ η11

(State))⊕p2 (δ(skip)⊗ η′2
(State)

)) (by Lem. 279)
= η′′12 ⊕p1 (δ(skip)⊗ (η11

(State) ⊕p2 η′2
(State)

)) (by Lem.14)
= η′′12 ⊕p1 (δ(skip)⊗ ((δ(C2)⊗ η11

(State))
(State) ⊕p2 η′2

(State)
) (by Lem. 19)

= η′′12 ⊕p1 (δ(skip)⊗ ((δ(C2)⊗ η11
(State))⊕p2 η′2)

(State)
). (by Lem. 12)

From ((η11 ⊕p′ η′′12) ⊕p (δ(skip) ⊗ η′2
(State)

), R ∨ G2, I) Z=⇒m
nst

(G1,M) for allm we know (η′′12⊕p1(δ(skip)⊗((δ(C2)⊗ η11
(State))⊕p2 η′2)

(State)
), R∨

G2, I) Z=⇒m
nst (G1,M) for all m. From η′ = η′′12;C2⊕p1 ((δ(C2)⊗

η11
(State))⊕p2η′2), 0 < p1 < 1, ((δ(C2)⊗η11

(State))⊕p2η′2, R, true) Z=⇒k
nst

(G2, Q) and Nosplit((δ(C2)⊗ η11
(State))⊕p2 η′2) by IH we have

(η′, R, I) Z=⇒k
nst (G1 ∨G2, Q).

• (η,R, true) Z=⇒k+1
nst (G2, Q), η(State) |= I and Nosplit(η).

To prove (η,R, I) Z=⇒k+1
nst (G1 ∨G2, Q), we need to prove

∗ if η(Stmt)(skip) > 0, then η|skip
(State) |= Q.

From (η,R, true) Z=⇒k+1
nst (G2, Q) and η(Stmt)(skip) > 0 we know

η|skip
(State) |= Q.

∗ η(State) |= I.
By assumption.

∗ for all η′, if η
R
�
I
η′, then (η′, R, I) Z=⇒k

nst (G1 ∨G2, Q).

For all η′ such that η
R
�
I
η′, there exists η′′ and b such that η R7→ η′′,

η′′|b = η′ and η′(State) |= I, thus η
R
�
true

η′. From (η,R, true) Z=⇒k+1
nst

(G2, Q) we know (η′, R, true) Z=⇒k
nst (G2, Q). From η

R
�
I

η′ by

Lem. 188 we know η′
(Stmt) ⊆ η(Stmt). From Nosplit(η) by Lem. 239

we knowNosplit(η′). From (η′, R, true) Z=⇒k
nst (G2, Q), η′(State) |= I

and Nosplit(η′) by IH we have (η′, R, I) Z=⇒k
nst (G1 ∨G2, Q).

∗ for all θ and η′, if η ↪→ (θ, η′), then θ ⊆ JG1 ∨G2K, η′
(State) |= I and

(η′, R, I) Z=⇒k
nst (G1 ∨G2, Q).

For all θ and η′ such that η ↪→ (θ, η′), from (η,R, true) Z=⇒k+1
nst

(G2, Q) we know θ ⊆ JG2K ⊆ JG1 ∨G2K, (η′, R, true) Z=⇒k
nst (G2, Q).

From Nosplit(η) by Lem. 244 we know nextsplit(η) = {split(true)}.
From η ↪→ (θ, η′) by Lem. 191 we have η ; (θ, η′). From θ ⊆ JG2K
and ∀x ∈ fv(I). G2 ⇒ Inv(x) we know ∀x ∈ fv(I), (σ, σ′) ∈
θ. σ′(x) = σ(x). By Lem. 249 we know η′

(State)|fv(I) = η(State)|fv(I).
From η(State) |= I by Lem. 272 we know η′

(State) |= I. FromNosplit(η)

and η ; (θ, η′) by Lem. 281 we knowNosplit(η′). From (η′, R, true) Z=⇒k
nst

(G2, Q), η′(State) |= I andNosplit(η′) by IH we have (η′, R, I) Z=⇒k
nst

(G1 ∨G2, Q).

Lemma 285. For all η, if 0 < JPr(b)Kη(State) < 1, then there exists η1 and η2

such that η = η1 ⊕JPr(b)K
η(State)

η2, η1
(State) |= dbe and η2

(State) |= d¬be.

Proof. For all η such that 0 < JPr(b)Kη(State) < 1, let η1
def
= λ(C, σ).χ(σ|=b)·η(C,σ)

JPr(b)K
η(State)

and η2
def
= λ(C, σ). χ(σ 6|=b)·η(C,σ)

1−JPr(b)K
η(State)

, then

η1 ⊕JPr(b)K
η(State)

η2

= λ(C, σ). JPr(b)Kη(State) · η1(C, σ) + (1− JPr(b)Kη(State)) · η2(C, σ)

= λ(C, σ). JPr(b)Kη(State) · χ(σ|=b)·η(C,σ)
JPr(b)K

η(State)
+ (1− JPr(b)Kη(State)) · χ(σ 6|=b)·η(C,σ)

1−JPr(b)K
η(State)

= λ(C, σ). χ(σ |= b) · η(C, σ) + χ(σ 6|= b) · η(C, σ)
= λ(C, σ). η(C, σ)
= η.

For all σ ∈ supp(η1
(State)), by Lem. 22 we know supp(η1

(State)) = range(supp(η1)),
thus σ ∈ range(supp(η1)), so there exists C such that η1(C, σ) > 0, i.e., χ(σ|=b)·η(C,σ)

JPr(b)K
η(State)

>

0, so σ |= b. Therefore η1
(State) |= dbe.

For all σ ∈ supp(η2
(State)), by Lem. 22 we know supp(η2

(State)) = range(supp(η2)),
thus σ ∈ range(supp(η2)), so there exists C such that η2(C, σ) > 0, i.e., χ(σ 6|=b)·η(C,σ)

1−JPr(b)K
η(State)

>

0, so σ 6|= b, i.e., σ |= ¬b. Therefore η2
(State) |= dbe.

Lemma 286. For all Q,C, µ, if disablesplit(Q,C), then disablesplit(Q, δ(C)⊗
µ).

Proof. For allQ,C, µ such that disablesplit(Q,C), To prove disablesplit(Q, δ(C)⊗
µ), we need to prove disablesplit(Q,C ′) for all C ′ ∈ supp((δ(C)⊗ µ)

(State)
). For

all C ′ ∈ supp((δ(C)⊗ µ)
(Stmt)

), by Lem. 18 we know (δ(C)⊗ µ)
(Stmt)

= δ(C),
thus C ′ ∈ supp(δ(C)) = {C}, so C ′ = C. From disablesplit(Q,C) we have
disablesplit(Q,C ′).

Lemma 287. For all η and b, η|skip exists if and only if η(Stmt)(skip) > 0.

Proof. For all η, by definition of η|skip we know η|skip exists if and only if
η|λ(C,σ). C=skip exists. By Eqn. 2.2 we know η|λ(C,σ). C=skip exists if and only if
Pr(C,σ)∼W [C = skip] > 0, i.e., η(Stmt)(skip) > 0. Therefore, η|skip exists if and
only if η(Stmt)(skip) > 0.

Lemma 288. For all η1, η2, p, if 0 < p < 1, η1
(Stmt)(skip) = p1, and η2

(Stmt)(skip) =

p2, then (η1 ⊕p η2)|skip =

η1|skip ⊕ p·p1

p·p1+(1−p)·p2
η2|skip, if p1 > 0 ∧ p2 > 0

η1|skip, if p1 > 0 ∧ p2 = 0

η2|skip, if p1 = 0 ∧ p2 > 0

undefined, otherwise.

Proof. For all η1, η2, p, b such that 0 < p < 1, η1
(Stmt)(skip) = p1 and η2

(Stmt)(skip) =
p2, we prove the four cases respectively.

– p1 > 0 ∧ p2 > 0.
By Lem. 12 we know (η1 ⊕p η2)

(Stmt)
(skip) = (η1

(Stmt)⊕p η2
(Stmt))(skip) =

p · η1
(Stmt)(skip) + (1− p) · η2

(Stmt)(skip) = p · p1 + (1− p) · p2 > 0, thus

(η1 ⊕p η2)|skip

= λ(C, σ).
χ(C=skip)·(η1⊕pη2)(skip,σ)

(η1⊕pη2)(Stmt)(skip)
(by Lem. 165)

= λ(C, σ). χ(C=skip)·(p·η1(skip,σ)+(1−p)·η2(skip,σ))
p·p1+(1−p)·p2

= λ(C, σ). p·p1
p·p1+(1−p)·p2 ·

χ(C=skip)·η1(skip,σ)
p1

+ (1−p)·p2
p·p1+(1−p)·p2 ·

χ(C=skip)·η2(skip,σ)
p2

= λ(C, σ). p·p1
p·p1+(1−p)·p2 ·

χ(C=skip)·η1(skip,σ)
η1(Stmt)(skip)

+ (1− p·p1
p·p1+(1−p)·p2) · χ(C=skip)·η2(skip,σ)

η1(Stmt)(skip)

= λ(C, σ). p·p1
p·p1+(1−p)·p2 · η1|skip(C, σ) + (1− p·p1

p·p1+(1−p)·p2) · η1|skip(C, σ) (by Lem. 165)
= η1|skip ⊕ p·p1

p·p1+(1−p)·p2
η2|skip.

– p1 > 0 ∧ p2 = 0.
By Lem. 12 we know (η1 ⊕p η2)

(Stmt)
(skip) = (η1

(Stmt)⊕p η2
(Stmt))(skip) =

p · η1
(Stmt)(skip) + (1− p) · η2

(Stmt)(skip) = p · p1 + (1− p) · p2 = p · p1 > 0.
From 0 = p2 = η2

(Stmt)(skip) =
∑
σ η2(skip, σ) we know η2(skip, σ) = 0

for all σ, thus

(η1 ⊕p η2)|skip

= λ(C, σ).
χ(C=skip)·(η1⊕pη2)(skip,σ)

JPr(b)K
(η1⊕pη2)(State)

(by Lem. 165)

= λ(C, σ). χ(C=skip)·(p·η1(skip,σ)+(1−p)·η2(skip,σ))
p·p1

= λ(C, σ). χ(C=skip)·p·η1(skip,σ)
p·p1

= λ(C, σ). χ(C=skip)·η1(skip,σ)
η1(Stmt)(skip)

= η1|skip. (by Lem. 165)

– p1 = 0 ∧ p2 > 0.
By Lem. 12 we know (η1 ⊕p η2)

(Stmt)
(skip) = (η1

(Stmt)⊕p η2
(Stmt))(skip) =

p·η1
(Stmt)(skip)+(1−p)·η2

(Stmt)(skip) = p·p1 +(1−p)·p2 = (1−p)·p2 > 0.
From 0 = p1 = η1

(Stmt)(skip) =
∑
σ η1(skip, σ) we know η1(skip, σ) = 0

for all σ, thus

(η1 ⊕p η2)|skip

= λ(C, σ).
χ(C=skip)·(η1⊕pη2)(skip,σ)

JPr(b)K
(η1⊕pη2)(State)

(by Lem. 165)

= λ(C, σ). χ(C=skip)·(p·η1(skip,σ)+(1−p)·η2(skip,σ))
p·p1

= λ(C, σ). χ(C=skip)·(1−p)·η2(skip,σ)
(1−p)·p2

= λ(C, σ). χ(C=skip)·η2(skip,σ)
η2(Stmt)(skip)

= η2|skip. (by Lem. 165)

– p1 = 0 ∧ p2 = 0.
By Lem. 12 we know (η1 ⊕p η2)

(Stmt)
(skip) = (η1

(Stmt)⊕p η2
(Stmt))(skip) =

p · η1
(Stmt)(skip) + (1 − p) · η2

(Stmt)(skip) = p · p1 + (1 − p) · p2 = 0. By
Lem. 287 we know (η1 ⊕p η2)|skip = undefined.

Lemma 289. For all η,R, η′,q, if η R7→ η′, η(State) |= dqe and sta(q, R), then

η′
(State) |= dqe.

Proof. For all η,R, η′,q such that η R7→ η′, η(State) |= dqe and sta(q, R), from

η
R7→ η′ by Lem. 178 we know η(State) R7→ η′

(State), so there exists θ such that

dom(θ) = η(State), range(θ) = η′
(State) and θ ⊆ JRK. To prove η′(State) |= dqe,

we need to prove for all σ′ ∈ supp(η′
(State)

), σ |= q. For all σ′ ∈ supp(η′
(State)

),
from range(θ) = η′

(State) we have σ′ ∈ range(θ), thus there exists σ such that
(σ, σ′) ∈ θ, so σ ∈ supp(θ). From dom(θ) = η(State) we know σ ∈ η(State). From
η(State) |= dqe we have σ |= q. From (σ, σ′) ∈ θ and θ ⊆ JRK we know (σ, σ′) |= R.
From σ |= q and sta(q, R) we have σ′ |= q.

Lemma 290. For all Q, η, η′, if disablesplit(Q, η) and supp(η′
(Stmt)

) ⊆ supp(η(Stmt)),
then disablesplit(Q, η′).

Proof. For allQ, η, η′ such that disablesplit(Q, η) and supp(η′
(Stmt)

) ⊆ supp(η(Stmt)),
to prove disablesplit(Q, η′), we need to prove disablesplit(Q,C) for all C ∈
supp(η′

(Stmt)
). For all C ∈ supp(η′

(Stmt)
), from supp(η′

(Stmt)
) ⊆ supp(η(Stmt)) we

know C ∈ supp(η(Stmt)). From disablesplit(Q, η) we know disablesplit(Q,C).

Lemma 291. For all Q, η, θ, η′, if disablesplit(Q, η) and η(State) |= Q, then
η ; (θ, η′) if and only if η ↪→ (θ, η′).

Proof. For all Q, η, θ, η′ such that disablesplit(Q, η) and η(State) |= Q, there are
two cases: nextsplit(η) = {split(b1, . . . , bk)} or #nextsplit(η) > 1. we prove the
two cases respectively.

– nextsplit(η) = {split(b1, . . . , bk)}.
There exists C and σ such that (C, σ) ∈ supp(η) and nextsplit(C) = {split(b1, . . . , bk)}.
From (C, σ) ∈ supp(η) we know C ∈ dom(supp(η)), by Lem. 21 we know
dom(supp(η)) = supp(η(Stmt)), so C ∈ supp(η(Stmt)). From disablesplit(Q, η)
we know disablesplit(Q,C). From nextsplit(C) = {split(b1, . . . , bk)} we
know disablesplit(Q, split(b1, . . . , bk)), thus there exists i such that Q ⇒
dbie. From η′

(State) |= Q we know η′
(State) |= dbie. To prove η ; (θ, η′) if and

only if η ↪→ (θ, η′), we prove the two directions respectively.
• if η ; η′, from η′

(State) |= Q By Lem. 171 we know η′|true = η′. From
η ; η′, nextsplit(η) = {split(true)} and η′|true = η′ we have η ↪→ η′.

• nextsplit(η) ⊃ {split(true)}.
#nextsplit(η) > 1, so η

t
↪→ η′.

– if η ↪→ η′, there are two cases.
• case 1: there exists η′′, b1, . . . , bk, i such that η ; η′′, nextsplit(η) =
{split(b1, . . . , bk)} and η′′|bi = η′.
From nextsplit(η) ⊇ {split(true)} we know k = i = 1, b1 = true. By
Lem. 171 we know η′′|true = η′′, so η′ = η′′|bi = η′′|true = η′′. From
η ; η′′ we have η ; η′.

• case 2: #nextsplit(η) > 1 and η ; η′. trivial.

Lemma 292. For all Q,C, σ, p, C ′, σ′, if disablesplit(Q,C) and (C, σ)
p−→ (C ′, σ′),

then disablesplit(Q,C ′).

Proof. For allQ,C, σ, p, C ′, σ′ such that disablesplit(Q,C) and (C, σ)
p−→ (C ′, σ′),

we prove disablesplit(Q,C ′) by induction on the derivation of (C, σ)
p−→ (C ′, σ′).

– case 1: C = C ′ = skip, σ = σ′, p = 1.
From disablesplit(Q, skip) we know disablesplit(Q,C ′).

– case 2: C = x := e, C ′ = skip, σ′ = σ{x; JeKσ}, p = 1.
From disablesplit(Q, skip) we know disablesplit(Q,C ′).

– case 3: C = skip;C2, C
′ = C2, σ = σ′, p = 1.

From disablesplit(Q,C) we know disablesplit(Q,C2), i.e., disablesplit(Q,C ′).
– case 4: C = C1;C2, C1 6= skip, C ′ = C ′1;C2, (C1, σ)

p−→ (C ′1, σ
′).

IH: if disablesplit(Q,C1) then disablesplit(Q,C ′1).
From disablesplit(Q,C) we know disablesplit(Q,C1) and disablesplit(Q,C2).
From disablesplit(Q,C1) by IH we have disablesplit(Q,C ′1). From disablesplit(Q,C2)
we have disablesplit(Q,C ′1;C2), i.e., disablesplit(Q,C ′).

– case 5: C = if (b) then C1 else C2, JbKσ = tt, C ′ = C1, σ
′ = σ, p = 1.

From disablesplit(Q,C) we know disablesplit(Q,C1), i.e., disablesplit(Q,C ′).
– case 6: C = if (b) then C1 else C2, JbKσ = ff, C ′ = C2, σ

′ = σ, p = 1.
From disablesplit(Q,C) we know disablesplit(Q,C2), i.e., disablesplit(Q,C ′).

– case 7: C = while (b) do C1, JbKσ = tt, C ′ = C1;while (b) do C1, σ
′ =

σ, p = 1.
From disablesplit(Q,C) we know disablesplit(Q,C1), thus disablesplit(Q,C1;while (b) do C1),
i.e., disablesplit(Q,C ′).

– case 8: C = while (b) do C1, JbKσ = ff, C ′ = skip, σ′ = σ, p = 1.
From disablesplit(Q, skip) we know disablesplit(Q,C ′).

– case 9: C = 〈C1〉, C ′ = skip.
From disablesplit(Q, skip) we know disablesplit(Q,C ′).

– case 10: C = 〈C1〉 sp, C ′ = skip, (〈C1〉, σ)
p−→ (skip, σ′).

From disablesplit(Q, skip) we know disablesplit(Q,C ′).
– case 11: C = 〈C1〉 ⊕p′ 〈C2〉, C ′ = 〈C1〉, σ = σ′, p = p′.

From disablesplit(Q, 〈C1〉) we know disablesplit(Q,C ′).
– case 12: C = 〈C1〉 ⊕p′ 〈C2〉, C ′ = 〈C2〉, σ = σ′, p = 1− p′.

From disablesplit(Q, 〈C2〉) we know disablesplit(Q,C ′).

Lemma 293. For all Q, η, θ, η′, if disablesplit(Q, η) and η ; (θ, η′), then
disablesplit(Q, η′).

Proof. For all Q, η, θ, η′ such that disablesplit(Q, η) and η ; (θ, η′), to prove
disablesplit(Q, η′), we need to prove disablesplit(Q,C ′) for all C ′ ∈ supp(η′

(Stmt)
).

By Lem. 21 we know supp(η′
(Stmt)

) = dom(supp(η′)). For all C ′ ∈ supp(η′
(Stmt)

),
we have C ′ ∈ dom(supp(η′)), so there exists σ′ such that (C ′, σ′) ∈ supp(η′),
i.e., η′(C ′, σ′) > 0. From η ; (θ, η′) we know η′(C ′, σ′) =

∑
C,σ{η(C, σ) · p |

(C, σ)
p−→ (C ′, σ′)} > 0, thus there exists C and σ such that η(C, σ) > 0,

p > 0 and (C, σ)
p−→ (C ′, σ′). From η(C, σ) > 0 we know (C, σ) ∈ supp(η),

so C ∈ dom(supp(η)). By Lem. 21 we know dom(supp(η)) = supp(η(Stmt)), thus
C ∈ supp(η(Stmt)). From disablesplit(Q, η) we know disablesplit(Q,C). From
(C, σ)

p−→ (C ′, σ′) by Lem. 292 we have disablesplit(Q,C ′).

Lemma 294. For all Q, η,C2, if disablesplit(Q, η) and disablesplit(Q,C2),
then disablesplit(Q, η;C2).

Proof. For all Q, η,C2 such that disablesplit(Q, η) and disablesplit(C2), to
prove disablesplit(Q, η;C2), we need to prove disablesplit(Q,C) for all C ∈
supp(η;C2

(Stmt)). By Lem. 21 we know supp(η;C2
(Stmt)) = dom(supp(η;C2))

and supp(η(Stmt)) = dom(supp(η)). For all C ∈ supp(η;C2
(Stmt)), we have C ∈

dom(supp(η;C2)), so there exists σ such that (C, σ) ∈ supp(η;C2), i.e., η;C2(C, σ) >
0, thus there exists C1 such that C = C1;C2 and η(C1, σ) > 0, i.e., (C1, σ) ∈
supp(η), so C1 ∈ dom(supp(η)). From supp(η(Stmt)) = dom(supp(η)) we know
C1 ∈ supp(η(Stmt)). From disablesplit(Q, η) we know disablesplit(Q,C1). From
disablesplit(Q,C2) we have disablesplit(Q,C1;C2), i.e., disablesplit(Q,C).

Lemma 295. For all Q, η1, η2, p, if disablesplit(Q, η1) and disablesplit(Q, η2),
then disablesplit(Q, η1 ⊕p η2).

Proof. For all Q, η1, η2, p such that disablesplit(Q, η1) and disablesplit(Q, η2),
there are three cases: p = 0, p = 1 or 0 < p < 1. We prove the three cases
respectively.

– p = 0.
η1⊕pη2 = η1⊕0η2 = η2. From disablesplit(Q, η2) we know disablesplit(Q, η1⊕p
η2).

– p = 1.
η1⊕pη2 = η1⊕1η2 = η1. From disablesplit(Q, η1) we know disablesplit(Q, η1⊕p
η2).

– 0 < p < 1.
To prove disablesplit(Q, η1⊕p η2), we need to prove disablesplit(Q,C) for
all C ∈ supp((η1 ⊕p η2)

(Stmt)
). From 0 < p < 1 by Lem. 11 and Lem. 275 we

know supp((η1 ⊕p η2)
(Stmt)

) = supp(η1
(Stmt) ⊕p η2

(Stmt)) = supp(η1
(Stmt)) ∪

supp(η1
(Stmt)). For all C ∈ supp((η1 ⊕p η2)

(Stmt)
), we have C ∈ supp(η1

(Stmt))∪
supp(η1

(Stmt)). There are two cases: C ∈ supp(η1
(Stmt)) or C ∈ supp(η2

(Stmt)).
If C ∈ supp(η1

(Stmt)), from disablesplit(Q, η1) we know disablesplit(Q,C).
If C ∈ supp(η2

(Stmt)), from disablesplit(Q, η2) we know disablesplit(Q,C).

Lemma 296. For all η, there exists θ and η′ such that η ; (θ, η′).

Proof. For all η, let η′ def
= λ(C ′, σ′).

∑
C,σ{η(C, σ) · p | (C, σ)

p−→ (C ′, σ′)} and
θ = {(σ, σ′) | ∃C,C ′. η(C, σ) > 0 ∧ (C, σ)

p−→ (C ′, σ′) ∧ p > 0}, then η ; (θ, η′).

Lemma 297. For all R,G,q, Q, n, η1, η2, p, if 0 < p < 1, (η1⊕pη2, R, dqe) Z=⇒n
nst

(G,Q), sta(q, R), scl(Q), Id⇒ R and disablesplit(dqe, η1⊕pη2), then (η2, R, dqe) Z=⇒n
nst

(G,Q).

Proof. For all R,G,q, Q, n such that sta(q, R), scl(Q) and Id⇒ R, we prove for
all η1, η2, p, if 0 < p < 1, (η1⊕pη2, R, dqe) Z=⇒n

nst (G,Q) and disablesplit(dqe, η1⊕p
η2), then (η2, R, dqe) Z=⇒n

nst (G,Q) by induction on n.

– base case: n = 0. trivial.
– inductive case: n = k + 1.

IH: for all η1, η2, p, if 0 < p < 1, (η1 ⊕p η2, R, dqe) Z=⇒k
nst (G,Q) and

disablesplit(dqe, η1 ⊕p η2), then (η2, R, dqe) Z=⇒k
nst (G,Q).

For all η1, η2, p such that 0 < p < 1, (η1 ⊕p η2, R, dqe) Z=⇒k+1
nst (G,Q)

and disablesplit(dqe, η1 ⊕p η2), from 0 < p < 1 by Lem. 275 we know
supp(η1⊕pη2) = supp(η1)∪supp(η2), thus supp(η1) ⊆ supp(η) and supp(η2) ⊆
supp(η). To prove (η2, R, dqe) Z=⇒k+1

nst (G,Q), we need to prove
• if η2

(Stmt)(skip) > 0, then η2|skip
(State) |= Q.

From p < 1 we have 1−p > 0. By Lem. 12 we know (η1 ⊕p η2)
(Stmt)

(skip) =
(η1

(Stmt)⊕pη2
(Stmt))(skip) = p ·η1

(Stmt)(skip)+(1−p) ·η2
(Stmt)(skip) >

0. From (η1⊕p η2, R, dqe) Z=⇒n
nst (G,Q) we have (η1 ⊕p η2)|skip

(State) |=
Q. From supp(η2) ⊆ supp(η1⊕pη2), η2

(Stmt)(skip) > 0 and (η1 ⊕p η2)
(Stmt)

(skip) >
0 by Lem. 277 we know supp(η2|skip) ⊆ supp((η1 ⊕p η2)|skip). By Lem. 24
we have supp(η2|skip

(State)
) ⊆ supp((η1 ⊕p η2)|skip

(State)
). From η2|skip

(State) |=
Q and scl(Q) we have η2|skip

(State) |= Q.
• η2

(State) |= dqe.
From (η1 ⊕p η2, R, dqe) Z=⇒n

nst (G,Q) we know (η1 ⊕p η2)
(State) |= dqe.

From supp(η2) ⊆ supp(η1 ⊕p η2) by Lem. 24 we know supp(η2
(State)) ⊆

supp((η1 ⊕p η2)
(State)

).
From (η1 ⊕p η2)

(State) |= dqe and scl(dqe) we have η2
(State) |= dqe.

• for all η′2, if η2
R
�
dqe

η′2, then (η′2, R, dqe) Z=⇒k
nst (G,Q). For all η′2 such

that η2
R
�
dqe

η′2, there exists η′′2 and b such that η R7→ η′′2 , η′′2 |b = η′2 and

η′2
(State) |= dqe. From Id ⇒ R by Lem. 273 we know η1

R7→ η1. From

0 < p < 1 and η
R7→ η′′2 by Lem. 236 we have η1 ⊕p η2

R7→ η1 ⊕p η′′2 .

Let p1
def
= JPr(b)Kη1(State) and p2

def
= JPr(b)Kη′′2 (State) . From η′′2 |b = η′2 by

Lem. 205 we know p2 = JPr(b)Kη′′2 (State) > 0. There are two cases: p1 > 0

or p1 = 0. We prove the two cases respectively.
∗ p1 > 0.

Let p′ def
= p·p1

p·p1+(1−p)·p2 . From 0 < p < 1, p1 > 0 and p2 > 0 we
know p′ > 0. From 0 < p < 1, JPr(b)Kη1(State) = p1 > 0 and
JPr(b)Kη′′2 (State) = p2 > 0 by Lem. 238 we know (η1 ⊕p η′′2)|b = η1|b⊕p′
η′′2 |b = η1|b ⊕p′ η′2. By Lem. 20 we know supp(η1|b) ⊆ supp(η1) ⊆

supp(η1⊕pη2). By Lem. 24 we know supp(η1|b(State)
) ⊆ supp((η1 ⊕p η2)

(State)
).

From (η1 ⊕p η2)
(State) |= dqe and scl(dqe) we know η1|b(State) |=

dqe. From η′2
(State) |= dqe and closed(dqe) we know η1|b(State) ⊕p′

η′2
(State) |= dqe. By Lem. 12 we know (η1|b ⊕p′ η′2)

(State)
= η1|b(State)⊕p′

η′2
(State) |= dqe. From η1⊕p η2

R7→ η1⊕p η′′2 , (η1 ⊕p η′′2)|b = η1|b⊕p′ η′2

and (η1|b ⊕p′ η′2)
(State) |= dqe we know η1⊕p η2

R
�
dqe

η1|b⊕p′ η′2. From
(η1⊕p η2, R, dqe) Z=⇒k+1

nst (G,Q) we know (η1|b⊕p′ η′2, R, dqe) Z=⇒k
nst

(G,Q). From η1⊕pη2
R
�
dqe

η1|b⊕p′η′2 by Lem. 188 we know supp((η1|b ⊕p′ η′2)
(Stmt)

) ⊆

supp((η1 ⊕p η2)
(Stmt)

). From disablesplit(η1 ⊕p η2) by Lem. 290
we have disablesplit(η1|b ⊕p′ η′2). From 0 < p′ < 1 and (η1|b ⊕p′
η′2, R, dqe) Z=⇒k

nst (G,Q) by IH we have (η′2, R, dqe) Z=⇒k
nst (G,Q).

∗ p1 = 0.
From 0 < p < 1, JPr(b)Kη1(State) = p1 = 0 and JPr(b)Kη′′2 (State) =

p2 > 0 by Lem. 238 we know (η1 ⊕p η′′2)|b = η′′2 |b = η′2. From η1 ⊕p
η2

R7→ η1 ⊕p η′′2 , (η1 ⊕p η′′2)|b = η′2 and η′2
(State) |= dqe we know

η1 ⊕p η2
R
�
dqe

η′2. From (η1 ⊕p η2, R, dqe) Z=⇒k+1
nst (G,Q) we know

(η′2, R, dqe) Z=⇒k
nst (G,Q).

• for all θ2, η
′
2, if η2 ↪→ (θ2, η

′
2), then θ2 ⊆ JGK, η′2

(State) |= dqe and
(η′2, R, dqe) Z=⇒k

nst (G,Q).
For all θ2, η

′
2 such that η2 ↪→ (θ2, η

′
2), from supp(η2) ⊆ supp(η1 ⊕p

η2) by Lem. 23 we know supp(η2
(Stmt)) ⊆ supp((η1 ⊕p η2)

(Stmt)
). From

disablesplit(dqe, η1⊕p η2) by Lem. 290 we know disablesplit(dqe, η2).
From η2 ↪→ (θ2, η

′
2) and η2

(State) |= dqe by Lem. 291 we know η2 ;

(θ2, η
′
2). By Lem. 296 there exists θ1 and η′1 such that η1 ; (θ1, η

′
1).

From 0 < p < 1 and η2 ; (θ2, η
′
2) by Lem. 246 we know η1 ⊕p η2 ;

(θ1∪θ2, η
′
1⊕pη′2). From disablesplit(η1⊕pη2) and (η1 ⊕p η2)

(State) |= dqe
by Lem. 291 we know η1 ⊕p η2 ↪→ (θ1 ∪ θ2, η

′
1 ⊕p η′2). From (η1 ⊕p

η2, R, dqe) Z=⇒k+1
nst (G,Q) we know θ1∪θ2 ⊆ JGK, (η′1 ⊕p η′2)

(State) |= dqe
and (η′1 ⊕p η′2, R, dqe) Z=⇒k

nst (G,Q), thus θ2 ⊆ θ1 ∪ θ2 ⊆ JGK. From
0 < p < 1 by Lem. 275 we know supp(η′1 ⊕p η′2) = supp(η′1)∪ supp(η′2) ⊇
supp(η′2). By Lem. 24 we know supp(η′2

(State)
) ⊆ supp((η′1 ⊕p η′2)

(State)
).

From (η′1 ⊕p η′2)
(State) |= dqe and scl(dqe) we have η′2

(State) |= dqe. From
disablesplit(η1 ⊕p η2) and η1 ⊕p η2 ; (θ1 ∪ θ2, η

′
1 ⊕p η′2) by Lem. 293

we know disablesplit(η′1 ⊕p η′2). From (η′1 ⊕p η′2) Z=⇒k
nst (G,Q) by IH

we have (η′2, R, dqe) Z=⇒k
nst (G,Q).

Lemma 298. For all R,G,Q,q, n, η1, η2, p, if (η1, R, dqe) Z=⇒n
nst (G,Q), (η2, R, dqe) Z=⇒n

nst
(G,Q), closed(Q), 0 < p < 1, disablesplit(dqe, η1) and disablesplit(dqe, η2),
then (η1 ⊕p η2, R, dqe) Z=⇒n

nst (G,Q).

Proof. For all R,G,Q,q, n such that closed(Q), we prove for all η1, η2, p, if
(η1, R, dqe) Z=⇒n

nst (G,Q), (η2, R, dqe) Z=⇒n
nst (G,Q), 0 < p < 1, disablesplit(dqe, η1)

and disablesplit(dqe, η2), then (η1⊕p η2, R, dqe) Z=⇒n
nst (G,Q) by induction on

n.

– base case: n = 0. trivial.
– inductive case: n = k + 1.

IH: for all η1, η2, p, if (η1, R, dqe) Z=⇒k
nst (G,Q), (η2, R, dqe) Z=⇒k

nst (G,Q),
0 < p < 1, disablesplit(dqe, η1) and disablesplit(dqe, η2), then (η1 ⊕p
η2, R, dqe) Z=⇒k

nst (G,Q).
For all η1, η2, p such that (η1, R, dqe) Z=⇒k+1

nst (G,Q), (η2, R, dqe) Z=⇒k+1
nst

(G,Q), 0 < p < 1, disablesplit(dqe, η1) and disablesplit(dqe, η2), to prove
(η1 ⊕p η2, R, dqe) Z=⇒k+1

nst (G,Q), we need to prove

• if (η1 ⊕p η2)
(Stmt)

(skip) > 0, then (η1 ⊕p η2)|skip
(State) |= Q.

Let p1
def
= η1

(Stmt)(skip) and p2
def
= η2

(Stmt)(skip). By Lem. 12 we know
(η1 ⊕p η2)

(Stmt)
(skip) = (η1

(Stmt)⊕pη2
(Stmt))(skip) = p·η1

(Stmt)(skip)+

(1−p)·η2
(Stmt)(skip) = p·p1+(1−p)·p2. From (η1 ⊕p η2)

(Stmt)
(skip) > 0

we know there are three cases: p1 > 0 ∧ p2 > 0, p1 > 0 ∧ p2 = 0, or
p1 = 0 ∧ p2 > 0. We prove the three cases respectively.
∗ p1 > 0 ∧ p2 > 0.

From (η1, R, dqe) Z=⇒k+1
nst (G,Q) and η1

(Stmt)(skip) = p1 > 0 we
know η1|skip

(State) |= Q. From (η2, R, dqe) Z=⇒k+1
nst (G,Q) and η2

(Stmt)(skip) =

p2 > 0 we know η2|skip
(State) |= Q. Let p′ def

= p·p1
p·p1+(1−p)·p2 . From

0 < p < 1, p1 > 0 and p2 > 0 we know 0 < p′ < 1. From 0 < p < 1,
η1

(Stmt)(skip) = p1 > 0 and η2
(Stmt)(skip) = p2 > 0 by Lem. 234 we

know (η1 ⊕p η2)|skip = η1|skip ⊕p′ η2|skip. From η1|skip
(State) |= Q,

η2|skip
(State) |= Q and closed(Q) we have η1|skip

(State)⊕p′η2|skip
(State) |=

Q.
∗ p1 > 0 ∧ p2 = 0.

From (η1, R, dqe) Z=⇒k+1
nst (G,Q) and η1

(Stmt)(skip) = p1 > 0 we
know η1|skip

(State) |= Q. From 0 < p < 1, η1
(Stmt)(skip) = p1 > 0

and η2
(Stmt)(skip) = p2 = 0 by Lem. 234 we know (η1 ⊕p η2)|skip =

η1|skip |= Q.
∗ p1 = 0 ∧ p2 > 0.

From (η2, R, dqe) Z=⇒k+1
nst (G,Q) and η2

(Stmt)(skip) = p2 > 0 we
know η2|skip

(State) |= Q. From 0 < p < 1, η1
(Stmt)(skip) = p1 = 0

and η2
(Stmt)(skip) = p2 > 0 by Lem. 234 we know (η1 ⊕p η2)|skip =

η2|skip |= Q.

• (η1 ⊕p η2)
(State) |= dqe.

From (η1, R, dqe) Z=⇒k+1
nst (G,Q) we know η1

(State) |= dqe. From (η2, R, dqe) Z=⇒k+1
nst

(G,Q) we know η2
(State) |= dqe. From closed(dqe) we have η1

(State) ⊕p
η2

(State) |= dqe. By Lem. 12 we have (η1 ⊕p η2)
(State)

= η1
(State) ⊕p

η2
(State) |= dqe.

• for all η′, if η1 ⊕p η2
R
�
I
η′, then (η′, R, dqe) Z=⇒k

� (G,Q).

For all η′ such that η1 ⊕p η2
R
�
I
η′, there exists η′′ and b such that η1 ⊕p

η2
R7→ η′′, η′′|b = η′ and η′(State) |= dqe. From 0 < p < 1 and η1⊕pη2

R7→ η′′

by Lem. 235 there exists η′′1 , η′′2 , p′′ such that 0 < p′′ < 1, η′′ = η′′1 ⊕p′′ η′′2 ,
η1

R7→ η′′1 and η2
R7→ η′′2 . Let p1

def
= JPr(b)Kη1(State) and p2

def
= JPr(b)Kη2(State) .

From η′′|b = η′ by Lem. 205 we know JPr(b)Kη′′(State) > 0. By Lem. 12 and
Lem. 237 we know JPr(b)Kη′′(State) = JPr(b)K(η′′1⊕pη′′2)(State) = JPr(b)Kη′′1 (State)⊕pη′′2

(State) =

p · JPr(b)Kη′′1 (State) + (1 − p) · JPr(b)Kη′′2 (State) = p · p1 + (1 − p) · p2 > 0.
There are three cases: p1 > 0∧p2 > 0, p1 > 0∧p2 = 0 or p2 = 0∧p2 > 0.
We prove the three cases respectively.

∗ p1 > 0 ∧ p2 > 0.
Let p′ def

= p′′·p1
p′′·p1+(1−p′′)·p2 . From 0 < p′′ < 1, p1 > 0 and p2 >

0 we know 0 < p′ < 1. From 0 < p′′ < 1, JPr(b)Kη1(State) =
p1 > 0 and JPr(b)Kη2(State) = p2 > 0 by Lem. 238 we know η′ =

η′′|b = (η′′1 ⊕p′′ η′′2)|b = η′′1 |b⊕p′ η′′2 |b. By Lem. 12 we know η′
(State)

=

η′′1 |b
(State) ⊕p′ η′′2 |b

(State). From 0 < p′ < 1 by Lem. 275 we know
supp(η′

(State)
) = supp(η′′1 |b

(State)
)∪supp(η′′2 |b

(State)
) ⊇ supp(η′′1 |b

(State)
).

From η′
(State) |= dqe and scl(dqe) we know η′′1 |b

(State) |= dqe. From
η1

R7→ η′′1 we have η1
R
�
dqe

η′′1 |b. From (η1, R, dqe) Z=⇒k+1
nst (G,Q) we

know (η′′1 |b, R, dqe) Z=⇒k
nst (G,Q). From η1

R
�
dqe

η′′1 |b by Lem. 188 we

know supp(η′′1 |b
(Stmt)

) ⊆ supp(η1
(Stmt)). From disablesplit(dqe, η1)

by Lem. 290 we have
disablesplit(dqe, η′′1 |b). Similarly we can prove (η′′2 |b, R, dqe) Z=⇒k

nst
(G,Q) and
disablesplit(dqe, η′′2 |b). From (η′′1 |b, R, dqe) Z=⇒k

nst (G,Q), (η′′2 |b, R, dqe) Z=⇒k
nst

(G,Q), 0 < p′′ < 1, disablesplit(dqe, η′′1 |b) and disablesplit(dqe, η′′2 |b)
by IH we have (η′′1⊕p′η′′2 , R, dqe) Z=⇒k

nst (G,Q), i.e., (η′, R, dqe) Z=⇒k
nst

(G,Q).
∗ p1 > 0 ∧ p2 = 0.

From 0 < p′′ < 1, JPr(b)Kη1(State) = p1 > 0 and JPr(b)Kη2(State) =
p2 = 0 by Lem. 238 we know η′ = η′′|b = (η′′1 ⊕p′′ η′′2)|b = η′′1 |b. From
η1

R7→ η′′1 , η′′1 |b = η′ and η′
(State) |= dqe we have η1

R
�
dqe

η′. From

(η1, R, dqe) Z=⇒k+1
nst (G,Q) we know (η′, R, dqe) Z=⇒k

nst (G,Q).
∗ p1 = 0 ∧ p2 > 0.

From 0 < p′′ < 1, JPr(b)Kη1(State) = p1 = 0 and JPr(b)Kη2(State) =
p2 > 0 by Lem. 238 we know η′ = η′′|b = (η′′1 ⊕p′′ η′′2)|b = η′′2 |b. From
η2

R7→ η′′2 , η′′2 |b = η′ and η′
(State) |= dqe we have η2

R
�
dqe

η′. From

(η2, R, dqe) Z=⇒k+1
nst (G,Q) we know (η′, R, dqe) Z=⇒k

nst (G,Q).

• for all θ and η′, if (η1⊕p η2) ↪→ (θ, η′), then θ ⊆ JGK, η′(State) |= dqe and
(η′, R, dqe) Z=⇒k

� (G,Q).
For all θ and η′ such that (η1 ⊕p η2) ↪→ (θ, η′), from 0 < p < 1,
disablesplit(dqe, η1) and disablesplit(dqe, η2) by Lem. 295 we have
disablesplit(dqe, η1 ⊕p η2). From (η1 ⊕p η2)

(State) |= dqe and (η1 ⊕p
η2) ↪→ (θ, η′) we know (η1 ⊕p η2) ; (θ, η′). From 0 < p < 1 by
Lem. 245 there exists θ1, θ2, η

′
1, η
′
2 such that θ = θ1 ∪ θ2, η′ = η′1 ⊕p η′2,

η1 ; (θ1, η
′
1) and η2 ; (θ2, η

′
2). From disablesplit(dqe, η1), η1

(State) |=
dqe and η1 ; (θ1, η

′
1) by Lem. 291 we know η1 ↪→ (θ1, η

′
1). From

(η1, R, dqe) Z=⇒k+1
nst (G,Q) we know θ1 ⊆ JGK, η′1

(State) |= dqe and
(η′1, R, dqe) Z=⇒k

nst (G,Q). Similarly we can prove θ2 ⊆ JGK, η′2
(State) |=

dqe and (η′2, R, dqe) Z=⇒k
nst (G,Q). thus θ = θ1∪θ2 ⊆ JGK. By Lem. 12 we

have η′(State)
= (η′1 ⊕p η′2)

(State)
= η′1

(State)⊕p η′2
(State). From η′1

(State) |=
dqe, η′2

(State) |= dqe and closed(dqe) we have η′(State) |= dqe. From
disablesplit(dqe, η1) and η1 ; (θ1, η

′
1) by Lem. 293 we have disablesplit(dqe, η′1).

Similarly we can prove disablesplit(dqe, η′2). From (η′1, R, dqe) Z=⇒k
nst

(G,Q), (η′2, R, dqe) Z=⇒k
nst (G,Q), 0 < p < 1, disablesplit(dqe, η′1) and

disablesplit(dqe, η′2) by IH we have (η′1 ⊕p η′2, R, dqe) Z=⇒k
nst (G,Q),

i.e., (η′, R, dqe) Z=⇒k
nst (G,Q).

Lemma 299. For all R,G, I, P,Q,q, C2, n, η, if (η,R, dqe) Z=⇒n
nst (G,P), disablesplit(dqe, η),

disablesplit(dqe, C2), sta(q, R), closed(Q), scl(P), Id ⇒ R, Id ⇒ G and
(δ(C2)⊗ µ,R, dqe)
Z=⇒n

nst (G,Q) for all µ such that µ |= dqe∧P , then (η;C2, R, dqe) Z=⇒n
nst (G,Q).

Proof. For allR,G, I, P,Q,q, C2, n such that sta(q, R), closed(Q), disablesplit(dqe, C2),
scl(P), Id ⇒ R and Id ⇒ G, we prove for all η, if (η,R, dqe) Z=⇒n

nst (G,P),
disablesplit(dqe, η) and (δ(C2) ⊗ µ,R, dqe) Z=⇒n

nst (G,Q) for all µ such that
µ |= dqe ∧ P , then (η;C2, R, dqe) Z=⇒n

nst (G,Q) by induction on n.

– base case: n = 0.
– inductive case: n = k + 1.

IH: for all η, if (η,R, dqe) Z=⇒k
nst (G,P), disablesplit(dqe, η1) and (δ(C2)⊗

µ,R, dqe) Z=⇒k
nst (G,Q) for all µ such that µ |= dqe∧P , then (η;C2, R, dqe) Z=⇒k

nst
(G,Q).
For all η such that (η,R, dqe) Z=⇒k+1

nst (G,P), disablesplit(dqe, η) and (δ(C2)⊗
µ,R, dqe) Z=⇒k+1

nst (G,Q) for all µ such that µ |= dqe ∧ P , by Lem. 211 we
know (δ(C2)⊗ µ,R, dqe) Z=⇒k

nst (G,Q) for all µ such that µ |= dqe ∧ P . To
prove (η;C2, R, dqe) Z=⇒k+1

nst (G,Q), we need to prove
• if η;C2

(Stmt)(skip) > 0, then η;C2|skip
(State) |= Q.

η;C2
(Stmt)(skip) =

∑
σ η;C2(skip, σ) = 0, which contradicts with η;C2

(Stmt)(skip) >
0.

• η;C2
(State) |= dqe.

From (η,R, dqe) Z=⇒k+1
nst (G,P) we know η(State) |= dqe. By Lem. 201 we

know η;C2
(State) = η(State) |= dqe.

• for all η′, if η;C2
R
�
dqe

η′, then (η′, R, dqe) Z=⇒k
nst (G,Q).

For all η′ such that η;C2
R
�
dqe

η′, by Lem. 209 there exists η′′ such

that η′ = η′′;C2 and η
R
�
dqe

η′′. From (η,R, dqe) Z=⇒k+1
nst (G,P) we

have (η′′, R, dqe) Z=⇒k
nst (G,P). From η

R
�
dqe

η′′ by Lem. 188 we know

supp(η′′
(Stmt)

) ⊆ supp(η(Stmt)). From disablesplit(dqe, η) by Lem. 290
we have disablesplit(dqe, η′′). From (η′′, R, dqe) Z=⇒k

nst (G,P), disablesplit(dqe, η′′)
and (δ(C2)⊗µ,R, dqe) Z=⇒k

nst (G,Q) for all µ such that µ |= dqe∧P by
IH we have (η′′;C2, R, dqe)
Z=⇒k

nst (G,Q), i.e., (η′, R, dqe) Z=⇒k
nst (G,Q).

• for all θ and η′, if η;C2 ↪→ (θ, η′), then θ ⊆ JGK, η′(State) |= dqe and
(η′, R, dqe) Z=⇒k

nst (G,Q).
For all θ and η′ such that η;C2 ↪→ (θ, η′), from disablesplit(dqe, η) and
disablesplit(dqe) by Lem. 294 we know disablesplit(dqe, η;C2). From
η;C2 ↪→ (θ, η′) and η;C2

(State) |= dqe by Lem. 291 we have η;C2 ;

(θ, η′). There are three cases: η(Stmt)(skip) = 1, η(Stmt)(skip) = 0, or
0 < η(Stmt)(skip) < 1.
∗ η(Stmt)(skip) = 1.

From η(Stmt)(skip) = 1 by Lem. 13 we know η = δ(skip)⊗ η(State).
By Lem. 18 we have η(Stmt) = δ(skip). From (η;C2) ; (θ, η′) by
Lem. 210 and Lem. 193 we know θ = {(σ, σ) | σ ∈ supp(η(State))} ⊆
JIdK ⊆ JGK and η′ = δ(C2)⊗η(State). From (η,R, dqe) Z=⇒k+1

nst (G,P)

we know η(State) |= dqe. By Lem. 19 we know η′
(State)

= η(State) |=
dqe. From η(Stmt)(skip) = 1 by Lem. 199 we have η = η|skip, thus
η(State) = η|skip

(State) |= P . From η(State) |= dqe we have η(State) |=
dqe ∧ P . From (δ(C2) ⊗ µ,R, dqe) Z=⇒k

nst (G,Q) for all µ such that
µ |= dqe ∧ P we know (δ(C2) ⊗ η(State), R, dqe) Z=⇒k

nst (G,Q), i.e.,
(η′, R, dqe) Z=⇒k

nst (G,Q).
∗ From (η;C2) ; (θ, η′) and η(Stmt)(skip) = 0 by Lem. 213 there exists
η′′ such that η′ = η′′;C2 and η ; (θ, η′′). From disablesplit(dqe, η)
and η(State) |= dqe by Lem. 291 we have η ↪→ (θ, η′′). From (η,R, dqe) Z=⇒k+1

nst

(G,P) we know θ ⊆ JGK, η′′(State) |= dqe and (η′′, R, dqe) Z=⇒k
nst

(G,P). From disablesplit(dqe, η) and η ; (θ, η′′) by Lem. 293
we know disablesplit(dqe, η′′). From (η′′, R, dqe) Z=⇒k

nst (G,P) and
(δ(C2) ⊗ µ,R, dqe) Z=⇒k

nst (G,Q) for all µ such that µ |= dqe ∧ P
by IH we have (η′′2 ;C2, R, dqe) Z=⇒k

nst (G,Q), i.e., (η′, R, dqe) Z=⇒k
nst

(G,Q).
∗ 0 < η(Stmt)(skip) < 1.

Let p def
= η(Stmt)(skip), then 0 < p < 1. By Lem. 247 there ex-

ists η1 and η2 such that η = η1 ⊕p η2, η1
(Stmt)(skip) = 1 and

η2
(Stmt)(skip) = 0. By Lem. 248 we know η;C2 = (η1 ⊕p η2);C2 =

(η1;C2)⊕p(η2;C2). From η;C2 ; (θ, η′) we know (η1;C2)⊕p(η2;C2) ;
(θ, η′). From 0 < p < 1 by Lem. 245 there exists θ1, θ2, η

′
1, η
′
2 such

that θ = θ1∪θ2, η′ = η′1⊕pη′2, (η1;C2) ; (θ1, η
′
1), (η2;C2) ; (θ2, η

′
2).

From η1
(Stmt)(skip) = 1 by Lem. 13 we know η1 = δ(skip)⊗η1

(State).
By Lem. 18 we have η1

(Stmt) = δ(skip). From (η1;C2) ; (θ1, η
′
1) by

Lem. 210 and Lem. 193 we know θ1 = {(σ, σ) | σ ∈ supp(η1
(State))}

and η′1 = δ(C2)⊗ η1
(State). From η1

(Stmt)(skip) = 1 by Lem. 192 we
know η1 ; ({(σ, σ) | σ ∈ supp(η1

(State))}, δ(skip) ⊗ η1
(State)), i.e.,

η1 ; (θ1, η1). From (η2;C2) ; (θ2, η
′
2) and η2

(Stmt)(skip) = 0 by
Lem. 213 there exists η′′2 such that η′2 = η′′2 ;C2 and η2 ; (θ2, η

′′
2),

thus η′ = η′1 ⊕p η′2 = (δ(C2) ⊗ η1
(State)) ⊕p η′′2 ;C2. From 0 < p < 1,

η1 ; (θ1, η1) and η2 ; (θ2, η
′′
2) by Lem. 246 we know η1 ⊕p η2 ;

(θ1 ∪ θ2, η1⊕p η′′2), i.e., η ; (θ, η1⊕p η′′2). From disablesplit(dqe, η)
and η(State) |= dqe by Lem. 291 we have η ↪→ (θ, η1 ⊕p η′′2). From
(η,R, dqe) Z=⇒k+1

nst (G,P) we know θ ⊆ JGK, (η1 ⊕p η′′2)
(State) |= dqe

and (η1 ⊕p η′′2 , R, dqe) Z=⇒k
nst (G,P). By Lem. 12, Lem. 19 and

Lem. 201 we know η′
(State)

= ((δ(C2)⊗ η1
(State))⊕p η′′2 ;C2)

(State)
=

(δ(C2)⊗ η1
(State))

(State) ⊕p (η′′2 ;C2)
(State)

= η1
(State) ⊕p η′′2

(State)
=

(η1 ⊕p η′′2)
(State). From (η1 ⊕p η′′2)

(State) |= dqe we have η′(State) |=
dqe. From (η,R, dqe) Z=⇒k+1

nst (G,P) and η(Stmt)(skip) > 0 we know
η|skip

(State) |= P . From 0 < p < 1 by Lem. 275 we know supp(η) =
supp(η1⊕pη2) = supp(η1)∪supp(η2) ⊇ supp(η1). From η(Stmt)(skip) >
0 and η1

(Stmt)(skip) = 1 > 0 by Lem. 277 we know supp(η1|skip) ⊆
supp(η|skip). By Lem. 24 we know supp(η1|skip

(State)
) ⊆ supp(η|skip

(State)
).

From η|skip
(State) |= P and scl(P) we know η1|skip

(State) |= P .
From η1

(Stmt)(skip) = 1 by Lem. 199 we have η1 = η1|skip, thus
η1

(State) = η1|skip
(State) |= P . From (η,R, dqe) Z=⇒k+1

nst (G,P) we
know η(State) |= dqe. From supp(η1) ⊆ supp(η) by Lem. 24 we know
supp(η1

(State)) ⊆ supp(η(State)). From η(State) |= dqe and scl(dqe) we
know η1

(State) |= dqe. From η1
(State) |= P we have η1

(State) |= dqe∧P .
From (δ(C2)⊗µ,R, dqe) Z=⇒k

nst (G,Q) for all µ such that µ |= dqe∧P
we know (δ(C2) ⊗ η1

(State), R, dqe) Z=⇒k
nst (G,Q). From supp(η1) ⊆

supp(η) by Lem. 23 we know supp(η1
(Stmt)) ⊆ supp(η(Stmt)). From

disablesplit(dqe, η) by Lem. 290 we have disablesplit(dqe, η1). Sim-
ilarly we can prove disablesplit(dqe, η2). From η2 ; (θ2, η

′′
2) by

Lem. 293 we know disablesplit(dqe, η′′2). From disablesplit(dqe, η1)
by Lem. 295 we know disablesplit(dqe, η1 ⊕p η′′2). From 0 < p < 1,
(η1 ⊕p η′′2 , R, dqe) Z=⇒k

nst (G,P), sta(q, R), scl(P) and Id ⇒ R by
Lem. 297 we have (η′′2 , R, dqe) Z=⇒k

nst (G,Q). From disablesplit(dqe, η′′2)
and (δ(C2)⊗µ,R, dqe) Z=⇒k

nst (G,Q) for all µ such that µ |= dqe∧P
by IH we have (η′′2 ;C2, R, dqe) Z=⇒k

nst (G,Q). From disablesplit(dqe, C2)
by Lem. 286 we know disablesplit(dqe, δ(C2)⊗η1

(State)). From 0 <
p < 1, (δ(C2)⊗η1

(State), R, dqe) Z=⇒k
nst (G,Q), (η′′2 ;C2, R, dqe) Z=⇒k

nst
(G,Q), closed(Q), disablesplit(dqe, C2) and disablesplit(dqe,
δ(C2)⊗η1

(State)) by Lem. 298 we know ((δ(C2)⊗η1
(State))⊕pη′′2 ;C2, R, dqe) Z=⇒k

nst
(G,Q), i.e., (η′, R, dqe) Z=⇒k

nst (G,Q).

Lemma 300. For all R,G,q, P,Q, b, C, if R,G, dqe |=nst {P ∧ dbe}C{P}, P ∧
d¬be ⇒ Q, closed(Q), Sta(P,R, true), Sta(Q,R, true), sta(q, R), disablesplit(dqe, C),
scl(P), Id⇒ R and Id⇒ G, then R,G, dqe |=nst {P}while (b) do C{Q}.

Proof. For all R,G,q, P,Q, b, C such that R,G, dqe |=nst {P ∧ dbe}C{P}, P ∧
d¬be ⇒ Q, closed(Q), Sta(P,R, true), Sta(Q,R, true), sta(q, R), disablesplit(dqe, C),
scl(P), Id ⇒ R, Id ⇒ G, to prove R,G, dqe |=nst {P}while (b) do C{Q}, we
need to prove for all µ and n, if µ |= dqe ∧ P , then (δ(while (b) do C, µ) ⊗
µ,R, dqe) Z=⇒n

nst (G,Q). For all µ and n such that µ |= dqe ∧ P , by Lem. 18
and Lem. 19 we know δ(while (b) do C)⊗ µ(Stmt)

= δ(while (b) do C) and
δ(while (b) do C)⊗ µ(State)

= µ |= dqe ∧ P . To prove (δ(while (b) do C, µ) ⊗
µ,R, dqe) Z=⇒n

nst (G,Q), it suffices to prove for all η, if η(Stmt) = δ(while (b) do C)
and η(State) |= dqe ∧P , then (η,R, dqe) Z=⇒n

nst (G,Q). We prove it by induction
on n.

– base case: n = 0. trivial.
– inductive case: n = k + 1.

IH: for all η, if η(Stmt) = δ(while (b) do C) and η(State) |= dqe ∧ P , then
(η,R, dqe) Z=⇒k

nst (G,Q).
For all η such that η(Stmt) = δ(while (b) do C) and η(State) |= dqe ∧ P , to
prove (η,R, dqe) Z=⇒k+1

nst (G,Q), we need to prove
• if η(Stmt)(skip) > 0, then η|skip

(State) |= Q.
η(Stmt)(skip) = δ(while (b) do C)(skip) = 0, which contradicts with
η(Stmt)(skip) > 0.
• η(State) |= dqe.

From η(State) |= dqe ∧ P we know η(State) |= dqe.
• for all η′, if η

R
�
dqe

η′, then (η′, R, dqe) Z=⇒k
� (G,Q).

For all η′ such that η
R
�
dqe

η′, by Lem. 188 we know supp(η′
(Stmt)

) ⊆
supp(η(Stmt)). From η(Stmt) = δ(while (b) do C) by Lem. 27 we know
η′

(Stmt)
= δ(while (b) do C). From Sta(P,R, true) we know Sta(P,R, dqe).

From η(State) |= dqe∧P and η
R
�
dqe

η′ by Lem. 186 we have η′(State) |= dqe∧

P . From η′
(Stmt)

= δ(while (b) do C) by IH we have (η′, R, dqe) Z=⇒k
nst

(G,Q).
• for all θ and η′, if η ↪→ (θ, η′), then θ ⊆ JGK, η′(State) |= dqe and

(η′, R, dqe) Z=⇒k
� (G,Q).

For all θ and η′ such that η ↪→ (θ, η′), from η(Stmt) = δ(while (b) do C)
by Lem. 190 we know nextsplit(η) = {nextsplit(while (b) do C)} =
{split(true)}. From η ↪→ (θ, η′) by Lem. 191 we have η ; (θ, η′).
There are three cases: η(State) |= dbe, η(State) |= d¬be or η(State) 6|=
dbe ∧ η(State) 6|= d¬be. We prove the three cases respectively.
∗ η(State) |= dbe.

From η(Stmt) = δ(while (b) do C), η(State) |= dbe and η ; (θ, η′) by
Lem. 219 and Lem. 193 we know θ = {(σ, σ) | σ ∈ supp(η(State))} ⊆

JIdK ⊆ JGK and η′ = δ(C;while (b) do C) ⊗ η(State). By Lem. 217
we know η′ = δ(C) ⊗ η(State);while (b) do C. By Lem. 19 we
know η′

(State)
= η(State) |= dqe. From disablesplit(dqe, C) we know

disablesplit(dqe,while (b) do C). From disablesplit(dqe,while (b) do C)
by Lem. 294 we know disablesplit(dqe, δ(C)⊗η(State);while (b) do C).
From R,G, dqe |=nst {P ∧ dbe}C{P} and η(State) |= dqe ∧ P we
know (δ(C) ⊗ η1

(State), R, dqe) Z=⇒k
nst (G,P). From IH we have

(δ(while (b) do C)⊗µ,R, dqe) Z=⇒k
nst (G,Q) for all µ such that µ |=

dqe∧P . From (δ(C)⊗η(State), R, dqe) Z=⇒k
nst (G,P), disablesplit(dqe, δ(C)⊗

η(State)), disablesplit(dqe,while (b) do C), sta(q, R), closed(Q),
scl(P), Id⇒ R and Id⇒ G by Lem. 299 we have
(δ(C)⊗η(State);while (b) do C,R, dqe) Z=⇒k

nst (G,Q), i.e., (η′, R, dqe) Z=⇒k
nst

(G,Q).
∗ η(State) |= d¬be.

From η(State) |= dqe ∧ P2 we know η(State) |= dqe ∧ P2 ∧ d¬be.
From P2 ∧ d¬be ⇒ Q we know η(State) |= dqe ∧ Q. From η(Stmt) =
δ(while (b) do C), η(State) |= d¬be and η ; (θ, η′) by Lem. 220 and
Lem. 193 we know θ = {(σ, σ) | σ ∈ supp(η(State))} ⊆ JIdK ⊆ JGK and
η′ = δ(skip)⊗ η(State). By Lem. 18 and Lem. 19 we know η′

(Stmt)
=

δ(skip) and η′(State)
= η(State) |= dqe∧Q. From Sta(Q,R, true) and

I ⇒ true we know Sta(Q,R, dqe). From Id⇒ G, η′(Stmt)
= δ(skip),

and η′
(State) |= dqe ∧ Q by Lem. 194 we know (η′, R, I) Z=⇒k

nst
(G1 ∨G2, Q).

∗ η(State) 6|= dbe ∧ η(State) 6|= d¬be.
From η(State) 6|= dbe by Lem. 226 we know JPr(b)Kη(State) 6= 1. From
η(State) 6|= d¬be by Lem. 227 we know JPr(b)Kη(State) 6= 0, thus

0 < JPr(b)Kη(State) < 1. Let p def
= JPr(b)Kη(State) , then 0 < p <

1. By Lem. 285 there exists η1 and η2 such that η = η1 ⊕p η2,
η1

(State) |= dbe and η2
(State) |= d¬be. From η ; (θ, η′) we know

η1 ⊕p η2 ; (θ, η′). By Lem. 245 there exists θ1, θ2, η
′
1, η
′
2 such that

θ = θ1 ∪ θ2, η′ = η′1 ⊕p η′, η1 ; (θ1, η
′
1) and η2 ; (θ2, η

′
2). From

0 < p < 1 by Lem. 275 we know supp(η) = supp(η1 ⊕p η2) =
supp(η1)∪supp(η2), thus supp(η1) ⊆ supp(η) and supp(η2) ⊆ supp(η).
By Lem. 23 we know supp(η1

(Stmt)) ⊆ supp(η(Stmt)) From η(Stmt) =
δ(while (b) do C) by Lem. 27 we know η1

(Stmt) = δ(while (b) do C).
Similarly we can prove η2

(Stmt) = δ(while (b) do C). From η1
(Stmt) =

δ(while (b) do C), η1
(State) |= dbe and η1 ; (θ1, η

′
1) by Lem. 219

and Lem. 193 we know θ1 = {(σ, σ) | σ ∈ supp(η1
(State))} and η′1 =

δ(C;while (b) do C)⊗η1
(State). From η2

(Stmt) = δ(while (b) do C),
η2

(State) |= d¬be and η2 ; (θ1, η
′
1) by Lem. 220 and Lem. 193 we

know θ2 = {(σ, σ) | σ ∈ supp(η2
(State))} and η′2 = δ(C;while (b) do C)⊗

η2
(State), thus θ = θ1 ∪ θ2 ⊆ JIdK ⊆ JGK. By Lem. 217 we know η′ =

η′1⊕pη′2 = (δ(C;while (b) do C)⊗η1
(State))⊕p(δ(skip)⊗η2

(State)) =
(δ(C)⊗η1

(State);while (b) do C)⊕p (δ(skip)⊗η2
(State)). By Lem. 12

and Lem. 19 we know η′
(State)

= η1
(State) ⊕p η2

(State) = η(State) |=
dqe. From disablesplit(dqe, C) we know disablesplit(dqe,while (b) do C).
From disablesplit(dqe, C) and disablesplit(dqe, skip) by Lem. 286
we know disablesplit(dqe, δ(C)⊗η1

(State)) and disablesplit(dqe, δ(skip)⊗
η2

(State)). From disablesplit(dqe, δ(C)⊗η1
(State)) and disablesplit(dqe,while (b) do C)

by Lem. 294 we know disablesplit(dqe, δ(C)⊗η1
(State);while (b) do C).

From scl(dqe) and scl(P) we know scl(dqe ∧ P). From supp(η1) ⊆
supp(η) by Lem. 24 we know supp(η1

(State)) ⊆ supp(η(State)). From
η(State) |= dqe∧P and scl(dqe∧P) we know η1

(State) |= dqe∧P . From
R,G, dqe |=nst {P∧dbe}C{P} we know (δ(C)⊗η1

(State), R, dqe) Z=⇒k
nst

(G,P). From IH we have (δ(while (b) do C) ⊗ µ,R, dqe) Z=⇒k
nst

(G,Q) for all µ such that µ |= dqe∧P . From (δ(C)⊗η1
(State), R, dqe) Z=⇒k

nst
(G,P), disablesplit(dqe, δ(C)⊗η1

(State)), disablesplit(dqe,while (b) do C),
sta(q, R), closed(Q), scl(P), Id ⇒ R and Id ⇒ G by Lem. 299
we have (δ(C) ⊗ η1

(State);while (b) do C,R, dqe) Z=⇒k
nst (G,Q).

From supp(η2) ⊆ supp(η) by Lem. 24 we know supp(η2
(State)) ⊆

supp(η(State)). From η(State) |= dqe ∧ P and scl(dqe ∧ P) we know
η2

(State) |= dqe ∧ P . From η2
(State) |= d¬be we know η2

(State) |=
dqe ∧ P ∧ d¬be. From P ∧ d¬be ⇒ Q we know η2

(State) |= dqe ∧ Q.
From Sta(Q,R, true) and dqe ⇒ true we know Sta(Q,R, dqe). By
Lem. 18 and Lem. 19 we know (δ(skip)⊗ η2

(State))
(Stmt)

= δ(skip)

and (δ(skip)⊗ η2
(State))

(State)
= η2

(State) |= dqe∧Q. From Sta(Q,R, dqe)
and Id⇒ G by Lem. 194 we know (δ(skip)⊗η2

(State), R, dqe) Z=⇒k
nst

(G,Q). From (δ(C)⊗η1
(State);while (b) do C,R, dqe) Z=⇒k

nst (G,Q),
(δ(skip)⊗η2

(State), R, dqe) Z=⇒k
nst (G,Q), 0 < p < 1, disablesplit(dqe, δ(C)⊗

η1
(State);while (b) do C) and disablesplit(δ(skip)⊗ η2

(State)) and
closed(Q) by Lem. 298 we have ((δ(C)⊗η1

(State);while (b) do C)⊕p
(δ(skip) ⊗ η2

(State)), R, dqe) Z=⇒k
nst (G,Q), i.e., (η′, R, dqe) Z=⇒k

nst
(G,Q).

Lemma 301. For all R, I,G,Q,q, n, η, if η(State) |= I, (η,R, dqe) Z=⇒n
nst (G,Q),

disablesplit(dqe, η), sta(q, R), Id ⇒ G, and ∀x ∈ fv(I). G ⇒ Inv(x), then
(η,R, I) Z=⇒n

nst (G,Q).

Proof. For all R, I,G,Q,q, n such that sta(q, R), Id⇒ G and ∀x ∈ fv(I). G⇒
Inv(x), we prove for all η, if η(State) |= I, (η,R, dqe) Z=⇒n

nst (G,Q) and disablesplit(dqe, η),
then (η,R, I) Z=⇒n

nst (G,Q) by induction on n.

– base case: n = 0. trivial.
– inductive case: n = k + 1.

IH: for all η, if η(State) |= I, (η,R, dqe) Z=⇒k
nst (G,Q), disablesplit(dqe, η),

then (η,R, I) Z=⇒k
nst (G,Q).

For all η such that η(State) |= I, (η,R, dqe) Z=⇒k+1
nst (G,Q), disablesplit(dqe, η1),

to prove (η,R, I) Z=⇒k+1
nst (G,Q), we need to prove

• if η(Stmt)(skip) > 0, then η|skip
(State) |= Q.

From (η,R, dqe) Z=⇒k+1
nst (G,Q) and η(Stmt)(skip) > 0 we know η|skip

(State) |=
Q.

• η(State) |= I.
By assumption.

• for all η′, if η
R
�
I
η′, then (η′, R, I) Z=⇒k

� (G,Q).

For all η′ such that η
R
�
I
η′, there exists η′′ and b such that η R7→ η′′,

η′′|b = η′ and η′(State) |= I. From η
R7→ η′′ and sta(q, R) by Lem. 289 we

have η′′(State) |= dqe. From η′′|b = η′ by Lem. 20 we know supp(η′) ⊆
supp(η′′). By Lem. 24 we know supp(η′

(State)
) ⊆ supp(η′′

(State)
). From

η′′
(State) |= dqe and scl(dqe) we know η′

(State) |= dqe. From η
R7→ η′′

and η′′|b = η′ we know η
R
�
dqe

η′. From (η,R, dqe) Z=⇒k+1
nst (G,Q) we

know (η′, R, dqe) Z=⇒k
nst (G,Q). From η

R
�
dqe

η′ by Lem. 188 we know

supp(η′
(Stmt)

) ⊆ supp(η(Stmt)).
From disablesplit(dqe, η) by Lem. 290 we know disablesplit(dqe, η′).
From η′

(State) |= I, (η′, R, dqe) Z=⇒k
nst (G,Q), disablesplit(dqe, η′) by

IH we have (η′, R, I) Z=⇒k
nst (G,Q).

• for all θ and η′, if η ↪→ (θ, η′), then θ ⊆ JGK, η′(State) |= I and (η′, R, I) Z=⇒k
�

(G,Q).
For all θ and η′ such that η ↪→ (θ, η′), from (η,R, dqe) Z=⇒k+1

nst (G,Q)
we know η(State) |= dqe. From disablesplit(dqe, η) and η ↪→ (θ, η′)
by Lem. 291 we know η ; (θ, η′). From (η,R, dqe) Z=⇒k+1

nst (G,Q) we
know θ ⊆ JGK and (η′, R, dqe) Z=⇒k

nst (G,Q). From θ ⊆ JGK and ∀x ∈
fv(I). G⇒ Inv(x) we know ∀x ∈ fv(I), (σ, σ′) ∈ θ. σ′(x) = σ(x). From
η ; (θ, η′) by Lem. 249 we know η′

(State)|fv(I) = η(State)|fv(I). From
η(State) |= I by Lem. 272 we know η′

(State) |= I. From disablesplit(dqe, η)

and η ; (θ, η′) by Lem. 293 we have disablesplit(dqe, η′). From η′
(State) |=

I, (η′, R, dqe) Z=⇒k
nst (G,Q) and disablesplit(dqe, η′) by IH we have

(η′, R, I) Z=⇒k
nst (G,Q).

Lemma 302. For all R, I,G,Q,q, n, η, η1, µ, p, if 0 < p < 1, η = η1⊕p(δ(skip)⊗
µ), η(State) |= I, µ |= Q, (η1, R, dqe) Z=⇒n

nst (G,Q), disablesplit(dqe, η1),
closed(Q), sta(q, R), Sta(Q,R, true), Id ⇒ G and ∀x ∈ fv(I). G ⇒ Inv(x),
then (η,R, I) Z=⇒n

nst (G,Q).

Proof. For all R, I,G,Q,q, n such that closed(Q), sta(q, R), Sta(Q,R, true),
Id ⇒ G and ∀x ∈ fv(I). G ⇒ Inv(x), we prove for all η, η1, µ, p, if 0 < p <
1, η = η1 ⊕p (δ(skip) ⊗ µ), η(State) |= I, µ |= Q, (η1, R, dqe) Z=⇒n

nst (G,Q),
disablesplit(dqe, η1), then (η,R, I) Z=⇒n

nst (G,Q) by induction on n.

– base case: n = 0. trivial.
– inductive case: n = k + 1.

IH: for all η, η1, µ, p, if 0 < p < 1, η = η1 ⊕p (δ(skip)⊗ µ), η(State) |= I, µ |=
Q, (η1, R, dqe) Z=⇒k

nst (G,Q), disablesplit(dqe, η1), then (η,R, I) Z=⇒k
nst

(G,Q).
For all η, η1, µ, p such that 0 < p < 1, η = η1 ⊕p (δ(skip)⊗ µ), η(State) |= I,
µ |= Q, (η1, R, dqe) Z=⇒k+1

nst (G,Q), disablesplit(dqe, η1), to prove (η,R, I) Z=⇒k+1
nst

(G,Q), we need to prove
• if η(Stmt)(skip) > 0, then η|skip

(State) |= Q.
By Lem. 19 we know (δ(skip)⊗ µ)

(Stmt)
(skip) = δ(skip)(skip) = 1.

By Lem. 199 we know (δ(skip)⊗ µ)|skip = (δ(skip) ⊗ µ). Let p1
def
=

η1
(Stmt)(skip). There are two cases: p1 = 0 or p1 > 0. We prove the two

cases respectively.
∗ p1 = 0.

From 0 < p < 1, η1
(Stmt)(skip) = p1 = 0 and (δ(skip)⊗ µ)

(Stmt)
(skip) =

1 > 0 by Lem. 288 we know η|skip = (η1 ⊕p (δ(skip)⊗ µ))|skip =

(δ(skip)⊗ µ)|skip = (δ(skip)⊗µ). By Lem. 19 we know η|skip
(State)

=

(δ(skip)⊗ µ)
(State)

= µ. From µ |= Q we know η|skip
(State) |= Q.

∗ p1 > 0.
Let p′ def

= p·p1
p·p1+(1−p) . From 0 < p < 1, η1

(Stmt)(skip) = p1 > 0 and

(δ(skip)⊗ µ)
(Stmt)

(skip) = 1 > 0 by Lem. 288 we know η|skip =
(η1 ⊕p (δ(skip)⊗ µ))|skip = η1|skip ⊕p′
(δ(skip)⊗ µ)|skip = η1|skip⊕p′(δ(skip)⊗µ). By Lem. 12 and Lem. 19
we know η|skip

(State)
= η1|skip

(State)⊕p′(δ(skip)⊗ µ)
(State)

= η1|skip
(State)⊕p′

µ. From (η1, R, dqe) Z=⇒k+1
nst (G,Q) and η1

(Stmt)(skip) > 0 we know
η1|skip

(State) |= Q. From µ |= Q and closed(Q) we know η1|skip
(State)⊕p′

µ |= Q, i.e., η|skip
(State) |= Q.

• η(State) |= I.
By assumption.

• for all η′, if η
R
�
I
η′, then (η′, R, I) Z=⇒k

� (G,Q).

For all η′ such that η
R
�
I
η′, i.e., η1 ⊕p (δ(skip)⊗ µ)

R
�
I
η′. There exists

η′′ and b such that η1⊕p (δ(skip)⊗µ)
R7→ η′′, η′′|b = η′ and η′(State) |= I.

From η1 ⊕p (δ(skip)⊗ µ)
R7→ η′′ and 0 < p < 1 by Lem. 235 there exists

η′′1 , η
′′
2 , p
′′ such that 0 < p′′ < 1, η′′ = η′′1 ⊕p′′ η′′2 , η1

R7→ η′′1 and δ(skip)⊗

µ
R7→ η′′2 . From η′′|b = η′ by Lem. 205 we know JPr(b)Kη′′(State) > 0. Let

p1
def
= JPr(b)Kη′′1 (State) , p2

def
= JPr(b)Kη′′2 (State) . By Lem. 12 and Lem. 237 we

know JPr(b)Kη′′(State) = JPr(b)K(η′′1⊕p′′η′′2)(State) = JPr(b)Kη′′1 (State)⊕p′′η′′2
(State) =

p′′ · JPr(b)Kη′′1 (State) + (1−p′′) · JPr(b)Kη′′2 (State) = p′′ ·p1 + (1−p′′) ·p2 > 0.
There are three cases: p1 > 0∧p2 = 0, p1 = 0∧p2 > 0 or p1 > 0∧p2 > 0.
We prove the three cases respectively.
∗ p1 > 0 ∧ p2 = 0. From 0 < p < 1, JPr(b)Kη′′1 (State) = p1 and

JPr(b)Kη′′2 (State) = p2 by Lem. 238 we know η′ = η′′|b = (η′′1 ⊕p′′ η′′2)|b =

η′′1 |b. From (η1, R, dqe) Z=⇒k+1
nst (G,Q) we know η1

(State) |= dqe.

From η1
R7→ η′′1 and sta(q, R) by Lem. 289 we have η′′1

(State) |= dqe.
From η′′1 |b = η′ by Lem. 20 we know supp(η′) ⊆ supp(η′′1). By
Lem. 24 we know supp(η′

(State)
) ⊆ supp(η′′1

(State)
). From η′′1

(State) |=
dqe and scl(dqe) we know η′′1

(State) |= dqe. From η1
R7→ η′′1 and

η′′1 |b = η′ we know η1
R
�
dqe

η′. From (η1, R, dqe) Z=⇒k+1
nst (G,Q) we

know (η′, R, dqe) Z=⇒k
nst (G,Q). From η1

R
�
dqe

η′ by Lem. 188 we

know supp(η′
(Stmt)

) ⊆ supp(η1
(Stmt)). From disablesplit(dqe, η1)

by Lem. 290 we know disablesplit(dqe, η′). From η′
(State) |= I,

(η′, R, dqe) Z=⇒k
nst (G,Q), disablesplit(dqe, η′), sta(q, R), Id ⇒ G

and ∀x ∈ fv(I). G⇒ Inv(x) by Lem. 301 we have (η′, R, I) Z=⇒k
nst

(G,Q).
∗ p1 = 0 ∧ p2 > 0.

From 0 < p < 1, JPr(b)Kη′′1 (State) = p1 and JPr(b)Kη′′2 (State) = p2

by Lem. 238 we know η′ = η′′|b = (η′′1 ⊕p′′ η′′2)|b = η′′2 |b. From

δ(skip) ⊗ µ R7→ η′′2 and η′′2 |b = η′ we know δ(skip) ⊗ µ
R
�
true

η′. By

Lem. 188 we know supp(η′
(Stmt)

) ⊆ supp((δ(skip)⊗ µ)
(Stmt)

). By
Lem. 18 we know (δ(skip)⊗ µ)

(Stmt)
= δ(skip). By Lem. 27 we

know η′
(Stmt)

= δ(skip). From δ(skip) ⊗ µ
R
�
true

η′, µ |= Q and

Sta(Q,R, true) by Lem. 186 we have η′(State) |= Q. From η′
(State) |=

I we know η′
(State) |= I ∧Q. From Sta(Q,R, true) and I ⇒ true we

have Sta(Q,R, I). From Id⇒ G, η′(Stmt)
= δ(skip), η′(State) |= I∧Q

by Lem. 194 we know (η′, R, I) Z=⇒k
nst (G,Q).

∗ p1 > 0 ∧ p2 > 0.
Let p′ def

= p′′·p1
p′′·p1+(1−p′′)·p2 . From 0 < p′′ < 1, p1 > 0 and p2 > 0

we know 0 < p′ < 1. From 0 < p < 1, JPr(b)Kη′′1 (State) = p1 and
JPr(b)Kη′′2 (State) = p2 by Lem. 238 we know η′ = η′′|b = (η′′1 ⊕p′′ η′′2)|b =

η′′1 |b ⊕p′ η′′2 |b. From (η1, R, dqe) Z=⇒k+1
nst (G,Q) we know η1

(State) |=
dqe. From η1

R7→ η′′1 and sta(q, R) by Lem. 289 we have η′′1
(State) |=

dqe. By Lem. 20 we know supp(η′′1 |b) ⊆ supp(η′′1). By Lem. 24 we
know supp(η′′1 |b

(State)
) ⊆ supp(η′′1

(State)
). From η′′1

(State) |= dqe and
scl(dqe) we know η′′1 |b

(State) |= dqe. From η1
R7→ η′′1 we know η1

R
�
dqe

η′′1 |b. From (η1, R, dqe) Z=⇒k+1
nst (G,Q) we know (η′′1 |b, R, dqe) Z=⇒k

nst

(G,Q). From δ(skip)⊗µ R7→ η′′2 by Lem. 188 we know supp(η′′2
(Stmt)

) ⊆

supp((δ(skip)⊗ µ)
(Stmt)

). By Lem. 18 we know (δ(skip)⊗ µ)
(Stmt)

=

δ(skip). By Lem. 27 we know η′′2
(Stmt)

= δ(skip). By Lem. 13 we
know η′′2 = δ(skip) ⊗ η′′2

(State). From JPr(b)Kη′′2 (State) = p2 > 0 by

Lem. 242 and Lem. 206 we know η′′2 |b = (δ(skip)⊗ η′′2
(State)

)|b =

δ(skip) ⊗ η′′2
(State)|b = δ(skip) ⊗ η′′2 |b

(State), thus η′ = η′′1 |b ⊕p′
η′′2 |b = η′′1 |b ⊕p′ (δ(skip) ⊗ η′′2 |b

(State)
). From δ(skip) ⊗ µ R7→ η′′2 we

know δ(skip) ⊗ µ
R
�
true

η′′2 |b. From µ |= Q and Sta(Q,R, true) by

Lem. 186 we have η′′2 |b
(State) |= Q. From η1

R
�
dqe

η′′1 |b by Lem. 188 we

know supp(η′′1 |b
(Stmt)

) ⊆ supp(η1
(Stmt)). From disablesplit(dqe, η1)

by Lem. 290 we know
disablesplit(dqe, η′′1 |b). From 0 < p′ < 1, η′ = η′′1 |b ⊕p′ (δ(skip) ⊗
η′′2 |b

(State)
), η′(State) |= I, η′′2 |b

(State) |= Q, (η′′1 |b, R, dqe) Z=⇒k
nst (G,Q)

and disablesplit(dqe, η′′1 |b) by IH we have (η′, R, I) Z=⇒k
nst (G,Q).

• for all θ and η′, if η ↪→ (θ, η′), then θ ⊆ JGK, η′(State) |= I and (η′, R, I) Z=⇒k
�

(G,Q).
For all θ and η′ such that η ↪→ (θ, η′), from 0 < p < 1 by Lem. 243
and Lem. 190 we know nextsplit(η) = nextsplit(η1 ⊕p (δ(skip) ⊗ µ)) =
nextsplit(η1)∪nextsplit(δ(skip)⊗µ) ⊇ nextsplit(δ(skip)⊗µ) = {nextsplit(skip)} =
{split(true)}. From η ↪→ (θ, η′) by Lem. 191 we know η ; (θ, η′),
i.e., η1 ⊕p (δ(skip) ⊗ µ) ; (θ, η′). From 0 < p < 1 by Lem. 245
there exists θ1, θ2, η

′
1, η
′
2 such that θ = θ1 ∪ θ2, η′ = η′1 ⊕p η′2, η1 ;

(θ1, η
′
1), δ(skip) ⊗ µ ; (θ2, η

′
2). From (η1, R, dqe) Z=⇒k+1

nst (G,Q) we
know η1

(State) |= dqe. From disablesplit(dqe, η1) and η1 ; (θ1, η
′
1) by

Lem. 291 we know η1 ↪→ (θ1, η
′
1). From (η1, R, dqe) Z=⇒k+1

nst (G,Q) we
know θ1 ⊆ JGK and (η′1, R, dqe) Z=⇒k

nst (G,Q). By Lem. 18 and Lem. 19
we have δ(skip)⊗ µ(Stmt)

= δ(skip) and δ(skip)⊗ µ(State)
= µ. From

δ(skip)⊗µ; (θ2, η
′
2) by Lem. 192 and Lem. 193 we know θ2 = {(σ, σ) |

σ ∈ µ} ⊆ JIdK ⊆ JGK and η′2 = δ(skip)⊗ µ, thus θ = θ1 ∪ θ2 ⊆ JGK and
η′ = η′1⊕p η′2 = η′1⊕p (δ(skip)⊗µ). From θ ⊆ JGK and ∀x ∈ fv(I). G⇒
Inv(x) we know ∀x ∈ fv(I), (σ, σ′) ∈ θ. σ′(x) = σ(x). From η ; (θ, η′)

by Lem. 249 we know η′
(State)|fv(I) = η(State)|fv(I). From η(State) |= I by

Lem. 272 we know η′
(State) |= I. From disablesplit(dqe, η1) and η1 ;

(θ1, η
′
1) by Lem. 293 we have disablesplit(dqe, η′1). From 0 < p < 1,

η′ = η′1⊕p (δ(skip)⊗µ), η′(State) |= I, µ |= Q, (η′1, R, dqe) Z=⇒k
nst (G,Q)

and disablesplit(dqe, η′1) by IH we have (η′, R, I) Z=⇒k
nst (G,Q).

Lemma 303 (Soundness of (while-nst) rule). For all b, C,R,G1, G2, I, P1, P2, Q,q,
if Sta(P1 ∨ P2, R, I), Sta(P2, R, true), P1 ⇒ dbe, Sta(Q,R, true), P2 ∧ d¬be ⇒
Q, R,G1, I |=st {P1}C{P1 ∨ P2}, P2 ∧ dbe ⇒ dqe, R,G2, dqe |=nst {P2 ∧
dbe}C{P2}, disablesplit(dqe, C), sta(q,R), closed(Q), scl(P2), Id⇒ R, Id⇒
G1, Id ⇒ G2 and ∀x ∈ fv(I). G2 ⇒ Inv(x), then R,G1 ∨ G2, I |=nst {P1 ∨
P2}while (b) do C{Q}.

Proof. For all b, C,R,G1, G2, I, P1, P2, Q,q, such that Sta(P1∨P2, R, I), Sta(P2, R, true),
P1 ⇒ dbe, Sta(Q,R, true), P2 ∧ d¬be ⇒ Q, R,G1, I |=st {P1}C{P1 ∨ P2}, P2 ∧
dbe ⇒ dqe, R,G2, dqe |=nst {P2 ∧ dbe}C{P2}, disablesplit(dqe, C), sta(q,R),

closed(Q) and ∀x ∈ fv(I). G2 ⇒ Inv(x), to prove R,G1 ∨ G2, I |=nst {P1 ∨
P2}while (b) do C{Q}, we need to prove for all n and µ, if µ |= I ∧ (P1 ∨ P2),
then (init(while (b) do C, µ), R, I) Z=⇒n

nst (G1 ∨ G2, Q). For all n and µ such
that µ |= I ∧ (P1 ∨ P2), by Lem. 18 we know init(while (b) do C, µ)

(Stmt)
=

(δ(while (b) do C)⊗ µ)
(Stmt)

= δ(while (b) do C). To prove (init(while (b) do C, µ), R, I) Z=⇒n
nst

(G1 ∨G2, Q), it suffices to prove for all η, if η(Stmt) = δ(while (b) do C), then
(η,R, I) Z=⇒n

nst (G1 ∨G2, Q). We prove it by induction on n.

– base case: n = 0. trivial.
– inductive case: n = k + 1.

IH: for all η, if η(Stmt) = δ(while (b) do C) and η(State) |= I ∧ (P1 ∨ P2),
then (η,R, I) Z=⇒k

nst (G1 ∨G2, Q).
For all η such that η(Stmt) = δ(while (b) do C) and η(State) |= I ∧ (P1 ∨P2),
to prove (η,R, I) Z=⇒k+1

nst (G1 ∨G2, Q), we need to prove
• if η(Stmt)(skip) > 0, then η|skip

(State) |= Q.
η(Stmt)(skip) = δ(while (b) do C)(skip) = 0, which contradicts with
η(Stmt)(skip) > 0.

• η(State) |= I.
From η(State) |= I ∧ (P1 ∨ P2) we know η(State) |= I.

• for all η′, if η
R
�
I
η′, then (η′, R, I) Z=⇒k

nst (G1 ∨G2, Q).

For all η′ such that η
R
�
I
η′, by Lem. 188 we know supp(η′

(Stmt)
) ⊆

supp(η(Stmt)). From η(Stmt) = δ(while (b) do C) by Lem. 27 we know

η′
(Stmt)

= δ(while (b) do C). From η(State) |= I, η
R
�
I
η′ and Sta(P1 ∨

P2, R, I) by Lem. 186 we know η′
(State) |= I ∧ (P1 ∨ P2). By IH we have

(η′, R, I) Z=⇒k
nst (G1 ∨G2, Q).

• for all θ and η′, if η ↪→ (θ, η′), then θ ⊆ JGK, η′(State) |= I and (η′, R, I) Z=⇒k
nst

(G1 ∨G2, Q).
For all θ and η′ such that η ↪→ (θ, η′), from η(Stmt) = δ(while (b) do C)
by Lem. 190 we know nextsplit(η) = {nextsplit(while (b) do C)} =
{split(true)}. From η ↪→ (θ, η′) by Lem. 191 we have η ; (θ, η′). From
η(State) |= I ∧ (P1 ∨ P2) we know η(State) |= I ∧ P1 or η(State) |= I ∧ P2.
We prove the two cases respectively.
∗ η(State) |= I ∧ P1.

From P1 ⇒ dbe we know η(State) |= dbe. From η(Stmt) = δ(while (b) do C)
by Lem. 219 and Lem. 193 we know θ = {(σ, σ) | σ ∈ supp(η(State))} ⊆
JIdK ⊆ JG1 ∨ G2K and η′ = δ(C;while (b) do C) ⊗ η(State). By
Lem. 217 we know η′ = (δ(C) ⊗ η(State));while (b) do C. From
R,G1, I |=st {P1}C{P1∨P2} and η(State) |= I ∧P1 we know (δ(C)⊗
η(State), R, I) Z=⇒k

st (G1, P1∨P2). By IH we know (δ(while (b) do C)⊗
µ,R, I) Z=⇒k

st (G1 ∨ G2, Q) for all µ such that µ |= I ∧ (P1 ∨ P2).
From Id ⇒ G1 ∨ G2 and (δ(C) ⊗ η(State), R, I) Z=⇒k

st (G1, P1 ∨ P2)
by Lem. 216 we know ((δ(C)⊗ η(State));while (b) do C,R, I) Z=⇒k

st
(G1∨G2, Q), i.e., (η′, R, I) Z=⇒k

st (G1∨G2, Q). By Lem. 179 we have
(η′, R, I) Z=⇒k

nst (G1 ∨G2, Q).

∗ η(State) |= I ∧ P2.
There are three cases: η(State) |= dbe, η(State) |= d¬be or η(State) 6|=
dbe ∧ η(State) 6|= d¬be. We prove the three cases respectively.

· η(State) |= dbe.
From η(Stmt) = δ(while (b) do C), η(State) |= dbe and η ;

(θ, η′) by Lem. 219 and Lem. 193 we know θ = {(σ, σ) | σ ∈
supp(η(State))} ⊆ JIdK ⊆ JG1∨G2K and η′ = δ(C;while (b) do C)⊗
η(State). By Lem. 19 we know η′

(State)
= η(State) |= I. To prove

(η′, R, I) Z=⇒k
nst (G1∨G2, Q), from G2 ⇒ G1∨G2 by Lem. 181, it

suffices to prove (η′, R, I) Z=⇒k
nst (G2, Q). From disablesplit(dqe, C)

we know disablesplit(dqe,
while (b) do C), thus disablesplit(dqe, C;while (b) do C). By
Lem. 286 we know disablesplit(dqe, δ(C;while (b) do C) ⊗
η(State)), i.e., disablesplit(dqe, η′). To prove (η′, R, I) Z=⇒k

nst

(G2, Q), from η′
(State) |= I, disablesplit(dqe, η′), sta(q, R), Id⇒

G2 and ∀x ∈ fv(I). G2 ⇒ Inv(x) by Lem. 301, it suffices to
prove (η′, R, dqe), Z=⇒k

nst (G2, Q), i.e., (δ(C;while (b) do C) ⊗
η(State), R, dqe) Z=⇒k

nst (G2, Q). By Lem. 217 we know δ(C;while (b) do C)⊗
η(State) = δ(C)⊗ η(State);while (b) do C, thus we need to prove
(δ(C) ⊗ η(State);while (b) do C), R, dqe) Z=⇒k

nst (G2, Q). From
disablesplit(dqe, C) by Lem. 286 we know disablesplit(dqe, δ(C)⊗
η(State)). From η(State) |= P2 and η(State) |= dbe we know η(State) |=
P2 ∧ dbe. From P2 ∧ dbe ⇒ dbfqe we know η(State) |= dqe ∧ P2 ∧
dbe. From R,G2, dqe |=nst {P2 ∧ dbe}C{P2} we know (δ(C) ⊗
η(State), R, dqe) Z=⇒k

nst (G2, P2). To prove (δ(C)⊗η(State);while (b) do C,R, dqe) Z=⇒k
nst

(G2, Q), from (δ(C)⊗η(State), R, dqe) Z=⇒k
nst (G2, P2), disablesplit(dqe, δ(C)⊗

η(State)), disablesplit(while (b) do C), sta(q, R), closed(Q),
scl(P2), Id ⇒ R and Id ⇒ G2 by Lem. 299, it suffices to prove
(δ(while (b) do C) ⊗ µ,R, dqe) Z=⇒k

nst (G2, Q) for all µ such
that µ |= dqe ∧ P2. From R,G2, dqe |=nst {P2 ∧ dbe}C{P2},
P2 ∧ d¬be ⇒ Q, closed(Q), Sta(P2, R, true), Sta(Q,R, true),
sta(q, R), disablesplit(dqe, C), scl(P2), Id ⇒ R and Id ⇒ G2

by Lem. 300 we know R,G2, dqe |=nst {P2}while (b) do C{Q},
thus (δ(while (b) do C) ⊗ µ,R, dqe) Z=⇒k

nst (G2, Q) for all µ
such that µ |= dqe ∧ P2.
· η(State) |= d¬be.
From η(State) |= I ∧ P2 we know η(State) |= I ∧ P2 ∧ d¬be. From
P2 ∧ d¬be ⇒ Q we know η(State) |= I ∧ Q. From η(Stmt) =
δ(while (b) do C), η(State) |= d¬be and η ; (θ, η′) by Lem. 220
and Lem. 193 we know θ = {(σ, σ) | σ ∈ supp(η(State))} ⊆ JIdK ⊆
JG1 ∨G2K and η′ = δ(skip)⊗ η(State). By Lem. 18 and Lem. 19
we know η′

(Stmt)
= δ(skip) and η′

(State)
= η(State) |= I ∧ Q.

From Sta(Q,R, true) and I ⇒ true we know Sta(Q,R, I). From
Id⇒ G1∨G2, η′

(Stmt)
= δ(skip), and η′(State)

= η(State) |= I∧Q
by Lem. 194 we know (η′, R, I) Z=⇒k

nst (G1 ∨G2, Q).

· η(State) 6|= dbe ∧ η(State) 6|= d¬be.
From η(State) 6|= dbe by Lem. 226 we know JPr(b)Kη(State) 6= 1.
From η(State) 6|= d¬be by Lem. 227 we know JPr(b)Kη(State) 6= 0,

thus 0 < JPr(b)Kη(State) < 1. Let p def
= JPr(b)Kη(State) , then 0 <

p < 1. By Lem. 285 there exists η1 and η2 such that η = η1⊕p η2,
η1

(State) |= dbe and η2
(State) |= d¬be. From η ; (θ, η′) we know

η1 ⊕p η2 ; (θ, η′). By Lem. 245 there exists θ1, θ2, η
′
1, η
′
2 such

that θ = θ1 ∪ θ2, η′ = η′1 ⊕p η′, η1 ; (θ1, η
′
1) and η2 ; (θ2, η

′
2).

From 0 < p < 1 by Lem. 275 we know supp(η) = supp(η1 ⊕p
η2) = supp(η1) ∪ supp(η2) ⊇ supp(η1). By Lem. 23 we know
supp(η1

(Stmt)) ⊆ supp(η(Stmt)) From η(Stmt) = δ(while (b) do C)
by Lem. 27 we know η1

(Stmt) = δ(while (b) do C). Similarly
we can prove η2

(Stmt) = δ(while (b) do C). From η1
(Stmt) =

δ(while (b) do C), η1
(State) |= dbe and η1 ; (θ1, η

′
1) by Lem. 219

and Lem. 193 we know θ1 = {(σ, σ) | σ ∈ supp(η1
(State))}

and η′1 = δ(C;while (b) do C) ⊗ η1
(State). From η2

(Stmt) =
δ(while (b) do C), η2

(State) |= d¬be and η2 ; (θ1, η
′
1) by Lem. 220

and Lem. 193 we know θ2 = {(σ, σ) | σ ∈ supp(η2
(State))} and

η′2 = δ(C;while (b) do C) ⊗ η2
(State), thus θ = θ1 ∪ θ2 ⊆

JIdK ⊆ JG1 ∨G2K and η′ = η′1 ⊕p η′2 = (δ(C;while (b) do C)⊗
η1

(State)) ⊕p (δ(skip) ⊗ η2
(State)). By Lem. 12 and Lem. 19 we

know η′
(State)

= η1
(State) ⊕p η2

(State) = η(State) |= I. To prove
(η′, R, I) Z=⇒k

nst (G1 ∨G2, Q), from G2 ⇒ G1 ∨G2 by Lem. 181,
it suffices to prove (η′, R, I) Z=⇒k

nst (G2, Q). From supp(η1) ⊆
supp(η) by Lem. 24 we know supp(η1

(State)) ⊆ supp(η(State)).
From η(State) |= P2 and scl(P2) we have η1

(State) |= P2. Similarly
we can prove η2

(State) |= P2. From η2
(State) |= d¬be we know

η2
(State) |= P2∧d¬be. From P2∧d¬be ⇒ Q we have η2

(State) |= Q.
From disablesplit(dqe, C) we know
disablesplit(dqe,while (b) do C), thus disablesplit(dqe, C;while (b) do C).
By Lem. 286 we know disablesplit(dqe, δ(C;while (b) do C)⊗
η1

(State)). To prove (η′, R, I) Z=⇒k
nst (G2, Q), from 0 < p < 1,

η′ = (δ(C;while (b) do C) ⊗ η1
(State)) ⊕p (δ(skip) ⊗ η2

(State)),
η′

(State) |= I, η2
(State) |= Q, disablesplit(dqe, δ(C;while (b) do C)⊗

η1
(State)), closed(Q), sta(q, R), Sta(Q,R, true), Id ⇒ G2 and
∀x ∈ fv(I). G2 ⇒ Inv(x) by Lem. 302, it suffices to prove
(δ(C;while (b) do C) ⊗ η1

(State), R, dqe) Z=⇒k
nst (G2, Q). By

Lem. 217 we know δ(C;while (b) do C) ⊗ η1
(State) = δ(C) ⊗

η1
(State);while (b) do C), thus we need to prove

(δ(C)⊗ η1
(State);while (b) do C), R, dqe) Z=⇒k

nst (G2, Q). From
disablesplit(dqe, C) by Lem. 286 we know disablesplit(dqe, δ(C)⊗
η1

(State)). From η1
(State) |= P2 and η1

(State) |= dbe we know
η1

(State) |= P2 ∧ dbe. From R,G2, dqe |=nst {P2 ∧ dbe}C{P2} we
know (δ(C)⊗η1

(State), R, dqe) Z=⇒k
nst (G2, P2). To prove (δ(C)⊗

η1
(State);while (b) do C,R, dqe) Z=⇒k

nst (G2, Q), from (δ(C) ⊗

η1
(State), R, dqe) Z=⇒k

nst (G2, P2), disablesplit(dqe, δ(C)⊗η1
(State)),

disablesplit(while (b) do C), sta(q, R), closed(Q) scl(P2),
Id⇒ R and Id⇒ G2 by Lem. 299, it suffices to prove (δ(while (b) do C)⊗
µ,R, dqe) Z=⇒k

nst (G2, Q) for all µ such that µ |= dqe ∧ P2. From
R,G2, dqe |=nst {P2 ∧ dbe}C{P2}, P2 ∧ d¬be ⇒ Q, closed(Q),
Sta(P2, R, true), Sta(Q,R, true), sta(q, R), disablesplit(dqe, C),
scl(P2), Id⇒ R and Id⇒ G2 by Lem. 300 we knowR,G2, dqe |=nst
{P2}while (b) do C{Q}, thus (δ(while (b) do C)⊗µ,R, dqe) Z=⇒k

nst
(G2, Q) for all µ such that µ |= dqe ∧ P2.

Lemma 304. For all C,R,G, I, P,Q, if R,G, I `nst {P}C{Q}, then R,G, I |=nst
{P}C{Q}.

Proof. For all C,R,G, I, P,Q such thatR,G, I `nst {P}C{Q}, we proveR,G, I |=nst
{P}C{Q} by induction on the derivation of R,G, I `nst {P}C{Q}.

– case (st-nst): R,G, I `st {P}C{Q}.
From R,G, I `st {P}C{Q} by Lem. 233 we know R,G, I |=st {P}C{Q}.
By Lem. 180 we know R,G, I `nst {P}C{Q}.

– case (disj): P = P1 ∨ P2, Q = Q1 ∨ Q2, R,G, I `nst {P1}C{Q1} and
R,G, I `nst {P2}C{Q2}.
From R,G, I `nst {P1}C{Q1} by induction hypothesis we know R,G, I |=nst
{P1}C{Q1}. From R,G, I `nst {P2}C{Q2} by induction hypothesis we
know R,G, I |=nst {P2}C{Q2}. By Lem. 183 we know R,G, I `nst {P1 ∨
P2}C{Q1 ∨Q2}, i.e., R,G, I `nst {P}C{Q}.

– case (conj): P = P1 ∧ P2, Q = Q1 ∧ Q2, R,G, I `nst {P1}C{Q1} and
R,G, I `nst {P2}C{Q2}.
From R,G, I `nst {P1}C{Q1} by induction hypothesis we know R,G, I |=nst
{P1}C{Q1}. From R,G, I `nst {P2}C{Q2} by induction hypothesis we
know R,G, I |=nst {P2}C{Q2}. By Lem. 185 we know R,G, I `nst {P1 ∧
P2}C{Q1 ∧Q2}, i.e., R,G, I `nst {P}C{Q}.

– case (csq): P ⇒ P1, R ⇒ R1, G1 ⇒ G, Q1 ⇒ Q and R1, G1, I `nst
{P1}C{Q1}.
FromR1, G1, I `nst {P1}C{Q1} by induction hypothesis we knowR1, G1, I |=nst
{P1}C{Q1}. From P ⇒ P1, R⇒ R1, G1 ⇒ G and Q1 ⇒ Q by Lem. 182 we
know R,G, I |=nst {P}C{Q}.

– case (seq-st): C = C1;C2,R,G, I `st {P}C1{M} andR,G, I `nst {M}C2{Q}.
From R,G, I `st {P}C1{M} by Lem. 233 we have R,G, I |=st {P}C1{M}.
From R,G, I `nst {M}C2{Q} by induction hypothesis we have R,G, I |=nst
{M}C2{Q}.
By Lem. 218 we knowR,G, I |=nst {P}C1;C2{Q}, i.e.,R,G, I |=nst {P}C{Q}.

– case (seq-nst): C = C1;C2, G = G1 ∨ G2, R ∨ G2, G1, I `nst {P}C1{M},
R,G2, true `nst {M}C2{Q}, Nosplit(C2), closed(Q), scl(M) and ∀x ∈
fv(I). G2 ⇒ Inv(x).
From R ∨ G2, G1, I `nst {P}C1{M} by induction hypothesis we have R ∨
G2, G1, I |=nst {P}C1{M}. From R,G2, true `nst {M}C2{Q} by induction
hypothesis we haveR,G2, I |=nst {M}C2{Q}. FromNosplit(C2), closed(Q),

scl(M) and ∀x ∈ fv(I). G2 ⇒ Inv(x) by Lem. 284 we know R,G1 ∨
G2, I |=nst {P}C1;C2{Q}, i.e., R,G, I |=nst {P}C{Q}.

– case (cond): C = if (b) then C1 else C2, P = P1 ∨ P2, Sta(P1 ∨ P2, R, I),
P1 ⇒ dbe, P2 ⇒ d¬be, R,G, I `nst {P1}C1{Q} and R,G, I `nst {P2}C1{Q}.
From R,G, I `nst {P1}C1{Q} by induction hypothesis we know R,G, I |=nst
{P1}C1{Q}. From R,G, I `nst {P2}C1{Q} by induction hypothesis we know
R,G, I |=nst {P2}C2{Q}. From Sta(P1 ∨P2, R, I), P1 ⇒ dbe and P2 ⇒ d¬be
by Lem. 200 we know R,G, I |=nst {P1∨P2}if (b) then C1 else C2{Q}, i.e.,
R,G, I |=nst {P}C{Q}.

– case (while-st): C = while (b) do C1, P = P1 ∨ P2, Sta(P1 ∨ P2, R, I),
Sta(Q,R, I), P1 ⇒ dbe, P2 ⇒ d¬be ∧Q, R,G, I `st {P1}C1{P1 ∨ P2}.
FromR,G, I `st {P1}C1{P1∨P2} by induction hypothesis we knowR,G, I |=st
{P1}C1{P1∨P2}. From Sta(P1∨P2, R, I), Sta(Q,R, I), P1 ⇒ dbe and P2 ⇒
d¬be ∧Q by Lem. 221 we know R,G, I |=st {P1 ∨ P2}while (b) do C1{Q},
i.e., R,G, I |=st {P}C{Q}.

– case (while-nst): C = while (b) do C1, P = P1 ∨ P2, G = G1 ∨ G2,
Sta(P1 ∨P2, R, I), Sta(P2, R, true), Sta(Q,R, true), P1 ⇒ dbe, P2 ∧d¬be ⇒
Q, R,G1, I `st {P1}C1{P1 ∨ P2}, P2 ∧ dbe ⇒ dqe, R,G2, dqe `nst {P2 ∧
dbe}C1{P2}, disablesplit(dqe, C1), sta(q, R), closed(Q), scl(P2), and ∀x ∈
fv(I). G2 ⇒ Inv(x).
From R,G1, I `st {P1}C1{P1 ∨ P2} by Lem. 233 we know R,G1, I |=st
{P1}C1{P1 ∨ P2}. From R,G2, dqe `nst {P2 ∧ dbe}C1{P2} by induction
hypothesis we know R,G2, dqe |=nst {P2 ∧ dbe}C1{P2}. From Sta(P1 ∨
P2, R, I), Sta(P2, R, true), Sta(Q,R, true), P1 ⇒ dbe, P2 ∧ d¬be ⇒ Q, P2 ∧
dbe ⇒ dqe, disablesplit(dqe, C1), sta(q, R), closed(Q), scl(P2) and ∀x ∈
fv(I). G2 ⇒ Inv(x) by Lem. 303 we know R,G1 ∨ G2, I |=nst {P1 ∨
P2}while (b) do C1{Q}, i.e., R,G, I |=st {P}C{Q}.

Lemma 305 (Soundness of (sq-disj) rule). For all C,G, P1, P2, Q1, Q2, if
G |=sq {P1}C{Q1} and G |=sq {P2}C{Q2}, then G |=sq {P1 ∨ P2}C{Q1 ∨Q2}.

Proof. For all C,G, P1, P2, Q1, Q2 such that G |=sq {P1}C{Q1} and G |=sq
{P2}C{Q2}, to prove G |=sq {P1 ∨ P2}C{Q1 ∨Q2}, we need to prove for all µ,
if µ |= P1 ∨ P2 and |JCK(µ)| = 1, then JCK(µ) |= Q1 ∨ Q2 and (σ, σ′) |= G for
all σ and σ′ such that σ ∈ supp(µ) and σ′ ∈ supp(JCK(σ)). For all µ such that
µ |= P1 ∨ P2 and |JCK(µ)| = 1, from µ |= P1 ∨ P2 we know µ |= P1 or µ |= P2.
We prove the two cases respectively.

– µ |= P1.
From G |=sq {P1}C{Q1}, µ |= P1 and |JCK(µ)| = 1 we know JCK(µ) |= Q1

and (σ, σ′) |= G for all σ and σ′ such that σ ∈ supp(µ) and σ′ ∈ supp(JCK(σ)).
From JCK(µ) |= Q1 we know JCK(µ) |= Q1 ∨Q2.

– µ |= P2.
From G |=sq {P2}C{Q2}, µ |= P2 and |JCK(µ)| = 1 we know JCK(µ) |= Q2

and (σ, σ′) |= G for all σ and σ′ such that σ ∈ supp(µ) and σ′ ∈ supp(JCK(σ)).
From JCK(µ) |= Q2 we know JCK(µ) |= Q1 ∨Q2.

Lemma 306 (Soundness of (sq-conj) rule). For all C,G, P1, P2, Q1, Q2,
if G |=sq {P1}C{Q1} and G |=sq {P2}C{Q2}, then G |=sq {P1∧P2}C{Q1∧Q2}.

Proof. For all C,G, P1, P2, Q1, Q2 such that G |=sq {P1}C{Q1} and G |=sq
{P2}C{Q2}, to prove G |=sq {P1 ∧ P2}C{Q1 ∧Q2}, we need to prove for all µ,
if µ |= P1 ∧ P2 and |JCK(µ)| = 1, then JCK(µ) |= Q1 ∨ Q2 and (σ, σ′) |= G for
all σ and σ′ such that σ ∈ supp(µ) and σ′ ∈ supp(JCK(σ)). For all µ such that
µ |= P1 ∧ P2 and |JCK(µ)| = 1, from µ |= P1 ∧ P2 we know µ |= P1 and µ |= P2.
From G |=sq {P1}C{Q1}, µ |= P1 and |JCK(µ)| = 1 we know JCK(µ) |= Q1 and
(σ, σ′) |= G for all σ and σ′ such that σ ∈ supp(µ) and σ′ ∈ supp(JCK(σ)). From
G |=sq {P2}C{Q2}, µ |= P2 and |JCK(µ)| = 1 we know JCK(µ) |= Q2. From
JCK(µ) |= Q1 and JCK(µ) |= Q2 we know JCK(µ) |= Q1 ∧Q2.

Lemma 307. For all C, µ,X, r, if X /∈ wv(C), then JCK(µ{X ; r}) = JCK(µ){X ;

r}.

Proof. For all C, σ,X, r such that X /∈ wv(C), we have

JCK(µ{X ; r})
= Eσ∼µ{X;r}{JCK(σ)}
= Eσ∼Eσ′∼µ{δ(σ′{X;r})}{JCK(σ)}
= Eσ′∼µ{Eσ∼δ(σ′{X;r}){JCK(σ)}} (by Lem. 15)
= Eσ′∼µ{JCK(σ′{X ; r})} (by Lem. 17)
= Eσ′∼µ{JCK(σ′){X ; r}}
= Eσ′∼µ{Eσ∼JCK(σ′){δ(σ{X ; r})}}
= Eσ∼Eσ′∼µ{JCK(σ′)}{δ(σ{X ; r})} (by Lem. 15)
= Eσ∼JCK(µ){δ(σ{X ; r})}
= JCK(µ){X ; r}.

Lemma 308. For all µ ∈ SDState, X, r, |µ{X ; r}| = |µ|.

Proof. For all µ ∈ SDState, X, r, we have |µ{X ; r}| =
∑
σ′ µ{X ; r}(σ′) =∑

σ′
∑
σ{µ(σ) | σ{X ; r} = σ′} =

∑
σ µ(σ) = |µ|.

Lemma 309. For all σ, µ,X, r, if σ ∈ supp(µ), then σ{X ; r} ∈ supp(µ{X ;

r}).

Proof. For all σ, µ,X, r such that σ ∈ supp(µ), we know µ(σ) > 0, thus µ{X ;

r}(σ{X ; r}) =
∑
σ′{µ(σ′) | σ′{X ; r} = σ{X ; r}} ≥ µ(σ) > 0, so

σ{X ; r} ∈ supp(µ{X ; r}).

Lemma 310 (Soundness of (sq-exists) rule). For all C,P,Q,G,X, if
X /∈ fv(G) ∪ wv(C) and G |=sq {P}C{Q}, then G |=sq {∃X.P}C{∃X.Q}.

Proof. For all C,P,Q,G,X such that X /∈ fv(G)∪wv(C) and G |=sq {P}C{Q},
from X /∈ fv(G)∪ fv(G) we know X /∈ fv(G) and X /∈ wv(C). To prove G |=sq
{∃X.P}C{∃X.Q}, we need to prove for all µ, if µ |= ∃X.P and |JCK(µ)| = 1,
then JCK(µ) |= ∃X.Q and (σ, σ′) |= G for all σ and σ′ such that σ ∈ supp(µ)

and σ′ ∈ supp(JCK(σ)). For all µ such that µ |= ∃X.P and |JCK(µ)| = 1, from
µ |= ∃X.P we know there exists r such that µ{X ; r} |= P . From X /∈ wv(C)
by Lem. 307 we know JCK(µ{X ; r}) = JCK(µ){X ; r}. By Lem. 308 we know
|JCK(µ{X ; r})| = |JCK(µ){X ; r}| = |JCK(µ)| = 1. From G |=sq {P}C{Q},
µ{X ; r} |= P and |JCK(µ{X ; r})| = 1 we know JCK(µ{X ; r}) |= Q,
i.e., JCK(µ){X ; r} |= Q, thus JCK(µ) |= ∃X.Q. For all σ and σ′ such that σ ∈
supp(µ) and σ′ ∈ supp(JCK(σ)), by Lem. 309 we know σ{X ; r} ∈ supp(µ{X ;

r}) and σ′{X ; r} ∈ supp(JCK(σ){X ; r}). From X /∈ wv(C) we know
JCK(σ){X ; r} = JCK(σ{X ; r}), thus σ′{X ; r} ∈ supp(JCK(σ{X ; r})).
From G |=sq {P}C{Q}, µ{X ; r} |= P , |JCK(µ{X ; r})| = 1, σ{X ;

r} ∈ supp(µ{X ; r}) and σ′{X ; r} ∈ supp(JCK(σ{X ; r})) we know
(σ{X ; r}, σ′{X ; r}) |= G, thus (σ, σ′) |= ∃X.G. From X /∈ fv(G) we know
(σ, σ′) |= G.

Lemma 311 (Soundness of (sq-forall) rule). For all C,P,Q,G,X, if
X /∈ fv(G) ∪ wv(C) and G |=sq {P}C{Q}, then G |=sq {∀X.P}C{∀X.Q}.

Proof. For all C,P,Q,G,X such that X /∈ fv(G)∪wv(C) and G |=sq {P}C{Q},
from X /∈ fv(G)∪ fv(G) we know X /∈ fv(G) and X /∈ wv(C). To prove G |=sq
{∀X.P}C{∀X.Q}, we need to prove for all µ, if µ |= ∀X.P and |JCK(µ)| = 1,
then JCK(µ) |= ∀X.Q and (σ, σ′) |= G for all σ and σ′ such that σ ∈ supp(µ) and
σ′ ∈ supp(JCK(σ)). For all µ such that µ |= ∀X.P and |JCK(µ)| = 1, to prove
JCK(µ) |= ∀X.Q, we need to prove JCK(µ){X ; r} |= Q for all r. For all r, from
µ |= ∃X.P we know µ{X ; r} |= P . From X /∈ wv(C) by Lem. 307 we know
JCK(µ{X ; r}) = JCK(µ){X ; r}. By Lem. 308 we know |JCK(µ{X ; r})| =
|JCK(µ){X ; r}| = |JCK(µ)| = 1. From G |=sq {P}C{Q}, µ{X ; r} |= P and
|JCK(µ{X ; r})| = 1 we know JCK(µ{X ; r}) |= Q, i.e., JCK(µ){X ; r} |= Q.
For all σ and σ′ such that σ ∈ supp(µ) and σ′ ∈ supp(JCK(σ)), by Lem. 309 we
know σ{X ; 0} ∈ supp(µ{X ; 0}) and σ′{X ; 0} ∈ supp(JCK(σ){X ; 0}).
From X /∈ wv(C) we know JCK(σ){X ; 0} = JCK(σ{X ; 0}), thus σ′{X ;

0} ∈ supp(JCK(σ{X ; 0})). From µ |= ∀X.P we know µ{X ; 0} |= P . By
Lem. 308 we know |JCK(µ{X ; 0})| = |JCK(µ){X ; 0}| = |JCK(µ)| = 1.
From G |=sq {P}C{Q}, µ{X ; 0} |= P , |JCK(µ{X ; 0})| = 1, σ{X ;

0} ∈ supp(µ{X ; 0}) and σ′{X ; 0} ∈ supp(JCK(σ{X ; 0})) we know
(σ{X ; 0}, σ′{X ; 0}) |= G, thus (σ, σ′) |= ∃X.G. From X /∈ fv(G) we know
(σ, σ′) |= G.

Lemma 312 (Soundness of (sq-csq) rule). For all C,P, P ′, Q,Q′, G,G′,
if P ⇒ P ′, G′ |=sq {P ′}C{Q′}, Q′ ⇒ Q and G′ ⇒ G, then G |=sq {P}C{Q}.

Proof. For all C,P, P ′, Q,Q′, G,G′ such that P ⇒ P ′, G′ |=sq {P ′}C{Q′}, Q′ ⇒
Q and G′ ⇒ G, to prove G |=sq {P}C{Q}, we need to prove for all µ, if µ |= P
and |JCK(µ)| = 1, then JCK(µ) |= Q and (σ, σ′) |= G for all σ and σ′ such that
σ ∈ supp(µ) and σ′ ∈ supp(JCK(σ)). For all µ such that µ |= P and |JCK(µ)| = 1,
from µ |= P and P ⇒ P ′ we know µ |= P ′. From G |=sq {P ′}C{Q′}, µ |= P ′

and |JCK(µ)| = 1 we know JCK(µ) |= Q′ and (σ, σ′) |= G′ for all σ and σ′

such that σ ∈ supp(µ) and σ′ ∈ supp(JCK(σ)). From Q′ ⇒ Q and G′ ⇒ G we

know JCK(µ) |= Q and (σ, σ′) |= G for all σ and σ′ such that σ ∈ supp(µ) and
σ′ ∈ supp(JCK(σ)).

Lemma 313. For all C, µ1, µ2, p, JCK(µ1 ⊕p µ2) = JCK(µ1)⊕p JCK(µ2).

Proof. For all C, µ1, µ2, p, by Lem. 16 we know JCK(µ1⊕pµ2) = Eσ∼µ1⊕pµ2
{JCK(σ)} =

Eσ∼µ1{JCK(σ)} ⊕p Eσ∼µ2{JCK(σ)} = JCK(µ1)⊕p JCK(µ2).

Lemma 314. For all set A and µ1, µ2 ∈ SDA, p ∈ (0, 1), if |µ1⊕p µ2| = 1, then
|µ1| = 1 and |µ2| = 1.

Proof. For all set A and µ1, µ2 ∈ SDA, p ∈ (0, 1) such that |µ1 ⊕p µ2| = 1, we
have 1 = |µ1 ⊕p µ2| =

∑
a(µ1(a) ⊕p µ(a)) =

∑
a p · µ1(a) + (1 − p) · µ2(a) =

p · |µ1|+ (1− p) · |µ2|. From 0 < p < 1 we know |µ1| = 1 and |µ2| = 1.

Lemma 315 (Soundness of (sq-oplus) rule). For all C,G, P1, P2, Q1, Q2, p,
if G |=sq {P1}C{Q1} and G |=sq {P2}C{Q2}, then G |=sq {P1 ⊕p P2}C{Q1 ⊕p
Q2}

Proof. For all C,G, P1, P2, Q1, Q2, p such that G |=sq {P1}C{Q1} and G |=sq
{P2}C{Q2}, there are three cases: p = 0, p = 1 or 0 < p < 1. The cases
p = 0 and p = 1 are trivial. We only prove the case 0 < p < 1. To prove
G |=sq {P1 ⊕p P2}C{Q1 ⊕p Q2}, we need to prove for all µ, if µ |= P1 ⊕p P2

and |JCK(µ)| = 1, then JCK(µ) |= Q1 ⊕p Q2 and (σ, σ′) |= G for all σ and σ′

such that σ ∈ supp(µ) and σ′ ∈ supp(JCK(σ)). For all µ such that µ |= P1 ⊕p P2

and |JCK(µ)| = 1, from µ |= P1 ⊕p P2 and 0 < p < 1 we know there exists µ1

and µ2 such that µ = µ1 ⊕p µ2, µ1 |= P1 and µ2 |= P2. By Lem. 313 we know
JCK(µ) = JCK(µ1 ⊕p µ2) = JCK(µ1) ⊕p JCK(µ2). From 0 < p < 1 by Lem. 314
we know |JCK(µ1)| = 1 and |JCK(µ2)| = 1. From G |=sq {P1}C{Q1}, µ1 |= P1

and |JCK(µ1)| = 1 we know JCK(µ1) |= Q1. From G |=sq {P2}C{Q2}, µ2 |= P2

and |JCK(µ2)| = 1 we know JCK(µ2) |= Q2. From JCK(µ1) |= Q1, JCK(µ2) |= Q2,
0 < p < 1 and JCK(µ) = JCK(µ1)⊕p JCK(µ2) we know JCK(µ) |= Q1 ⊕p Q2. For
all σ and σ′ such that σ ∈ supp(µ) and σ′ ∈ supp(JCK(σ)), from 0 < p < 1
by Lem. 275 we know supp(µ) = supp(µ1 ⊕p µ2) = supp(µ1) ∪ supp(µ2). From
σ ∈ supp(µ) we know σ ∈ supp(µ1) or σ ∈ supp(µ2). If σ ∈ supp(µ1), from
G |=sq {P1}C{Q1}, µ1 |= P1 and σ′ ∈ supp(JCK(σ)) we know (σ, σ′) |= G. If
σ ∈ supp(µ2), from G |=sq {P2}C{Q2}, µ2 |= P2 and σ′ ∈ supp(JCK(σ)) we know
(σ, σ′) |= G.

Definition H.50. Let V ∈ DDState , we define JCK(V)
def
= λµ. Prν∼V [JCK(ν) =

µ].

Lemma 316. For all V, V ′ ∈ DDState and C, JCK(V) = JCK(V).

Proof. For all V, V ′ ∈ DDState and C, we have

JCK(V) = Eσ∼V {JCK(σ)}
= Eσ∼Eν∼V {ν}{JCK(σ)}
= Eν∼V {Eσ∼ν{JCK(σ)}} (by Lem. 15)
= Eν∼V {JCKν}
= λσ.

∑
ν V (ν) · JCKν(σ)

= λσ.
∑
µ,ν{V (ν) · µ(σ) | JCKν = µ}

= λσ.
∑
µ µ(σ) ·

∑
ν{V (ν)· | JCKν = µ}

= λσ.
∑
µ µ(σ) ·Prν∼V [JCKν = µ]

= λσ.
∑
µ µ(σ) · JCK(V)(µ)

= JCK(V).

Lemma 317. For all set A and V ∈ SDSDA , if |V | = 1, then |ν| = 1 for all
ν ∈ supp(V).

Proof. For all set A and V ∈ SDSDA such that |V | = 1, we prove by contradiction.
Assume there exists µ ∈ supp(V) such that |µ| 6= 1, then V (µ) > 0 and |µ| < 1,
so V (µ) · |µ| < V (µ), thus |V | =

∑
σ V (σ) =

∑
σ

∑
ν V (ν) · ν(σ) =

∑
ν V (ν) ·∑

σ ν(σ) =
∑
ν V (ν)·|ν| = V (µ)·|µ|+

∑
ν{V (ν)·|ν| | ν 6= µ} < V (µ)+

∑
ν{V (ν) |

ν 6= µ} =
∑
ν V (ν) = |V | ≤ 1, which contradicts with |V | = 1.

Lemma 318. For all V ∈ DDState and µ, if µ ∈ supp(V), then JCK(µ) ∈
supp(JCK(V)).

Proof. For all V ∈ DDState and µ such that µ ∈ supp(V), we know V (µ) > 0,
thus JCK(V)(JCK(µ)) = Prν∼V [JCK(ν) = JCK(µ)] ≥ V (µ) > 0, so JCK(µ) ∈
supp(JCK(V)).

Lemma 319. For all set A and µ ∈ DDA , a ∈ supp(µ), there exists ν ∈ supp(µ)
such that a ∈ supp(ν).

Proof. For all set A and µ ∈ DDA , a ∈ supp(µ), we know 0 < µ(a) =
∑
ν∈DA µ(ν)·

ν(a), so there exists ν such that µ(ν) > 0 and ν(a) > 0, thus ν ∈ supp(µ) and
a ∈ supp(ν).

Lemma 320 (Soundness of (sq-bigoplus) rule). For all C,G, P,Q, if
G |=sq {P}C{Q}, then G |=sq {

⊕
P}C{

⊕
Q}.

Proof. For all C,G, P,Q such thatG |=sq {P}C{Q}, to proveG |=sq {
⊕
P}C{

⊕
Q},

we need to prove for all µ, if µ |=
⊕
P and |JCK(µ)| = 1, then JCK(µ) |=

⊕
Q and

(σ, σ′) |= G for all σ and σ′ such that σ ∈ supp(µ) and σ′ ∈ supp(JCK(σ)). For
all µ such that µ |=

⊕
P and |JCK(µ)| = 1, from µ |=

⊕
P we know there exists

V ∈ DDState such that µ = V and ν |= P for all ν ∈ supp(V). By Lem. 316 we
know JCK(µ) = JCK(V) = JCK(V). From |JCK(µ)| = 1 we know |JCK(V)| = 1. For
all µ′ ∈ supp(JCK(V)), by Lem. 317 we know |µ′| = 1. From µ′ ∈ supp(JCK(V))
we know 0 < JCK(V)(µ′) = Prν∼V [JCK(ν) = µ′] =

∑
ν{V (ν) | JCK(ν) = µ′}, so

there exists ν such that ν ∈ supp(V) and JCK(ν) = µ′. From ν ∈ supp(V) we

know ν |= P . From |µ′| = 1 we know |JCK(ν)| = 1. From G |=sq {P}C{Q},
ν |= P and |JCK(ν)| = 1 we know JCK(ν) |= Q, i.e., µ′ |= Q. Therefore,
µ′ |= Q for all µ′ ∈ supp(JCK(V)). From closed(Q) we know JCK(V) |= Q.
From JCK(µ) = JCK(V) we know JCK(µ) |= Q. For all σ and σ′ such that
σ ∈ supp(µ) and σ′ ∈ supp(JCK(σ)), from µ = V we know σ ∈ supp(V), by
Lem. 319 there exists ν ∈ supp(V) such that ν ∈ supp(V). From ν ∈ supp(V) we
know ν |= P . From ν ∈ supp(V) by Lem. 318 we know JCK(ν) ∈ supp(JCK(V)).
From |JCK(V)| = 1 by Lem. 317 we know |JCK(ν)| = 1. From G |=sq {P}C{Q},
ν |= P , |JCK(ν)| = 1, σ ∈ supp(ν) and σ′ ∈ supp(JCK(ν)) we know (σ, σ′) |= G.

Lemma 321. For all n and σ, (skip, σ)
1−→n(skip, σ).

Proof. by induction on n.

– base case: n = 0. trivial.
– inductive case: n = k + 1.

IH: for all σ, (skip, σ)
1−→k(skip, σ).

For all σ, by IH we know
∑
C′,σ′{p1 · p2 | (skip, σ)

p1−→ (C ′, σ′)∧ (C ′, σ′)
p2−→

k(skip, σ)} =
∑
{p2 | (skip, σ)

p2−→ k(skip, σ)} = 1, thus (skip, σ)
1−→

n(skip, σ).

Lemma 322. For all n, σ, σ′, if σ 6= σ′, then (skip, σ)
0−→n(skip, σ′).

Proof. by induction on n.

– base case: n = 0. trivial.
– inductive case: n = k + 1.

IH: for all σ, σ′, if σ 6= σ′, then (skip, σ)
0−→k(skip, σ′).

For all σ, by IH we know
∑
C′′,σ′′{p1·p2 | (skip, σ)

p1−→ (C ′′, σ′′)∧(C ′′, σ′′)
p2−→

k(skip, σ)} =
∑
{p2 | (skip, σ)

p2−→ k(skip, σ′)} = 0, thus (skip, σ)
0−→

n(skip, σ′).

Lemma 323. For all σ, JskipK(σ) = δ(σ).

Proof. For all σ, we have

JskipK(σ) = λσ′. lim
→
p ,where ∀n. (skip, σ)

→
p [n]−−−→n(skip, σ′)

=

{
lim
→
1 , if σ′ = σ

lim
→
0 , otherwise

(by Lem. 321 and Lem. 322)

=

{
1, if σ′ = σ

0, otherwise
= δ(σ).

Lemma 324. For all µ, JskipK(µ) = µ.

Proof. For all µ, by Lem. 323 and Lem. 17 we know JskipK(µ) = Eσ∼µ{JskipK(σ)} =
Eσ∼µ{δ(σ)} = µ.

Lemma 325 (Soundness of (sq-skip) rule). For all Q, Id |=sq {Q}skip{Q}.

Proof. For all Q, to prove Id |=sq {Q}skip{Q}, we need to prove for all µ, if
µ |= Q and |JskipK(µ)| = 1, then JskipK(µ) |= Q and (σ, σ′) |= Id for all σ
and σ′ such that σ ∈ supp(µ) and σ′ ∈ supp(JskipK(σ)). For all µ such that
µ |= Q and |JskipK(µ)| = 1, by Lem. 324 we know JskipK(µ) = µ |= Q. For all σ
and σ′ such that σ ∈ supp(µ) and σ′ ∈ supp(JskipK(σ)), by Lem. 323 we know
JskipK(σ) = δ(σ). From σ′ ∈ supp(JskipK(σ)) we know σ′ = σ, thus (σ, σ′) |= Id.

Lemma 326. For all C1, C2, µ, JC1;C2K(µ) = JC2K(JC1K(µ)).

Proof. For all C1, C2, µ, we have

JC1;C2K(µ) = Eσ∼µ{JC1;C2K(σ)}
= Eσ∼µ{JC2K(JC1K(σ))}
= Eσ∼µ{Eσ′∼JC1K(σ)JC2K(σ′)}
= Eσ′∼Eσ∼µ{JC1K(σ)}{JC2K(σ′)} (by Lem. 15)
= Eσ′∼JC1K(µ){JC2K(σ′)}
= JC2K(JC1K(µ)).

Lemma 327. For all µ ∈ SDState and C, if |JCK(µ)| = 1, then |µ| = 1.

Proof. For all µ ∈ SDState and C such that |JCK(µ)| = 1, we know

1 = |JCK(µ)|
=
∑
σ′ Eσ∼µ{JCK(σ)}(σ′)

=
∑
σ′
∑
σ µ(σ) · JCK(σ)(σ′)

=
∑
σ µ(σ) ·

∑
σ′JCK(σ)(σ′)

=
∑
σ µ(σ) · |JCK(σ)|

≤
∑
σ µ(σ)

= |µ|.

From µ ∈ SDState we know |µ| ≤ 1, thus |µ| = 1.

Lemma 328. For all C, µ, σ, if σ ∈ supp(JCK(µ)), then there exists σ0 such that
σ0 ∈ supp(µ) and σ ∈ supp(JCK(σ0)).

Proof. For all C, µ, σ such that σ ∈ supp(JCK(µ)), we have 0 < JCK(µ)(σ) =
Eσ0∼µ{JCK(σ0)}(σ) =

∑
σ0
µ(σ0)·JCK(σ0)(σ), so there exists σ0 such that µ(σ0) >

0 and JCK(σ0)(σ) > 0, thus σ0 ∈ supp(µ) and σ ∈ supp(JCK(σ0)).

Lemma 329. For all C, µ, σ, σ′, if σ ∈ supp(µ), then supp(JCK(σ)) ⊆ supp(JCK(µ)).

Proof. For all C, µ, σ, σ′ such that σ ∈ supp(µ), we know µ(σ) > 0, to prove
supp(JCK(σ)) ⊆ supp(JCK(µ)), we need to prove σ′ ∈ supp(JCK(µ)) for all
σ′ ∈ supp(JCK(σ)). For all σ′ ∈ supp(JCK(σ)), we have JCK(σ)(σ′) > 0, thus
JCK(µ)(σ′) = Eσ0∼µ{JCK(σ0)}(σ′) =

∑
σ0
µ(σ0)·JCK(σ0)(σ′) ≥ µ(σ)·JCK(σ)(σ′) >

0, so σ′ ∈ supp(JCK(σ)).

Lemma 330 (Soundness of (sq-seq) rule). For all C1, C2, P,M,Q,G1, G2,
if G1 |=sq {P}C1{M} and G2 |=sq {M}C2{Q}, then G1◦G2 |=sq {P}C1;C2{Q}.

Proof. For all C1, C2, P,M,Q,G1, G2 such that G1 |=sq {P}C1{M} and G2 |=sq
{M}C2{Q}, to prove G1 ◦G2 |=sq {P}C1;C2{Q}, we need to prove for all µ, if
µ |= P and |JC1;C2K(µ)| = 1, then JC1;C2K(µ) |= Q and (σ, σ′) |= G for all σ
and σ′ such that σ ∈ supp(µ) and σ′ ∈ supp(JC1;C2K(σ)). For all µ such that
µ |= P and |JC1;C2K(µ)| = 1, by Lem. 326 we know JC1;C2K(µ) = JC2K(JC1K(µ)).
From |JC1;C2K(µ)| = 1 we know |JC2K(JC1K(µ)| = 1. By Lem. 327 we know
|JC1K(µ)| = 1. From G1 |=sq {P}C1{M}, µ |= P and |JC1K(µ)| = 1 we know
JC1K(µ) |= M . From G2 |=sq {M}C2{Q}, JC1K(µ) |= M and |JC2K(JC1K(µ)| = 1
we know JC2K(JC1K(µ) |= Q. For all σ and σ′ such that σ ∈ supp(µ) and σ′ ∈
supp(JC1;C2K(σ)), we have JC1;C2K(σ) = JC2K(JC1K(σ)). From σ′ ∈ supp(JC1;C2K(σ))
we know σ′ ∈ supp(JC2K(JC1K(σ))). By Lem. 328 there exists σ′′ such that
σ′′ ∈ supp(JC1K(σ)) and σ′ ∈ supp(JC2K(σ′′)). From G1 |=sq {P}C1{M}, µ |= P ,
|JC1K(µ)| = 1, σ ∈ supp(µ) and σ′′ ∈ supp(JC1K(σ)) we know (σ, σ′′) |= G1.
From σ ∈ supp(µ) by Lem. 329 we know supp(JC1K(σ)) ⊆ supp(JC1K(µ). From
σ′′ ∈ supp(JC1K(σ)) we know σ′′ ∈ supp(JC1K(µ)). From G2 |=sq {M}C2{Q},
JC1K(µ) |= M , |JC2K(JC1K(µ)| = 1, σ′′ ∈ supp(JC1K(µ)) and σ′ ∈ supp(JC2K(σ′′))
we know (σ′′, σ′) |= G2. From (σ, σ′′) |= G1 we know (σ, σ′) |= G1 ◦G2.

Lemma 331. For all x, e, σ, n, if n ≥ 1, then (x := e, σ)
1−→ n(skip, σ{x ;

JeKσ}).

Proof. For all x, e, σ, n such that n ≥ 1, we have∑
C′,σ′{p1 · p2 | (x := e, σ)

p1−→ (C ′, σ′) ∧ (C ′, σ′)
p2−→n−1(skip, σ{x; JeKσ})}

=
∑
{p2 | (skip, σ{x; JeKσ})

p2−→n−1(skip, σ{x; JeKσ})}
= 1. (by Lem. 321)

Therefore (x := e, σ)
1−→n(skip, σ{x; JeKσ}).

Lemma 332. For all x, e, σ, n, if n ≥ 1 and σ′ 6= σ{x ; JeKσ}, then (x :=

e, σ)
0−→n(skip, σ′).

Proof. For all x, e, σ, n such that n ≥ 1, we have∑
C′,σ′{p1 · p2 | (x := e, σ)

p1−→ (C ′, σ′) ∧ (C ′, σ′)
p2−→n−1(skip, σ′)}

=
∑
{p2 | (skip, σ{x; JeKσ})

p2−→n−1(skip, σ′)}
= 0. (by Lem. 322)

Therefore (x := e, σ)
0−→n(skip, σ′).

Lemma 333. For all σ, x, e, Jx := eK(σ) = δ(σ{x; JeKσ}).

Proof. For all σ, x, e, we have

Jx := eK(σ) = λσ′. lim
→
p ,where ∀n. (x := e, σ)

→
p [n]−−−→n(skip, σ′)

=

{
lim (0 ::

→
1), if σ′ = σ{x; JeKσ}

lim (0 ::
→
0), otherwise

(by Lem. 331 and Lem. 332)

=

{
1, if σ′ = σ{x; JeKσ}
0, otherwise

= δ(σ{x; JeKσ}).

Definition H.51. µ{x; e} def
= Eσ∼µ{δ(σ{x; JeKσ})}.

Lemma 334. For all µ, x, e, µ{x; e} = λσ′.
∑
σ{µ(σ) | σ{x; JeKσ} = σ′}.

Proof. For all µ, x, e, we have

µ{x; e} = Eσ∼µ{δ(σ{x; JeKσ})}
= λσ′.

∑
σ µ(σ) · δ(σ{x; JeKσ})(σ′)

= λσ′.
∑
σ{µ(σ) | σ{x; JeKσ} = σ′}

Lemma 335. For all µ, x, e, Jx := eK(µ) = µ{x; e}.

Proof. For all µ, x, e, by Lem. 333 we know Jx := eK(µ) = Eσ∼µ{Jx := eK(σ)} =
Eσ∼µ{δ(σ{x; JeKσ})} = µ{x; e}.

Lemma 336. For all e, x, e′, σ, Je[e′/x]Kσ = JeKσ{x;Je′Kσ}.

Proof. For all e, x, e′, σ, we prove Je[e′/x]Kσ = JeKσ{x;Je′Kσ} by induction on e.

– case n.
Jn[e′/x]Kσ = JnKσ = n = JnKσ{x;Je′Kσ}.

– case y.
If x = y, then Jy[e′/x]Kσ = Jx[e′/x]Kσ = Je′Kσ = σ{x ; Je′Kσ}(x) =
JxKσ{x;Je′Kσ} = JyKσ{x;Je′Kσ}. Otherwise x 6= y, then Jy[e′/x]Kσ = JyKσ =
σ(y) = σ{x; Je′Kσ}(y) = JyKσ{x;Je′Kσ}.

– case e1 + e2.
IH1: Je1[e′/x]Kσ = Je1Kσ{x;Je′Kσ}.
IH2: Je2[e′/x]Kσ = Je2Kσ{x;Je′Kσ}.
By IH1 and IH2 we have J(e1 + e2)[e′/x]Kσ = Je1[e′/x]Kσ + Je2[e′/x]Kσ =
Je1Kσ{x;Je′Kσ} + Je2Kσ{x;Je′Kσ} = Je1 + e2Kσ{x;Je′Kσ}.

– case e1 − e2.
Similar to the case e1 + e2.

– case e1 ∗ e2.
Similar to the case e1 + e2.

Lemma 337. For all b, x, e, σ, Jb[e/x]Kσ = JbKσ{x;JeKσ}.

Proof. by induction on b.

– case true.
Jtrue[e/x]Kσ = {true}σ = tt = JtrueKσ{x;JeKσ}.

– case false.
Jfalse[e/x]Kσ = {false}σ = ff = JfalseKσ{x;JeKσ}.

– case e1 < e2.

J(e1 < e2)[e/x]Kσ = Je1[e/x] < e2[e/x]Kσ

=

{
tt, if Je1[e/x]Kσ < Je2[e/x]Kσ
ff, otherwise

=

{
tt, if Je1Kσ{x;JeKσ} < Je2Kσ{x;JeKσ}

ff, otherwise
(by Lem. 336)

= Je1 < e2Kσ{x;JeKσ}.

– case e1 = e2.
Similar to the case e1 < e2.

– case e1 ≤ e2.
Similar to the case e1 < e2.

– case ¬b.
IH: for all x, e, σ, Jb[e/x]Kσ = JbKσ{x;JeKσ}.
For all x, e, σ, we have

J(¬b)[e/x]Kσ = J¬b[e/x]Kσ

=

{
ff, if Jb[e/x]Kσ = tt
tt, if Jb[e/x]Kσ = ff

=

{
ff, if JbKσ{x;JeKσ} = tt
tt, if JbKσ{x;JeKσ} = ff

(by IH)

= JbKσ{x;JeKσ}.

– case b1 ∧ b2.
IH1: for all x, e, σ, Jb1[e/x]Kσ = Jb1Kσ{x;JeKσ}.
IH2: for all x, e, σ, Jb1[e/x]Kσ = Jb1Kσ{x;JeKσ}.
For all x, e, σ, we have

J(b1 ∧ b2)[e/x]Kσ
= Jb1[e/x] ∧ b2[e/x]Kσ

=

{
tt, if Jb1[e/x]Kσ = tt and Jb2[e/x]Kσ = tt
ff, otherwise

=

{
tt, if Jb1Kσ{x;JeKσ} = tt and Jb2Kσ{x;JeKσ} = tt
ff, otherwise

(by IH1 and IH2)

= Jb1 ∧ b2Kσ{x;JeKσ}.

– case b1 ∨ b2.
Similar to the case b1 ∧ b2.

Lemma 338. For all σ, x, r1, r2, σ{x; r1}{x; r2} = σ{x; r2}.

Proof. For all σ, x, r1, r2, we have

σ{x; r1}{x; r2} = λy.

{
r2, if y = x

σ{x; r1}(y), if y 6= x

= λy.

{
r2, if y = x

σ(y), if y 6= x

= σ{x; r2}.

Lemma 339. For all σ, x, y, r1, r2, if x 6= y, then σ{x; r1}{y ; r2} = σ{y ;

r2}{x; r1}.
Proof. For all σ, x, y, r1, r2,

σ{x; r1}{y ; r2} = λz.

{
r2, if z = y

σ{x; r1}(z), if z 6= y

= λz.

r2, if z = y

r1, if z = x

σ(z), if z 6= y ∧ z 6= x

= λz.

{
r1, if z = x

σ{y ; r2}(z), if z 6= x

= σ{y ; r2}{x; r1}

Lemma 340. For all σ, e, x, r, if x /∈ fv(e), then σ{x; r}|fv(e) = σ|fv(e).

Proof. For all σ, e, x, r such that x /∈ fv(e), to prove σ{x; r}|fv(e) = σ|fv(e), we
need to prove σ{x; r}|fv(e)(y) = σ|fv(e)(y) for all y ∈ fv(e). For all y ∈ fv(e),
from x /∈ fv(e) we know y 6= x, thus σ{x; r}|fv(e)(y) = σ{x; r}(y) = σ(y) =
σ|fv(e)(y).

Lemma 341. For all q, σ, x, e, σ |= q[e/x] if and only if σ{x; JeKσ} |= q.

Proof. by induction on q.
– case b.

For all σ, x, e, by Lem. 337 we have σ |= b[e/x] ⇐⇒ Jb[e/x]Kσ = tt ⇐⇒
JbKσ{x;JeKσ} = tt ⇐⇒ σ{x; JeKσ} |= b.

– case ¬q.
IH: for all σ, x, e, µ |= q[e/x] if and only if σ{x; JeKσ} |= q.
For all σ, x, e, by IH we have σ |= (¬q)[e/x] ⇐⇒ σ |= ¬q[e/x] ⇐⇒ σ 6|=
q[e/x] ⇐⇒ σ{x; JeKσ} 6|= q ⇐⇒ σ{x; JeKσ} |= ¬q.

– case q1 ∧ q2.
IH1: for all σ, x, e, σ |= q1[e/x] if and only if σ{x; JeKσ} |= q1.
IH2: for all σ, x, e, σ |= q2[e/x] if and only if σ{x; JeKσ} |= q2.
For all σ, x, e, we have

σ |= (q1 ∧ q2)[e/x]
⇐⇒ σ |= q1[e/x] ∧ q2[e/x]
⇐⇒ (σ |= q1[e/x]) ∧ (σ |= q2[e/x])
⇐⇒ (σ{x; JeKσ} |= q1) ∧ (µ{x; JeKσ} |= q2) (by IH1 and IH2)
⇐⇒ µ{x; JeKσ} |= q1 ∧ q2.

– case q1 ∨ q2.
Similar to the case q1 ∧ q2.

– case ∀X.q.
IH: for all σ, x, e, σ |= q[e/x] if and only if σ{x; JeKσ} |= q.
For all σ, x, e, we need to prove σ |= (∀X.q)[e/x] if and only if σ{x ;

JeKσ} |= ∀X.q. Usually X is a logical variable, so we can assume X /∈ fv(e)
and X 6= x, by Lem. 340 we know σ{X ; r}|fv(e) = σ|fv(e). By Lem. 252
we know JeKσ{X;r} = JeKσ.

σ |= (∀X.q)[e/x] ⇐⇒ σ |= (∀X.q)[e/x]
⇐⇒ σ |= ∀X.q[e/x]
⇐⇒ ∀r. σ{X ; r} |= q[e/x]
⇐⇒ ∀r. σ{X ; r}{x; JeKσ{X;r}} |= q (by IH)
⇐⇒ ∀r. σ{X ; r}{x; JeKσ} |= q
⇐⇒ ∀r. σ{x; JeKσ}{X ; r} |= q (by Lem. 339)
⇐⇒ σ{x; JeKσ} |= ∀X.q.

– case ∃X.q.
Similar to the case ∀X.q.

Lemma 342. For all σ, µ, x, e, if σ ∈ supp(µ), then σ{x; JeKσ} ∈ supp(µ{x;

e}).

Proof. For all σ, µ, x, e such that σ ∈ supp(µ), we know µ(σ) > 0, thus

µ{x; e}(σ{x; JeKσ}) = Eσ0∼µ{δ(σ0{x; JeKσ})}(σ{x; JeKσ})
=
∑
σ0
µ(σ0) · δ(σ0{x; JeKσ})(σ{x; JeKσ})

≥ µ(σ)
> 0,

so σ{x; JeKσ} ∈ supp(µ{x; e}).

Lemma 343. For all µ, x, e, σ, if σ ∈ supp(µ{x; e}), then there exists σ0 such
that σ0 ∈ supp(µ) and σ0{x; JeKσ0

} = σ.

Proof. For all µ, x, e, σ such that σ ∈ supp(µ{x; e}), we know µ{x; e}(σ) >
0. By Lem. 334 we know µ{x ; e}(σ) =

∑
σ0
{µ(σ0) | σ0{x ; JeKσ0

} = σ}, so∑
σ0
{µ(σ0) | σ0{x ; JeKσ0} = σ} > 0, thus there exists σ0 such that µ(σ0) > 0

and σ0{x; JeKσ0} = σ. From µ(σ) > 0 we know σ0 ∈ supp(µ).

Lemma 344. For all ξ, x, e, µ, Jξ[e/x]Kµ = JξKµ{x;e}.

Proof. For all ξ, x, e, µ, we prove Jξ[e/x]Kµ = JξKµ{x;e} by induction on ξ.

– case r.
Jr[e/x]Kµ = JrKµ = r = JrKµ{x;e}.

– case E(e′).

JE(e′)[e/x]Kµ = JE(e′[e/x])Kµ
= Eσ∼µ[Je′[e/x]Kσ]
= Eσ∼µ[Je′Kσ{x;JeKσ}] (by Lem. 336)
=
∑
σ µ(σ) · Je′Kσ{x;JeKσ}

=
∑
σ,σ′{µ(σ) · Je′Kσ′ | σ{x; JeKσ} = σ′}

=
∑
σ′(
∑
σ{µ(σ) | σ{x; JeKσ} = σ′}) · Je′Kσ′

=
∑
σ′ µ{x; e}(σ′) · Je′Kσ′ (by Lem. 334)

= Eσ′∼µ{x;e}[Je′Kσ′]
= JE(e′)Kµ{x;e}.

– case Pr(q).

JPr(q)[e/x]Kµ = JPr(q[e/x])Kµ
= Prσ∼µ[σ |= q[e/x]]
= Prσ∼µ[σ{x; JeKσ} |= q] (by Lem. 341)
=
∑
σ{µ(σ) | σ{x; JeKσ} |= q}

=
∑
σ,σ′{µ(σ) | σ′ |= q ∧ σ{x; JeKσ} = σ′}

=
∑
σ′{
∑
σ{µ(σ) | σ{x; JeKσ} = σ′} | σ′ |= q}

=
∑
σ′{µ{x; e}(σ′) | σ′ |= q} (by Lem. 334)

= Prσ′∼µ{x;e}[σ
′ |= q]

= JPr(b)Kµ{x;e}.

– case ξ1 + ξ2.
IH1: Jξ1[e/x]Kµ = Jξ1Kµ{x;e}.
IH2: Jξ2[e/x]Kµ = Jξ2Kµ{x;e}.
By IH1 and IH2 we have J(ξ1 + ξ2)[e/x]Kµ = Jξ1[e/x]Kµ + Jξ1[e/x]Kµ =
Jξ1Kµ{x;e} + Jξ2Kµ{x;e} = Jξ1 + ξ2Kµ{x;e}.

– case ξ1 − ξ2.
Similar to the case ξ1 + ξ2.

– case ξ1 ∗ ξ2.
Similar to the case ξ1 + ξ2.

Lemma 345. For all µ, x, e,X, r, if X 6= x and X /∈ fv(e), then µ{x ;

e}{X ; r} = µ{X ; r}{x; e}.

Proof. For all µ, x, e,X, r such that X 6= x and X /∈ fv(e), we have

µ{x; e}{X ; r}
= λσ′′.

∑
σ′{µ{x; e}(σ′) | σ′{X ; r} = σ′′} (by Lem. 334)

= λσ′′.
∑
σ′{
∑
σ{µ(σ) | σ{x; JeKσ} = σ′} | σ′{X ; r} = σ′′} (by Lem. 334)

= λσ′′.
∑
σ,σ′{µ(σ) | σ{x; JeKσ} = σ′ ∧ σ′{X ; r} = σ′′}

= λσ′′.
∑
σ{µ(σ) | σ{x; JeKσ}{X ; r} = σ′′}

= λσ′′.
∑
σ{µ(σ) | σ{X ; r}{x; JeKσ} = σ′′} (by Lem. 339)

= λσ′′.
∑
σ,σ′{µ(σ) | σ{X ; r} = σ′ ∧ σ′{x; JeKσ} = σ′′}

= λσ′′.
∑
σ′{
∑
σ{µ(σ) | σ{X ; r} = σ′} | σ′{x; JeKσ} = σ′′}

= λσ′′.
∑
σ′{µ{X ; r}(σ′) | σ′{x; e} = σ′′} (by Lem. 334)

= µ{X ; r}{x; e}. (by Lem. 334)

Lemma 346. For all µ1, µ2, p, x, e, (µ1⊕pµ2){x; e} = µ1{x; e}⊕pµ2{x;

e}.

Proof. For all µ1, µ2, p, x, e, we have

(µ1 ⊕p µ2){x; e}
= Eσ∼µ1⊕pµ2{δ(σ{x; JeKσ})}
= Eσ∼µ1

{δ(σ{x; JeKσ})} ⊕p Eσ∼µ2
{δ(σ{x; JeKσ})} (by Lem. 16)

= µ1{x; e} ⊕p µ2{x; e}.

Lemma 347. For all µ, x, e, µ′1, µ′2, p, if µ{x; e} = µ′1⊕p µ′2, then there exists
µ1 and µ2 such that µ = µ1 ⊕p µ2, µ1{x; e} = µ′1 and µ2{x; e} = µ′2.

Proof. For all µ, x, e, µ′1, µ′2, p such that µ{x ; e} = µ′1 ⊕p µ′2, let µ1
def
=

λσ.
µ(σ)·µ′1(σ{x;JeKσ})
µ{x;e}(σ{x;JeKσ}) and µ2

def
= λσ.

µ(σ)·µ′2(σ{x;JeKσ})
µ{x;e}(σ{x;JeKσ}) , then

µ1 ⊕p µ2 = λσ. p · µ1(σ) + (1− p) · µ2(σ)

= λσ. p · µ(σ)·µ′1(σ{x;JeKσ})
µ{x;e}(σ{x;JeKσ}) + (1− p) · µ(σ)·µ′2(σ{x;JeKσ})

µ{x;e}(σ{x;JeKσ})
= λσ. µ(σ)

µ{x;e}(σ{x;JeKσ}) · (p · µ
′
1(σ{x; JeKσ}) + (1− p) · µ′2(σ{x; JeKσ}))

= λσ. µ(σ)
µ{x;e}(σ{x;JeKσ}) · (µ

′
1 ⊕p µ′2)(σ{x; JeKσ})

= λσ. µ(σ)
µ{x;e}(σ{x;JeKσ}) · µ{x; e}(σ{x; JeKσ})

= λσ. µ(σ)
= µ

and

µ1{x; e} = λσ′.
∑
σ{µ1(σ) | σ{x; JeKσ} = σ′} (by Lem. 334)

= λσ′.
∑
σ{

µ(σ)·µ′1(σ{x;JeKσ})
µ{x;e}(σ{x;JeKσ}) | σ{x; JeKσ} = σ′}

= λσ′.
∑
σ{

µ(σ)·µ′1(σ′)
µ{x;e}(σ′) | σ{x; JeKσ} = σ′}

= λσ′.
µ′1(σ′)

µ{x;e}(σ′) ·
∑
σ{µ(σ)· | σ{x; JeKσ} = σ′}

= λσ′.
µ′1(σ′)

µ{x;e}(σ′) · µ{x; e}(σ′) (by Lem. 334)
= λσ′. µ′1(σ′)
= µ′1.

Simiarly we can prove µ2{x; e} = µ′2.

Definition H.52. Let V ∈ DDState , we define V {x ; e} def
= λµ.

∑
ν{V (ν) ·

ν{x; e} = µ}.

Lemma 348. For all V ∈ DDState and x, e, V {x; e} = V {x; e}.

Proof. For all V ∈ DDState and x, e, we have

V {x; e} = λσ.
∑
µ V {x; e}(µ) · µ(σ)

= λσ.
∑
µ

∑
ν{V (ν) · µ(σ) | ν{x; e} = µ}

= λσ.
∑
ν V (ν) · ν{x; e}(σ)

and
V {x; e} = λσ.

∑
σ′{V (σ′) | σ′{x; JeKσ′} = σ} (by Lem. 334)

= λσ.
∑
σ′
∑
ν{V (ν) · ν(σ′) | σ′{x; JeKσ′} = σ}

= λσ.
∑
ν V (ν) ·

∑
σ′{ν(σ′) | σ′{x; JeKσ′} = σ}

= λσ.
∑
ν V (ν) · ν{x; e}(σ), (by Lem. 334)

thus V {x; e} = V {x; e}.
Lemma 349. For all V ∈ DDState and x, e, supp(V {x; e}) = {ν{x; e} | ν ∈
supp(V)}.
Proof. For all V ∈ DDState and x, e, we have

supp(V {x; e}) = {µ | V {x; e}(µ) > 0}
= {µ |

∑
ν{V (ν) | ν{x; e} = µ} > 0}

= {µ | ∃ν. V (ν) > 0 ∧ ν{x; e} = µ}
= {µ | ∃ν. ν ∈ supp(V) ∧ ν{x; e} = µ}
= {ν{x; e} | ν ∈ supp(V)}.

Definition H.53. scale(µ, µ′, x, e) def
= λσ. µ(σ)·µ′(σ{x;JeKσ})

µ{x;e}(σ{x;JeKσ}) .

Lemma 350. For all µ, µ′, x, e, scale(µ, µ′, x, e){x; e} = µ′.

Proof. For all µ, µ′, x, e, we have

scale(µ, µ′, x, e){x; e}
= λσ′.

∑
σ{scale(µ, µ′, x, e)(σ) | σ{x; JeKσ} = σ′} (by Lem. 334)

= λσ′.
∑
σ{

µ(σ)·µ′(σ{x;JeKσ})
µ{x;e}(σ{x;JeKσ}) | σ{x; JeKσ} = σ′}

= λσ′.
∑
σ{

µ(σ)·µ′(σ′)
µ{x;e}(σ′) | σ{x; JeKσ} = σ′}

= λσ′. µ′(σ′)
µ{x;e}(σ′) ·

∑
σ{µ(σ) | σ{x; JeKσ} = σ′}

= λσ′. µ′(σ′)
µ{x;e}(σ′) · µ{x; e}(σ′) (by Lem. 334)

= λσ′. µ′(σ′)
= µ′.

Lemma 351. For all V ∈ DDState and µ, x, e, if V = µ{x; e}, then there exists
V ′ such that V ′{x; e} = V and V ′ = µ.

Proof. For all V ∈ DDState and µ, x, e such that V = µ{x ; e}, let V ′ def
=

λν′.
∑
ν{V (ν) | scale(µ, ν) = ν′}, then

V ′ = λσ.
∑
ν′ V

′(ν′) · ν′(σ)
= λσ.

∑
ν′
∑
ν{V (ν) · ν′(σ) | scale(µ, ν) = ν′}

= λσ.
∑
ν V (ν) · scale(µ, ν)(σ)

= λσ.
∑
ν V (ν) · µ(σ)·ν(σJx;JeKσK)

µ{x;e}(σJx;JeKσK)

= λσ. µ(σ)
µ{x;e}(σJx;JeKσK) ·

∑
ν V (ν) · ν(σJx; JeKσK)

= λσ. µ(σ)
µ{x;e}(σJx;JeKσK) · V (σJx; JeKσK)

= λσ. µ(σ)
µ{x;e}(σJx;JeKσK) · µ{x; e}(σJx; JeKσK)

= λσ. µ(σ)
= µ

and

VS′{x; e} = λν′′.
∑
ν′{V ′(ν′) | ν′{x; e} = ν′′}

= λν′′.
∑
ν′
∑
ν{V (ν) | scale(µ, ν) = ν′ ∧ ν′{x; e} = ν′′}

= λν′′.
∑
ν{V (ν) | scale(µ, ν){x; e} = ν′′}

= λν′′.
∑
ν{V (ν) | ν = ν′′} (by Lem. 350)

= V.

Lemma 352. For all Q,µ, x, e, µ |= Q[e/x] if and only if µ{x; e} |= Q.

Proof. by induction on Q.

– case dqe.
For all µ, x, e, we have µ{x ; e} |= dqe ⇐⇒ ∀σ ∈ supp(µ{x ; e}). σ |= q
and

µ |= dqe[e/x] ⇐⇒ µ |= dq[e/x]e
⇐⇒ ∀σ ∈ supp(µ). σ |= q[e/x]
⇐⇒ ∀σ ∈ supp(µ). σ{x; JeKσ} |= q (by Lem. 341)

To prove µ |= dqe[e/x] ⇐⇒ µ{x ; e} |= q, we need to prove (∀σ ∈
supp(µ). σ{x; JeKσ} |= q) ⇐⇒ (∀σ ∈ supp(µ{x; e}). σ |= q). We prove
the two directions respectively.
• ∀σ ∈ supp(µ). σ{x; JeKσ} |= q.

For all σ ∈ supp(µ{x ; e}), by Lem. 343 there exists σ0 such that
σ0 ∈ supp(µ) and σ0{x ; JeKσ0

} = σ. From σ0 ∈ supp(µ) we know
σ0{x; JeKσ} |= q, i.e., σ |= q.

• ∀σ ∈ supp(µ{x; e}). σ |= q.
For all σ ∈ supp(µ), by Lem. 342 we have σ{x ; JeKσ} ∈ supp(µ{x ;

e}), thus σ{x; JeKσ} |= q.
– case ξ1 < ξ2.

For all µ, x, e, by Lem. 344 we have µ |= (ξ1 < ξ2)[e/x] ⇐⇒ µ |= ξ1[e/x] <
ξ2[e/x] ⇐⇒ Jξ1[e/x]Kµ < Jξ2[e/x]Kµ ⇐⇒ Jξ1Kµ{x;e} < Jξ2Kµ{x;e} ⇐⇒
µ{x; e} |= ξ1 < ξ2.

– case ξ1 = ξ2.
Similar to the case ξ1 < ξ2.

– case ξ1 ≤ ξ2.
Similar to the case ξ1 < ξ2.

– case ¬Q.
IH: for all µ, x, e, µ |= Q[e/x] if and only if µ{x; e} |= Q.
For all µ, x, e, by IH we have µ |= (¬Q)[e/x] ⇐⇒ µ |= ¬Q[e/x] ⇐⇒ µ 6|=
Q[e/x] ⇐⇒ µ{x; e} 6|= Q ⇐⇒ µ{x; e} |= ¬Q.

– case Q1 ∧Q2.
IH1: for all µ, x, e, µ |= Q1[e/x] if and only if µ{x; e} |= Q1.
IH2: for all µ, x, e, µ |= Q2[e/x] if and only if µ{x; e} |= Q2.

For all µ, x, e, we have

µ |= (Q1 ∧Q2)[e/x]
⇐⇒ µ |= Q1[e/x] ∧Q2[e/x]
⇐⇒ (µ |= Q1[e/x]) ∧ (µ |= Q2[e/x])
⇐⇒ (µ{x; e} |= Q1) ∧ (µ{x; e} |= Q2) (by IH1 and IH2)
⇐⇒ µ{x; e} |= Q1 ∧Q2.

– case Q1 ∨Q2.
IH1: for all µ, x, e, µ |= Q1[e/x] if and only if µ{x; e} |= Q1.
IH2: for all µ, x, e, µ |= Q2[e/x] if and only if µ{x; e} |= Q2.
For all µ, x, e, we have

µ |= (Q1 ∨Q2)[e/x]
⇐⇒ µ |= Q1[e/x] ∨Q2[e/x]
⇐⇒ (µ |= Q1[e/x]) ∨ (µ |= Q2[e/x])
⇐⇒ (µ{x; e} |= Q1) ∨ (µ{x; e} |= Q2) (by IH1 and IH2)
⇐⇒ µ{x; e} |= Q1 ∨Q2.

– case ∀X.Q.
IH: for all µ, x, e, µ |= Q[e/x] if and only if µ{x; e} |= Q.
For all µ, x, e, we need to prove µ |= (∀X.Q)[e/x] if and only if µ{x; e} |=
∀X.Q. Usually X is a logical variable, so we can assume X /∈ fv(e) and
X 6= x, by Lem. 345 we know µ{X ; r}{x; e} = µ{x; e}{X ; r}, thus

µ |= (∀X.Q)[e/x] ⇐⇒ µ |= (∀X.Q)[e/x]
⇐⇒ µ |= ∀X.Q[e/x]
⇐⇒ ∀r. µ{X ; r} |= Q[e/x]
⇐⇒ ∀r. µ{X ; r}{x; e} |= Q (by IH)
⇐⇒ ∀r. µ{x; e}{X ; r} |= Q
⇐⇒ µ{x; e} |= ∀X.Q.

– case ∃X.Q.
Similar to the case ∀X.Q.

– case Q1 ⊕p Q2.
IH1: for all µ, x, e, µ |= Q1[e/x] if and only if µ{x; e} |= Q1.
IH2: for all µ, x, e, µ |= Q2[e/x] if and only if µ{x; e} |= Q2.
For all µ, x, e, we need to prove µ |= (Q1 ⊕p Q2)[e/x] if and only if µ{x ;

e} |= (Q1 ⊕p Q2). There are three cases: p = 0, p = 1 and 0 < p < 1. We
prove the three cases respectively.
• case p = 0.

µ |= (Q1 ⊕0 Q2)[e/x]
⇐⇒ µ |= Q1[e/x]⊕0 Q2[e/x]
⇐⇒ (µ |= Q2[e/x])
⇐⇒ (µ{x; e} |= Q2) (by IH2)
⇐⇒ µ{x; e} |= Q1 ⊕0 Q2.

• case p = 1.
µ |= (Q1 ⊕1 Q2)[e/x]

⇐⇒ µ |= Q1[e/x]⊕1 Q2[e/x]
⇐⇒ (µ |= Q1[e/x])
⇐⇒ (µ{x; e} |= Q1) (by IH1)
⇐⇒ µ{x; e} |= Q1 ⊕1 Q2.

• case 0 < p < 1.

µ |= (Q1 ⊕p Q2)[e/x]
⇐⇒ µ |= Q1[e/x]⊕p Q2[e/x]
⇐⇒ ∃µ1, µ2. µ = µ1 ⊕p µ2 ∧ (µ1 |= Q1[e/x]) ∧ (µ2 |= Q2[e/x])
⇐⇒ ∃µ1, µ2. µ = µ1 ⊕p µ2 ∧ (µ1{x; e} |= Q1) ∧ (µ2{x; e} |= Q2) (by IH1 and IH2)
⇐⇒ ∃µ1, µ2. µ = µ1 ⊕p µ2 ∧ µ{x; e} = µ1{x; e} ⊕p µ2{x; e} ∧

(µ1{x; e} |= Q1) ∧ (µ2{x; e} |= Q2) (by Lem. 346)
⇐⇒ ∃µ′1, µ′2, µ1, µ2. µ = µ1 ⊕p µ2 ∧ µ1{x; e} = µ′1 ∧ µ2{x; e} = µ′2 ∧

µ{x; e} = µ′1 ⊕p µ′2 ∧ (µ′1 |= Q1) ∧ (µ′2 |= Q2)
⇐⇒ ∃µ′1, µ′2. µ{x; e} = µ′1 ⊕p µ′2 ∧ (µ′1 |= Q1) ∧ (µ′2 |= Q2) (by Lem. 347)
⇐⇒ µ{x; e} |= Q1 ⊕p Q2.

– case Q1 ⊕Q2.
IH1: for all µ, x, e, µ |= Q1[e/x] if and only if µ{x; e} |= Q1.
IH2: for all µ, x, e, µ |= Q2[e/x] if and only if µ{x; e} |= Q2.
For all µ, x, e, we have µ{x; e} |= Q1⊕Q2 ⇐⇒ ∃p. µ{x; e} |= Q1⊕pQ2

and
µ |= (Q1 ⊕Q2)[e/x] ⇐⇒ µ |= Q1[e/x]⊕Q2[e/x]

⇐⇒ ∃p. µ |= Q1[e/x]⊕p Q2[e/x]
⇐⇒ ∃p. µ |= (Q1 ⊕p Q2)[e/x].

To prove µ |= (Q1⊕Q2)[e/x] ⇐⇒ µ{x; e} |= Q1⊕Q2, it suffices to prove
µ |= (Q1 ⊕p Q2)[e/x] ⇐⇒ µ{x ; e} |= Q1 ⊕p Q2 for all p. The rest of the
proof is similar to the case Q1 ⊕p Q2.

– case
⊕
Q.

IH1: for all µ, x, e, µ |= Q[e/x] if and only if µ{x; e} |= Q.
For all µ, x, e, we have

µ |= (
⊕
Q)[e/x]

⇐⇒ µ |=
⊕
Q[e/x]

⇐⇒ ∃V ∈ DDState . µ = V ∧ (∀ν ∈ supp(V). ν |= Q[e/x])
⇐⇒ ∃V ∈ DDState . µ = V ∧ (∀ν ∈ supp(V). ν{x; e} |= Q) (by IH)
⇐⇒ ∃V ∈ DDState . µ = V ∧ µ{x; e} = V {x; e} ∧ (∀ν ∈ supp(V). ν{x; e} |= Q)

⇐⇒ ∃V ∈ DDState . µ = V ∧ µ{x; e} = V {x; e} ∧
(∀ν ∈ supp(V {x; e}). ν |= Q) (by Lem. 348 and Lem. 349)

⇐⇒ ∃V, V ′ ∈ DDState . µ = V ∧ V {x; e} = V ′ ∧ µ{x; e} = V ′ ∧ (∀ν ∈ supp(V ′). ν |= Q)
⇐⇒ ∃V ′ ∈ DDState . µ{x; e} = V ′ ∧ (∀ν ∈ supp(V ′). ν |= Q) (by Lem. 351)
⇐⇒ µ{x; e} |=

⊕
Q.

Lemma 353 (Soundness of (sq-asgn) rule). For all x, e, P,Q,G, if P ⇒
Q[e/x] and (σ, σ{x ; JeKσ}) |= G for all σ and µ such that σ ∈ supp(µ) and
µ |= P , then G |=sq {P}x := e{Q}.

Proof. For all x, e, P,Q,G such that P ⇒ Q[e/x] and (σ, σ{x; JeKσ}) |= G for
all σ and µ such that σ ∈ supp(µ) and µ |= P , to prove G |=sq {P}x := e{Q},
we need to prove for all µ, if µ |= P and |Jx := eK(µ)| = 1, then Jx := eK(µ) |= Q
and (σ, σ′) |= G for all σ and σ′ such that σ ∈ supp(µ) and σ′ ∈ supp(Jx :=
eK(σ)). For all µ such that µ |= P and |Jx := eK(µ)| = 1, by Lem. 335 we know
Jx := eK(µ) = µ{x ; e}. From µ |= P and P ⇒ Q[e/x] we know µ |= Q[e/x].
By Lem. 352 we know µ{x ; e} |= Q, thus Jx := eK(µ) |= Q. For all σ and
σ′ such that σ ∈ supp(µ) and σ′ ∈ supp(Jx := eK(σ)), by Lem. 323 we know
Jx := eK(σ) = δ(σ{x ; JeKσ}). From σ′ ∈ supp(Jx := eK(σ)) we know σ′ =
σ{x; JeKσ}. From σ ∈ supp(µ) and µ |= P we know (σ, σ′) |= G.

Lemma 354. For all b, C1, C2, σ, n, if σ |= b, then (if (b) then C1 else C2, σ)
p−→

n+1(skip, σ′) if and only if (C1, σ)
p−→n(skip, σ′).

Proof. For all b, C1, C2, σ, n such that σ |= b, we know JbKσ = tt, thus

(if (b) then C1 else C2, σ)
p−→n+1(skip, σ′)

⇐⇒ p =
∑
C′,σ′{p1 · p2 | (if (b) then C1 else C2, σ)

p1−→ (C′, σ′) ∧ (C′, σ′)
p2−→n(skip, σ{x; JeKσ})}

⇐⇒ p =
∑
{p2 | (C1, σ)

p2−→n(skip, σ′)}
⇐⇒ (C1, σ)

p−→n(skip, σ′).

Lemma 355. For all b, C1, C2, σ, n, if σ |= ¬b, then (if (b) then C1 else C2, σ)
p−→

n+1(skip, σ′) if and only if (C2, σ)
p−→n(skip, σ′).

Proof. For all b, C1, C2, σ, n such that σ |= ¬b, we know JbKσ = ff, thus

(if (b) then C1 else C2, σ)
p−→n+1(skip, σ′)

⇐⇒ p =
∑
C′,σ′{p1 · p2 | (if (b) then C1 else C2, σ)

p1−→ (C′, σ′) ∧ (C′, σ′)
p2−→n(skip, σ{x; JeKσ})}

⇐⇒ p =
∑
{p2 | (C2, σ)

p2−→n(skip, σ′)}
⇐⇒ (C2, σ)

p−→n(skip, σ′).

Lemma 356. For all b, C1, C2, σ, if σ |= b, then Jif (b) then C1 else C2K(σ) =
JC1K(σ).

Proof. For all b, C1, C2, σ such that σ |= b, we have

Jif (b) then C1 else C2K(σ)

= λσ′. lim
→
p ,where ∀n. (if (b) then C1 else C2, σ)

→
p [n]−−−→n(skip, σ′)

= λσ′. lim (0 ::
→
p),where ∀n. (if (b) then C1 else C2, σ)

→
p [n]−−−→n+1(skip, σ′)

= λσ′. lim (0 ::
→
p),where ∀n. (C1, σ)

→
p [n]−−−→n(skip, σ′) (by Lem. 354)

= λσ′. lim
→
p ,where ∀n. (C1, σ)

→
p [n]−−−→n(skip, σ′)

= JC1K(σ).

Lemma 357. For all b, C1, C2, µ, if µ |= dbe, then Jif (b) then C1 else C2K(µ) =
JC1K(µ).

Proof. For all b, C1, C2, µ such that µ |= dbe, we know σ |= b for all σ ∈ supp(µ),
thus

Jif (b) then C1 else C2K(µ)
= Eσ∼µ{Jif (b) then C1 else C2K(σ)}
= λσ′.

∑
σ µ(σ) · Jif (b) then C1 else C2K(σ)(σ′)

= λσ′.
∑
σ{µ(σ) · Jif (b) then C1 else C2K(σ)(σ′) | σ ∈ supp(µ)}

= λσ′.
∑
σ{µ(σ) · Jif (b) then C1 else C2K(σ)(σ′) | σ ∈ supp(µ) ∧ σ |= b}

= λσ′.
∑
σ{µ(σ) · JC1K(σ)(σ′) | σ ∈ supp(µ) ∧ σ |= b} (by Lem. 356)

= λσ′.
∑
σ{µ(σ) · JC1K(σ)(σ′) | σ ∈ supp(µ)}

= λσ′.
∑
σ µ(σ) · JC1K(σ)(σ′)

= Eσ∼µ{JC1K(σ)}
= JC1K(µ).

Lemma 358. For all b, C1, C2, σ, if σ |= ¬b, then Jif (b) then C1 else C2K(σ) =
JC2K(σ).

Proof. For all b, C1, C2, σ such that σ |= ¬b, we have

Jif (b) then C1 else C2K(σ)

= λσ′. lim
→
p ,where ∀n. (if (b) then C1 else C2, σ)

→
p [n]−−−→n(skip, σ′)

= λσ′. lim (0 ::
→
p),where ∀n. (if (b) then C1 else C2, σ)

→
p [n]−−−→n+1(skip, σ′)

= λσ′. lim (0 ::
→
p),where ∀n. (C1, σ)

→
p [n]−−−→n(skip, σ′) (by Lem. 355)

= λσ′. lim
→
p ,where ∀n. (C1, σ)

→
p [n]−−−→n(skip, σ′)

= JC1K(σ).

Lemma 359. For all b, C1, C2, µ, if µ |= dbe, then Jif (b) then C1 else C2K(µ) =
JC2K(µ).

Proof. For all b, C1, C2, µ such that µ |= d¬be, we know σ |= ¬b for all σ ∈
supp(µ), thus

Jif (b) then C1 else C2K(µ)
= Eσ∼µ{Jif (b) then C1 else C2K(σ)}
= λσ′.

∑
σ µ(σ) · Jif (b) then C1 else C2K(σ)(σ′)

= λσ′.
∑
σ{µ(σ) · Jif (b) then C1 else C2K(σ)(σ′) | σ ∈ supp(µ)}

= λσ′.
∑
σ{µ(σ) · Jif (b) then C1 else C2K(σ)(σ′) | σ ∈ supp(µ) ∧ σ |= ¬b}

= λσ′.
∑
σ{µ(σ) · JC2K(σ)(σ′) | σ ∈ supp(µ) ∧ σ |= b} (by Lem. 358)

= λσ′.
∑
σ{µ(σ) · JC2K(σ)(σ′) | σ ∈ supp(µ)}

= λσ′.
∑
σ µ(σ) · JC2K(σ)(σ′)

= Eσ∼µ{JC2K(σ)}
= JC2K(µ).

Lemma 360 (Soundness of (sq-cond) rule). For all b, C1, C2, P1, P2, Q1, Q2, G,
if G |=sq {P1 ∧ dbe}C1{Q1} and G |=sq {P2 ∧ dbe}C1{Q2},
then G |=sq {(P1 ∧ dbe)⊕p (P2 ∧ d¬be)}if (b) then C1 else C2{Q1 ⊕p Q2}.

Proof. For all b, C1, C2, P1, P2, Q1, Q2, G such that G |=sq {P1∧dbe}C1{Q1} and
G |=sq {P2∧dbe}C1{Q2}, to proveG |=sq {(P1∧dbe)⊕p(P2∧d¬be)}if (b) then C1 else C2{Q1⊕p
Q2}, we need to prove for all µ, if µ |= (P1∧dbe)⊕p(P2∧d¬be) and |Jif (b) then C1 else C2K(µ)| =
1, then Jif (b) then C1 else C2K(µ) |= Q1 ⊕p Q2 and (σ, σ′) |= G for all σ and
σ′ such that σ ∈ supp(µ) and σ′ ∈ supp(Jif (b) then C1 else C2K(σ)). For all µ
such that µ |= (P1 ∧ dbe)⊕p (P2 ∧ d¬be) and |Jif (b) then C1 else C2K(µ)| = 1,
there are three cases.

– p = 1 and µ |= P1 ∧ dbe.
From µ |= dbe by Lem. 357 we know Jif (b) then C1 else C2K(µ) = JC1K(µ).
From |Jif (b) then C1 else C2K(µ)| = 1 we know |JC1K(µ)| = 1. From G |=sq
{P1 ∧ dbe}C1{Q1} and µ |= P1 ∧ dbe we know JC1K(µ) |= Q1. From p = 1 we
have JC1K(µ) |= Q1⊕pQ2, thus Jif (b) then C1 else C2K(µ) |= Q1⊕pQ2. For
all σ and σ′ such that σ ∈ supp(µ) and σ′ ∈ supp(Jif (b) then C1 else C2K(σ)),
from µ |= dbe and σ ∈ supp(µ) we know σ |= b. By Lem. 356 we know
Jif (b) then C1 else C2K(σ) = JC1K(σ).
From σ′ ∈ supp(Jif (b) then C1 else C2K(σ)) we know σ′ ∈ supp(JC1K(σ)).
From G |=sq {P1∧dbe}C1{Q1}, µ |= P1, σ ∈ supp(µ) and σ′ ∈ supp(JC1K(σ))
we know (σ, σ′) |= G.

– p = 0 and µ |= P2 ∧ d¬be.
From µ |= d¬be by Lem. 359 we know Jif (b) then C1 else C2K(µ) = JC2K(µ).
From |Jif (b) then C1 else C2K(µ)| = 1 we know |JC2K(µ)| = 1. From G |=sq
{P2∧dbe}C2{Q2} and µ |= P2∧d¬be we know JC2K(µ) |= Q2. From p = 0 we
have JC2K(µ) |= Q1⊕pQ2, thus Jif (b) then C1 else C2K(µ) |= Q1⊕pQ2. For
all σ and σ′ such that σ ∈ supp(µ) and σ′ ∈ supp(Jif (b) then C1 else C2K(σ)),
from µ |= d¬be and σ ∈ supp(µ) we know σ |= ¬b. By Lem. 358 we know
Jif (b) then C1 else C2K(σ) = JC2K(σ). From σ′ ∈ supp(Jif (b) then C1 else C2K(σ))
we know σ′ ∈ supp(JC2K(σ)). From G |=sq {P2 ∧ d¬be}C2{Q2}, µ |= P2,
σ ∈ supp(µ) and σ′ ∈ supp(JC2K(σ)) we know (σ, σ′) |= G.

– 0 < p < 1 and there exists µ1 and µ2 such that µ = µ1 ⊕p µ2, µ1 |= P1 ∧ dbe
and µ2 |= P2 ∧ d¬be.
By Lem. 313 we know Jif (b) then C1 else C2K(µ) = Jif (b) then C1 else C2K(µ1⊕p
µ2) = Jif (b) then C1 else C2K(µ1) ⊕p Jif (b) then C1 else C2K(µ2). From
0 < p < 1 by Lem. 314 we know |Jif (b) then C1 else C2K(µ1)| = 1 and
|Jif (b) then C1 else C2K(µ2)| = 1. From G |=sq {P1∧dbe}C1{Q1}, µ1 |= P1∧
dbe and |Jif (b) then C1 else C2K(µ1)| = 1 we know Jif (b) then C1 else C2K(µ1) |=
Q1. FromG |=sq {P2∧dbe}C1{Q2}, µ2 |= P2∧dbe and |Jif (b) then C1 else C2K(µ2)| =
1 we know Jif (b) then C1 else C2K(µ2) |= Q2. From Jif (b) then C1 else C2K(µ) =
Jif (b) then C1 else C2K(µ1) ⊕p Jif (b) then C1 else C2K(µ2), 0 < p < 1,
Jif (b) then C1 else C2K(µ1) |= Q1 and Jif (b) then C1 else C2K(µ2) |= Q2

we know Jif (b) then C1 else C2K(µ) |= Q1⊕pQ2. For all σ and σ′ such that
σ ∈ supp(µ) and σ′ ∈ supp(Jif (b) then C1 else C2K(σ)), from 0 < p < 1 by
Lem. 275 we know supp(µ) = supp(µ1 ⊕p µ2) = supp(µ1) ∪ supp(µ2). From
σ ∈ supp(µ) we know σ ∈ supp(µ1) or σ ∈ supp(µ2). If σ ∈ supp(µ1), from
µ1 |= dbe we know σ |= b. By Lem. 356 we know Jif (b) then C1 else C2K(σ) =
JC1K(σ). From σ′ ∈ supp(Jif (b) then C1 else C2K(σ)) we know σ′ ∈ supp(JC1K(σ)).

FromG |=sq {P1∧dbe}C1{Q1}, µ1 |= P1, σ ∈ supp(µ1) and σ′ ∈ supp(JC1K(σ))
we know (σ, σ′) |= G. If σ ∈ supp(µ2), from µ2 |= d¬be we know σ |=
b. By Lem. 356 we know Jif (b) then C1 else C2K(σ) = JC2K(σ). From
σ′ ∈ supp(Jif (b) then C1 else C2K(σ)) we know σ′ ∈ supp(JC2K(σ)). From
G |=sq {P2 ∧ d¬be}C2{Q2}, µ2 |= P2, σ ∈ supp(µ2) and σ′ ∈ supp(JC2K(σ))
we know (σ, σ′) |= G.

Lemma 361. For all C and µ, J〈C〉K(µ) = JCK(µ).

Proof. For all C and µ, we have J〈C〉K(µ) = Eσ∼µ{J〈C〉K(σ)} = Eσ∼µ{JCK(σ)} =
JCK(µ).

Lemma 362 (Soundness of (sq-atom) rule). For all C,P,Q,G, if G |=sq
{P}C{Q}, then G |=sq {P}〈C〉{Q}.

Proof. For all C,P,Q,G such thatG |=sq {P}C{Q}, to proveG |=sq {P}〈C〉{Q},
we need to prove for all µ, if µ |= P and |J〈C〉K(µ)| = 1, then J〈C〉K(µ) |= Q and
(σ, σ′) |= G for all σ and σ′ such that σ ∈ supp(µ) and σ′ ∈ supp(J〈C〉K(σ)). For
all µ such that µ |= P and |J〈C〉K(µ)| = 1, by Lem. 361 we know J〈C〉K(µ) =
JCK(µ). From |J〈C〉K(µ)| = 1 we know |JCK(µ)| = 1. From G |=sq {P}C{Q},
µ |= P and |JCK(µ)| = 1 we know JCK(µ) |= Q, thus J〈C〉K(µ) |= Q. For all σ and
σ′ such that σ ∈ supp(µ) and σ′ ∈ supp(J〈C〉K(σ)), we have J〈C〉K(σ) = JCK(σ).
From σ′ ∈ supp(J〈C〉K(σ)) we know σ′ ∈ supp(JCK(σ)). From G |=sq {P}C{Q},
µ |= P , |JCK(µ)| = 1, σ ∈ supp(µ) and σ′ ∈ supp(JCK(σ)) we know (σ, σ′) |= G.

Lemma 363. For all C1, C2, p, σ, n, p
′, (〈C1〉⊕p 〈C2〉, σ)

p′−→n+1(skip, σ′) if and
only if there exists p1 and p2 such that p′ = p · p1 + (1 − p) · p2, (〈C1〉, σ)

p1−→
n(skip, σ′) and (〈C2〉, σ)

p2−→n(skip, σ′).

Proof. For all C1, C2, p, σ, n, p
′, we have

(〈C1〉 ⊕p 〈C2〉, σ)
p′−→n+1(skip, σ′)

⇐⇒ p′ =
∑
C′,σ′{p1 · p2 | (〈C1〉 ⊕p 〈C2〉, σ)

p1−→ (C ′, σ′) ∧ (C ′, σ′)
p2−→n(skip, σ{x; JeKσ})}

⇐⇒ p′ = p ·
∑
{p1 | (〈C1〉, σ)

p1−→n(skip, σ′)}+ (1− p) ·
∑
{p2 | (〈C2〉, σ)

p2−→n(skip, σ′)}
⇐⇒ ∃p1, p2. p

′ = p · p1 + (1− p) · p2 ∧ (〈C1〉, σ)
p1−→n(skip, σ′) ∧ (〈C2〉, σ)

p2−→n(skip, σ′).

Lemma 364. For all C1, C2, σ, J〈C1〉 ⊕p 〈C2〉K(σ) = J〈C1〉K(σ)⊕p J〈C2〉K(σ).

Proof. For all C1, C2, σ, n, we have

J〈C1〉 ⊕p 〈C2〉K(σ)

= λσ′. lim
→
p ,where ∀n. (〈C1〉 ⊕p 〈C2〉, σ)

→
p [n]−−−→n(skip, σ′)

= λσ′. lim (0 ::
→
p),where ∀n. (〈C1〉 ⊕p 〈C2〉, σ)

→
p [n]−−−→n+1(skip, σ′)

= λσ′. lim
→
p ,where ∀n. (〈C1〉 ⊕p 〈C2〉, σ)

→
p [n]−−−→n+1(skip, σ′)

= λσ′. lim (p · →p1 + (1− p) · →p2),where ∀n. (〈C1〉, σ)
→
p1[n]−−−→n(skip, σ′) ∧

(〈C2〉, σ)
→
p2[n]−−−→n(skip, σ′) (by Lem. 363)

= λσ′. p · lim →
p1 + (1− p) · lim →

p2,where ∀n. (〈C1〉, σ)
→
p1[n]−−−→n(skip, σ′) ∧

(〈C2〉, σ)
→
p2[n]−−−→n(skip, σ′)

= λσ′. p · lim →
p1,where ∀n. (C1, σ)

→
p1[n]−−−→n(skip, σ′) +

(1− p) · lim →
p2,where ∀n. (C1, σ)

→
p1[n]−−−→n(skip, σ′)

= λσ′. p · JC1K(σ)(σ′) + (1− p) · JC2K(σ)(σ′)
= JC1K(σ)⊕p JC2K(σ).

Lemma 365. For all C1, C2, µ, J〈C1〉 ⊕p 〈C2〉K(µ) = J〈C1〉K(µ)⊕p J〈C2〉K(µ).

Proof. For all C1, C2, µ, we have

J〈C1〉 ⊕p 〈C2〉K(µ) = Eσ∼µ{J〈C1〉 ⊕p 〈C2〉K(σ)}
= Eσ∼µ{J〈C1〉K(σ)⊕p J〈C2〉K(σ)} (by Lem. 364)
= Eσ∼µ{J〈C1〉K(σ)} ⊕p Eσ∼µ{J〈C2〉K(σ)} (by Lem. 16)
= J〈C1〉K(µ)⊕p J〈C2〉K(µ).

Lemma 366 (Soundness of (sq-pch) rule). For all C1, C2, P,Q1, Q2, G, if
G |=sq {P}C1{Q1} and G |=sq {P}C2{Q2}, then G |=sq {P}〈C1〉⊕p 〈C2〉{Q1⊕p
Q2}.

Proof. For all C1, C2, P,Q1, Q2, G such that G |=sq {P}C1{Q1} and G |=sq
{P}C2{Q2}, to prove G |=sq {P}〈C〉{Q1 ⊕p Q2}, we need to prove for all µ, if
µ |= P and |J〈C1〉⊕p 〈C2〉K(µ)| = 1, then J〈C1〉⊕p 〈C2〉K(µ) |= Q and (σ, σ′) |= G
for all σ and σ′ such that σ ∈ supp(µ) and σ′ ∈ supp(J〈C1〉 ⊕p 〈C2〉K(σ)). For
all µ such that µ |= P and |J〈C1〉 ⊕p 〈C2〉K(µ)| = 1, by Lem. 365 we know
J〈C1〉 ⊕p 〈C2〉K(µ) = J〈C1〉K(µ)⊕p J〈C2〉K(µ). There are three cases: p = 0, p = 1
or 0 < p < 1. We prove the three cases respectively.

– p = 0.
J〈C1〉 ⊕p 〈C2〉K(µ) = J〈C1〉K(µ) ⊕p J〈C2〉K(µ) = J〈C2〉K(µ). From |J〈C1〉 ⊕p
〈C2〉K(µ)| = 1 we know |J〈C2〉K(µ)| = 1. From G |=sq {P}〈C2〉{Q2}, µ |= P
and |J〈C2〉K(µ)| = 1 we know J〈C2〉K(µ) |= Q2, thus J〈C1〉 ⊕p 〈C2〉K(µ) |= Q2.
From p = 0 we know J〈C1〉⊕p〈C2〉K(µ) |= Q1⊕pQ2. For all σ and σ′ such that
σ ∈ supp(µ) and σ′ ∈ supp(J〈C1〉⊕p〈C2〉K(σ)), by Lem. 364 we know J〈C1〉⊕p
〈C2〉K(σ) = J〈C1〉K(σ) ⊕p J〈C2〉K(σ) = J〈C2〉K(σ). From σ′ ∈ supp(J〈C1〉 ⊕p

〈C2〉K(σ)) we know σ′ ∈ supp(J〈C2〉K(σ)). From G |=sq {P}〈C2〉{Q2}, µ |= P ,
|J〈C2〉K(µ)| = 1, σ ∈ supp(µ) and σ′ ∈ supp(J〈C2〉K(σ)) we know (σ, σ′) |= G.

– p = 1.
J〈C1〉 ⊕p 〈C2〉K(µ) = J〈C1〉K(µ) ⊕p J〈C2〉K(µ) = J〈C1〉K(µ). From |J〈C1〉 ⊕p
〈C2〉K(µ)| = 1 we know |J〈C1〉K(µ)| = 1. From G |=sq {P}〈C1〉{Q1}, µ |= P
and |J〈C1〉K(µ)| = 1 we know J〈C1〉K(µ) |= Q1, thus J〈C1〉 ⊕p 〈C2〉K(µ) |= Q1.
From p = 1 we know J〈C1〉⊕p〈C2〉K(µ) |= Q1⊕pQ2. For all σ and σ′ such that
σ ∈ supp(µ) and σ′ ∈ supp(J〈C1〉⊕p〈C2〉K(σ)), by Lem. 364 we know J〈C1〉⊕p
〈C2〉K(σ) = J〈C1〉K(σ) ⊕p J〈C2〉K(σ) = J〈C1〉K(σ). From σ′ ∈ supp(J〈C1〉 ⊕p
〈C2〉K(σ)) we know σ′ ∈ supp(J〈C1〉K(σ)). From G |=sq {P}〈C1〉{Q1}, µ |= P ,
|J〈C1〉K(µ)| = 1, σ ∈ supp(µ) and σ′ ∈ supp(J〈C1〉K(σ)) we know (σ, σ′) |= G.

– 0 < p < 1.
From |J〈C1〉 ⊕p 〈C2〉K(µ)| = 1 we know |J〈C1〉K(µ) ⊕p J〈C2〉K(µ)| = 1. From
0 < p < 1 by Lem. 314 we know |J〈C1〉K(µ)| = 1 and |J〈C2〉K(µ)| = 1. From
G |=sq {P}〈C1〉{Q1}, µ |= P and |J〈C1〉K(µ)| = 1 we know J〈C1〉K(µ) |=
Q1. From G |=sq {P}〈C2〉{Q2}, µ |= P and |J〈C2〉K(µ)| = 1 we know
J〈C2〉K(µ) |= Q2. From J〈C1〉⊕p〈C2〉K(µ) = J〈C1〉K(µ)⊕pJ〈C2〉K(µ), 0 < p < 1,
J〈C1〉K(µ) |= Q1 and J〈C2〉K(µ) |= Q2 we know J〈C1〉⊕p 〈C2〉K(µ) |= Q1⊕pQ2.
For all σ and σ′ such that σ ∈ supp(µ) and σ′ ∈ supp(J〈C1〉 ⊕p 〈C2〉K(σ)),
by Lem. 364 we know J〈C1〉 ⊕p 〈C2〉K(σ) = J〈C1〉K(σ) ⊕p J〈C2〉K(σ). From
0 < p < 1 by Lem. 275 we know supp(J〈C1〉⊕p 〈C2〉K(σ)) = supp(J〈C1〉K(σ))∪
supp(J〈C2〉K(σ)). From σ′ ∈ supp(J〈C1〉⊕p〈C2〉K(σ)) we know σ′ ∈ supp(J〈C1〉K(σ))
or σ′ ∈ supp(J〈C2〉K(σ)). If σ′ ∈ supp(J〈C1〉K(σ)), from G |=sq {P}〈C1〉{Q1},
µ |= P , |J〈C1〉K(µ)| = 1, σ ∈ supp(µ) and σ′ ∈ supp(J〈C1〉K(σ)) we know
(σ, σ′) |= G. If σ′ ∈ supp(J〈C2〉K(σ)), from G |=sq {P}〈C2〉{Q2}, µ |= P ,
|J〈C2〉K(µ)| = 1, σ ∈ supp(µ) and σ′ ∈ supp(J〈C2〉K(σ)) we know (σ, σ′) |= G.

Lemma 367. For all C,P,Q,G, if G `sq {P}C{Q}, then G |=sq {P}C{Q}.

Proof. For all C,P,Q,G such that G `sq {P}C{Q}, we prove G |=sq {P}C{Q}
by induction on the derivation of G `sq {P}C{Q}.

– case (sq-disj): P = P1 ∨ P2, Q = Q1 ∨ Q2, G `sq {P1}C{Q1} and G `sq
{P2}C{Q2}.
FromG `sq {P1}C{Q1} by induction hypothesis we knowG |=sq {P1}C{Q1}.
FromG `sq {P2}C{Q2} by induction hypothesis we knowG |=sq {P2}C{Q2}.
By Lem. 305 we know G |=sq {P1 ∨ P2}C{Q1 ∨Q2}, i.e., G |=sq {P}C{Q}.

– case (sq-conj): P = P1 ∨ P2, Q = Q1 ∨ Q2, G `sq {P1}C{Q1} and
G `sq {P2}C{Q2}.
FromG `sq {P1}C{Q1} by induction hypothesis we knowG |=sq {P1}C{Q1}.
FromG `sq {P2}C{Q2} by induction hypothesis we knowG |=sq {P2}C{Q2}.
By Lem. 306 we know G |=sq {P1 ∧ P2}C{Q1 ∧Q2}, i.e., G |=sq {P}C{Q}.

– case (sq-exist): P = ∃X.P1, Q = ∃X.Q1, G `sq {P1}C{Q1} and X /∈
fv(G) ∪ wv(C).
FromG `sq {P1}C{Q1} by induction hypothesis we knowG |=sq {P1}C{Q1}.
From X /∈ fv(G) ∪ wv(C) by Lem. 310 we know G |=sq {∃X.P1}C{∃X.Q},
i.e., G |=sq {P}C{Q}.

– case (sq-forall): P = ∀X.P1, Q = ∀X.Q1, G `sq {P1}C{Q1} and X /∈
fv(G) ∪ wv(C).
FromG `sq {P1}C{Q1} by induction hypothesis we knowG |=sq {P1}C{Q1}.
From X /∈ fv(G) ∪ wv(C) by Lem. 311 we know G |=sq {∀X.P1}C{∀X.Q},
i.e., G |=sq {P}C{Q}.

– case (sq-csq): P ⇒ P ′, G′ `sq {P ′}C{Q′}, Q′ ⇒ Q and G′ ⇒ G.
FromG′ `sq {P ′}C{Q′} by induction hypothesis we knowG′ |=sq {P ′}C{Q′}.
From P ⇒ P ′, Q′ ⇒ Q and G′ ⇒ G by Lem. 312 we know G |=sq {P}C{Q}.

– case (sq-oplus): P = P1 ⊕p P2, Q = Q1 ⊕p Q2, G `sq {P1}C{Q1} and
G `sq {P2}C{Q2}.
FromG `sq {P1}C{Q1} by induction hypothesis we knowG |=sq {P1}C{Q1}.
FromG `sq {P2}C{Q2} by induction hypothesis we knowG |=sq {P2}C{Q2}.
By Lem. 315 we know G |=sq {P1⊕pP2}C{Q1⊕pQ2}, i.e., G |=sq {P}C{Q}.

– case (sq-bigoplus): P =
⊕
P1, Q =

⊕
Q1 and G `sq {P1}C{Q1}.

FromG `sq {P1}C{Q1} by induction hypothesis we knowG |=sq {P1}C{Q1}.
By Lem. 320 we know G |=sq {

⊕
P1}C{

⊕
Q}, i.e., G |=sq {P}C{Q}.

– case (sq-skip): C = skip, P = Q, G = Id.
By Lem. 325 we know Id |=sq {Q}skip{Q}, i.e., G |=sq {P}C{Q}.

– case (sq-seq): C = C1;C2, G = G1 ◦ G2, G1 `sq {P}C1{M} and G2 `sq
{M}C2{Q}.
FromG1 `sq {P}C1{M} by induction hypothesis we knowG1 |=sq {P}C1{M}.
FromG2 `sq {M}C2{Q} by induction hypothesis we knowG2 |=sq {M}C2{Q}.
By Lem. 330 we know G1 ◦G2 |=sq {P}C1;C2{Q}, i.e., G |=sq {P}C{Q}.

– case (sq-asgn): C = x := e, P ⇒ Q[e/x] and (σ, σ{x ; JeKσ}) |= G for all
σ and µ such that σ ∈ supp(µ) and µ |= P .
From P ⇒ Q[e/x] and (σ, σ{x ; JeKσ}) |= G for all σ and µ such that
σ ∈ supp(µ) and µ |= P by Lem. 353 we know G |=sq {P}x := e{Q}, i.e.,
G |=sq {P}C{Q}.

– case (sq-cond): C = if (b) then C1 else C2, P = (P1 ∧ dbe)⊕p (P2 ∧ d¬be),
Q = Q1 ⊕p Q2, G `sq {P1 ∧ dbe}C1{Q1} and G `sq {P2 ∧ d¬be}C2{Q2}.
From G `sq {P1 ∧ dbe}C1{Q1} by induction hypothesis we know G |=sq
{P1 ∧ dbe}C1{Q1}. From G `sq {P2 ∧ d¬be}C2{Q2} by induction hypothesis
we know G |=sq {P2 ∧ d¬be}C2{Q2}. By Lem. 360 we know G |=sq {(P1 ∧
dbe)⊕p (P2∧d¬be)}if (b) then C1 else C2{Q1⊕pQ2}, i.e., G |=sq {P}C{Q}.

– case (sq-atom): C = 〈C1〉 and G `sq {P}C1{Q}.
From G `sq {P}C1{Q} by induction hypothesis we know G |=sq {P}C1{Q}.
By Lem. 362 we know G |=sq {P}〈C1〉{Q}, i.e., G |=sq {P}C{Q}.

– case (sq-pch): C = 〈C1〉 ⊕p 〈C2〉, Q = Q1 ⊕p Q2, G `sq {P}〈C1〉{Q1} and
G `sq {P}〈C2〉{Q2}.
FromG `sq {P}〈C1〉{Q1} by induction hypothesis we knowG |=sq {P}〈C1〉{Q1}.
FromG `sq {P}〈C2〉{Q2} by induction hypothesis we knowG |=sq {P}〈C2〉{Q2}.
By Lem. 366 we know G |=sq {P}〈C1〉 ⊕p 〈C2〉{Q1 ⊕p Q2}, i.e., G |=sq
{P}C{Q}.

	A Program Logic for Concurrent Randomized Programs in the Oblivious Adversary Model
	1 Introduction
	2 Preliminaries
	3 Informal Development
	3.1 Sequential Randomized Programs and Their Correctness
	3.2 Concurrent Randomized Programs and the OA Model
	3.3 Thread-Local Reasoning in OA
	3.4 Problems with Branch Statements
	3.5 Our Key Idea: Split
	3.6 ``Big-Step'' Reasoning for Probabilistic Choices in OA

	4 The Programming Language
	4.1 Concrete Operational Semantics
	4.2 Abstract Operational Semantics

	5 The Program Logic
	5.1 The Assertion Language
	5.2 Inference Rules

	6 Case Study: Conciliator
	7 Related Work and Discussions
	A More Preliminaries
	B Full Operational Semantics
	C Justifications for Non-probabilistic Rely/Guarantee Conditions
	D Full Assertion Language
	E Extensions to Logic Rules
	F Judgement Semantics
	G Proofs of More Examples
	G.1 Shared 3-Sided Dice
	G.2 Conciliator
	G.3 Multiplayer Level-up Game
	G.4 Group Election

	H Proof of Soundness
	H.1 Preliminary Lemmas
	H.2 Proof of Theorem 4.1
	H.3 Proof of Theorem 5.1

