
111

Verifying Optimizers for Concurrent Programs on Promising
semantics

ANONYMOUS

ACM Reference Format:
Anonymous. 2018. Verifying Optimizers for Concurrent Programs on Promising semantics. Proc. ACM Meas. Anal. Comput.
Syst. 37, 4, Article 111 (August 2018), 101 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Code optimizers are important components in compilations. Correct code optimizer requires that the target
program generated preserve the semantics of the source program. Proving the correctness of code optimizers
in compiler is usually difficult than proving the translation pass, which translates the program implemented
in one language to another one, since the memory accesses in the source program may be modified during
optimizations. In this document, we discuss the correctness proof of the optimizers for the concurrent programs
under promising semantics [11] as shown in Fig. 1. At present, there are some works of proving the correctness of

C11 IR

opts

Asm

Fig. 1. What do we focus on in this work

code optimization algorithms in compilers for sequential programs [6, 17, 19], but there is not much discussion
about how to prove the correctness of optimizers for concurrent programs under weak memory models.
• Jiang, et al. [7] develop CASCompCert for correct compilation of the data-race-free concurrent program.

However, the concurrent program that they focused on is defined under SC memory model [10]. The
behaviors of some atomic memory accesses defined in C11 [1] can not be depicted under SC memory
model. For example, we can not define the behaviors of the atomic release write and the atomic acquire
read on SC memory model. The following program behavior that is well-defined under C11 can not be
generated under SC memory model.

xrel := 1;
r1 := yacq; //0

yrel := 1;
r1 := xacq; //0

Author’s address: Anonymous.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
© 2018 Association for Computing Machinery.
2476-1249/2018/8-ART111 $15.00
https://doi.org/10.1145/1122445.1122456

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

111:2 • Anonymous

Moreover, the simulation in CASCompCert preserves the data race freedom in source programs. Thus, the
simulation in CASCompCert can not prove the some optimizers, such as loop invariant code motion in
LLVM, which may introduce read-write race during code optimization.
• Ševčík, et al. [15] develops CompCertTSO. However, the TSO memory model is still a strong memory

model and the source programs defined on TSO memory model can not be compiled to efficient ARM or
Power programs. Moreover, CompCertTSO relies on a strong simulation relation, which requires that the
source and the target always generate the same memory accesses. Such restriction is too strong and many
common optimizations, like eliminating redundant reads/writes and instruction reordering, can break it.
For example, the following constant propagation optimization that eliminates redundant memory accesses
can not be proved by the simulation relation in CompCertTSO.

xna := 2;
r := xna;

; xna := 2;
r := 2;

The constant propagation in CompCertTSO only optimizes the operations on registers.
• Most of the weak memory models for platform-independent concurrent programming language are ax-

iomatic models [1, 3, 9]. They express the concurrency semantics in terms of global properties of complete
execution. It makes them difficult to be used in the correctness proof of compilers, if we want to achieve
modular reasoning.
• Promising semantics [5, 8, 11] is an operational model. The work of promising semantics defines a simula-

tion relation to validate many code transformations for adjacent instructions. Their simulation is simple
and may be applied to prove the correctness of some optimization algorithms. However, the relation be-
tween the target and source memory in their simulation is fixed. It is often too strong and causes that it is
difficult to apply it to prove the correctness of the some code optimization algorithms. For example, their
simulation relation restricts that each message in the target memory has a corresponding message with
the same timestamp in the memory of the source program. We show that maintaining such restriction is
not a trivial task in proving the correctness of some optimization algorithms. in the following. The below
is an example of dead code elimination optimization.

while(r1 < r2) {
xna := 1;
r1 := r1 + 1;

}
xna := 2;

;
while(r1 < r2) {

skip;
r1 := r1 + 1;

}
xna := 2;

In order to maintain such restriction that the timestamp of the message generated by the instruction
”xna := 2” in the target program equals to the timestamp of the message generated by the instruction
”xna := 2” in the source program, we can not establish the simulation relation between the target and
source programs as the following form, since the source program will generate some messages about
”xna := 1” before executing ”xna := 2” and cause the timestamp of the message generated by ”xna := 2” in
the target program greater than the message generated by xna := 2 in the source program.

T ◦ ◦
skip

S ◦ ◦
xna := 1

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:3

• Vafeiadis, et al. [18] discuss the validation of many standard compiler optimizations on C/C++11 memory
model. Soham Chakraborty and Viktor Vafeiadis [3] validates compiler optimizations on LLVM memory
model. Ševč́ik [4] assumes that the transformed program runs sequentially consistently and present the
correctness of compiler optimizations under the data race freedom assumption. However, these work focus
on whether standard compiler optimizations, such as eliminating redundant reads/write and instruction
reordering, are valid under the specific memory models. They do not discuss how to use their conclusions
to prove concrete code optimization algorithms. Their works are mainly used to validate, for a source
program, whether the optimizer does a correct optimization on it, e.g., [2, 12].
• There are many works [9, 11, 13, 14] that discuss and prove the correctness of compilation from concurrent

programming languages with weak memory consistency semantics, such as promising semantics and C11
memory model, to mainstream multi-core architectures, such as x86TSO, ARM and POWER, by standard
compilation schemes. However, the standard compilation schemes just map the high-level primitives to
instructions of major modern architectures directly and do not include any code optimizations.

In this work, we consider how to prove the correctness of the optimizers about concurrent programs under
promising semantics, since it is an operational memory model, whose definition does not rely on complete exe-
cutions of programs, and has been proved to validate many code transformations for adjacent instructions, as
well as standard compilation schemes to x86-TSO, ARM and Power. We focus on proving the the correctness of
the optimization passes for two reasons.

(1) A compile usually has optimization pass and translation pass. Optimizations pass can modify the memory
accesses in the source program during optimization. However, translation passes plays a role to transform
a program in one language to a form in another language. It usually does not modify the memory accesses
in the source program.Thus, from the perspective of memory accesses in the program compiled, the trans-
lation pass, which does identity optimizations on memory accesses in the source program, can be regarded
as a special case of the optimization pass.

(2) Correctness translation from the programs in promising semantics to major modern architectures has
been discussed in many previous work, e.g., [14].

In this document, we will do the following contributions.
(1) We find that promising semantics can be converted to a non-preemptive semantics, which does not permit

the thread switching and the promise step of the current thread after the execution of non-atomic steps
as the following shown. Here, ”let π in f1 ‖ f2” means two threads, one starting from the entry f1 in the
code π and the other starting from the entry f2 in the code π , executing under promising semantics, and
”let π in f1 | f2” means that such two threads execute under our non-preemptive semantics.

let π in f1 ‖ f2 ≈ let π in f1 | f2

Proving the correctness of the code optimizers under the non-preemptive semantics can provide some
convenience for us, since the non-preemptive semantics is simpler than promising semantics and there is
no interaction with the environment after the execution non-atomic accesses in such non-preemptive se-
mantics. In this work, we only consider the code optimizations on non-atomic memory accesses. GCC does
nothing optimizations on the atomic memory accesses. As for LLVM, we only find that it does optimiza-
tions on the atomic memory accesses in register promotion. However, register promotion only optimizes
the accesses on the memory locations, which are thread-local.

(2) We define a thread-local simulation relation under the non-preemptive semantics to prove the correctness
of the compiler optimizations that we care about. Our thread-local simulation has the following advan-
tages:

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:4 • Anonymous

• It is defined under the non-preemptive semantics, which is simpler than promising semantics. This can
simplify the definition of our thread-local simulation and the correctness proof of some code optimiza-
tions, such as instruction reordering, since we only need to consider the interaction between the current
thread and the environment at specific program points.
• The invariant I for shared memory in our thread-local simulation is general and can be instantiated in

proving specific code optimization algorithms. Thus, in proving optimizers that do not eliminate write
operations, like common subexpression elimination and instruction reordering, the invariant for shared
memory can be simple. The memory in target program and source program can be strictly equal and it
can simplify our proof.
• Our thread-local simulation is parallel compositional as the following shown, if the source program is
write-write race free on non-atomic memory accesses (shown as ww-RF(S1 | S2)).

(I ` πt (f1) ≼ πs (f1) ∧ I ` πt (f2) ≼ πs (f2) ∧ ww-RF(let πs in f1 | f2))
=⇒ let πt in f1 | f2 ≼ let πs in f1 | f2

Our work does not consider the multi-language linking.
• We show that our thread-local simulation is able to prove the correctness of common code optimization

algorithms for eliminating redundant reads/writes and instruction reordering.
(3) We formulate the correctness of the optimizers for concurrent programs defined under promising seman-

tics. We need to require the source programs does not contain write-write race on non-atomic memory
accesses (defined by plain memory accesses in promising semantics) in formulating the correctness of the
optimizers as the following form.

∀πt , πs . (Optimizer(πs) = πt ∧ ww-RF(let πs in f1 ‖ f2))
=⇒ let πt in f1 ‖ f2 ⊆ let πs in f1 ‖ f2

And we provide a verification framework, which we will give more introductions to in the following, in
Fig. 2 to present how to establish the correctness of the optimizers. The reason that we permit that source
programs have read-write data race, is that some optimizers, such as loop invariant code motion in LLVM,
may introduce read-write data race on non-atomic memory accesses in optimization. Our thread-local
simulation is able to preserve the write-write race freedom to make the correctness of optimizer transitive.

(4) We use our method to prove three common algorithms of compiler optimizations in our work. (1) com-
mon subexpression elimination, which is responsible for eliminating redundant reads in programs; (2) dead
code elimination, a code optimization to eliminate redundant writes in programs; (3) loop invariant code
motion, which recognizes computations in loops that produce the same value on every iteration of the
loop an moves them out of the loop. The loop invariant code motion, like the algorithm in LLVM, may
introduce read-write data race on non-atomic memory accesses in optimization. Thus, this explains why
our work allows the source program to exit read write data race. The algorithms of common subexpres-
sion elimination and dead code elimination in our work are implemented based on the implementations
of common subexpression elimination and dead code elimination in CompCert [6]. And the algorithm of
loop invariant code motion is implemented based on the algorithm in Steven S.Muchnick’s textbook on
code optimizations [16]. However, we extend these code optimization algorithms in our work, since we
consider the code optimizations accross atomic memory accesses and need to handle the atomic memory
access operations in the program. Below, we give some examples to show that the code optimizations can

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:5

Optimizer(πs) = πt
∧

wfOpt(Optimizer)

ww-RF(let πs in f1 ‖ f2)

πs (f1) ≽ πt (f1) ∧ πs (f2) ≽ πt (f2)

2⃝

ww-NPRF(let πs in f1 | f2)

1⃝

let πs in f1 | f2 ⩾ let πt in f1 | f2 ∧ ww-NPRF(let πt in f1 | f2)

3⃝

let πs in f1 | f2 ⊇ let πt in f1 | f2

4⃝

ww-RF(let πt in f1 ‖ f2)

6⃝
≈ ≈

let πs in f1 ‖ f2 ⊇ let πt in f1 ‖ f2
5⃝

Fig. 2. Proof sketch

across the atomic memory accesses. Some of those optimizations have already been observed in the LLVM.

xna := 4;
r := yacq;
xna := 2;

DCE; skip;
r := yacq;
xna := 2;

(* Not observed in LLVM *)

r1 := xna;
yrel := 1;
r2 := xna;

CSE; r1 := xna;
yrel := 1;
r2 := r1;

(* Not observed in LLVM *)

while(r < 10) {
xrlx := 1;
r1 := yna;
r := r + 1;

}

LICM;
t := yna;
while(r < 10) {

xrlx := 1;
r1 := t ;
r := r + 1;

}

(* Observed in LLVM *)

We also show that our thread-local simulation is able to support verifying the correctness of instruction
reordering optimizations.

In this work, we focus on the correctness proof the code optimizations for eliminating redundant reads/writes
and instruction reordering. We do not discuss the code optimizations on stack memory, such as function inline,
tail call, register promotion and register allocation&spilling. The reason is that, if we do not consider the escape
of the stack pointer of a thread to another thread, the stack memory is thread-local. It is plausible that we can
convert the part of the thread-local memory of a thread to a form of partial mapping from memory locations to
variables and let it be the local state of the thread. The interfering of the environment does not influence these
code optimizations.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:6 • Anonymous

We establish a verification framework in Fig. 2. We define a non-preemptive semantics, which equals to
promising semantics as shown in the step 5⃝ in Fig. 2, and do the correctness proof of optimizers on such
non-preemptive semantics. A well-defined optimizer should ensures that each source thread can establish the
thread-local simulation with its corresponding target thread, shown as the step 2⃝. Our thread-local simulation
is compositional under the write-write race freedom assumption and can preserve the write-write race free prop-
erty as shown in the step 3⃝. We require that our thread-local simulation preserves the write-write race freedom,
since we need to make sure that the correctness of the optimization is transitive. The whole program simulation
ensures the refinement relation between the source and target programs under the non-preemptive semantics
as shown in the step 4⃝. From the equivalence between promising semantics and the non-preemptive semantics,
we establish the correctness of optimizers for concurrent programs with promising semantics.

In the following, we give more introductions to our approach to establish the correctness of optimizers for
concurrent programs defined under promising semantics.
• Why we define the thread-local simulation on the non-preemptive semantics? As we have intro-

duced, the non-preemptive semantics does not permit the thread switching and the promise step of the
current thread after the execution of non-atomic steps. Such simplification can simplify our work in defin-
ing the thread-local simulation in two points.

(1) The thread-local simulation should include an invariant for shared memory in target and source pro-
grams to depict the interaction with the environments. Defining the thread-local simulation on the
non-preemptive semantics allows us to maintain the invariant in specific program points.

(2) Since we only consider the code optimization on non-atomic memory accesses, we can define the thread-
local simulation about thread steps in such a simple form,which says that, if the target thread takes a non-
atomic step, the source thread also takes some non-atomic steps to preserve the thread-local simulation;
and if the target thread takes an atomic or promise step, the source thread also takes an atomic step or
some promise steps to preserve the thread-local simulation.

We use the following instruction reordering transformation to show that such two advantages can simplify
the proof of some code optimizations.

r := xna;
yna := 2;
print(r);

xna := 3; ; yna := 2;
r := xna;
print(r);

xna := 3;

For the source program, we call the thread on the left side S1 and the thread on the right side S2. For the
target program, we call the thread on the left sideT1 and the thread on the right sideT2. We try to establish
the thread-local upward simulation between S1 andT1. We define a simply invariant I, which just say that
the memory in the target program and in the source program are strictly equal. Consider thatT1 executes
”yna := 2” first as the following shown.

S1 ◦

T1 ◦ ◦
yna := 2

I

If we want to take advantage (2) shown above, S1 should not take any step. The reason is that S1 need
to execute ”r := xna” first, but it can not make sure which message it should read before T1 executing
”r := xna”. Let S1 take zero step at this moment will break the invariant I introduced previously, since the
execution of ”yna := 2” in T1 will generate a new message in the target memory and cause the memory
in target and source programs no longer the same. Thus, if we define the thread-local simulation on a

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:7

preemptive semantics, which permits the interaction with the environments of the current thread in any
program point, a problem will arise, since defining a thread-local simulation on a preemptive semantics
requires us to maintain the invariant for shared memory in any program point. However, we can establish
the thread-local simulation in our work, which is defined under the non-preemptive semantics, between
S1 and T1 as the following shown.

S1 ◦ ◦
r := xna ◦

yna := 2
◦

print(r)
◦R

T1 ◦ ◦
yna := 2

◦
r := xna

◦
print(r)

◦
R

I I I

The invariant I only need to be reestablished after the execution of ”print(r)”, and the interactions with
the environment of S1 andT1 do not need to be considered in proving the reordering of ”r := xna; yna := 2”.
The interactions with the environment only need to be considered after the instruction reordering proof
and after the execution of ”print(r)”.
• Why we require the write-write race freedom assumption? The write-write race freedom on non-

atomic memory accesses assumption plays an important role in proving that our thread-local simulation is
able to compose to a whole program simulation (shown as 3⃝ in Fig. 2). The reason is that whole program
step (called machine step in promising semantics) in promising semantics includes two components: (1)
the current thread takes some steps; (2) after these steps, the promises of the current thread is consistent
(or certified). The whole program step has the following form and we use TP to represent the thread pool

(TP(t),M) −−→ (TS′,M ′)
consistent(TS′,M ′)

(TP, t,M) ==⇒ (TP{t ; TS′}, t,M ′)

The promise consistency certification (shown as consistent(TS′,M ′)) ensures that the current thread t is
able to fulfill all its promises when executing in isolation. However, the certification does not start from
the current memory M ′. It starts from a capped memory [5] constructed from M ′. In such construction,
all timestamps intervals between existing messages are blocked by reservations. However, this will arise a
problem in our work. The whole program simulation in our work has the following form, which is defined
on the whole program step.

Source: ◦ ◦∗

Target: ◦ ◦

If the target program takes a whole program step, the source program can take some whole program steps
and preserve the whole program simulation. From the definition of the whole program step, in the proof
of the compositionality of our thread-local simulation, we need to prove that, if the current target thread
can reach a thread configuration whose promises can be certified, the current source thread can also take
some steps to a thread configuration whose promises can be certified. However, the problem here is that
our thread-local simulation is defined from the current memory, but the promise certification starts from
the capped memory. Thus, our thread-local simulation can not ensure the property which says, if the
promises of the current target thread can be certified, the promises of the current source thread can also

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:8 • Anonymous

be certified.
¬((consistent(T) ∧ I ` T ≼ S) =⇒ consistent(S))

Thus, we introduce the write-write race freedom assumption. And our thread-local simulation can make
sure such propertywith thewrite-write race freedom assumption.Thewrite-write race freedom forbids the
following execution inserting messages using the timestamp intervals between existing messages, since
the capped memory blocks these timestamps.

(consistent(T) ∧ I ` T ≼ S ∧ ww-RF(S)) =⇒ consistent(S)

It means that a thread from a write-write-race-free program can certify promises (for non-atomic writes)
against the current memory instead of the capped memory.
Intuitively a write-write race means that two threads both (non-atomically) write to the same location,
and neither write happens before the other. So, write-write race freedom forbids a thread t to write to a
locationwhen thememory contains awrite of the same locationmade by another thread t′ and unobserved
by t. This gives the same technical effect as the capped memory: t cannot write a message m when the
memory already contains another message m′ at the same location with a higher timestamp written by
t′. We show that our thread-local simulation preserves the promises certification under write-write race
freedom assumption and how a thread from a write-write-race-free program can certify promises (for
non-atomic writes) against the current memory instead of the capped memory in details in Sec. 8.3.
• Why we permit read-write data race?The reason that we permits read-write race is that some optimiza-

tions, like loop invariant code motion in LLVM, may introduce read-write race in the target program during
optimization. The following is an example of loop invariant code motion that will be performed in LLVM.

xna := 20;
yrel := 1;
zna := 5;

r := yacq;
if(r == 1) {

r1 := xna;
while(r1 < 10) {

r2 := zna;
r1 := r1+1;

}
}

; xna := 20;
yrel := 1;
zna := 5;

r := yacq;
if(r == 1) {

r1 := xna;
r ′ := zna;
while(r1 < 10) {

r2 := r ′;
r1 := r1+1;

}
}

In the source program, the thread on the right side will not execute ”r2 := zna”, since the thread will never
entry the loop. However, we can find that, after the loop invariant code motion optimization, there are
read-write data race on accessing the variable z between two threads.
The method in CASCompCert does not support proving the correctness of loop invariant code motion in
such form, since this method requires the data race freedom property of the source program preserves
during compilation.
• How to make our thread-local simulation ensure write-write race freedom preserving? As shown in

Fig. 2, our thread-local simulation is able to preserve the write-write race freedom. Thus, our thread-local
simulation needs to restrict that the memory locations written by the execution of the target program
should be the same or fewer than the execution of the source program and we introduce a delay set in
the thread-local simulation to ensure such restriction. The delay set records the memory locations that
has been written by the target thread but not by the source thread. Each memory location in the delay set
also has an index, which restricts that the source thread has to write such memory location in finite steps.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:9

Consider the following instruction reordering transformation.
r := xna;
yna := 2;

; yna := 2;
r := xna;

We establish the thread-local simulation between the target and source programs in the above transforma-
tion. Consider that the delay set is D before the instruction reordering proof. In the first step, the target
thread executes ”yna := 2” and the source thread does not execution. We records the variable y in the delay
set and an index i to restrict that the source thread has to write the variable y in i steps. In the next step,
the source thread executes ”yna := 2” and is able to remove the variable y in the delay set.

S ◦ ◦
yna := 2

◦
r := xna

T ◦ ◦
yna := 2

◦
r := xna

D D ∪ {(y, i)} D

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:10 • Anonymous

2 LANGUAGE
We define the language used to do optimizations in this section. We call the language shown in this section
concur-SimpRTL. We will show its syntax and transition on the thread-local state in the following.

2.1 Syntax of concur-SimpRTL

(Fid) f ∈ N (Lab) l ∈ N (Var) x, y, z ::= . . .

(Val) v ∈ Int32

(Expr) e ::= r | v | e + e | e − e | e ∗ e
(Instr) c ::= r := e | r := xor | xow := e | skip | print(e)

| r := CASor ,ow (x, er , ew)
| fence-rel | fence-acq | fence-sc

(BBlock) B ::= c, B | jmp l | call(f, lret) | be e, l1, l2 | return
(Cdhp) C ∈ Lab⇀ BBlock (FunDef) Fd ::= (C, l)
(Code) π ∈ Fid⇀ FunDef

(VarType) ι ∈ P(Var)
(Prog) P ::= let (π , ι) in f1 ‖ · · · ‖ fn

Fig. 3. Syntax of concur-SimpRTL language

We define the syntax of the language in Fig. 3. The instantiation of the code π is defined as a partial mapping
from the identifier of the function to the definition of the code heap. The definition of the function Fd is a tuple
that includes the code heap C, and the entry l of the function. The code heap C is a set of the basic block B, which
is a sequence of instructions.We define a set ι to record the set of variables that can be performed atomic memory
accesses. Achieving such set is not a difficult task. For example, the C programs use the keyword ”_Atomic” to
present the variables that can perform atomic memory accesses; the Java programs have some classes for atomic
memory accesses, such as ”AtomicInteger”, or we can use the keyword ”volatile”; Rust also has a number
of atomic types, such as ”AtomicBool” and ”AtomicU16”. Technically, dividing the locations into the atomic
locations and the non-atomic locations also plays an important role in proving that our thread-local simulation
ensures the preservation of the promise certification under the write-write race freedom assumption.We explain
such point in Sec. 8.3.

We instantiate the thread local state in Fig. 4. The instantiation of the thread local state σ is a tuple includes:
the register file R, the current basic block B, the current code heap C, the continuation K and the set of functions
π . The continuation K records the levels of function calls. Each level of continuation K is a tuple, which includes
the register r to save the return value, and the register file R and the code heap C of the caller.

2.2 Thread-local transition
We define the thread-local transition of concur-SimpRTL language in Fig. 5, which has the form of ”σ te−−→ σ ′”.
Some auxiliary definitions used in defining the thread local transition are shown below. The register file in the
initial state of the execution of a function has the following form.

R⊥ ::= λr .0

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:11

(Cont) K ::= ϵ | (R, B,C) :: K (RegFile) R ∈ Reg→ Val

(ThrdLocSt) σ ::= (R, B,C,K, π)

Fig. 4. Thread local state of concur-SimpRTL language

B = (r := e) :: B′ R′ = R{r ; JeKR }
(R, B,C,K, π) τ−−→ (R′, B′,C,K, π)

B = (r := xor) :: B′ R′ = R{r ; v}

(R, B,C,K, π) R(or ,x,v)−−−−−−−→ (R′, B′,C,K, π)

B = (xow := e) :: B′ JeKR = v
(R, B,C,K, π) W(ow ,x,v)−−−−−−−−→ (R, B′,C,K, π)

B = (print(e) :: B′) JeKR = v
(R, B,C,K, π) out(v)−−−−−→ (R, B′,C,K, π)

B = (r := CASor ,ow (x, er , ew)) :: B′Jer KR = v ′r Jew KR = vw
vr = v

′
r R′ = R{r ; 1}

(R, B,C,K, π) U(or ,ow ,x,vr ,vw)−−−−−−−−−−−−−−→ (R′, B′,C,K, π)

B = (r := CASor ,ow (x, er , ew) :: B′)Jer KR = v ′r Jew KR = vw
vr , v ′r R′ = R{r ; 0}

(R, B,C,K, π) R(or ,x,vr)−−−−−−−−→ (R′, B′,C,K, π)

B = call(f, lret) π (f) = (C0, l0)
B0 = C0(l0) B′ = C(lret) K0 = (R, B′,C) :: K

(R, B,C,K, π) τ−−→ (R⊥, B0,C0,K0, π)

B = return K = (R0, B0,C0) :: K0

(R, B,C,K, π) τ−−→ (R0, B0,C0,K0, π)
B = return

(R, B,C, ϵ, π) τ−−→ done

B = fence-rel :: B′

(R, B,C,K, π) Frel−−−−→ (R, B′,C,K, π)

B = fence-acq :: B′

(R, B,C,K, π)
Facq−−−−→ (R, B′,C,K, π)

B = fence-sc :: B′

(R, B,C,K, π) Fsc−−−→ (R, B′,C,K, π)
B = jmp l C(l) = B′

(R, B,C,K, π) τ−−→ (R, B′,C,K, π)

B = be e, l1, l2 JeKR = v
(v = 0 ∧ C(l1) = B′) ∨ (v , 0 ∧ C(l2) = B′)

(R, B,C,K, π) τ−−→ (R, B′,C,K, π)

Fig. 5. Thread local transition of concur-SimpRTL language

We instantiate the initialization function.

Init(π , f) ::=

{
(R⊥, B,C, ϵ, π) if π (f) = (C, l) and C(l) = B

undef otherwise

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:12 • Anonymous

(Time) f , t ::= Q

(TimeMap) T ,S ∈ Var→ Time

(View) V ∈ {(Tna,Trlx) | ∀x ∈ Var. Tna(x) ≤ Trlx(x)}
(Message) m ∈ {〈x : v@(f , t],V 〉 | (f < t ∨ f = t = 0) ∨V .Trlx(x) ≤ t}

∪ {〈x : (f , t]〉 | f < t}
(Mem) M, P ∈ P(Message)

Fig. 6. The memory defined as a message pool

3 PROMISING SEMANTICS
In this section, we define the semantics of concur-SimpRTL language based on promising semantics, which is
taken from Lee, et al. [11].

We first give the definition of the memory. The memory in promising semantics is defined as a message pool.
We define the memory formally in Fig. 6. The message in the memory has two types: concrete message (in the
form of ”〈x : v@(f , t],V 〉”) and reservation message (in the form of ”〈x : (f , t]〉”). And We define the following
notations for message.

m.var ::= x if m ∈ {〈x : _@(_, _], _〉, 〈x : (_, _]〉}

m.from ::= f if m ∈ {〈_ : _@(f , _], _〉, 〈_ : (f , _]〉}

m.to ::= t if m ∈ {〈_ : _@(_, t], _〉, 〈_ : (_, t]〉}

m.val ::= v if m = 〈_ : v@(_, _], _〉

m.view ::= V if m = 〈_ : _@(_, _],V 〉

Two messagesm1 andm2 are disjoint, denoted bym1#m2, if they have different locations or disjoint timestamp
intervals:

m1#m2 ::= m1.var ,m2.var∨
m1.to ≤ m2.from ∨ m2.to ≤ m1.from

Two sets M1 and M2 of messages are disjoint, denoted by M1#M2:

M1#M2 ::= ∀m1 ∈ M1,m2 ∈ M2.m1#m2.

We writeM(x) for the sub-memory of the messages whose location is x, and M̃ for the set of concrete messages
in M .

M(x) ::= {m ∈ M | m.var = x}
M̃ ::= {m ∈ M | m = 〈_ : _@(_, _], _〉}

Given a timemap T and a memory M , we write T ∈ M if the views of memory locations in T are in memory
M .

T ∈ M ::= ∀x ∈ Var. ∃m ∈ M̃ .T (x) =m.to
V ∈ M ::= V .Tna ∈ M ∧ V .Trlx ∈ M

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:13

(ThrdView) V ∈ {(cur, acq, rel) | cur, acq ∈ View
∧ rel ∈ Var→ View
∧ (∀x ∈ Var. rel(x) ≤ cur ≤ acq)}

(ThrdState) TS ∈ {(σ ,V, P) | ∀m ∈ P .V .cur.Trlx(m.var) < m.to}

(Tid) t ∈ N

(ThrdPool) TP ∈ Tid→ThrdState

(World) W ::= (TP, t,S,M)ι

(MemOrdR) or ::= na | rlx | acq (MemOrdW) ow ::= na | rlx | rel

(ThrdEvt) te ::= τ | R(or , x,v) | W(ow , x,v) | U(or ,ow , x,vr ,vw) | Frel | Facq | Fsc
| out(v) | prm | ccl | rsv

(ProgEvt) pe ::= τ | out(v) | sw

Fig. 7. Program state and Events

Inserting a new message into memory is defined below.

M ←↩A m ::=


M ∪ {m} if {m}#M,

(m = 〈x : _@(f , t], _〉 =⇒
¬(∃m′ ∈ M .m′.var = x ∧m′.from = t))

undef otherwise

Splitting an existing message is defined below.

M ←↩S m ::=


(M\m)∪
{m, 〈x : v@(t ′, t],V 〉} if 〈x : v@(f , t],V 〉 ∈ M, f ≤ t ′ ≤ t

undef otherwise
where m = 〈x : v@(f , t ′],V ′〉

The domain of the the memory is a set of pairs of the variable and the timestamp.

dom(M) ::= {(x, t) | ∃m ∈ M .m.var = x ∧m.to = t}

We define the program state in Fig. 7. The thread state TS is a triple, which consists a local state σ , thread view
V and promises P . The definition of the local state σ needs to be instantiated in practice. We also define the
memory model o, the thread event te and the program event pe in Fig. 7. The program state is a tuple, including
the thread pool TP, the global timestamp S used to depict the semantics of fence-sc, and the memoryM . The
program state should be well-defined as shown below.

wdSt(TP,S,M) ::= (∀t ∈ dom(TP). TP(t).P ⊆ M)∧
(∀t1, t2 ∈ dom(TP), t1 , t2. TP(t1).P#TP(t2).P)∧
(∀t ∈ dom(TP). TP(t).V ∈ M) ∧ S ∈ M ∧ (∀m ∈ M .m.view ∈ M)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:14 • Anonymous

for any i ∈ {1, . . . ,n}. Init(π , fi) = σi TSi = (σi ,V⊥, ∅)
TP = {1 ; TS1, . . . ,n ; TSn} t ∈ {1, . . . ,n} M = {〈x : 0@(0, 0],V⊥〉 | x ∈ Var}

let (π , ι) in f1 ‖ · · · ‖ fn
load
===⇒ (TP, t, λx. 0,M)ι

(Load)

ι ` (TP(t),S,M) −−→+ (TS′,S′,M ′)
consistent(TS′,M ′, ι)

(TP, t,S,M)ι τ
==⇒ (TP{t ; TS′}, t,S′,M ′)ι

(τ -step)
ι ` (TP(t),S,M) out(v)−−−−−→ (TS′,S′,M ′)

(TP, t,S,M)ι
out(v)
====⇒ (TP{t ; TS′}, t,S′,M ′)ι

(e-step)

t′ ∈ dom(TP)
(TP, t,S,M)ι sw

===⇒ (TP, t′,S,M)ι
(sw-step)

ι ` (TP(t),S,M) −−→ done
t′ ∈ dom(TP\{t})

(TP, t,S,M)ι sw
===⇒ (TP\{t}, t′,S,M)ι

(thrd-term)

ι ` (TP(t),S,M) −−→ done
dom(TP) = {t}

(TP, t,S,M)ι τ
==⇒ done

(prog-done)

ι ` (TP(t),S,M) −−→∗ (TS′,S′,M ′) ι ` (TS′,S′,M ′) −−→ abort
(TP, t,S,M)ι ==⇒ abort

(abort)

Fig. 8. Machine step

We start to present the definition of promising semantics taken from Lee, et al. [11]. We first give the machine
step in Fig. 8. The (Load) rule presents the initialization of the program. The inital view V⊥ is defined below.

V⊥ ::= (λx.0, λx.0)

Then, we define the thread view in the initial state.

V⊥ ::= (V⊥,V⊥, λx.V⊥)

consistent(TS,M, ι) holds, iff for any Mc ∈ M̂ ,

∃TS′. ι ` (TS, T̂ (M),Mc) −−→∗ (TS′, _, _) ∧ TS′.P = ∅

where M̂ is the method to construct the capped memory, which is proposed by Cho et al. [5]. We present the
definition of constructing capped memory in Appendix A.

We present the thread-local step in Fig. 10. Here, we do not show the semantics of fence operations. Some
auxiliary definitions used in defining the thread-local step are defined in Fig. 9. The notation ra represents that
the memory order is either write release or read acquire.

ra ::= rel | acq ra = rlx = na

And we define the following notation to represent the thread-local step without observable events.

−−→ ∈ { te−−→ | te , out(v)}

We define the abort-step in the following. A thread step is abort, if it either can not take a thread local tran-
sistion, or accesses the non-atomic location by atomic memory accesses, or accesses the atomic location by

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:15

{x@ t} ::= {x ; t} ∪ {y ; 0 | y , x} T1 tT2 ::= {x ; t | t = max(T1(x),T2(x))}
V1 tV2 ::= (V1.Tna tV2.Tna,V1.Trlx tV2.Trlx)

o = na =⇒ cur.Tna(x) ≤ t
o ∈ {rlx, ra} =⇒ cur.Trlx(x) ≤ t
cur′ = cur tV t (o w ra ?Vr)
acq′ = acq tV t (o w rlx ?Vr)

where V = (o w rlx ? x@ t : V⊥, x@ t)

(cur, acq, rel) R:o,x,t ,Vr−−−−−−−−→ (cur′, acq′, rel)
(Rd-Helper)

cur.Trlx(x) ≤ t
cur′ = cur tV acq′ = acq t cur′

rel′ = rel{x ; (rel(x) tV t (o = ra ? cur′))}
Vw = (o w rlx ? (rel′(x) tVr))
where V = ({x@ t}, {x@ t})

(cur, acq, rel) W:o,x,t ,Vr ,Vw−−−−−−−−−−−→ (cur′, acq′, rel′)
(Wr-Helper)

S′ = acq.Trlx t S cur′ = acq′ = (S′,S′) rel′ = λ_. (S′,S′)

((cur, acq, rel),S) Fsc−−→ ((cur′, acq′, rel′),S′)
(SCFence-Helper)

(P,M) m−−→ (P,M ←↩A m)
(New) m ∈ P

(P,M) m−−→ (P\{m},M)
(Fulfill) P ′ = P ←↩S m

(P,M) m−−→ (P ′\{m},M ←↩S m)
(Split)

Fig. 9. Auxiliary definitions for thread local step

non-atomic memory accesses.
ι ` ((σ ,V, P),S,M) −−→ abort ::=

¬((∃σ ′. σ −−→ σ ′) ∨ (σ −−→ done)) ∨ (∃σ ′, x. σ U(_,_,x,_,_)−−−−−−−−−→ σ ′ ∧ x < ι)∨
(∃σ ′, x,o,v . (σ R(o,x,v)−−−−−−→ σ ′ ∨ σ W(o,x,v)−−−−−−−→ σ ′) ∧ ((o = na ∧ x ∈ ι) ∨ (o , na ∧ x < ι)))

We define the condition that the current thread is done.
ι ` ((σ ,V, P),S,M) −−→ done ::= σ −−→ done ∧ P = ∅

Behaviors of promising semantics. Behavior is defined as a set pf event trace.
(EvtTrace) B ::= done | abort | ϵ | out(v) :: B

ProgEtr(P,B) iff ∃W ,n. (P load
==⇒W) ∧ Etrn(W ,B)

Etr0(W , ϵ)
W ==⇒ abort
Etrn+1(W , abort)

W ==⇒ done
Etrn+1(W , done)

W
out(v)
====⇒W ′ Etrn(W ′,B)
Etrn+1(W , out(v) :: B)

W
τ /sw
===⇒ W ′ Etrn(W ′,B)

Etrn+1(W ,B)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:16 • Anonymous

σ
τ−−→ σ ′

ι ` ((σ ,V, P),S,M) τ−−→ ((σ ′,V, P),S,M)
(Silent)

σ
out(v)
−−−−−−→ σ ′ (V,S) Fsc−−→ (V ′,S′)

ι ` ((σ ,V, ∅),S,M)
out(v)
−−−−−→ ((σ ′,V ′, ∅),S′,M)

(Output)

σ
R(or ,x,v)−−−−−−−−→ σ ′

〈x : v@(_, t],Vr 〉 ∈ M
V R:or ,x ,t ,Vr−−−−−−−−−−→ V ′

(or = na ∧ x < ι) ∨ (or , na ∧ x ∈ ι)

ι ` ((σ ,V, P),S,M)
R(or ,x,v)−−−−−−−−→ ((σ ′,V ′, P),S,M)

(Read)

σ
W(ow ,x,v)
−−−−−−−−−→ σ ′

ow = ra =⇒ ∀m′ ∈ P(x).m′.view = V⊥
m = 〈x : v@(_, t],Vw 〉
(P,M) m−−−→ (P ′,M ′)
V W:ow ,x ,t ,V⊥,Vw−−−−−−−−−−−−−−−→ V ′

(ow = na ∧ x < ι) ∨ (ow , na ∧ x ∈ ι)

ι ` ((σ ,V, P),S,M)
W(ow ,x,v)
−−−−−−−−−→ ((σ ′,V ′, P ′),S,M ′)

(Write)

σ
U(or ,ow ,x,vr ,vw)−−−−−−−−−−−−−−−−→ σ ′

or ∈ {rlx, acq} ow ∈ {rlx, rel} x ∈ ι
ow = ra =⇒ ∀m′ ∈ P(x).m′.view = V⊥

〈x : vr@(_, tr],Vr 〉 ∈ M mw = 〈x : vw@(tr , tw],Vw 〉
(P,M) mw−−−→ (P ′,M ′)

V R:or ,x,tr ,Vr−−−−−−−−−−−→ W:ow ,x,tw ,Vr ,Vw−−−−−−−−−−−−−−−−→ V ′

ι ` ((σ ,V, P),S,M)
U(or ,ow ,x,vr ,vw)−−−−−−−−−−−−−−−−→ ((σ ′,V ′, P ′),S,M ′)

(Update)

σ
Frel−−−→ σ ′ rel′ = λ_.cur ∀m ∈ P .m.view = V⊥

ι ` ((σ , (cur, acq, rel), P),S,M) Frel−−−→ ((σ ′, (cur, acq, rel′), P),S,M)
(Rel-Fence)

σ
Facq−−−−→ σ ′ cur′ = acq

ι ` ((σ , (cur, acq, rel), P),S,M)
Facq−−−−→ ((σ ′, (cur′, acq, rel), P),S,M)

(Acq-Fence)

m.view ∈ M ′ (P ′ = P ∪ {m} ∧M ′ = M ←↩A m) ∨ (P ′ = P ←↩S m ∧M ′ = M ←↩S m)

ι ` ((σ ,V, P),S,M)
prm
−−−→ ((σ ,V, P ′),S,M ′)

(Promise)

m = 〈x : (f , t]〉 M ′ = M ←↩A m

ι ` ((σ ,V, P),S,M) rsv−−−→ ((σ ,V, P ∪ {m}),S,M ′)
(Reserve)

m = 〈x : (f , t]〉

ι ` ((σ ,V, P),S,M) ccl−−→ ((σ ,V, P\{m}),S,M\{m})
(Cancel)

Fig. 10. Thread step

4 WRITE-WRITE RACE FREEDOM
In this section, we define the write-write race freedom under promising semantics in Fig. 11. A program is write-
write race free if it does not contain the write-write race. We explain what is the write-write race in the program.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:17

TP(t) = (σ ,V, P) σ
W(na,x,_)−−−−−−−−→ _

〈x : v@(_, t], _〉 ∈ (M\P) V .cur.Trlx(x) < t

(TP, t,S,M)ι Z=⇒ ww-Race

P
load
==⇒W W ==⇒∗W ′ W ′ Z=⇒ ww-Race

P Z=⇒ ww-Race

ww-RF(P) ::= ¬(P Z=⇒ ww-Race)

Fig. 11. Write-write race freedom under promising semantics

Var.

Timestamp

t2’s view

0x 8

Fig. 12. The view of the thread t2 to the location of the variable x (write-write race)

Consider the following program.

xna := 8;
yrel := 1;

r := yrlx;
if(r) {

xna := 2;
}

For this program, we call the thread on the left side t1 and the thread on the right side t2. This program contains
write-write race, since the execution of ”xna := 8” in the thread t1 and the execution of ”xna := 2” in the thread
t2 does not have happen-before relation. The happen-before relation means that, when the thread t2 executes
”xna := 2”, it does not know whether the execution of ”xna := 8” in the thread t1 has been done or not as shown
in Fig. 12. The execution of ”xna := 2” in the thread t2 can insert the message before the message valued 8,
which means that the execution of ”xna := 2” is done before the execution of ”xna := 8”, or it can insert the
message after the message valued 8, which means that the execution of ”xna := 2” is done after the execution of
”xna := 8”.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:18 • Anonymous

5 PROOF GOAL
In this section, we formulate the correctness of optimizers, which optimize program under promising semantics.
The optimizer is a tranformation from the source program to the target program.

(Optimizer) Optimizer ∈ (Code × VarType)⇀ Code

The correctness of the optimizers is defined in Def. 5.1.

Definition 5.1 (correctness of optimizers).

Correct(Optimizer) ≜ ∀πs , πt , ι. Optimizer(πs , ι) = πt ∧
ww-RF(let (πs , ι) in f1 ‖ · · · ‖ fn) ∧
Safe(let (πs , ι) in f1 ‖ · · · ‖ fn)

=⇒ (let (πt , ι) in f1 ‖ · · · ‖ fn ⊆ let (πs , ι) in f1 ‖ · · · ‖ fn∧
ww-RF(let (πt , ι) in f1 ‖ · · · ‖ fn)∧
Safe(let (πt , ι) in f1 ‖ · · · ‖ fn))

Proving the correctness of the optimizer, which consists of multiple optimization passes, can be obtained by
the transitive of the definition of the correct optimizer. We first define the composition of two optimizers below.

(Optimizer1 ◦Optimizer2)(πs , ι) ≜
{

Optimizer2(πm, ι) if πm = Optimizer1(πs , ι)
undef otherwise

We show the transitive of correct optimizer in Lemma. 5.2.

Lemma 5.2 (correct optimizer transitive).
∀Optimizer1,Optimizer2.
(Correct(Optimizer1) ∧ Correct(Optimizer2))
=⇒ Correct(Optimizer1 ◦Optimizer2)

The definition of the data race freedom will be introduced in Sec. 4. Below, we define the program safety. The
execution of a safe program will not abort.

Safe(W) ≜ ¬(∃W ′.W ==⇒∗W ′ ∧W ′ ==⇒ abort)

Safe(P) ≜ (∃W . P load
==⇒W) ∧ (∀W . (P load

==⇒W) =⇒ Safe(W))
For example, the following program is not safe, since we do an atomicmemory access on the non-atomic location.

xrlx := 3 (where ι(x) = na)
The following program is also not safe, since the execution of the program accesses the undefined variable.

xrlx := 3 (where x < dom(ι))
However, a safe program in our work does not mean that the program can always execute the current instruction
successfully. Consider the following example.

CASrlx,rlx(x, 0, 1); yrlx := 1;

The above program satisfies our safe program definition straight-forwardly. However, it does not mean that such
program can always execute its current instruction successfully. Consider the following execution.

t1 t2
(1) reserve 〈x : (0, 2]〉
(2) CASrlx,rlx(x, 0, 1) ?

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:19

Since the thread t2 may reserve the timestamps thatwill be used by the execution of the instruction CASrlx,rlx(x, 0, 1)
in the thread t1, the thread t1 can not execute its current instruction successfully.

We will prove that constant propagation (ConstProp), dead code elimination (DCE), common subexpression
elimination (CSE) and loop invariant code motion (LICM) satisfy the definition of correct optimizer defined in
Def. 5.1.

Theorem 5.3 (Correct Optimizers).
Correct(ConstProp) ∧ Correct(DCE) ∧ Correct(CSE) ∧ Correct(LICM)

We will give the implementations of these optimizers in the following sections.
The thread local upward simulation will be defined in the following section. as the form of ”I, ι |= πt ≼ πs ”.

We need to prove that the results of constant propagation and dead code elimination optimizations satisfies such
simulation.

Definition 5.4 (Well-formed optimizer).

wfOpt(Optimizer) ≜ ∀πt , πs , ι. Optimizer(πs , ι) = πt =⇒ ∃I. I, ι |= πt ≼ πs

The definition of the well-formed optimizer shows the correctness of the step 2⃝ in Fig. 2.

Lemma 5.5 (Well-formed optimizer implies correct optimizer).
∀Optimizer. wfOpt(Optimizer) =⇒ Correct(Optimizer)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:20 • Anonymous

6 NON-PREEMPTIVE SEMANTICS
We try to define the non-preemptive semantics, which is equivalent to promising semantics.

In the following introduction, we use the ”atom { C }” to represent that the execution of C will not be
interrupted by other threads and the promise steps. We consider which program points are permitted to do
thread switching in the following. We call the thread on the left side t1 and the thread on the right side t2 in the
following introduction.

(1) After the execution of the atomic memory accesses: Permitting thread switching after the atomic (release)
memory write is essential. Consider the program shown below.

xna := 2;
yrel := 1;
while(true);

r1 := yacq;
if(r1) {

r2 := xna;
while(true);

}

The execution of the above program shown below demonstrates that it is essential to permit thread switch-
ing after atomic (release) write.

1⃝ t1 : xna := 2
2⃝ t1 : yrel := 1
3⃝ t2 : r1 := yrel //1
4⃝ t2 : r2 := xna //2
5⃝ t2 : while(true)

However, we do not find that thread switching after atomic read and relaxed read/write is essential. For
simple representation, we still permit the thread switching after the execution of the atomic read.

(2) After the execution of the promise step: Permitting the thread switching after the execution of the promise
step is also essential, since one thread will read the promise generated by the other thread. Consider the
following example.

r1 := xrlx;
yrlx := 1;

do {
r2 := yrlx;

} while(r2 == 1);

We consider the following execution. and call the thread on the left side t1 and the thread on the right side
t2. The thread t1 promises ”zrlx := 1”, and the thread t2 reads such promise and loops forever. It seems
that the only way to define a non-preemptive semantics is to allow thread switch after promise step.

1⃝ t1 : promise 〈y : 1@(1, 2], {y@1}〉
2⃝ t2 : r2 := yrlx //1
3⃝ t2 : r2 := yrlx //1
4⃝ t2 : r2 := yrlx //1

. . .

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:21

(AtomBit) β ∈ ◦ | •
(NPWorld) Ŵ ::= (TP, t,S,M, β)ι

(NPProg) P̂ ::= let (π , ι) in f1 | . . . | fn

Fig. 13. Syntax and State of Non-preemptive semantics

(3) After the execution of the fence operations: We find that permit thread switching after the execution of fence
operations is also essential. Consider the example shown below.

xna := 8;
fence-rel;
r1 := yrlx;
zrlx := 1;

r2 := zrlx;
yrlx := r2;

The above program may generate the following execution.

1⃝ t1 : xna := 8
2⃝ t1 : fence-rel
3⃝ t1 : promise 〈z : 1@(2, 3], {x@3}〉
4⃝ t2 : r2 := zrlx //1
5⃝ t2 : yrlx := r2
6⃝ t1 : r1 := yrlx //1
7⃝ t1 : zrlx := 1 (* fulfill promise *)

Consider whether the example shown above is equivalent to the following program.

atom {
xna := 8;
fence-rel;
r1 := yrlx;

}
zrlx := 1;

r2 := zrlx;
yrlx := r2;

The answer is wrong. Since promising semantics does not permit that the atomic memory access after the
fence release in the program order promises before the execution of the fence release, the program need
to exit atomic block after the execution of the fence release.
Permitting thread switching after the execution of the acquire fence seems not essential. But for simple
presentation, we still permit thread switching after the acquire fence execution.

(4) After generating observable events and the current thread done: Such two cases is straight-forward.

Non-preemptive semantics. We show the definition of the non-preemptive semantics in the following.
consistentNP(TS,M, β, ι) holds, iff for any Mc ∈ M̂ ,

∃TS′. ι ` (TS, T̂ (M),Mc , β) 7−−→∗ (TS′, _, _, _) ∧ TS′.P = ∅

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:22 • Anonymous

(NA) na ∈ {τ ,W(na, _, _),R(na, _, _)}
(PRC) prc ∈ {prm, rsv, ccl}
(AT) at ∈ {te | te < (NAtm ∪ PRC)}

ι ` (TS,S,M, β) te−−→ (TS′,S′,M ′, β ′) ::=

ι ` (TS,S,M) te−−→ (TS′,S′,M ′)∧
(te ∈ {prm, rsv} =⇒ β = β ′ = ◦) ∧ (te = ccl =⇒ β = β ′)∧
(te ∈ NA =⇒ β ′ = •) ∧ (te ∈ AT =⇒ β ′ = ◦)

Fig. 14. Auxiliary definitions in auxiliary promising semantics

for any i ∈ {1, . . . ,n}. Init(π , fi) = σi TSi = (σi ,V⊥, ∅)
TP = {1 ; TS1, . . . ,n ; TSn} t ∈ {1, . . . ,n} M = {〈x : v@(0, 0],V⊥〉 | x ∈ Var}

let (π , ι) in f1 | . . . | fn :
load
==⇒ (TP, t, λx. 0,M, ◦)ι

ι ` (TP(t),S,M, β) 7−−→+ (TS′,S′,M ′, β ′)
consistentNP(TS′,M ′, β ′, ι)

(TP, t,S,M, β)ι : τ
==⇒ (TP{t ; TS′}, t,S′,M ′, β ′)ι

ι ` (TP(t),S,M, β) out(v)7−−−−−→ (TS′,S′,M ′, ◦)

(TP, t,S,M, β)ι :
out(v)
=====⇒ (TP{t ; TS′}, t,S′,M ′, ◦)ι

t ∈ dom(TP)
(TP, t,S,M, ◦)ι : sw

===⇒ (TP, t′,S,M, ◦)ι

ι ` (TP(t),S,M) −−→ done
t′ ∈ dom(TP\{t})

(TP, t,S,M, β)ι : sw
===⇒ (TP\{t}, t′,S,M, ◦)ι

ι ` (TP(t),S,M) −−→ done
dom(TP) = {t}

(TP, t,S,M, β)ι :==⇒ done

ι ` (TP(t),S,M, β) 7−−→∗ (TS′,S′,M ′, β ′)
ι ` (TS′,S′,M ′) −−→ abort
(TP, t,S,M, β)ι :==⇒ abort

Fig. 15. Non-preemptive semantics

We permit that the thread takes a cancel step after the non-atomic step. The reason is that we need additional
cancel steps to fulfill the reservations. Consider the following example.

xna := 1;
while(true);
yrlx := 2;

Consider the following execution of the above program under the non-preemptive semantics.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:23

(1) reservation 〈y : (0, 1]〉
xna := 1

(2) while(true)

We can find that, after the execution of the step (1), the atomic bit is ”•”. If we do not permit executing cancel
steps in the promise consistency certification, the reservation ”〈y : (0, 1]〉” can not be fulfilled.

Note that we can not view the cancel step as non-atomic step, since this will cause a problem in the proof of
the equvialence of the na promise-free semantics and the non-preemptive semantics under the data race freedom
assumption. The problem is that reordering the execution of non-atomic steps and atomic step is incorrect when
viewing the cancel step as non-atomic step. Consider the following program.

xna := 1
zna := 2;
FADDacq,rlx(y, 1);

We consider the following execution of the above program under promising semantics.
t1 t2

(P-1) promise 〈y : (0, 2]〉 (* reservation *)
(P-2) zna := 2

(P-3) xna := 1;
cancel 〈y : (0, 2]〉

(P-4) FADDacq,rlx(y, 1)
(P-5) done
(P-6) done

If we view the cancel step as the non-atomic step, we need to construct the following execution of the above
program under the non-preemptive semantics.

t1 t2
(NP-1) promise 〈y : (0, 2]〉 (* reservation *)

(NP-2) zna := 2
FADDacq,rlx(y, 1);

(NP-3) done

(NP-4) xna := 1;
cancel 〈y : (0, 2]〉

(NP-5) done
We find that the step (NP-2) can not be taken, since the timestamps required for execution ”FADDacq,rlx(y, 1)” has
been reserved.

Behaviors of programs under the non-preemptive semantics. We define the behavior of programs under the
non-preemptive semantics shown below.

NPProgEtr(P̂,B) iff ∃Ŵ ,n. (P̂ : load==⇒ Ŵ) ∧ NPEtrn(Ŵ ,B)

NPEtr0(Ŵ , ϵ)
Ŵ :==⇒ abort

NPEtrn+1(Ŵ , abort)
Ŵ :==⇒ done

NPEtrn+1(Ŵ , done)

Ŵ :
out(v)
====⇒ Ŵ ′ NPEtrn(Ŵ ′,B)
NPEtrn+1(Ŵ , out(v) :: B)

Ŵ :
τ /sw
===⇒ Ŵ ′ NPEtrn(Ŵ ′,B)

NPEtrn+1(Ŵ ,B)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:24 • Anonymous

We need to prove the equivalence between the na promise-free semantics and the non-preemptive semantics
under the DRF assumption as shown in Lemma. 6.1.

Lemma 6.1 (Semantics eqvialence - P2NP).

∀π , f1, . . . , fn, ι,B.
ProgEtr(let (π , ι) in f1 ‖ · · · ‖ fn,B) ⇐⇒ NPProgEtr(let (π , ι) in f1 | . . . | fn,B)

Lemma. 6.1 shows the step 7⃝ in Fig. 2. We show the details of the proof of Lemma. 6.1 in Appendix. B.
We give the intuition in the semantics equivalence proof. The intuition is that the write step, whose execution

will generate a new message, in promising semantics can be divided into a promise step and a step to fulfill such
promise.

t1
na n1

t2
na n2 at

t1
prm ∗ na

t2
na n2 at

n1

Consider the following program.

xna := 1;
r2 := yrlx;
if(r2) {

r3 := xna;
print(r2);

}

r1 := xna;
if(r1) {

yrel := 1;
xna := 2;
while(true);

}

Consider the following execution of the above program.

t1 t2
(P-1) xna := 1

(P-2) r1 := xna //1
yrel := 1

(P-3) r2 := yrlx //1
(P-4) xna := 2

(P-5) r3 := xna //2
print(r3)

(P-6) while(true)

We can construct the execution under the non-preemptive semantics from the above execution. In construc-
tion, we need to reorder the step (P-1) and (P-2). It is impossible to reorder them directly, since the execution of
”r1 := xna” in (P-2) needs to read the message generated by ”xna := 1” in (P-1). However, we can let ”xna := 1”
generate the message valued 1 by promise step as the following shown.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:25

TP(t) = (σ ,V, P) σ
W(na,x,_)−−−−−−−−→ _

〈x : v@(_, t], _〉 ∈ (M\P) V .cur.Trlx(x) < t

(TP, t,S,M, β)ι :Z=⇒ ww-Race

P̂ :
load
==⇒ Ŵ Ŵ :==⇒∗Ŵ ′ Ŵ ′ : Z=⇒ ww-Race

P̂ : Z=⇒ ww-Race

ww-NPRF(P̂) ::= ¬(P̂ : Z=⇒ ww-Race)

Fig. 16. Write-write race freedom under the non-preemptive semantics

t1 t2
(NP-1) promise 〈x : 1@(0, 1],V⊥〉

(NP-2) r1 := xna //1
yrel := 1

(NP-3) xna := 1 (* fulfill *)
r2 := yrlx //1

(NP-4) promise 〈x : 2@(1, 2],V⊥〉

(NP-5) r3 := xna //2
print(r3)

(NP-5) xna := 2 (* fulfill *)
while(true)

Data race under the non-preemptive semantics. We define the data race under the non-preemptive semantics
in Fig. 16. We need to prove the equvialence between the data race freedoms under promising semantics and the
non-preemptive semantics as shown in Lemma. 6.2.

Lemma 6.2 (ww-race free eqvialence - P2NP).
∀π , f1, . . . , fn, ι.

ww-RF(let (π , ι) in f1 ‖ · · · ‖ fn) ⇐⇒ ww-NPRF(let (π , ι) in f1 | . . . | fn)
Lemma. 6.2 shows the step 1⃝ and the step 6⃝ in Fig. 2.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:26 • Anonymous

(MMap) ϕ ∈ (Var × Time)⇀ Time

mon(ϕ) ≜ ∀x, t1, t2. (t1 < t2) ∧ ({(x, t1), (x, t2)} ⊆ dom(ϕ))
=⇒ ϕ(x, t1) < ϕ(x, t2)

ϕ(M) ≜ {(x, t ′) | 〈x : _@(_, t], _〉 ∈ M ∧ ϕ(x, t) = t ′}TMU ≜ {(x, t) | 〈x : _@(_, t], _〉 ∈ M}
ϕ(Mt ,Ms) ≜ ϕ(Mt) ⊆ TMsU ∧ dom(ϕ) = TMtU ∧mon(ϕ)

Fig. 17. ϕ-related messages

Target: x

Var.

Timestamp.

mt

t1

m′t

t2

Source: x

Var.

Timestamp.

ms

t ′1

m′s

t ′2

ϕ(x, t1) = t ′1

ϕ(x, t2) = t ′2

Fig. 18. An example of message injection

7 THREAD LOCAL UPWARD SIMULATION
In this section, we define a thread-local simulation as the formal correctness definition of optimizations. Before
presenting the simulation, we first introduce several relations that relate (part of) the program configurations at
the target and the source levels.

Timestamp mapping. In PS2.1, the memory is defined as a set of messages. We introduce a partial mapping ϕ
whose type is defined in Fig. 17 to relate the ”to”-timestamps of the messages in the target and source levels as
shown in Fig. 18. We use mon(ϕ) to represent that ϕ is monotonic.

Invariant parameter and rely conditions. Since we allow the simulation to be established for individual threads
without relying on the code of other threads, we use the invariant I and R condition to depict the behaviors of
other threads for thread-local reasoning and compositionality. Our simulation is parameterized with an invariant
I (in Fig. 19), which needs to hold over the shared states at every switch point. It can be instantiated differently
when verifying different optimizations. We use the quadruple S = (St ,Mt ,Ss ,Ms) to represent the global time
map (S) for SC fences and the memory (M) at the source and target levels. Users instantiating I(ι,ϕ, S) are
expected to specify the application-dependent invariant over ϕ and S with the help of ι of the atomic variables
set at the switch point. An invariant I is well-formed (wf(I), defined in Fig. 19), if each concrete message in the
target level has a related one in the source level through a monotonic timestampmappingϕ (shown asϕ(Mt ,Ms),
defined in Fig. 17).

The rely condition (R) defined in Fig. 19 specifies the environment’s transitions at the source and the target
levels. The parameters S and S′ represent the shared states at the points when the current thread switches out

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:27

(Sst) S ≜ (St ,Mt ,Ss ,Ms)
(Inv) I ∈ Atms→ MMap→ Sst→ Prop

T ∈ M ≜ ∀x ∈ Var. ∃m ∈ M̃(x). T (x) =m.to
V ∈ M ≜ V .Tna ∈ M ∧V .Trlx ∈ M

closed(M) ≜ ∀m ∈ M̃ .m.view ∈ M
[M]ι ≜ {m | m ∈ M ∧m.var ∈ ι}

M ≈ M ′ ≜ (∀x, f , t,v . 〈x : v@(f , t], _〉 ∈ M ⇐⇒ 〈x : v@(f , t], _〉 ∈ M ′)
∧ (∀x, f , t . 〈x : (f , t]〉 ∈ M ⇐⇒ 〈x : (f , t]〉 ∈ M ′)

T ≤ T ′ ≜ ∀x ∈ Var. T (x) ≤ T ′(x)
wf(I) ≜ ∀ι,ϕ, S. I(ι,ϕ, S) =⇒ ϕ(S.Mt , S.Ms)

env(S, S′, Pt , Ps) ≜
M̃t ⊆ M̃ ′t ∧ M̃s ⊆ M̃ ′s ∧ St ≤ S′t ∧ Ss ≤ S′s∧
closed(M ′t) ∧ S′t ∈ M ′t ∧ Pt ⊆ M ′t ∧ Ps ⊆ M ′s

where S = (St ,Mt ,Ss ,Ms) and S′ = (S′t ,M ′t ,S′s ,M ′s)

R(ι, (ϕ, S), (ϕ ′, S′), Pt , Ps) ≜ env(S, S′, Pt , Ps) ∧ ϕ ⊆ ϕ ′ ∧ [S′.Mt]ι ≈ [S′.Ms]ι

Fig. 19. Invariant parameter and rely condition

(Index) i ∈ . . . (DlyItem) d ∈ (Var × Time)
(Dlyset) D ∈ DlyItem⇀ Index

D ′ < D ≜ dom(D) = dom(D ′) ∧ ∀D ∈ dom(D). D ′(d) < D(d)
ϕ(D) ≜ {(x, t ′) | D(x, t) = i ∧ ϕ(x, t) = t ′}

D[d 7→ i] ≜
{ D if d ∈ dom(D)
D{d ; i} otherwise

Fig. 20. Delayed write set and corresponding definitions

and back, respectively. The first item in R are guaranteed by our non-preemptive semantics as well as PS2.1
(shown as env defined in Fig. 19, M̃ consisting of only the concrete messages in M (see Sec. 3)). The second
item indicates the increasing of the timestamp mapping, since the environment may insert additional messages.
Since we do not perform optimizations on atomic accesses, the sub-memory for atomic variables in the target
and source levels must be strictly equal, except for the message views (shown as [S′.Mt]ι ≈ [S′.Ms]ι).

Delayed write set and step invariant. In our simulation, we allow the source state to be temporarily “left behind”
the target. That is, when the target thread takes a write step, the source may not perform the corresponding step
at present, but it must eventually do the step. We introduce the delayed write set D to record the set of writes
which must be caught up by the source thread later. A pair of location x and timestamp t (called delayed item)
in D means that the target thread has performed a write on x at the timestamp t , but such write has not been
caught up by the source thread. D maps d to a well-founded index i to require the source thread to catch up a

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:28 • Anonymous

(x, t) ∈ T(P − P ′) ∪ (M ′ −M)U
D ′ = D[(x, t) 7→ i]

(P,M), (P ′,M ′) ` D W(na,x,v); D ′
te ,W(na, _, _)

(P,M), (P ′,M ′) ` D te; D

Fig. 21. Delayed item introduction rules

delayed write within finite steps. We also define some operations about D in Fig. 20, which will be used in our
thread-local simulation.

The step invariant SI relates the target and source thread states and holds in every step of the thread-local
simulation.

Definition 7.1 (Step invariant). SI(ι,ϕ, (TSt ,Mt), (TSs ,Ms),D) iff,
(1) for any (x, t) ∈ dom(ϕ), if TSt .V .cur.Trlx(x) < t , then TSs .V .cur.Trlx(x) < ϕ(x, t);
(2) there exists Dp ⊆ D, such that (ϕ(Dp) ∪ ϕ(TSt .P)) = TTSs .PU;
(3) for any σ ′, if (TSt .σ

at−−→ σ ′), then D = ∅;
(4) [Mt]ι ≈ [Ms]ι .

Item 1 of SI requires that if a target level message has not been observed by the target thread, its ϕ-related
message in the source level should not be observed by the source thread either. Item 2 requires a one-to-one
mapping between the source and target threads’ promises as the following shown (including those inD, which
have been fulfilled by the target thread but not yet by the source).

Dp TSt .P

TSs .P

ϕ ϕ

Item 3 says that if the current instruction at the target is an atomic memory access (TSt .σ
at−−→ σ ′), all locations

written by the target thread have also been written by the source (D = ∅). Item 4 gives the same restriction as
in R.

Simulation. Wedefine the thread-local simulation between the target and source programsπt andπs inDef. 7.2.
We useM0 = {〈x : 0@(0, 0],V⊥〉 | x ∈ Var}, S⊥ = {x ; 0 | x ∈ Var} and ϕ0 = {(x, 0); 0 | x ∈ Var} to represent
the memory, the global time map for SC fence and the message mapping in the initial state respectively.

Definition 7.2 (Thread-local upward simulation). I, ι |= πt ≼ πs iff,
(1) I(ι,ϕ0, (S⊥,M0,S⊥,M0)) and wf(I);
(2) for any σt and f, if Init(πt , f) = σt , then there exists σs such that Init(πs , f) = σs and

I, ι |= ((σt ,V⊥, ∅),S⊥,M0) ≼◦,∅ϕ0
((σs ,V⊥, ∅),S⊥,M0),

where I, ι |= (TSt ,St ,Mt) ≼β ,D
ϕ (TSs ,Ss ,Ms) is defined in Def. 7.3.

Def. 7.2 first requires that the user-provided invariant I should hold at initial states and I should be well-formed.
Second, if the execution of a target thread starts from the function f in πt in the initial state, the source thread
can also start from f in πs and they have the simulation defined in Def. 7.3.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:29

ι ` (TS,S,M)
R(na,x,v)
−−−−−−−−→ (TS′,S′,M ′)

∀(x, t) ∈ dom(D). TS.V .cur.Trlx(x) = TS′.V .cur.Trlx(x)

ι ` (TS,S,M,D)
R(na,x,v)
−−−−−−−−→ (TS′,S′,M ′,D)

ι ` (TS,S,M)
W(na,x,v)
−−−−−−−−−→ (TS′,S′,M ′)

D ′ = D\(x, t) ∨ D ′ = D

ι ` (TS,S,M,D)
W(na,x,v)
−−−−−−−−−→ (TS′,S′,M ′,D ′)

ι ` (TS,S,M) τ−−→ (TS′,S′,M ′)

ι ` (TS,S,M,D) τ−−→ (TS′,S′,M ′,D)

Fig. 22. Delayed item elimination rules

Definition 7.3. I, ι |= (TSt ,St ,Mt) ≼β ,D
ϕ (TSs ,Ss ,Ms) is the largest relation such that:

whenever I, ι |= (TSt ,St ,Mt) ≼β ,D
ϕ (TSs ,Ss ,Ms), then

either (ι ` (TSs ,Ss ,Ms , β) 7−−→+ abort),
or SI(ι,ϕ, (TSt ,Mt), (TSs ,Ms),D) and the following are true:

(1) ∀TS′t , S′t , M ′t , te, if ι ` (TSt ,St ,Mt)
te−−→ (TS′t ,S′t ,M ′t), then the following hold:

(a) if te ∈ AT, there exist TS′s , S′s , M ′s , and ϕ ′ such that:
• ι ` (TSs ,Ss ,Ms)

na−−→∗ te−−→ (TS′s ,S′s ,M ′s);
• ϕ ⊆ ϕ ′ and I, ι |= (TS′t ,S′t ,M ′t) ≼◦,∅ϕ ′ (TS′s ,S′s ,M ′s);

(b) if te ∈ NA, there exist TS′s , S′s , M ′s , D1, D2 and D ′2, such that:
• (TSt .P,Mt), (TS′t .P,M ′t) ` D

te; D1;
• ι ` (TSs ,Ss ,Ms ,D1)

na−−→∗ (TS′s ,S′s ,M ′s ,D2) and D ′2 < D2;
• I, ι |= (TS′t ,S′t ,M ′t) ≼

•,D′2
ϕ (TS′s ,S′s ,M ′s);

(c) if te ∈ {prm, rsv} and β = ◦, there exist TS′s , S′s , M ′s and ϕ ′ such that:
• ι ` (TSs ,Ss ,Ms)

prc
−−→∗ (TS′s ,S′s ,M ′s);

• ϕ ⊆ ϕ ′ and I, ι |= (TS′t ,S′t ,M ′t) ≼◦,∅ϕ ′ (TS′s ,S′s ,M ′s);
(d) if te = ccl, there exist TS′s , S′s , M ′s such that:
• ι ` (TSs ,Ss ,Ms)

ccl−−→∗ (TS′s ,S′s ,M ′s);
• I, ι |= (TS′t ,S′t ,M ′t) ≼

β ,D
ϕ (TS′s ,S′s ,M ′s);

(2) if β = ◦, then I(ι,ϕ, S) and ∀S′,ϕ ′,
if R(ι, (ϕ, S), (ϕ ′, S′), TSt .P, TSs .P) and I(ι,ϕ ′, S′), then
I, ι |= (TSt ,S′t ,M ′t) ≼◦,∅ϕ ′ (TSs ,S′s ,M ′s), where S = (St ,Mt ,Ss ,Ms), S′ = (S′t ,M ′t ,S′s ,M ′s);

(3) if ι ` (TSt ,St ,Mt) −−→ done, there exist TS′s , S′s , M ′s , and ϕ ′ such that:
• ι ` (TSs ,Ss ,Ms ,D)

na−−→∗ (TS′s ,S′s ,M ′s , ∅), ι ` (TS′s ,S′s ,M ′s) −−→ done;
• ϕ ⊆ ϕ ′ and I(ι,ϕ ′, (St ,Mt ,S′s ,M ′s));

(4) if ι ` (TSt ,St ,Mt) −−→ abort, then ι ` (TSs ,Ss ,Ms , β) 7−−→+ abort.

The simulation I, ι |= (TSt ,St ,Mt) ≼β ,D
ϕ (TSs ,Ss ,Ms) carries a delayed write set D for the writes that the

source thread has to perform later. The parameter ϕ records the timestamp mapping between the target and
source memory at the last switch point. The atomic bit β indicates whether the thread can switch.

If the source thread aborts in finite steps (shown as ι ` (TSs ,Ss ,Ms , β) 7−−→+ abort), the simulation trivially
holds. So the correctness of the optimization is meaningful only when the source program never aborts.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:30 • Anonymous

t • •na ∗ ◦te

t′ • ◦te
∅, _

∅, I

with te ∈ AT

Fig. 23. Simulation diagram of atomic step (t and t′ are target and source threads respectively)

t • •na ∗

t′ • •
W(na, x,v)

D, _ D ′2, _

with D2 ⊆ D[(x, t) 7→ i], D ′2 < D2

(a) Non-atomic write step case

t • •na ∗

t′ • •
R(na, x,v)/τ

D, _ D ′2, _

with D2 ⊆ D, D ′2 < D2

(b) Non-atomic read step case

Fig. 24. Simulation diagrams of non-atomic step (t′ and t are target and source threads respectively, and D2 records the
delayed writes that have not been caught up by the current source thread steps)

Otherwise, we require that the step invariant SI always holds, and discuss the different cases of target steps.
Case (1-a) in Def. 7.3 shows an atomic step of the target. The simulation follows the diagram in Fig. 23. The

step invariant SI ensures that the delayed write set has been empty when taking an atomic step. After the step,
the timestamp mapping increasing (shown as ϕ ⊆ ϕ ′) and the invariant I needs to be reestablished, since the
target and source threads reach a switch point.

Case (1-b) shows the condition that the target thread takes a non-atomic step. If the target thread takes a
non-atomic write step at the timestamp t as shown in Fig. 24(a), we add a new delayed item (x, t) with an index
i into the delayed write set D as defined in Fig. 22. The target write step may fulfill a message in its promise set
((x, t) ∈ TTSt .P−TS′t .PU), or generate a new message into memory ((x, t) ∈ TM ′t −MtU). Then, the source thread
will take some non-atomic steps to catch up some delayed writes according to the rules in Fig. 22. Here, we forbid
the non-atomic reads in the source thread steps to read unobserved messages, whose locations are recorded in
the delayed write set. Reading such unobserved message on some location x may cause the source thread to
insert the message on location x at some unexpected timestamps when catching up the delayed write on x, and
may cause the write-write race freedom to fail to preserve. Then, we reduce the indexes of the elements in the
delayed write set (shown as D ′2 < D2) to ensure that the source thread will eventually write to the locations in
the delay set.

Case (1-c) and (1-d) in Def. 7.3 reflect the situations that the target thread takes promise/reserve step and
cancel step (shown in Fig. 25). As we have introduced, a thread takes a promise step for its future write. Since we
require that the locations written by the source thread should not be less than the target thread for write-write
race freedom preservation, each memory write at the target level should have a corresponding memory write
at the source level. Thus, if the target thread takes a promise step for a future write, the simulation requires the
source thread to take a promise step for the corresponding future write in the source program. In the cancel step
case (shown in Fig. 25(b)), the indexes of elements in the delayed write set do not need to be reduced, even if the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:31

t ◦ ◦
prc ∗

t′ ◦ ◦
prm/rsv

∅, I ∅, I

(a) Promise/reserve step case

t ◦ ◦ccl ∗

t′ ◦ ◦ccl
∅, I ∅, I or

t • •ccl ∗

t′ • •ccl
D, _ D, _

(b) Cancel step case

Fig. 25. Simulation diagrams of promise/reserve and cancel steps (t′ and t are target and source threads respectively)

target and source threads are in atomic block, since the number of the reservations in the thread’s promise set
is finite and the thread will never take cancel steps forever.

If the atomic bit is ◦ (case 2), we consider the interaction with other threads (following the diagram below).
When switching back after environment steps satisfying R and the invariant I reestablished, the simulation must
hold over the new states.

t ◦ ◦

t′ ◦ ◦

∅, I ∅, IR

Finally, case 3 (or 4) says, if the target thread terminates (or aborts), so does the source thread. When both
target and source threads terminate, we require that the invariant I holds and a larger message mapping ϕ ′ is
well-formed from the restrictions of guarantee condition (G).

We show that why the item 3 in the step invariant defined in Def. 7.1 is essential in proving the write-write
race preserving. Consider the following example. For the source program, we call the left thread t1 and the right
thread t2. For the target program, we call the left thread t′1 and the right thread t′2.

xna := 1;
yna := 1;
xna := 3;
CASrlx,rlx(z, 0, 1);

; xna := 1
xna := 3;
yna := 1;
CASrlx,rlx(z, 0, 1);

The execution of the target program may have the following execution to generate the write-write race.
t′1 t′2

(1) reserve 〈z : (0, 1]〉
(2) xna := 1
(3) xna := 3 //Race

Consider that we have already established the thread-local simulation between t′2 and t2 as the following shown
and we need to use such simulation to construct the write-write race in the source program.

t2 ◦ •
yna := 1

•
xna := 3

Race
◦

CASrlx,rlx(z, 0, 1)

t′2 ◦ •
xna := 3

Race •
yna := 1

◦
CASrlx,rlx(z, 0, 1)

∅ {(x, t); i} ∅ ∅

To ensure that the source thread will eventually write the location x and generates write-write race, our thread-
local simulation needs to make sure that when executing CASrlx,rlx(z, 0, 1) the delayed write set is empty (the item

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:32 • Anonymous

3 in the step invariant). Note that we can not write such restriction in the atomic step case in the thread-local
simulation, since the execution of CASrlx,rlx(z, 0, 1) can not be done. The reason is that the timestamps that will
be used by the execution of CASrlx,rlx(z, 0, 1) have been reserved by t′1.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:33

8 WHOLE PROGRAM SIMULATION AND COMPOSITIONALITY
In this section, we define the whole program simulation in Sec. 8.1, and then show the proof sketch of the com-
positionality in Sec. 8.2. In Sec. 8.3, we show that our thread-local simulation preserves the promise certification.
and illustrate how we prove that a certification against the current memory for non-atomic locations ensures
the existence of the certification against the capped memory in detail as we have mentioned in Sec. 1.

8.1 Whole program simulation
The role of the whole program simulation in our work, as shown in Fig. 2, is to ensure that there is a refinement
relation between the target and source programs. We define the whole program simulation in the following.

Definition 8.1 (Whole program simulation). let (πt , ι) in f1 | . . . | fn ⩽ let (πs , ι) in f1 | . . . | fn iff, for any
Ŵt , if let (πt , ι) in f1 | . . . | fn :

load
==⇒ Ŵt , there exists Ŵs such that:

• let (πs , ι) in f1 | . . . | fn :
load
==⇒ Ŵs ;

• Ŵt ⩽ Ŵs .
where Ŵt ⩽ Ŵs is defined in Def. 8.2.

Definition 8.2. Whenever (TPt , t,St ,Mt , βt)ι ⩽ (TPs , t,Ss ,Ms , βs)ι , the following are true:

(1) for any TPt ′, S′t , M ′t and β ′t , if (TPt , t,St ,Mt , βt)ι :
τ
==⇒ (TPt ′, t,S′t ,M ′t , β ′t)ι , then there exist TPs ′, S′s , M ′s

and β ′s such that:
• (TPs , t,Ss ,Ms , βs)ι :

τ
==⇒∗ (TPs ′, t,S′s ,M ′s , β ′s)ι ;

• (TPt ′, t,S′t ,M ′t , β ′t)ι ⩽ (TPs ′, t,S′s ,M ′s , β ′s)ι .
(2) for any TPt ′, S′t andM ′t , if (TPt , t,St ,Mt , βt)ι :

out(v)
====⇒ (TPs ′, t,S′t ,M ′t , ◦)ι , then there exist TPs ′, S′s ,M ′s , β ′s ,

TPs ′′, S′′s and M ′′s such that:
• (TPs , t,Ss ,Ms , βs)ι :

τ
==⇒∗ (TPs ′, t,S′s ,M ′s , β ′s)ι and (TPs ′, t,S′s ,M ′s , β ′s)ι :

out(v)
====⇒ (TPs ′′, t,S′′s ,M ′′s , ◦)ι ;

• (TPt ′, t,S′t ,M ′t , ◦)ι ⩽ (TPs ′′, t,S′′s ,M ′′s , ◦)ι .
(3) for any TPt ′, t′, if (TPt , t,St ,Mt , βt)ι :

sw
==⇒ (TPt ′, t′,St ,Mt , ◦)ι , then there exists TPs ′ such that:

• (TPs , t,Ss ,Ms , βs)ι :
sw
==⇒ (TPs ′, t′,Ss ,Ms , ◦);

• (TPt ′, t′,St ,Mt , ◦)ι ⩽ (TPs ′, t′,Ss ,Ms , ◦)ι .
(4) if (TPt , t,St ,Mt , βt)ι :==⇒ done, then there exist TPs ′, S′s , M ′s and β ′s such that:
• (TPs , t,Ss ,Ms , βs)ι :==⇒∗ (TPs ′, t,S′s ,M ′s , β ′s)ι and (TPs ′, t,S′s ,M ′s , β ′s)ι :==⇒ done.

(5) if (TPt , t,St ,Mt , βt)ι :==⇒ abort, then (TPs , t,Ss ,Ms , βs)ι :==⇒ abort.

We write some figures to illustrate the whole program simulation defined in Def. 8.1 in the following.
• If the target program takes a tau step, the source program is permitted to take multiple steps.

Ŵs Ŵ ′
s:

τ ∗

Ŵt Ŵ ′
t:

τ

• If the target program takes an output step, the source program is restricted to generate the same output.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:34 • Anonymous

Ŵs Ŵ ′
s:

τ ∗
Ŵ ′′

s:
out(v)

Ŵt Ŵ ′
t:

out(v)

• If the target program does a thread switching, the source program will switch to the same thread.

(TPs , t,Ss ,Ms , ◦)ι (TPs ′, t′,Ss ,Ms , ◦)ι:
sw

(TPt , t,St ,Mt , ◦)ι (TPt ′, t′,St ,Mt , ◦)ι:
sw

8.2 Compositionality
We need to prove that the thread-local upward simulation can compose to the whole program simulation as
shown in Def. 8.1.

Lemma 8.3 (Compositionality).
∀πt , πs , I, ι, f1, . . . , fn .

I, ι |= πt ≼ πs∧
Safe(let (πs , ι) in f1 | . . . | fn)∧
ww-NPRF(let (πs , ι) in f1 | . . . | fn)

=⇒ let (πt , ι) in f1 | . . . | fn ⩽ let (πs , ι) in f1 | . . . | fn
Proof. From the premises, we have the following.

I, ι |= πt ≼ πs (1)
Safe(let (πt , ι) in f1 | . . . | fn) (2)
ww-NPRF(let (πt , ι) in f1 | . . . | fn) (3)

We unfold (1) and have the following.
I(ι,ϕ0, (S⊥,M0,S⊥,M0)) ∧ wf(I) (4)
∀σt , f. Init(πt , f) = σt
=⇒ ∃σs .(Init(πs , f) = σs ∧ I, ι |= ((σt ,V⊥, ∅),S⊥,M0) ≼◦,∅ϕ ((σs ,V⊥, ∅),S⊥,M0))

(5)

We unfold the proof goal. We have the following premise.

let (πt , ι) in f1 | . . . | fn :
load
==⇒ Ŵt (6)

And we need to prove that there exist Ŵs such that:

let (πs , ι) in f1 | . . . | fn :
load
==⇒ Ŵs (g1)

Ŵt ⩽ Ŵs (g2)

Let Ŵt = (TPt , t,S⊥,M0, ◦)ι . From (6) and (5), we have that there exist TPs such that:

let (πs , ι) in f1 | . . . | fn :
load
==⇒ (TPs , t,S⊥,M0, ◦)ι (7)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:35

Thus, we finish the proof of (g1).
By applying Lemma. 8.5 on (2), we have the following.

¬(∃Ŵs . (TPs , t,S⊥,M0, ◦)ι :==⇒∗Ŵs ∧ Ŵs :==⇒ax abort) (8)
By applying Lemma. 8.8 on (3), we have the following.

¬(∃Ŵs . (TPs , t,S⊥,M0, ◦)ι :==⇒∗Ŵs ∧ Ŵs : Z=⇒ax ww-Race) (9)
By applying Lemma. 8.4 on (5), (8) and (9), we prove (g2). □

Lemma 8.4 (Compositionality - aux).
∀TPt , , i,St ,Mt ,TPs ,Ss ,Ms , β, βs , ι,D,ϕ,n.
(∀j ∈ {1, . . . ,n}\{i}. I, ι |= (TPt (j),St ,Mt) ≼◦,∅ϕ (TPs (j),Ss ,Ms))∧
I, ι |= (TPt (i),St ,Mt) ≼β ,D

ϕ (TPs (i),Ss ,Ms)∧
¬(∃Ŵs . (TPs , i,Ss ,Ms , βs)ι :==⇒∗Ŵs ∧ Ŵs :==⇒ax abort)∧
¬(∃Ŵs . (TPs , i,Ss ,Ms , βs)ι :==⇒∗Ŵs ∧ Ŵs :Z=⇒ax ww-Race)∧
(β = ◦ =⇒ βs = ◦) ∧ wf(I)

=⇒ (TPt , i,St ,Mt , β)ι ⩽ (TPs , i,Ss ,Ms , βs)ι

Proof. By cofix. From the premises, we have the following.

∀j ∈ {1, . . . ,n}\{i}. I, ι |= (TPt (j),St ,Mt) ≼◦,∅ϕ (TPs (j),Ss ,Ms) (1)

I, ι |= (TPt (i),St ,Mt) ≼β ,D
ϕ (TPs (i),Ss ,Ms) (2)

¬(∃Ŵs . (TPs , i,Ss ,Ms , βs)ι :==⇒∗Ŵs ∧ Ŵs :==⇒ax abort) (3)
¬(∃Ŵs . (TPs , i,Ss ,Ms , βs)ι :==⇒∗Ŵs ∧ Ŵs :Z=⇒ax ww-Race) (4)
(β = ◦ =⇒ βs = ◦) ∧ wf(I) (5)

We unfold the proof goal and we need to prove the following.
(1) If the current target thread takes a tau step, we have the following.

(TPt , i,St ,Mt , β)ι :
τ
==⇒ (TPt ′, i,S′t ,M ′t , β ′)ι (6.1)

We unfold (6.1) and have that there exist TS′t , S′t , M ′t such that:
ι ` (TPt (i),St ,Mt , β) 7−−→+ (TS′t ,S′t ,M ′t , β ′) (6.11)
TPt ′ = TPt {i ; TS′t } (6.12)
consistentNP(TS′t ,M ′t , β ′, ι) (6.13)

We apply Lemma. 8.11 on (6.12) (2). We have that there exist TS′s , S′s , M ′s and β ′s such that:
ι ` (TPs (i),Ss ,Ms , βs) 7−−→∗ (TS′s ,S′s ,M ′s , β ′s) (6.14)

I, ι |= (TS′t ,S′t ,M ′t) ≼
β ′,D′
ϕ ′ (TS′s ,S′s ,M ′s) (6.15)

(β ′ = ◦ =⇒ β ′s = ◦) ∧ ϕ ⊆ ϕ ′ (6.16)
We discuss (6.14). If the current source thread takes zero step, we finish the proof of such case by co-
inductive hypothesis. We focus on the case that the current source thread takes multiple steps. By applying
Lemma. 8.13 on (6.13), (6.15), (3) and (4), we have the following.

consistentNP(TS′s ,M ′s , β ′s , ι) (6.17)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:36 • Anonymous

ι ` (TP(t),S,M) −−→∗ (TS′,S′,M ′)
TS′.σ

W(na,x,_)−−−−−−−−→ _
〈x : _@(_, t], _〉 ∈ (M ′\TS′.P) TS′.V .cur.Trlx(x) < t

ι ` (TS′,S′,M ′) −−→∗ ((_, _, ∅), _, _)
(TP, t,S,M, β)ι : Z=⇒ax ww-Race

(TP, t,S,M, β)ι :==⇒ax abort ::= (TP, t,S,M)ι ==⇒ abort

Fig. 26. Auxiliary write-write race and abort step under non-preemptive semantics

From (6.14), (6.17) and co-inductive hypothesis, we finish the proof.
(2) If the current target thread takes a done step, we have the following.

(TPt , t,St ,Mt , β)ι :
out(v)
====⇒ (TPt ′, t,S′t ,M ′t , ◦)ι (6.2)

We unfold (6.1) and have that there exist TS′t , S′t and M ′t such that:

ι ` (TPt (i),St ,Mt , β)
out(v)7−−−−→ (TS′t ,S′t ,M ′t , β ′) (6.21)

TPt ′ = TPt {i ; TS′t } (6.22)
consistentNP(TS′t ,M ′t , β ′, ι) (6.23)

By applying Lemma. 8.12 on (6.21) and (2), we have that there exist TS′s , S′s , M ′s and ϕ ′ such that:

ι ` (TSs ,Ss ,Ms , β) 7−−→∗
out(v)7−−−−→ (TS′s ,S′s ,M ′s , ◦) (6.24)

I, ι |= (TS′t ,S′t ,M ′t) ≼◦,∅ϕ ′ (TS
′
s ,S′s ,M ′s) (6.25)

ϕ ⊆ ϕ ′ ∧ I(ι,ϕ ′, (S′t ,M ′t ,S′s ,M ′s)) (6.26)
From (6.24), (6.25), (6.26) and co-inductive hypothesis, we finish the proof.

(3) The correctness of the case that the target program takes a switch step is straight-forward.
(4) The correctness of the case that the target program takes a done step is straight-forward.
(5) If the current target thread takes an abort step, we have the following.

(TPt , t,St ,Mt , β)ι :==⇒ abort (6.5)
We unfold (6.5) and have the following.

ι ` (TPt (t),St ,Mt , β) 7−−→∗ (TS′t ,S′t ,M ′t , β ′) (6.51)
ι ` (TS′t ,S′t ,M ′t) −−→ abort (6.52)

By applying Lemma. 8.11 on (6.51) and (2), We have that there exist TS′s , S′s , M ′s and β ′s such that:
ι ` (TPs (i),Ss ,Ms , βs) 7−−→∗ (TS′s ,S′s ,M ′s , β ′s) (6.53)

I, ι |= (TS′t ,S′t ,M ′t) ≼
β ′,D′
ϕ ′ (TS′s ,S′s ,M ′s) (6.54)

β ′ = ◦ =⇒ β ′s = ◦ (6.55)
From (6.52) and (6.54), we construct an abort step of the source program.

□

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:37

Lemma 8.5 (Sound np-abort).

∀TP, t,S,M, ι.
¬(∃Ŵ . (TP, t,S,M, ◦)ι :==⇒∗Ŵ ∧ Ŵ :==⇒ abort)

=⇒ ¬(∃Ŵ . (TP, t,S,M, ◦)ι :==⇒∗Ŵ ∧ Ŵ :==⇒ax abort)

Proof. We need to prove that the following.

(∃Ŵ . (TP, t,S,M, ◦)ι :==⇒∗Ŵ ∧ Ŵ :==⇒ax abort)
=⇒ (∃Ŵ . (TP, t,S,M, ◦)ι :==⇒∗Ŵ ∧ Ŵ :==⇒ abort)

From the premise, we have that there exist Ŵ such that:

(TP, t,S,M, ◦)ι :==⇒∗Ŵ (1)

Ŵ :==⇒ax abort (2)

We have the following.
((TP, t,S,M, ◦)ι :==⇒ax abort)∨
¬((TP, t,S,M, ◦)ι :==⇒ax abort)

(3)

We destruct (3) and discuss each case respectively.
• We first consider that the current thread will abort.

(TP, t,S,M, ◦)ι :==⇒ax abort (3.1)

We finish the proof of such case by applying Lemma. 8.6 on (3.1).
• Then, we consider that the current thread will not abort.

¬((TP, t,S,M, ◦)ι :==⇒ax abort) (3.2)

By applying Lemma. 8.7 on (1), (2) and (3.2), we finish the proof.
□

Lemma 8.6 (Sound np-abort aux-1).

∀TP, t,S,M, ι.
(TP, t,S,M, ◦)ι :==⇒ax abort

=⇒ (TP, t,S,M, ◦)ι :==⇒ abort

Lemma 8.7 (Sound np-abort aux-2).

∀Ŵ ,Ŵ0,n.

Ŵ :==⇒n Ŵ0 ∧ Ŵ0 :==⇒ax abort∧
¬(Ŵ :==⇒ax abort)

=⇒ ∃Ŵ ′. Ŵ :==⇒∗Ŵ ′ ∧ Ŵ ′ :==⇒ abort

Lemma 8.8 (Sound aux ww-np-race).

∀TP, t,S,M, ι.
¬(∃Ŵ . (TP, t,S,M, ◦)ι :==⇒∗ Ŵ ∧ Ŵ :Z=⇒ ww-Race)

=⇒ ¬(∃Ŵ . (TP, t,S,M, ◦)ι :==⇒∗Ŵ ∧ Ŵ :Z=⇒ax ww-Race)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:38 • Anonymous

Proof. From the premises, we have the following.

(TP, t,S,M, ◦)ι :==⇒∗Ŵ (1)
Ŵ :Z=⇒ax ww-Race (2)

We need to prove the following.

∃Ŵ . (TP, t,S,M, ◦)ι :==⇒∗ Ŵ ∧ Ŵ : Z=⇒ ww-Race (g)

We have the following.

((TP, t,S,M, ◦)ι :Z=⇒ax ww-Race)∨
¬((TP, t,S,M, ◦)ι : Z=⇒ax ww-Race)

(3)

We destruct (3) and discuss each case respectively.
• We first consider that the current thread will generate data race.

(TP, t,S,M, ◦)ι : Z=⇒ax ww-Race (4.1)

We apply Lemma. 8.9 on (4.1) and finish the proof of such case.
• Then, we consider that the current thread will not generate data race.

¬((TP, t,S,M, ◦)ι : Z=⇒ax ww-Race) (5.2)

We apply Lemma. 8.10 on (2), (3) and (5.2) and finish the proof of such case.
□

Lemma 8.9 (Sound aux ww-np-race aux-1).

∀TP, t,S,M, ι.
(TP, t,S,M, ◦)ι : Z=⇒ax ww-Race

=⇒ ∃Ŵ . (TP, t,S,M, ◦)ι :==⇒∗Ŵ ∧ Ŵ :Z=⇒ ww-Race

Lemma 8.10 (Sound aux ww-np-race aux-2).

∀Ŵ ,Ŵ0,n.

Ŵ :==⇒n Ŵ0 ∧ Ŵ0 :Z=⇒ax ww-Race∧
¬(Ŵ : Z=⇒ax ww-Race)

=⇒ ∃Ŵ ′. Ŵ :==⇒∗Ŵ ′ ∧ Ŵ ′ :Z=⇒ ww-Race

Lemma 8.11 (Simulation: tau step).

∀TSt ,St ,Mt , TS′t ,S′t ,M ′t , TSs ,Ss ,Ms ,n, β, βs , β
′,D,ϕ.

ι ` (TSt ,St ,Mt , β) 7−−→n (TS′t ,S′t ,M ′t , β ′)∧
I, ι |= (TSt ,St ,Mt) ≼β ,D

ϕ (TSs ,Ss ,Ms) ∧ (β = ◦ =⇒ βs = ◦)
=⇒ ∃TS′s ,S′s ,M ′s ,D ′,ϕ ′, β ′s .

ι ` (TSs ,Ss ,Ms , βs) 7−−→∗ (TS′s ,S′s ,M ′s , β ′s)∧
I, ι |= (TS′t ,S′t ,M ′t) ≼

β ′,D′
ϕ ′ (TS′s ,S′s ,M ′s) ∧ ϕ ⊆ ϕ ′∧

(β ′ = ◦ =⇒ β ′s = ◦)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:39

Lemma 8.12 (Simulation: output step).

∀TSt ,St ,Mt , TS′t ,S′t ,M ′t , TSs ,Ss ,Ms , β, βs ,D,ϕ.
ι ` (TSt ,St ,Mt , β)

out(v)7−−−−→ (TS′t ,S′t ,M ′t , ◦)∧
I, ι |= (TSt ,St ,Mt) ≼β ,D

ϕ (TSs ,Ss ,Ms) ∧ (β = ◦ =⇒ βs = ◦)
=⇒ ∃TS′s ,S′s ,M ′s ,ϕ ′.

ι ` (TSs ,Ss ,Ms , β) 7−−→∗
out(v)7−−−−→ (TS′s ,S′s ,M ′s , ◦)∧

I, ι |= (TS′t ,S′t ,M ′t) ≼◦,∅ϕ ′ (TS′s ,S′s ,M ′s) ∧ ϕ ⊆ ϕ ′

8.3 Promise certification preservation
Theorem. 8.13 shows that under the assumption of the write-write race freedom, our thread-local simulation
ensures the preserving of the promise certification. illustrate how we prove that a certification against the cur-
rent memory for non-atomic locations ensures the existence of the certification against the capped memory
in Lemma. 8.18. This lemma also shows why the locations in our work are divided into atomic locations and
non-atomic locations. In the following introduction, the conditions, which say that the thread promises set is a
subseteq of the memory and the thread view is closed, are omitted in the presentations of some lemmas, since
these conditions are ensured by promising semantics and not the main points of our proof.

Theorem 8.13 (Promise consistency preserving).

∀TPt , t,Mt ,TPs ,Ms , ι, β,D,ϕ.
consistentNP(TPt (t),Mt , β, ι)∧
I, ι |= (TPt (t),St ,Mt) ≼β ,D

ϕ (TPs (t),Ss ,Ms)∧
¬(ι ` (TPs (t),Ss ,Ms) −−→∗ abort)∧
¬((TPs , t,Ss ,Ms , β)ι : Z=⇒ax ww-Race)

=⇒ consistentNP(TPs (t),Ms , β, ι)

Proof. From the premises, we have that the following hold.

consistentNP(TPt (t),Mt , β, ι) (1)

I, ι |= (TPt (t),St ,Mt) ≼β ,D
ϕ (TPs (t),Ss ,Ms) (2)

¬(ι ` (TPt (t),St ,Mt) −−→∗ abort) (3)
¬((TPs , t,Ss ,Ms , β)ι : Z=⇒ax ww-Race) (4)

We unfold (1) and have the following:

ι ` (TPt (t), T̂ (Mt), M̂t , β) 7−−→∗ ((_, _, ∅), _, _, _) (5)

Let Msc = ({m ∈ Ms | ι(m.var) = na} ∪ {m ∈ M̂s | ι(m.var) = at}). We apply Lemma. 8.14 on (5), (2) and (3)
and have the following.

ι ` (TPs (t), T̂ (Ms),Msc, β) 7−−→∗ ((_, _, ∅), _, _, _) (6)

We apply Lemma. 8.17 on (4) and have the following.

¬((TPs , t, T̂ (M̂s),Msc) :Z=⇒ax ww-Race (7)

By applying Lemma. 8.18 on (6) and (7), we finish the proof. □

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:40 • Anonymous

Lemma 8.14 (LSim ensures promise fulfilling - capped).

∀ι, TSt ,St ,Mt , TSs ,Ss ,Ms ,ϕ, I, ι,Msc, β,n.

ι ` (TSt , T̂ (Mt), M̂t , β) 7−−→n ((_, _, ∅), _, _, _)∧
I, ι |= (TSt ,St ,Mt) ≼β ,D

ϕ (TSs ,Ss ,Ms)∧
Msc = ({m ∈ Ms | ι(m.var) = na} ∪ {m ∈ M̂s | ι(m.var) = at})∧
¬(ι ` (TSt ,St ,Mt) −−→∗ abort)

=⇒ ι ` (TSs , T̂ (M̂s),Msc, β)
pf
−−→∗ ((_, _, ∅), _, _, _)

Proof. Prove by applying Lemma. 8.15. □

Lemma 8.15 (LSim ensures promise fulfilling - capped aux).

∀TSt ,Stc,Mtc,St ,Mt , TSs ,Ssc,Msc,Ss ,Ms , β,D,ϕ.
ι ` (TSt ,Stc,Mtc, β) 7−−→n ((_, _, ∅), _, _, _)∧
Mt ⊆ Mtc ∧ (∀m ∈ (Mtc−Mt).m = 〈_ : (_, _]〉)∧
I, ι |= (TSt ,St ,Mt) ≼β ,D

ϕ (TSs ,Ss ,Ms)∧
(∀x < ι. Ms (x) = Msc(x)) ∧ ([Mtc]ι ≈ [Msc]ι)∧
¬(ι ` (TSt ,Stc,Mtc) −−→∗ abort)

=⇒ ι ` (TSs ,Ssc,Msc, β)
pf
−−→∗ ((_, _, ∅), _, _, _)

Proof. Prove by induction on n. If n is zero, we prove by applying Lemma. 8.16. And if n is greater than zero,
we prove by applying inductive hypothesis. □

Lemma 8.16 (LSim ensures promise fulfilling - capped with target prm empty).

∀TSt ,St ,Mt , TSs ,Ssc,Msc,Ss ,Ms , β,D,ϕ.
TSt .P = ∅ ∧Mt ⊆ Mtc ∧ (∀m ∈ (Mtc−Mt).m = 〈_ : (_, _]〉)∧
I, ι |= (TSt ,St ,Mt) ≼β ,D

ϕ (TSs ,Ss ,Ms)∧
(∀x < ι. Ms (x) = Msc(x)) ∧ ([Mtc]ι ≈ [Msc]ι)∧
¬(ι ` (TSt ,St ,Mt) −−→∗ abort)

=⇒ ι ` (TSs ,Ssc,Msc)
pf
−−→∗ ((_, _, ∅), _, _)

Proof. Prove by induction on the well-ordered delayed write set D. The order of the delayed write set is
D << D ′ ≜ ∃D0. D ⊆ D0 ∧ D0 < D ′. □

Lemma 8.17 (Race-free implies capped race-free).

∀TP, t,S,M, β, ι,Sc ,Mc .
¬((TP, t,S,M, β)ι : Z=⇒ax ww-Race)∧
M ⊆ Mc ∧ (∀m ∈ (Mc −M).m = 〈_ : (_, _]〉) ∧ S ≤ Sc

=⇒ ¬((TP, t,Sc ,Mc , β)ι :Z=⇒ax Race)

Lemma. 8.18 shows that a thread from a write-write race free program can certify promises (for non-atomic
writes) against the current memory instead of the capped memory. The intuition of the correctness of such
lemma includes two points: (1) write-write race freedom forbids a thread t to write to a location when the
memory contains a write of the same location made by another thread t′ and unobserved by t; (2) There is no
atomic update operation performing on the non-atomic location.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:41

T ∼ϕ T ′ ≜ ∀x. ϕ(x,T (x)) = T ′(x)
V ∼ϕ V ′ ≜ V .Tna ∼ϕ V ′.Tna ∧V .Trlx ∼ϕ V ′.Trlx

V ∼ϕ V ′ ≜ V .cur ∼ϕ V ′.cur ∧V .acq ∼ϕ V ′.acq ∧ (∀x.V .rel(x) ∼ϕ V .rel(x))
M ∼ϕ M ′ ≜ ϕ(Mt ,Ms)∧

(∀mt ∈ Mt . ∃ms ∈ Ms . ϕ(mt .var,mt .to) =ms .to ∧mt .var =ms .var∧
mt .val =ms .val ∧mt .V ∼ϕ ms .V)

Fig. 27. Auxiliary definitions in promise certification preservation

Lemma 8.18 (Fulfilled under race-free implies promise consistent).
∀TP, t,S,M, ι,Msc,n, β .

ι ` (TP(t), T̂ (M),Msc, β) 7−−→n ((_, _, ∅), _, _, _)∧
¬((TP, t, T̂ (M̂),Msc, β)ι : Z=⇒ax ww-Race)∧
Msc = ({m ∈ M | ι(m.var) = na} ∪ {m ∈ M̂ | ι(m.var) = at})

=⇒ consistentNP(TP(t),M, β, ι)
Proof. By unfolding the definitions of consistentNP, we need to prove that for any TP, t,S,M, ι,Msc,n, β , if

ι ` (TP(t), T̂ (M),Msc, β) 7−−→n ((_, _, ∅), _, _, _) (1)

¬((TP, t, T̂ (M̂),Msc, β)ι :Z=⇒ax ww-Race) (2)

Msc = ({m ∈ M | ι(m.var) = na} ∪ {m ∈ M̂ | ι(m.var) = at}) (3)
then

ι ` (TP(t), T̂ (M), M̂, β) 7−−→∗ ((_, _, ∅), _, _, _) (g)
By applying lemma. 8.19 (in the proof of this lemma, we illustrate the main idea that a thread from a write-

write race free program can certify promises (for non-atomic writes) against current memory instead of the
capped memory and why we divide locations into non-atomic locations and atomic locations) on (g), we let
ϕ = {(x, t); t | (x, t) ∈ TMscU} and need to prove the following.

ι ` (TP(t), T̂ (M),Msc, β) 7−−→n ((_, _, ∅), _, _, _) (g1)
V ∼ϕ V (g2)
P ≈ P (g3)

Msc ∼ϕ M̂ (g4)

[M]ι ≈ [M̂]ι (g5)

Msc ⊆ M̂ ∧ (∀m ∈ (M̂\Msc).m = 〈_ : (_, _]〉) (g6)

¬((TP, t, T̂ (M̂),Msc, β)ι :Z=⇒ax ww-Race) (g7)
We prove (g1) by applying (1).
(g2) and (g3) can be proved according to the definitions in Fig. 27 directly.
(g4), (g5) and (g6) can be proved from (3).
We prove (g7) from (2).

□

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:42 • Anonymous

Lemma 8.19 (Promise certification from current memory to capped memory).
∀n,σ ,V, P,S,M, β,V ′, P ′,M ′,TP, t, .

ι ` ((σ ,V, P),S,M, β) 7−−→n ((_, _, ∅), _, _, _)∧
V ∼ϕ V ′ ∧ P ≈ P ′ ∧M ∼ϕ M ′ ∧ [M]ι ≈ [M ′]ι
M ⊆ M ′ ∧ (∀m ∈ (M ′\M).m = 〈_ : (_, _]〉)∧
¬((TP, t,S,M)ι Z=⇒ax ww-Race) ∧ TP(t) = (σ ,V, P)

=⇒ ι ` ((σ ,V ′, P ′),S,M ′, β) 7−−→∗ ((_, _, ∅), _, _, _).

Proof. We illustrate the main idea of the proof of such lemma. The atomic locations in Msc and M̂ are the
same.Thus, writing to the atomic locations inMsc and M̂ has no difference.We focus on the non-atomic locations.
Consider the following situation, the left side is the current memory on location x and the right side is the capped
version of the current memory on location x. We assume that m and m0 are all concrete messages. Here, the
location x is a non-atomic location.

x

Var.

Timestamp.

m

V .cur.Trlx(x)

m0 x

Var.

Timestamp.

m m0

V ′.cur.Trlx(x)

Consider that the thread does a memory write from the current state.
• If it inserts a new messagem1 betweenm andm0,m0 must be a promise of the thread. Otherwise, a write-
write race arises. The corresponding memory write on the capped memory will split m0 and insert m′1,
which is the corresponding message ofm1. Note, one important thing here is thatm1 is not generated by
the atomic update operation (e.g. CAS), since we prohibit the atomic update operation performed on the
non-atomic location. Ifm1 is generated by an atomic update operation, the ”from”-timestamp ofm0 must
equal to the ”to”-timestamp ofm, which is impossible to achieve on the capped memory.

x

Var.

Timestamp.

m m0m1

V .cur.Trlx(x)

x

Var.

Timestamp.

m m′1 m′0

V ′.cur.Trlx(x)

• If it inserts a new messagem2, which has a timestamp larger thanm0, the corresponding memory write
(generatingm′2, which is the correspondingmessage ofm2) on the cappedmemory insert a message, which
has a larger timestamp than the capped message. We show such condition in the following figure.

x

Var.

Timestamp.

m m0 m2

V .cur.Trlx(x)

x

Var.

Timestamp.

m m0 m′2

V ′.cur.Trlx(x)

□

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:43

9 PROOF OF WRITE-WRITE RACE FREEDOM PRESERVING
We show the correctness proof of write-write race freedom preserving in the following.

Lemma 9.1 (ww-rf preserving).

∀πt , πs , I, ι, f1, . . . , fn .
ww-NPRF(let (πs , ι) in f1 | . . . | fn)∧
I, ι |= πt ≼ πs∧
Safe(let (πs , ι) in f1 | . . . | fn)

=⇒ ww-NPRF(let (πt , ι) in f1 | . . . | fn)

Proof. From the premises, we have the following.

ww-NPRF(let (πs , ι) in f1 | . . . | fn) (1)
I, ι |= πt ≼ πs (2)
Safe(let (πs , ι) in f1 | . . . | fn) (3)

We need to prove the following.

ww-NPRF(let (πt , ι) in f1 | . . . | fn) (g)

We unfold ww-race freedom defined under the non-preemptive semantics and have the following.

let (πt , ι) in f1 | . . . | fn :Z=⇒ ww-Race (4)

And we need to prove the following.

let (πs , ι) in f1 | . . . | fn : Z=⇒ ww-Race (g1)

We unfold (4) and have that there exist TPt , t and Ŵt such that:

let (πt , ι) in f1 | . . . | fn :
load
==⇒ (TPt , t,S⊥,M0, ◦)ι (4.1)

(TPt , t,S⊥,M0, ◦)ι :==⇒∗Ŵt (4.2)

Ŵt :Z=⇒ ww-NPRF (4.3)

We unfold (2) and have the following.

I(ϕ0, ι, (S⊥,M0,S⊥,M0)) ∧ wf(I) (2.1)
∀σt . Init(πt , f) = σt
=⇒ ∃σs . (Init(πs , f) = σs ∧ I, ι |= ((σt ,V⊥, ∅),S⊥,M0) ≼◦,∅ϕ ((σs ,V⊥, ∅),S⊥,M0))

(2.2)

From (2.1), (2.2) and (4.1), we have that there exists TPs such that:

let (πs , ι) in f1 | . . . | fn :
load
==⇒ (TPs , t,S⊥,M0, ◦)ι (5)

We unfold (g1). From (5), we need to prove that there exists Ŵs such that.

(TPs , t,S⊥,M0, ◦)ι :==⇒∗Ŵs (g2.1)

Ŵs : Z=⇒ ww-Race (g2.2)

We finish the proof from Lemma 9.2. □

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:44 • Anonymous

Lemma 9.2 (ww-rf preserving - aux).

∀TPt , i,St ,Mt ,Ŵt ,TPs ,Ss ,Ms ,n,m,ϕ.

(TPt , i,St ,Mt , ◦)ι :==⇒n Ŵt ∧ Ŵt :Z=⇒ ww-Race∧
(∀j ∈ {1, . . . ,m}. consistentNP(TPt (j),Mt , ◦, ι))∧
(∀j ∈ {1, . . . ,m}. I, ι |= (TPt (j),St ,Mt) ≼◦,∅ϕ (TPs (j),Ss ,Ms))∧
I(ι,ϕ, (St ,Mt ,Ss ,Ms)) ∧ wf(I)∧
¬(∃Ŵs . (TPs , i,Ss ,Ms , ◦)ι :==⇒∗Ŵs ∧ Ŵs :==⇒ax abort)

=⇒ ∃Ŵs . (TPs , i,Ss ,Ms , ◦)ι :==⇒∗Ŵs ∧ Ŵs :Z=⇒ ww-Race

Proof. From the premises, we have the following.

(TPt , i,St ,Mt , ◦)ι :==⇒n Ŵt (1)

Ŵt :Z=⇒ ww-Race (2)
(∀j ∈ {1, . . . ,m}. consistentNP(TPt (j),Mt , ◦, ι)) (3)
(∀j ∈ {1, . . . ,m}. I, ι |= (TPt (j),St ,Mt) ≼◦,∅ϕ (TPs (j),Ss ,Ms)) (4)
I(ι,ϕ, (St ,Mt ,Ss ,Ms)) ∧ wf(I) (5)

¬(∃Ŵs . (TPs , i,Ss ,Ms , ◦)ι ==⇒∗Ŵs ∧ Ŵs ==⇒ax abort) (6)

We have the following.
((TPt , i,St ,Mt , ◦)ι : Z=⇒ax ww-Race)∨
¬((TPt , i,St ,Mt , ◦)ι :Z=⇒ax ww-Race)

(7)

We destruct (7) and discuss each case respectively.
• We first consider that the current target thread will generate data race.

(TPt , i,St ,Mt , ◦)ι :Z=⇒ax ww-Race (7.1)

By applying Lemma. 9.3 on (7.1), (4) and (5), we have the following.

(TPs , t,Ss ,Ms , ◦)ι : Z=⇒ax ww-Race (8)

We finish the proof by applying Lemma. 8.8 on (7).
• Then, we consider that the current target thread will not generate data race.

¬((TPt , i,St ,Mt , ◦)ι :Z=⇒ax ww-Race) (7.2)

We finish the prove by applying Lemma. 9.7 on (1), (2), (7.2), (3), (4) and (5).
□

Lemma 9.3 (ww-rf preserving - aux current race).

∀TPt , t,St ,Mt ,TPs ,Ss ,Ms , ι,ϕ.
(TPt , t,St ,Mt , ◦)ι :Z=⇒ax ww-Race∧
I, ι |= (TPt (t),St ,Mt) ≼◦,∅ϕ (TPs (t),Ss ,Ms)∧
I(ι,ϕ, (St ,Mt ,Ss ,Ms)) ∧ wf(I)∧
¬((TPs (t),Ss ,Ms) −−→∗ abort)

=⇒ (TPs , t,Ss ,Ms , ◦)ι :Z=⇒ax ww-Race

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:45

Proof. From the premises, we have the following.
(TPt , t,St ,Mt , ◦)ι : Z=⇒ax ww-Race (1)
I, ι |= (TPt (t),St ,Mt) ≼◦,∅ϕ (TPs (t),Ss ,Ms) (2)
I(ι,ϕ, (St ,Mt ,Ss ,Ms)) ∧ wf(I) (3)
¬((TPs (t),Ss ,Ms) −−→∗ abort) (4)

We unfold (1) and have the following.
ι ` (TPt (t),St ,Mt) −−→∗ (TS′t ,S′t ,M ′t) (1.1)

TS′t .σ
W(na,x,_)−−−−−−−−→ _ (1.2)

〈x : _@(_, t], _〉 ∈ (M ′t\TS′t .P) (1.3)
TS′t .V .cur.Trlx(x) < t (1.4)

ι ` (TS′t ,S′t ,M ′t)
pf
−−→∗ ((_, _, ∅), _, _) (1.5)

From (1.1), we have that there exist β ′ such that:
ι ` (TPt (t),St ,Mt , ◦) 7−−→∗ (TS′t ,S′t ,M ′t , β ′) (5)

According to the thread-local simulation, we have that there exist TS′s , S′s , M ′s , ϕ ′ and β ′s such that:
ι ` (TPs (t),Ss ,Ms , ◦) 7−−→∗ (TS′s ,S′s ,M ′s , β ′s) (6)

I, ι |= (TS′t ,S′t ,M ′t) ≼
β ′,D′
ϕ ′ (TS′s ,S′s ,M ′s) (7)

ϕ ⊆ ϕ ′ (8)
By applying Lemma. 9.4 in (1.1) and (1.3) and (1.4), we have the following.

〈x : _@(_, t], _〉 ∈ (Mt\TSt .P) (9)
From (3), we get that there exist and injection relation between the target memory and source memory. Thus,

we have that there exists t ′ such that:
ϕ(x, t) = t ′ (10)
〈x : _@(_, t ′], _〉 ∈ (Ms\TSs .P) (11)

We apply Lemma. 9.5 on (11) and (5). And we have the following.
〈x : _@(_, t ′], _〉 ∈ (M ′s\TS′s .P) (12)

From (7), (8), (10) and (1.4), we have the following.
TS′s .V .cur.Trlx(x) < t ′ (13)

By applying Lemma. 9.6 on (1.2), (1.5), (7), (12), (13) and (4), we construct a write-write race under the source
execution. □

Lemma 9.4 (race message in starting memory).
∀TS,S,M, TS′,S′,M ′, ι,n.

ι ` (TS,S,M) −−→n (TS′,S′,M ′)∧
〈x : _@(_, t], _〉 ∈ (M ′\TS′.P) ∧ TS′.V .cur.Trlx(x) < t

=⇒ 〈x : _@(_, t], _〉 ∈ (M\TS.P)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:46 • Anonymous

Lemma 9.5 (non-promise message preserving).

∀TS,S,M, TS′,S′,M ′, x, t,n, ι.
〈x : _@(_, t], _〉 ∈ (M\TS.P)∧
ι ` (TS,S,M) −−→n (TS′,S′,M ′)

=⇒ 〈x : _@(_, t], _〉 ∈ (M ′\TS′.P)

Lemma 9.6 (source write-write race construction).

∀TSt ,St ,Mt , TSs ,Ss ,Ms , ι, x, t
′, β,D,ϕ,n.

TSt .σ
W(na,x,_)−−−−−−−−→ _∧

ι ` (TSt ,St ,Mt)
pf
−−→n ((_, _, ∅), _, _)∧

I, ι |= (TSt ,St ,Mt) ≼β ,D
ϕ (TSs ,Ss ,Ms)∧

〈x : _@(_, t ′], _〉 ∈ (Ms\TSs .P) ∧ TSs .V .cur.Trlx(x) < t ′∧
¬(ι ` (TSs ,Ss ,Ms) −−→∗ abort)

=⇒ ∃TSs0,Ss0,Ms0.
ι ` (TSs ,Ss ,Ms) −−→∗ (TSs0,Ss0,Ms0)∧
〈x : _@(_, t ′], _〉 ∈ (M ′s0\TSs0.P) ∧ TSs0.V .cur.Trlx(x) < t ′∧
ι ` (TSs0,Ss0,Ms0) −−→∗ ((_, _, ∅), _, _)

Lemma 9.7 (ww-rf preserving - aux current not race).

∀TPt , i,St ,Mt ,Ŵt ,TPs ,Ss ,Ms , β, βs ,D,n,m.
(TPt , i,St ,Mt , β)ι :==⇒n Ŵt ∧ Ŵt :Z=⇒ ww-Race∧
¬((TPt , i,St ,Mt , β)ι : Z=⇒ax ww-Race)∧
(∀j ∈ {1, . . . ,m}. consistentNP(TPt (j),Mt , ◦, ι))∧
(∀j ∈ {1, . . . ,m}\{i}. I, ι |= (TPt (j),St ,Mt) ≼◦,∅ϕ (TPs (j),Ss ,Ms))∧
I, ι |= (TPt (i),St ,Mt) ≼β ,D

ϕ (TPs (i),Ss ,Ms))∧
(β = ◦ =⇒ βs = ◦) ∧ wf(I)∧
¬(∃Ŵs . (TPs , i,Ss ,Ms , βs)ι :==⇒∗Ŵs ∧ Ŵs :==⇒ax abort)

=⇒ ∃Ŵs . (TPs , i,Ss ,Ms , βs)ι :==⇒∗Ŵs ∧ Ŵs :Z=⇒ ww-Race

Proof. Prove by induction on n.

0: From the premises, we have the following.

(TPt , i,St ,Mt , β)ι :Z=⇒ ww-Race (1)
¬((TPt , i,St ,Mt , β)ι :Z=⇒ax ww-Race) (2)
consistentNP(TPt (i),Mt , ◦, ι) (3)

From (1) and (3), we have the following.

(TPt , i,St ,Mt , β)ι : Z=⇒ax ww-Race (4)

Thus, we construct a contradiction.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:47

n+1: From the premises, we have the following.
(TPt , i,St ,Mt , β)ι :==⇒n+1Ŵt (5)
Ŵt : Z=⇒ ww-Race (6)
¬((TPt , i,St ,Mt , β)ι : Z=⇒ax ww-Race) (7)
(∀j ∈ {1, . . . ,m}. consistentNP(TPt (j),Mt , ◦, ι)) (8)
(∀j ∈ {1, . . . ,m}\{i}. I, ι |= (TPt (j),St ,Mt) ≼◦,∅ϕ (TPs (j),Ss ,Ms)) (9)

I, ι |= (TPt (i),St ,Mt) ≼β ,D
ϕ (TPs (i),Ss ,Ms)) (10)

(β = ◦ =⇒ βs = ◦) ∧ wf(I) (11)
¬(∃Ŵs . (TPs , i,Ss ,Ms , β)ι :==⇒∗Ŵs ∧ Ŵs :==⇒ax abort) (12)

We unfold (5) and have that there exists Ŵ ′
t such that:

(TPt , i,St ,Mt , β)ι :==⇒ Ŵ ′
t (5.1)

Ŵ ′
t :==⇒n Ŵt (5.2)

We unfold (5.1) and discuss each case respectively. We let Ŵ ′
t = (TPt ′, i ′,S′t ,M ′t , β ′)ι .

• The current target thread does not take an output step. We have that there exists TS′t such that:
ι ` (TPt (i),St ,Mt , β) 7−−→+ (TS′t ,S′t ,M ′t , β ′) (6.1.1)
consistentNP(TS′t ,M ′t , β ′, ι) (6.1.2)
TPt ′ = TPt {i ; TS′t } (6.1.3)

We apply Lemma. 8.11 on (6.1.1) and (10) and have that there exist TS′s , S′s , M ′s , D ′, ϕ ′ and β ′s such that:
ι ` (TPs (i),Ss ,Ms , βs) 7−−→∗ (TS′s ,S′s ,M ′s , β ′s) (7.1.1)

I, ι |= (TPt (i),S′t ,M ′t) ≼
β ′,D′
ϕ ′ (TPs (i),S′s ,M ′s) (7.1.2)

TPs ′ = TPs {i ; TS′s } (7.1.3)
(β ′ = ◦ =⇒ β ′s = ◦) ∧ wf(I) (7.1.4)

By applying Lemma. 8.13 on (6.1.2), (7.1.2), (12) and (7), we have the following.
consistentNP(TS′s ,M ′s , β ′s , ι) (13)

From (7.1.1) and (13), we construct a source program transition. We can finish the proof of such case from
inductive hypothesis.
• The proof of the case that the current target thread takes an output step is similar with the previous one.
• We consider that the target program takes a switch step. We have β ′ = ◦ and we discuss whether the new

target thread will generate write-write race.
((TPt ′, i ′,S′t ,M ′t , ◦)ι :Z=⇒ax ww-Race)∨
¬((TPt ′, i ′,S′t ,M ′t , ◦)ι :Z=⇒ax ww-Race)

(14)

We destruct (14) and discuss each case respectively.
– We first consider that the new target thread will generate write-write race.

(TPt ′, i ′,S′t ,M ′t , ◦)ι : Z=⇒ax ww-Race (13.1)
We finish the proof from Lemma. 9.3.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:48 • Anonymous

– Then, we consider that the new target thread will not generate write-write race.
¬((TPt ′, i ′,S′t ,M ′t , ◦)ι : Z=⇒ax ww-Race) (14.2)

We finish the proof from inductive hypothesis.
□

In the proof of write-write race freedom preserving, we require that the thread-local transition is deterministic.

Definition 9.8 (deterministic thread local transistion).

∀σ ,σ1, te1,σ2, te2.
(σ te1−−−→ σ1 ∧ σ

te2−−−→ σ2)
=⇒ (te1 = te2 ∧ σ1 = σ2) ∨ (∃x,o. te1, te2 ∈ {R(o, x, _)})∨

(te1 = U(_, _, _, _, _) ∨ te2 = U(_, _, _, _, _))

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:49

(AI) L ≜ . . .

(AIB) LB ≜ ϵ | L :: LB

(AIF) L ≜ {l1 ; LB1, . . . , ln ; LBn}

(AResP) A ≜ {f1 ; L1, . . . , fn ; Ln}
Fig. 28. Definition of analysis result

10 DEFINITION OF OPTIMIZERS
In this work, we focus on the correctness proof of optimizers. Many optimizers are implemented based on the
program analysis, such as: the constant propagation, the dead code elimination and the common subexpression
elimination. The optimizer may have the following form.

πs Analyzer Translater πt
A•

Optimizer

The optimizer is composed of the analyzer and the translater. The analyzer analyzes the source code πs and gets
the result of the code analysisA. Then, the translater optimizes the source code πs according toA. In this section,
we will define the form of the program analysis result in Subsec. 10.1. In Subsec. 10.2, we will give the definition
of the value analysis. We will define the constant propagation optimization based on the value analysis.

10.1 The result of program analysis
In this subsection, we focus on defining the result of the program analysis. We show the definition of the analysis
result in Fig. 28. Here, we use L to represent the abstract interpretation at each program point, LB that is a
sequence of L to represent the abstract interpretation of each basic and L to represent the abstract interpretation
of a code heap, which is a partial mapping from the label to the corresponding LB. The analysis result of the
whole program is shown as A, which is a collection of the result of code analysis of each code heap. We show
more details about their meaning using the following figure.

L1
r := 3;

L2
x := r + 1;
L3

jmp l1
L4

l :
L1 = ∅
L2 = {r ; 3}
L3 = {r ; 3, x ; 4}
L4 = {r ; 3, x ; 4}

LB = L1 :: L2 :: L3 :: L4 :: ϵ

The above figure shows the result of the abstract interpretation of a basic code block in the value analysis.
We give some auxiliary definitions on LB in Fig. 29.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:50 • Anonymous

IN[LB] ≜
{

L if LB = L :: LB′

undef otherwise
OUT[LB] ≜

{
L if LB = LB′ · L
undef otherwise

succ(B) ≜

{l} if B = B′ · (jmp l) or B = B′ · (call f, lret)
{l1, l2} if B = B′ · (be e, l1, l2)
∅ otherwise

pred(C, l) ≜ {lp | l ∈ succ(C(lp))}

B[i . . .] ≜ B2 where B = (B1 · B2) and |B1 | = i

LB[i . . .] ≜ LB2 where LB = (LB1 · LB2) and |LB1 | = i

LB(i) ≜ L where LB = (LB1 · L · LB2) and |LB1 | = i

Fig. 29. Auxiliary definitions on the abstract interpretation of code block

10.2 Value analysis
The set Lv records the abstract interpretation of the values of variables and registers in the current state.

Lv ∈ P((Var ∪ Reg)⇀ Val) ∪ {>}
The Implementation of the value analysis is shown below (n is a very large constant).

Val_Analyzer(C, l0) ≜ Val_Analyzer′(C,L0, dom(C),n)
where L0 = {l ; (> :: ϵ) | l ∈ dom(C)}{l0 ; (∅ :: ϵ)}

Val_Analyzer′(C,L,W ,n) ≜

Val_Analyzer′(C,L{l ; Lv },W ′,n−1) if l ∈W , Lv =
⋂

lp ∈ pred(C ,l)
OUT[L(lp)],

B′ = C(l), L′v = TFv (Lv , B),
(L′v , OUT[L(l)] =⇒ W ′ = ((W \{l}) ∪ succ(B))),
(L′v = OUT[L(l)] =⇒ W ′ = (W \{l})),

L if W = ∅
undef otherwise

The value analysis on the whole program is defined as the following form. In this work, we only consider the
intraprocedural analysis.

PVal_Analyzer(π) ≜ {f ; Val_Analyzer(C) | π (f) = (C, l)}
The transfer function TFv for basic code blocks in the value analysis is defined below.

TFv (Lv , B) ≜


> :: ϵ if Lv = >
Lv :: TFv (L′v , B′) elif B = c :: B′ ∧ L′v = fv (c, Lv)
Lv :: fv (B, Lv) :: ϵ elif B ∈ {return, call(f, lret), jmp l, be e, l1, l2}
undef otherwise

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:51

JeKLv ≜



Lv (r) if e = r

v if e = v

v1+v2 if e = e1+e2 ∧ Je1KLv = v1 ∧ Je2KLv = v2

v1−v2 if e = e1−e2 ∧ Je1KLv = v1 ∧ Je2KLv = v2

v1∗v2 if e = e1∗e2 ∧ Je1KLv = v1 ∧ Je2KLv = v2

undef otherwise

Fig. 30. Auxiliary definitions in value analysis

We show the transfer function for each instruction in the following. Some auxiliary definitions used in defining
the transfer function for each instruction are shown in Fig. 30.

• Assignment operation

fv (r := e, Lv) ≜
{

Lv {r ; v} if JeKLv = v
Lv\{r } otherwise

• Memory store operation

fv (xow := e, Lv) ≜
{

Lv {x ; v} if ow = na and Je2KLv = v
Lv\{x} otherwise

We focus on the case that the store operation is an atomic write (where ow ∈ {rlx, rel}). Here, we do not
simply view the atomic write as an external function call, which may modify memory arbitrarily. Consider
the following example.

{x ; 3}
yrel := 3
{x ; 3}

Before the execution of the instruction ”yrel := 3”, the abstract interpretation of the program state ”{x ; 3}”
means that the last message on x that current thread can read has value 3. We can find that, after the execu-
tion of the instruction ”yrel := 3”, the current thread can still read the value 3 from the variable x. Thus, we
still have ”{x ; 3}”. Since we do not optimize the atomic memory access, we assign >, which represents
any value, to the variable y. We can do constant propagation across the atomic memory access as shown
below.

{}
xna := 2;
{x ; 2}
yrel := 1;
{x ; 2}
r := xna

ConstProp xna := 2;
yrel := 1;
r := 2;

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:52 • Anonymous

The soundness of the above optimization can also be shown by ”roach-motal reordering”. The soundness
transformation to achieve the above optimization by ”roach-motal reordering” is shown below.

xna := 2;
yrel := 1;
r := xna;

; xna := 2;
r := xna;
yrel := 1;

; xna := 2;
r := 2;
yrel := 1;

; xna := 2;
yrel := 1;
r := 2;

• Memory load operation

fv (r := xna, Lv) ≜
{

Lv {r ; v} if Lv (x) = v
Lv\{r } otherwise

fv (r := xrlx, Lv) ≜ Lv\{r }

fv (r := xacq, Lv) ≜ {r ′ ; v | Lnl(r ′) = v ∧ r ′ , r }

Code optimizations across relaxed atomic read is sound, since the execution of the relaxed atomic read
does not achieve synchronization between threads. Thus, the value of a location, which can be read before
the execution of the relaxed atomic read, can still be read after the execution of the relaxed atomic read.

{}
xna := 2;
{x ; 2}
r1 := yrlx;
{x ; 2}
r2 := xna;

ConstProp xna := 2;
r1 := yrlx;
r2 := 2;

The above optimization can be achieved according to the soundness code transformation as shown below.

xna := 2;
r1 := yrlx;
r2 := xna;

; xna := 2;
r2 := xna;
r1 := yrlx;

; xna := 2;
r2 := 2;
r1 := yrlx;

; xna := 2;
r1 := yrlx;
r2 := 2;

Doing constant propagation accross acquire atomic read is not sound, since the execution of the acquire
atomic read may implement synchronization between two threads.
• Compare and set operation

fv (r := CASrlx,ow (x, er , ew), Lv) ≜ Lv\{r , x}

fv (r := CASacq,ow (x, er , ew), Lv) ≜ Lv\(Var ∪ {r })

The transfer function for the CAS operation can be viewed as a composition of the transfer functions for
the memory load operation and the memory store operation. If memory order for memory load in CAS is
relaxed, the transfer function for CAS is defined as a composition of the relaxed atomic read and the atomic
write. If the memory order for memory load in CAS is acquired, the transfer function for CAS is defined
as a composition of the acquire atomic read and the atomic write. The following constant propagation
optimization is correct.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:53

{}
xna := 2;
{x ; 2}
r1 := CASrlx,rel(y, 0, 1);
{x ; 2}
r2 := xna;

ConstProp xna := 2;
r1 := CASrlx,rel(y, 0, 1);
r2 := 2;

• Release and acquire fence operations
fv (fence-rel, Lv) ≜ Lv

fv (fence-acq, Lv) ≜ Lv\Var
The transfer function for the release fence operation is similar with the transfer function for release atomic
write. And the transfer function for the acquire fence operation is similar with the transfer function for
acquire atomic read.

{}
xna := 1;
{x ; 1}
fence-rel;
{x ; 1}
r := xna;

ConstProp xna := 1;
fence-rel;
r := 1;

The correctness of the above optimization can be achieved by applying soundness code transformation as
shown below.

xna := 1;
fence-rel;
r := xna;

; xna := 1;
r := xna;
fence-rel;

; xna := 1;
r := 1;
fence-rel;

; xna := 1;
fence-rel;
r := 1;

Doing constant propagation across fence-acq is not sound, since the execution of the acquire fence oper-
ation will update the view to each location of the current thread.
• Unconditional and conditional branch

fv (jmp l, Lv) ≜ Lv

fv (be e, l1, l2, Lv) ≜ Lv

• Function call, return, system call and SC fence
fv (call(l, lret), Lv) ≜ Lv\Var
fv (print(e), Lv) ≜ Lv\Var
fv (fence-sc, Lv) ≜ Lv\Var

Since we consider intra-procedural analysis in this work, the callee may modify memory state arbitrarily.
The definition of the system call is the same as fence-sc, thus their transfer functions are same.

fv (return, Lv) ≜ ∅

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:54 • Anonymous

fv(e) ≜

{r } if e = r
∅ if e = v
fv(e1) ∪ fv(e2) if (e = e1+e2) ∨ (e = e1−e2) ∨ (e = e1∗e2)

Fig. 31. Auxiliary definitions in liveness analysis

10.3 Liveness analysis
The set Lnl records the set of registers and memory locations that will not be read before the next assignment.

Lnl ∈ P(Var ∪ Reg)
The Implementation of the liveness analysis is shown below. It relies on the result of the value analysis.

Lv_Analyzer(C) ≜ Lv_Analyzer′(C,L0, dom(C),n)
where L0 = {l ; ((Var ∪ Addr) :: ϵ) | l ∈ dom(C)}{l ′ ; (∅ :: ϵ) | C(l ′) = _; return}

Lv_Analyzer′(C,L,W ,n) ≜

Lv_Analyzer′(C,L{l ; Lnl},W ′,n−1) if l ∈W , Lnl =
⋂

ls ∈ succ(C(l))
IN[Ll (ls)],

L′nl = TFl (Lnl,C(l)),
(L′nl , IN[L(l)] =⇒ (W ′ = (W \{l}) ∪ pred(l))),
(L′nl = IN[L(l)] =⇒ W ′ = (W \{l}))

L if W = ∅
undef otherwise

The liveness analysis on the whole program is defined as the following form. In this work, we only consider the
intraprocedural analysis.

PLv_Analyzer(π) ≜ {f ; Lv_Analyzer(C) | π (f) = (C, l)}
The transfer function TFl for basic code blocks in liveness analysis is shown below.

TFl (Lnl, B) ≜
{

fL(c, L′nl) :: TFl (Lnl, B
′) if B = c, B′ ∧ TFl (Lnl, B′) = L′nl :: _

fL(B, Ll) :: Lnl :: ϵ otherwise

The merging of two abstract interpretations in the liveness analysis is just the intersection of two the sets.
We show the transfer function for each instruction in the following. Some auxiliary definitions are shown in

Fig. 31.
• Assignment operation.

fL(r := e, Lnl) ≜
{

Lnl if r ∈ Lnl
(Lnl ∪ {r })\fv(e) otherwise

• Memory load operation.

fL(r := xor , Lnl) ≜
{

Lnl if r ∈ Lnl
(Lnl ∪ {r })\{x} otherwise

The transfer function for non-atomic read is taken from CompCert. Here, if the register r is dead after the
execution of ”r := xna”, the abstract interpretation before its execution is still Lnl, since the instruction

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:55

”r := xna” is a dead code. The transfer function for atomic read does not have such case, since we do not
optimize the atomic memory accesses.
The transfer function for atomic memory accesses show that the dead code elimination in our work sup-
ports the following optimization.

xna := 2;
{x, r }
r := yacq;
{x}
xna := 3;
{}

DCE
skip;
r := yacq;
xna := 3;

For the current thread, the memory write ”xna := 2” is not read before the next assignment to the variable
x. Thus, it is a dead code for the current thread. Since there is no write release operations after ”xna := 2”
before the next assignment to the variable x, there is no requirement for other threads to read suchmemory
write.The correctness of the above optimization can also be achieve by the soundness code transformations
as shown below. The reordering shown below is called ”roach-motal reordering”.

xna := 2;
r := yacq;
xna := 3;

; r := yacq;
xna := 2;
xna := 3;

; r := yacq;
skip;
xna := 3;

; skip;
r := yacq;
xna := 3;

• Memory store operation.

fL(xna := e, Lnl) ≜
{

Lnl if x ∈ Lnl
(Lnl ∪ {x})\fv(e) otherwise

fL(xrlx := e, Lnl) ≜ Lnl\fv(e)

fL(xrel := e, Lnl) ≜ Lnl\(Var ∪ fv(e))

We focus on the transfer function for atomic write. Doing dead code elimination across the relaxed atomic
write is correct. Consider the following dead code elimination optimization.

xna := 2;
{x}
yrlx := 1;
{x}
xna := 4;
{}

DCE
skip;
yrlx := 1;
xna := 4;

For the current thread, the memory write ”xna := 2” is not read before the next assignment to the variable
x. Thus, the instruction ”xna := 2” is a dead code for the current thread. Since the execution of the relaxed
atomic write ”yrlx := 1” does not release the information of the memory writes of the current thread to
other threads, there is no requirement that the other threads must read the memory write ”xna := 2”. We
can find that ”xna := 2” is also a dead code for other threads.
Doing dead code elimination across the release atomic writes is not correct under any context, since the re-
lease write operation may send information about memory writes to other threads. Consider the following
optimization if we permit doing dead code elimination across release atomic writes.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:56 • Anonymous

xna := 2;
{x}
yrel := 1;
{x}
xna := 4;
{}

r1 := yacq;
if(r1 == 1){
r2 := xna;
print(r2);
}

(* Cannot output 0 *)

DCE
skip;
yrel := 1;
xna := 4;

r1 := yacq;
if(r1 == 1){
r2 := xna;
print(r2);
}

(* Can output 0 *)

• Compare and set operation.

fL(r := CASor ,rlx(x, er , ew), Lnl) ≜ (Lnl ∪ {r })\(fv(er) ∪ fv(ew))

fL(r := CASor ,rel(e, er , ew), Lnl) ≜ (Lnl ∪ {r })\(Var ∪ fv(er) ∪ fv(ew))
The transfer function for the CAS operation can be viewed as a composition of the transfer functions for the
memory load operation and the memory store operation. The dead code elimination optimization shown
below is correct.

xna := 2;
{x, r }
r := CASacq,rlx(y, 0, 1);
{x}
xna := 4;
{}

skip;
r := CASacq,rlx(y, 0, 1);
xna := 4;

DCE

• Release and acquire fence operations.

fL(fence-rel, Lnl) ≜ Lnl\Var

fL(fence-acq, Lnl) ≜ Lnl

The transfer function for the release fence operation is similar with the transfer function for release atomic
write. And the transfer function for the acquire fence operation is similar with the transfer function for
acquire atomic read.
We permit the dead code elimination across the acquire fence as the following shown.

xna := 2;
{x}
fence-acq;
{x}
xna := 4;
{}

DCE
skip;
fence-acq;
xna := 4;

The correctness of the above optimization can also be shown by applying soundness code transformations
as the following shown.

xna := 2;
fence-acq;
xna := 4;

; fence-acq;
xna := 2;
xna := 4;

; fence-acq;
skip;
xna := 4;

; skip;
fence-acq;
xna := 4;

Doing dead code elimination across the release fence is forbidden, since the execution of the release fence
may send the information of memory writes of the current thread to other threads.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:57

xna := 2;
{}
fence-rel;
{x}
xna := 4;
{}

DCE
xna := 2;
fence-acq;
xna := 4;

• Unconditional and conditional branch
fL(jmp l, Lnl) ≜ Lnl

fL(be e, l1, l2, Lnl) ≜ Lnl\fv(e)
• Function call, return, system call and SC fence

fL(call(l, lret), Lnl) ≜ Lnl\Var

fL(print(e), Lnl) ≜ Lnl\(Var ∪ fv(e))

fL(fence-sc, Lnl) ≜ Lnl\Var
Since we consider intraprocedural analysis in this work, the callee may modify memory state arbitrarily.
The definition of the system call is the same as fence-sc, thus their transfer functions are same.

fL(return, Lnl) ≜ Reg

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:58 • Anonymous

〈e〉La ≜



v if e = v

r if (r , e) ∈ La ∧ e , v
e ′1+e

′
2 if e = e1+e2 ∧ 〈e1〉La = e ′1 ∧ 〈e2〉La = e ′2

e ′1−e ′2 if e = e1−e2 ∧ 〈e1〉La = e ′1 ∧ 〈e2〉La = e ′2
e ′1∗e ′2 if e = e1∗e2 ∧ 〈e1〉Lv = e ′1 ∧ 〈e2〉Lv = e ′2
e otherwise

La ∩ > ≜ La > ∩ L′a ≜ L′a

La ∩ L′a ≜ {(r , e) | (r , e) ∈ La ∧ (r , e) ∈ L′a} ∪ {(r , x) | (r , x) ∈ La ∧ (r , x) ∈ L′a}

Kill(La, r0) ≜ {(r , e) ∈ La | r0 , r ∧ r0 < fv(e)} ∪ {(r , x) ∈ La | r0 , r }

Kill(La, x) ≜ {(r , e) | (r , e) ∈ La} ∪ {(r , y) ∈ La | x , y}

Fig. 32. Auxiliary definitions in available expression analysis

10.4 Available expression analysis
The set La records the abstract interpretation of the available expressions in the current state.

La ∈ P((Reg × Expr) + (Reg × Var)) ∪ {>}
The Implementation of the value analysis is shown below.
Ave_Analyzer(C, l0) ≜ Ave_Analyzer′(C,L0, dom(C),n)

where L0 = {l ; (> :: ϵ) | l ∈ dom(C)}{l0 ; (∅ :: ϵ)}
Ave_Analyzer′(C,L,W ,n) ≜

Ave_Analyzer′(C,L{l ; La},W ′,n−1) if l ∈W , La =
⋂

lp ∈ pred(C ,lp)
OUT[L(lp)],

L′a = TFa(La,C(l)),
(L′a , OUT[L(l)] =⇒ W ′ = ((W \{l}) ∪ succ(l))),
(L′a = OUT[L(l)] =⇒ W ′ = (W \{l}))

L if W = ∅
undef otherwise

The value analysis on the whole program is defined as the following form. In this work, we only consider the
intra-procedural analysis.

PAve_Analyzer(π) ≜ {f ; Ave_Analyzer(C, l0) | π (f) = (C, l0)}
We define the join of two abstract interpretations and some auxiliary definitions can be found in Fig. 32.
The transfer function TFa for basic code blocks in the value analysis is defined below.

TFa(La, B) ≜


> :: ϵ if La = >
La :: TFa(L′a, B′) elif B = c, B′ ∧ L′a = fa(c, La)
La :: fa(B, La) :: ϵ elif B ∈ {return, call(f, lret), jmp l, be e, l1, l2}
undef otherwise

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:59

We show the transfer function for each instruction in the following.
• Assignment operation

fa(r := e, La) ≜


L′a ∪ {(r ′, r)} if (r ′, 〈e〉L′a) ∈ L′a and r < fv(〈e〉L′a)
L′a ∪ {(r , 〈e〉L′a)} if (r ′, 〈e〉L′a) < L′a and r < fv(〈e〉L′a)
L′a otherwise

where L′a = Kill(La, r)
• Memory store operation

fa(xow := e, La) ≜ Kill(La, x)
• Memory load operation

fa(r := xna, La) ≜
{

L′a ∪ {(r ′, r)} if (r ′, x) ∈ L′a
L′a ∪ {(r , x)} otherwise

where L′a = Kill(La, r)
fa(r := xrlx, La) ≜ Kill(La, r)
fa(r := xacq, La) ≜ Kill({(r ′, e ′) | (r ′, e ′) ∈ La}, r)

• Compare and set operation
fa(r := CASrlx,ow (x, er , ew), La) ≜ Kill(Kill(La, x), r)
fa(r := CASacq,ow (x, er , ew), La) ≜ Kill({(r ′, e ′) | (r ′, e ′) ∈ La}, r)

• Release and acquire fence operations
fa(fence-rel, La) ≜ La

fa(fence-acq, La) ≜ {(r , e) | (r , e) ∈ La}
• Unconditional and conditional branch

fa(jmp l, La) ≜ La

fa(be e, l1, l2, La) ≜ La

• Function call, system call and SC fence
fa(call(l, lret), La) ≜ {(r , e) | (r , e) ∈ La}
fa(print(e ′), La) ≜ {(r , e) | (r , e) ∈ La}
fa(fence-sc, La) ≜ {(r , e) | (r , e) ∈ La}

• Return
fa(return, La) ≜ ∅

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:60 • Anonymous

10.5 Constant propagation
• Transformation for an individual instruction.

TransIc (c, Lv) ≜


r := v if c = (r := e) ∧ JeKLv = v
r := v if c = (r := xna) ∧ Lv (x) = v
c otherwise

• Transformation for a basic code block.

TransBc (B, LB) ≜
{

TransIc (c, Lv), TransBc (B′, LB′) if B = c, B′ ∧ LB = Lv :: LB′

B otherwise

• Transformation for a code heap.

TransCc (C,L) ≜ {l ; TransBc (B,L(l)) | C(l) = B}

• Transformation for a program.

Translaterc (π ,A) ≜ {f ; TransCc (C,L) | π (f) = (C, l0) ∧A(f) = L}

• Implementation of constant propagation.

ConstProp(π , ι) ≜ Translaterc (π ,A) where A = PVal_Analyzer(π)

Our constant propagation optimization supports the following optimizations accross the atomic memory ac-
cess and the fence operation.
• Optimization across release store.

{}
xna := 2;
{x ; 2}
yrel := 1;
{x ; 2}
r := xna;
{x ; 2, r ; 2}

ConstProp
=======⇒

xna := 2;
yrel := 1;
r := 2;

(* Performed in LLVM *)

• Optimization across relaxed store.

{}
xna := 2;
{x ; 2}
yrlx := 1;
{x ; 2}
r := xna;
{x ; 2, r ; 2}

ConstProp
=======⇒

xna := 2;
yrel := 1;
r := 2;

(* Performed in LLVM *)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:61

• Optimization across release fence.
{}
xna := 2;
{x ; 2}
fence-rel;
{x ; 2}
r := xna;
{x ; 2, r ; 2}

ConstProp
=======⇒

xna := 2;
fence-rel;
r := 2;

(* Performed in LLVM *)

• Optimize across CAS with relaxed read and release write.
{}
xna := 2;
{x ; 2}
r1 := CASrlx,rel(y, 0, 1);
{x ; 2}
r := xna;
{x ; 2, r ; 2}

ConstProp
=======⇒

xna := 2;
r1 := CASrlx,rel(y, 0, 1);
r := 2;

(* Not Performed in LLVM *)

• Optimization across relaxed read.
{}
xna := 2;
{x ; 2}
r1 := yrlx;
{x ; 2}
r := xna;
{x ; 2, r ; 2}

ConstProp
=======⇒

xna := 2;
r1 := yrlx;
r := 2;

(* Performed in LLVM *)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:62 • Anonymous

10.6 Dead code elimination
• Transformation for an individual instruction.

TransId (c, Lnl) ≜


skip if c = (r := e) ∧ r ∈ Lnl
skip if c = (r := xna) ∧ r ∈ Lnl
skip if c = (xna := _) ∧ x ∈ Lnl
c otherwise

• Transformation for a basic code block.
TransBd (B, LBl) ≜{

TransId (c, Lnl) :: TransBd (B′, LB′l) if B = c :: B′ ∧ LBl = Lnl :: LB′l
B otherwise

• Transformation for a code heap.

TransCd (C,Ll) ≜ {l ; TransBd (B, LB) | C(l) = B ∧ Lnl(l) = Lnl :: LB}
• Transformation for a program.

Translaterd (π ,Al) ≜
{f ; TransC(C, LBl) | π (f) = (C, l0) ∧Al (f) = LBl }

• Implementation of constant propagation.

DCE(π , ι) ≜ Translaterd (π ,Al) where Al = PLv_Analyzer(π)
Our dead code elimination optimization supports the following optimizations accross the atomic memory

access and the fence operation.
• Optimize across acquire read.

{x, r }
xna := 1;
{x, r }
r := yacq;
{x}
xna := 2;
{}

DCE
======⇒

skip;
r := yacq;
xna := 2;

(* Not Performed in LLVM *)

• Optimize across relaxed read.

{x, r }
xna := 1;
{x, r }
r := yrlx;
{x}
xna := 2;
{}

DCE
======⇒

skip;
r := yrlx;
xna := 2;

(* Performed in LLVM *)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:63

• Optimize across acquire fence.
{x}
xna := 1;
{x}
fence-acq;
{x}
xna := 2;
{}

DCE
======⇒

skip;
fence-acq;
xna := 2;

(* Not Performed in LLVM *)

• Optimize across CAS with acquire read and relaxed write.
{x, r }
xna := 1;
{x, r }
r := CASacq,rlx(y, 0, 1);
{x}
xna := 2;
{}

DCE
======⇒

skip;
r := CASacq,rlx(y, 0, 1);
xna := 2;

(* Not Performed in LLVM *)

• Optimize across relaxed write.
{x}
xna := 1;
{x}
yrlx := 1;
{x}
xna := 2;
{}

DCE
======⇒

skip;
yrlx := 1;
xna := 2;

(* Performed in LLVM *)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:64 • Anonymous

10.7 Loop invariant code motion
The implement of the loop invariant code motion is divided into three steps:

(1) detecting loops and loop invariants in the program;
(2) inserting pre-header nodes to hoist the evaluations of loop invariants before entering loops;
(3) reusing common subexpression elimination and dead code elimination to eliminate redundant reads and

writes.
Note that the loop invariant code motion optimization will not move division operations out of loops, since it

will make the original safe program abort. We use the following example to show such implementation.
while(r1 < 100) {

r2 := zna;
r1 := r1 + 1;

}

(1) We find that the instruction ”r2 := zna” is a loop invariant;
(2) We allocate a new register to save the expression in the loop invariant as the following shown.

t := zna;
while(r1 < 100) {

r2 := zna;
r1 := r1 + 1;

}

(3) We use common subexpression elimination optimization to eliminate redundant reads.
t := zna;
while(r1 < 100) {

r2 := t ;
r1 := r1 + 1;

}

Detecting loops. To detect the loops in the code, we need to evaluate the dominator of each block block.
(Dominators) D ∈ Lab⇀ P(Lab)

We use the data flow analysis to evaluate the dominators of each block (where n is a very large constant).

Dominator(C, l0) ≜ Dominator′(C,D0, dom(C),n)
where D0 = {l ; dom(C) | l ∈ dom(C)}{l0 ; ∅}

Dominator′(C,D,W ,n) ≜

Dominator′(C,D{l ; D ′},W ′,n−1) if l ∈W ,D = ⋂
lp ∈ pred(C ,l)

(D(lp) ∪ {lp }),

(D , D(l) =⇒ W ′ = ((W \{l}) ∪ succ(C(l)))),
(D = D(l) =⇒ W ′ = (W \{l}))

D if W = ∅
undef otherwise

After evaluating the dominators of each block, we can find the loop. lentry and lexit are entry and exit of a loop
if lexit points to lentry and lentry dominates lexit. lentry and lexit constructs back edge.

back_edge(lexit, lentry,D,C) ≜ lentry ∈ succ(C(lexit)) ∧ (lentry ∈ D(lexit))

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:65

(LoopInv) loop_inv ∈ List ((Exp ∪ Var) × Reg)
(Loops) loops ∈ P(Lab × Lab × LoopInv)

(ProgLoops) loops_P ∈ Fid⇀ Loops

Fig. 33. The result of detecting loops and loop invariants

The blocks in the loop whose entry and exit are lentry and lexit are evaluated below. natural_loop defined
below returns the identifiers of blocks in the loop. The function det_loops returns the loops in the code C. A
block with identifier l is in a loop, whose entry and exit are lentry and lexit, if lentry is the dominator of l and l can
reach the exit lexit.

Reach(l, l ′,C, lentry) ≜ ∃l0, . . . , ln ∈ dom(C). (∀i ∈ {1, . . . ,n}. li ∈ succ(C(li−1)) ∧ li−1 , lentry)
∧ l0 ∈ succ(C(l)) ∧ l ′ ∈ succ(C(ln))

natural_loop(lexit, lentry,C,D) ≜ {l | lentry ∈ D(l) ∧ Reach(l, lexit,C, lentry)}
det_loops(C, l0) ≜ {(lentry, lexit, ls) | back_edge(lexit, lentry,D,C)∧

ls ∈ natural_loop(lentry, lexit,C,D) ∧ lentry ∈ dom(C) ∧ lexit ∈ dom(C)}
where D = Dominator(C, l0)

Loop invariants. A loop invariant is a non-atomic read of the variable or an evaluation of a expression, whose
result is the same on every iteration of the loop. B[i] represents the i-th instruction in the block B. We use a ∈ ls
to represent that a is an element in the list. The evaluation of the expression e is a loop invariant, if the registers
in e is not updated in the loop. The reading of a variable x is a loop invariant, if there is no write to x in the loop.
The parameter B in loop_invB is the set of blocks in the loop.

loop_invB(B,B, RS, loop_inv, ι) ≜

loop_invB(B′,B, RS ∪ {r ′}, (e, r ′) :: loop_inv, ι) if B = (r := e), B′,
(∀r0 ∈ fv(e). ¬(∃B0 ∈ B, i . B0[i] = (r0 := _)),
(e, _) < loop_inv, r ′ < RS

loop_invB(B′,B, RS ∪ {r ′}, (x, r ′) :: loop_inv, ι) elif B = (r := xna), B′, x < ι,
¬(∃B0 ∈ B, i . B0[i] = (xow := e)),
(x, _) < loop_inv, r ′ < RS

loop_invB(B′,B, RS, loop_inv, ι) elif B = c, B′

(loop_inv, RS) otherwise

loop_invBS(B0,B, RS, loop_inv, ι) ≜
loop_invBS(B′0,B, RS′, loop_inv

′, ι) if B ∈ B0,B′0 = B\{B}
loop_invB(B,B, RS, loop_inv, ι) = (loop_inv′, RS′)

(loop_inv, RS) otherwise

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:66 • Anonymous

loop_invC defined below returns the loop invariants of each loop in the code C.

loop_invC′(lps, RS,C, ι) ≜
{lentry, lexit, loop_inv}∪
loop_invC′(lps′, RS′,C, ι)

if lps = ((lentry, lexit, ls) ∪ lps′), (lentry, lexit, ls) < lps′,
B = {B | C(l) = B ∧ l ∈ ls},
loop_invBS(B,B, RS, ϵ, ι) = (loop_inv, RS′)

∅ otherwise

loop_invC(C, l0, ι) ≜ loop_invC′(lps, fv(C),C, ι)
where lps = det_loops(C, l0)

We define det_loop_inv to evaluate the loop invariants in each function.

det_loop_inv(π , ι) ≜ {f ; loop_invC(C, l0, ι) | π (f) = (C, l0)}
The implementation of detecting loops and loop invariants need to ensure the following property.

Lemma 10.1 (Well-formed detecting loops and loop invariants).
∀π , loops_P, f, lentry, lexit,C, ι.

det_loop_inv(π , ι) = loops_P∧
(lentry, lexit, loop_inv) ∈ loops_P(f) ∧ π (f) = (C, _)∧
(_, r) ∈ loop_inv

=⇒ r < fv(C) ∧ lentry ∈ dom(C) ∧ lexit ∈ dom(C)∧
(∀(x, _) ∈ loop_inv. x < ι)

Proof. The correctness of Lemma 10.1 is straight-forward from the implementation of det_loop_inv. Since,
we always allocate a new register to save the result of the loop invariants, we have r < fv(C). According to the
definition of det_loops, we have lentry ∈ dom(C) and lexit ∈ dom(C). According to the definition of loop_invB,
since we only view the non-atomic read whose result is the same on every iteration of the loop as the invariant.
We have ∀(x, _) ∈ loop_inv. x < ι. □

We define the allocation of pre-header in the following. We divide it into two steps. Consider a loop in the
following form.

entry

exit

(1) We first allocate a new block according to the loop invariants of such loop as the pre-header of the entry
of such loop.

entry

exit

pre-header

(2) We let the nodes that are not the exit but point to the entry node of the loop point to the pre-header.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:67

entry

exit

pre-header

We first give the definition of allocating pre-header.

alloc_ph(loop_inv, lentry) ≜


r := e, alloc_ph(loop_inv′, lentry) if loop_inv = (e, r) :: loop_inv′

r := xna, alloc_ph(loop_inv′, lentry) if loop_inv = (x, r) :: loop_inv′

jmp lentry otherwise

consInv(loop_inv, B) ≜


consInv(loop_inv′, (r := e, B)) if loop_inv = (e, r) :: loop_inv′

consInv(loop_inv′, (r := x, B)) if loop_inv = (e, x) :: loop_inv′

B otherwise

We give a mapping that records the pre-header of the entry of each loop.

(PreHeader) pre-header ∈ Lab⇀ Lab

ptB-ph(B, lph, lentry) ≜



c, ptB-ph(B′, lph, lentry) if B = c, B′

jmp lph if B = jmp lentry

be e, lph, l2 if B = be e, lentry, l2 and l2 , lentry
be e, l1, lph if B = be e, l1, lentry and l1 , lentry
be e, l ′, l ′ if B = be e, lentry, lentry

B otherwise

ptC-ph(C, lph, lentry, loops) ≜
{l ; B′} ∪ ptC-ph(C′, lph, lentry, loops) if C = {l ; B}] C′, (lentry, l, _) < loops,

B′ = ptB-ph(B, lph, lentry)
{l ; B} ∪ ptC-ph(C′, lph, lentry, loops) elif C = {l ; B}] C′

C otherwise

We define the transformation for function in loop invariant code motion formally below.

TransC′(C, pre-header, loops, loops0) ≜

TransC′(C′, pre-header, loops′, loops0) if (lentry, lexit, loop_inv)] loops′ = loops,
pre-header(lentry) = lph,C(lph) = Bph,
B′ = consInv(loop_inv, Bph) and C′ = C{l ; B′}

TransC′(C′, pre-header′, loops′, loops0) if (lentry, lexit, loop_inv)] loops′ = loops,
pre-header(lentry) =⊥, lph < dom(C),
Bph = alloc_ph(loop_inv, lentry),
pre-header′ = pre-header{lentry ; lph} and
C′ = ptC-ph(C, lph, lentry, loops0) ∪ {lph ; Bph}

(C, pre-header) otherwise

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:68 • Anonymous

TransC(C, l0, loops) ≜



(C′, l ′0) if (C′, pre-header) = TransC′(C, ∅, loops, loops) and
pre-header(l0) = l ′0

(C′, l0) if (C′, pre-header) = TransC′(C, ∅, loops, loops) and
pre-header(l0) =⊥

undef otherwise
We give the transformation for program in loop invariant code motion formally below.

LInv(π , ι) ≜ {f ; (C′, l ′0) | π (f) = (C, l0) ∧ loops_P(l0) = loops∧
TransC(C, l0, loops) = (C′, l ′0)}

where loops_P = det_loop_inv(π , ι)

LICM ≜ LInv ◦ CSE

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:69

10.8 Common subexpression elimination
• Transformation for an individual instruction.

TransIcse(c, La) ≜


r := r ′ if c = (r := e) ∧ (r ′, e) ∈ La
r := r ′ if c = (r := xna) ∧ (r ′, x) ∈ La
c otherwise

• Transformation for a basic code block.

TransBcse(B, LB) ≜
{

TransIcse(c, La) :: TransBcse(B′, LB′) if B = c, B′ ∧ LB = La :: LB′

B otherwise

• Transformation for a code heap.

TransCcse(C,L) ≜ {l ; TransBcse(B,L(l)) | C(l) = B}

• Transformation for a program.

Translatercse(π ,A) ≜ {f ; TransCcse(C,L) | π (f) = (C, l ′) ∧A(f) = L}

• Implementation of constant propagation.

CSE(π , ι) ≜ Translatercse(π ,A) where A = PAve_Analyzer(π)

Our common subexpression elimination optimization supports the following optimizations accross the atomic
memory access and the fence operation.

• Optimization across release store.

{}
r := xna;
{(r , x)}
yrel := 1;
{(r , x)}
r ′ := xna;
{(r , x), (r , r ′), (r ′, x)}

CSE
=====⇒

r := xna;
yrel := 1;
r ′ := r ;

• Optimization across relaxed store.

{}
r := xna;
{(r , x)}
yrlx := 1;
{(r , x)}
r ′ := xna;
{(r , x), (r , r ′), (r ′, x)}

CSE
=====⇒

r := xna;
yrlx := 1;
r ′ := r ;

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:70 • Anonymous

• Optimization across release fence.
{}
r := xna;
{(r , x)}
fence-rel;
{(r , x)}
r ′ := xna;
{(r , x), (r , r ′), (r ′, x)}

CSE
=====⇒

r := xna;
fence-rel;
r ′ := r ;

• Optimize across CAS with relaxed read and release write.
{}
r := xna;
{(r , x)}
r1 := CASrlx,rel(y, 0, 1);
{(r , x)}
r ′ := xna;
{(r , x), (r , r ′), (r ′, x)}

CSE
=====⇒

r := xna;
r1 := CASrlx,rel(y, 0, 1);
r ′ := r ;

• Optimization across relaxed read.
{}
r := xna;
{(r , x)}
r1 := yrlx;
{(r , x)}
r ′ := xna;
{(r , x), (r , r ′), (r ′, x)}

CSE
=====⇒

r := xna;
r1 := yrlx;
r ′ := r ;

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:71

Mt = Ms St = Ss TMtU = dom(ϕ)
(∀(x, t) ∈ dom(ϕ). ϕ(x, t) = t)

Icp(ϕ, (St ,Mt), (Ss ,Ms))

Fig. 34. Invariant in constant propagation proof

(R,V,M) |= {r ; v} ::= R(r) = v
(R,V,M) |= {x ; v} ::= ∃t .V .cur.Tna(x) = t ∧ 〈x : v@(_, t], _〉 ∈ M
(R,V,M) |=ι Lv ::= (∀r ,v . Lv (r) = v =⇒ (R,V,M) |= {r ; v})∧

(∀x,v . Lv (x) = v =⇒ ((R,V,M) |= {x ; v} ∧ x < ι))

Val_Analyzer(Cs , l0) = Lv TransCc (Cs ,Lv) = Ct
TFv (Lv , Bs) = LBv TransBc (Bs , LBv) = Bt

Rt = Rs (Rs ,Vs ,Ms) |=ι Lv
∀lp ∈ succ(Bs). OUT[LBv] ≥ IN[Lv (lp)]
Vs ,Ms , ι ` (Rt , Bt ,Ct) ∼cp (Rs , Bs ,Cs)

Kt = Ks = ϵ
ι ` Kt ∼cp Ks

∀Vs ,Ms .Vs ,Ms , ι ` (Rt , Bt ,Ct) ∼cp (Rs , Bs ,Cs)
ι ` K ′t ∼cp K ′s

ι ` ((Rt , Bt ,Ct) :: K ′t) ∼cp ((Rs , Bs ,Cs) :: K ′s)

PVal_Analyzer(πs) = A Translaterc (πs ,A) = πt
Vs ,Ms , ι ` (Rt , Bt ,Ct) ∼cp (Rs , Bs ,Cs) ι ` Kt ∼cp Ks

Vs ,Ms , ι ` (Rt , Bt ,Ct ,Kt , πt) ∼cp (Rs , Bs ,Cs ,Ks , πs)
Vs ,Ms , ι ` σt ∼cp σs Vt = Vs Pt = Ps

ι ` (σt ,Vt , Pt) ∼cp ((σs ,Vs , Ps),Ms)

Icp(ϕ ′, (St ,Mt), (Ss ,Ms)) ι ` TSt ∼cp (TSs ,Ms)
(β = ◦ ∧ ϕ = ϕ ′) ∨ (β = • ∧ ϕ ⊆ ϕ ′) TTSt .PtU ⊆ dom(ϕ)

Φcp(ϕ, ι, (TSt ,St ,Mt), (TSs ,Ss ,Ms), β)

Fig. 35. Match state in constant propagation proof

11 CORRECTNESS PROOF OF OPTIMIZERS
In this section, we show the correctness proof of Constant Propagation, Dead Code Elimination, Loop invariant
code motion and Common subexpression elimination.

11.1 Correctness proof of Constant Propagation
Invariant in constant propagation proof. We show the invariant Icp for shared resource in Fig. 34.

Match state in constant propagation proof. We define the match state in constant propagation proof in Fig. 35.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:72 • Anonymous

Correctness proof of constant propagation optimizer. We present the correctness proof of constant propagation
optimizer in the following.

Lemma 11.1 (Well-defined constant propagation).
∀πs , πt , ι. ConstProp(πs , ι) = πt =⇒ Icp, ι |= πt ≼ πs

Proof. From the premise, we have the following.
ConstProp(πs , ι) = πt (1)

We unfold the proof goal and need to prove that the following subgoals hold.
Icp(ι,ϕ0, (S⊥,M0), (S⊥,M0)) (g-1)
∀σt , l . Init(πt , l) = σt =⇒
∃σs . (Init(πs , l) = σs∧

Icp, ι |= ((σt ,V⊥, ∅),S⊥,M0) ≼◦,∅ϕ ((σs ,V⊥, ∅),S⊥,M0))
(g-2)

The subgoal (g-1) can be proved by definitions directly.
We consider the correctness proof of the subgoal (g-2). We have the following.

Icp(ι,ϕ0, (S⊥,M0,S⊥,M0)) (2)
Init(πt , l) = σt (3)

We unfold (2) and have that there exist Ct , l0 and Bt such that:
πt (l) = (Ct , l0) ∧ Ct (l0) = Bt (4)
σt = (R⊥, Bt ,Ct , ϵ, πt) (5)

We unfold (1) and have that there exists A such that:
PVal_Analyzer(πs) = A (6)
Translaterc (πs ,A) = πt (7)

From (4) and (7), we have that there exist πs , Bs and σs such that:
πs (l) = (Cs , l0) ∧ Cs (l0) = Bs (8)
TransCc (Cs ,A(l)) = Ct (9)
TransBc (Bs ,A(l)(l0)) = Bt (10)
Init(πs , l) = σs (11)
σs = (R⊥, Bs ,Cs , ϵ, πs) (12)

From (2), (4), (5), (6), (7), (8), (9), (10) and (12), we prove that the following hold.
Φcp(ϕ0, ι, ((σt ,V⊥, ∅),S⊥,M0), ((σs ,V⊥, ∅),S⊥,M0), ◦, ∅) (13)

By applying Lemma. 11.2 on (13), we prove the following.
Icp, ι |= ((σt ,V⊥, ∅),S⊥,M0) ≼◦,∅ϕ0

((σs ,V⊥, ∅),S⊥,M0)
□

Lemma 11.2 (match state implies simulation - constprop).
∀ϕ, ι, TSt ,St ,Mt , TSs ,Ss ,Ms , β .

Φcp(ϕ, ι, (TSt ,St ,Mt), (TSs ,Ss ,Ms), β)
=⇒ Icp, ι |= (TSt ,St ,Mt) ≼β ,∅

ϕ (TSs ,Ss ,Ms)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:73

Proof. By co-induction. From the premise, we know

Φcp(ϕ, ι, (TSt ,St ,Mt), (TSs ,Ss ,Ms), β) (1)

We need to prove that the following hold.
(1) for any TS′t , S′t , M ′t and te, if

ι ` (TSt ,St ,Mt)
te−−→ (TS′t ,S′t ,M ′t) (2)

then, we need to prove that the following hold:
• if te ∈ AT, there exist TS′s , S′s , M ′s and ϕ ′ such that

ι ` (TSs ,Ss ,Ms)
na−−→∗ te−−→ (TS′s ,S′s ,M ′s) (g1.1)

ϕ ⊆ ϕ ′ ∧ Icp(ι,ϕ ′, (S′t ,M ′t ,S′s ,M ′s)) (g1.2)

Icp, ι |= (TS′t ,S′t ,M ′t) ≼◦,∅ϕ ′ (TS
′
s ,S′s ,M ′s) (g1.3)

By applying Lemma. 11.3 on (1) and the preserving of the match state Φcp.

Φcp(ϕ ′, ι, (TS′t ,S′t ,M ′t), (TS′s ,S′s ,M ′s), ◦) (3)

We prove the subgoal (g1.2) and (g1.3) by co-inductive hypothesis and (3).
• if te ∈ NA, there exist TS′s , S′s , M ′s , and D1, such that:

(TSt .P,Mt), (TS′t .P,M ′t) ` ∅
te; D1 (g2.1)

ι ` (TSs ,Ss ,Ms ,D1)
na−−→ (TS′s ,S′s ,M ′s , ∅) (g2.2)

Icp, ι |= (TS′t ,S′t ,M ′t) ≼•,∅ϕ (TS′s ,S′s ,M ′s) (g2.3)

We consider that, if te ∈ {R(na, x,v),W(na, x,v)}, the subgoals (g2.1), (g2.2), (g2.3) can be proved by
applying Lemma. 11.4 on (1) and (2). And, if te = τ , the subgoals (g2.1), (g2.2), (g2.3) can be proved by
applying Lemma. 11.5 on (1) and (2). We prove the preserving of the match state Φcp.

Φcp(ϕ, ι, (TS′t ,S′t ,M ′t), (TS′s ,S′s ,M ′s), •) (4)

We prove the subgoal (g2.3) by co-inductive hypothesis and (4).
• if te ∈ {prm, rsv, ccl}, the proof is similar with the case that te ∈ (Atm∪out(v)). Thus, we omit the proof

of these cases.
(2) if β = ◦, let S = (St ,Mt ,Ss ,Ms) and for any ϕ ′ and S′ = (S′t ,M ′t ,S′s ,M ′s), if

R(ι, (ϕ, S), (ϕ ′, S′), TSt .P, TSs .P) ∧ Icp(ι,ϕ ′, S′) (5)

we need to prove the following hold:

Icp, ι |= (TSt ,S′t ,M ′t) ≼◦,∅ϕ ′ (TSs ,S
′
s ,M

′
s) (g3.2)

By applying Lemma. 11.6 on (1) and (5), we have the following.

Φcp(ϕ ′, ι, (TSt ,S′t ,M ′t), (TSs ,S′s ,M ′s), ◦) (6)

We prove the subgoal (g3.2) by co-inductive and (6).
(3) if ι ` (TSt ,St ,Mt) −−→ done, the proof of such case is straight-foward and we omit the proof details.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:74 • Anonymous

(4) if ι ` (TSt ,St ,Mt) −−→ abort, there exist TS′s , S′s and M ′s such that:

ι ` (TSs ,Ss ,Ms)
na−−→∗ (TS′s ,S′s ,M ′s) (7)

ι ` (TS′s ,S′s ,M ′s) −−→ abort (8)
We finish the proof of such case by applying Lemma. 11.7.

□

Lemma 11.3 (Match state cp preserving - atomic&output).
∀ϕ, ι, TSt ,St ,Mt , TSs ,Ss ,Ms , β, TS′t ,S′t ,M ′t , te.

Φcp(ϕ, ι, (TSt ,St ,Mt), (TSs ,Ss ,Ms), β)∧
ι ` (TSt ,St ,Mt)

te−−→ (TS′t ,S′t ,M ′t) ∧ te ∈ AT
=⇒ ∃TS′s ,S′s ,M ′s ,ϕ ′.

ι ` (TSs ,Ss ,Ms)
te−−→ (TS′s ,S′s ,M ′s)∧

ϕ ⊆ ϕ ′ ∧ Φcp(ϕ ′, ι, (TS′t ,S′t ,M ′t), (TS′s ,S′s ,M ′s), ◦)
Lemma 11.4 (Match state cp preserving - non-atomic read/write).

∀ϕ, ι, TSt ,St ,Mt , TSs ,Ss ,Ms , β, TS′t ,S′t ,M ′t , te.
Φcp(ϕ, ι, (TSt ,St ,Mt), (TSs ,Ss ,Ms), β)∧
ι ` (TSt ,St ,Mt)

te−−→ (TS′t ,S′t ,M ′t) ∧ te ∈ {R(na, x, _),W(na, x, _)}
=⇒ ∃TS′s ,S′s ,M ′s .

ι ` (TSs ,Ss ,Ms)
te−−→ (TS′s ,S′s ,M ′s)∧

Φcp(ϕ, ι, (TS′t ,S′t ,M ′t), (TS′s ,S′s ,M ′s), •)
Lemma 11.5 (Match state cp preserving - tau).

∀ϕ, ι, TSt ,St ,Mt , TSs ,Ss ,Ms , β, TS′t ,S′t ,M ′t , te.
Φcp(ϕ, ι, (TSt ,St ,Mt), (TSs ,Ss ,Ms), β)∧
ι ` (TSt ,St ,Mt)

τ−−→ (TS′t ,S′t ,M ′t)
=⇒ ∃TS′s ,S′s ,M ′s , te.

ι ` (TSs ,Ss ,Ms)
te−−→ (TS′s ,S′s ,M ′s) ∧ te ∈ {τ ,R(na, x, _)}∧

Φcp(ϕ, ι, (TS′t ,S′t ,M ′t), (TS′s ,S′s ,M ′s), •)
Lemma 11.6 (Match state cp preserving - rely).

∀ι,ϕ,ϕ ′, TSt , TSs , S = (St ,Mt ,Ss ,Ms), S′ = (S′t ,M ′t ,S′s ,M ′s).
Φcp(ϕ, ι, (TSt ,St ,Mt), (TSs ,Ss ,Ms), ◦)∧
R(ι, (ϕ, S), (ϕ ′, S′), TSt .P, TSs .P) ∧ Icp(ι,ϕ ′, S′)

=⇒ Φcp(ϕ ′, ι, (TSt ,S′t ,M ′t), (TSs ,S′s ,M ′s), ◦)
Lemma 11.7 (Match state implies abort preserving).

∀ϕ, ι, TSt ,St ,Mt , TSs ,Ss ,Ms , β .
Φcp(ϕ, ι, (TSt ,St ,Mt), (TSs ,Ss ,Ms), β)∧
ι ` (TSt ,St ,Mt) −−→ abort

=⇒ ι ` (TSs ,Ss ,Ms) −−→ abort

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:75

ϕ(T1,T2) ≜ ∀x. ϕ(x,T1(x)) = T2(x)
ϕ(V1,V2) ≜ ϕ(V1.Tna,V2.Tna) ∧ ϕ(V1.Trlx,V2.Trlx)
ϕ(mt ,ms) ≜ mt .var =ms .var ∧ ϕ(mt .var,mt .to) =ms .to∧

ϕ(mt .view,ms .view)
ϕ, ι ` Mt ∼ Ms ≜ (∀mt ∈ Mt . ∃ms ∈ Ms . ϕ(mt ,ms))∧

dom(ϕ) = TMtU ∧mon(ϕ) ∧ (∀〈x : (f , t]〉 ∈ Ms . x ∈ ι)

Fig. 36. Auxiliary definitions in defining Idce

11.2 Correctness proof of Dead Code Elimination
Invariant in dead code elimination. We instantiate the invariant for shared memory in proof of dead code

elimination.
Definition 11.8 (Invariant in dead code elimination proof).

Idce(ι,ϕ, (St ,Mt ,Ss ,Ms)) ≜ ϕ(St ,Ss) ∧ (ϕ, ι ` Mt ∼ Ms)∧
(∀x < ι, t > 0. 〈x : v@(_, t], _〉 ∈ Mt .

=⇒ ∃〈x : v@(f ′, t ′], _〉 ∈ Ms , tr .
ϕ(x, t) = t ′ ∧ tr < f ′∧
(∀m ∈ Ms (x).m.to ≤ t ′r ∨ t ′ ≤ m.from))

The most important restriction in Idce is the item (3), which says that each message that does not in the initial
state and has a corresponding message in target memory reserves a timestamp interval before it. Consider the
following dead code elimination code transformation.

xna := 1;
xna := 2;
r := x;

; skip;
xna := 2;
r := x;

If we want to establish the simulation relation for the above program as the following form, we will find that
the problem will arise.

Target: ◦ ◦ ◦
skip xna := 2

Source: ◦ ◦ ◦
xna := 1 xna := 2

Consider that the target thread executes ”skip” and the source thread executes ”xna := 1” corresponding. The
execution of the source thread will generate a message valued 1. Establishing such simulation requires us to find
a place to insert such message.

To handler such problem, we need to depict the timestamps reserved for inserting messages generated by the
execution of the source thread. Consider that the states of the target memory and the source memory before the
target thread executing ”skip” and the source thread executing ”xna := 1” are shown in Fig. 37. The message
valued 5 and the message valued 8 are generated by other threads. Now, we can find the proper place to insert
the messages generated by the source thread from the timestamp reserved.
• Consider that the target thread executes ”skip” and the source thread executes ”xna := 1”. We find that

the next message of the lastest message viewed by the target thread is the message valued 8. From ϕr , we

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:76 • Anonymous

Target: x

Loc.

Timestamp.

0 8

Source: x

Loc.

Timestamp.

0 5 8

Vt .cur.Tna(x)

Vs .cur.Tna(x)

t

fr f ′

ϕ(x, t)

Fig. 37. Timestamps reservation for source writes

Target: x

Loc.

Timestamp.

0 8

Source: x

Loc.

Timestamp.

0 5 1 8

Vt .cur.Tna(x)

Vs .cur.Tna(x)

t

f ′r f ′

ϕ(x, t)

Fig. 38. Function of timestamps reservation for source write - I

know that the range of timestamps from fr to the lower bound f ′ of the message valued 8 in the source
memory are reserved. Thus, we can insert the message generated by the execution of ”xna := 1” as shown
in Fig. 38. For example, the new message can have the form as ”〈x : 1@(fr , (fr + f ′)/2],V⊥〉”. Note that the
source thread does not need to care about the message valued 5, which is generated by a redundant write
of the other thread.
• Then, we consider that the target and source threads both execute ”xna := 2”.We find that the next message

of the message generated by ”xna := 2” in the target memory is the message valued 8. From the invariant,
we know that the range of timestamps from f ′r to the lower bound of the message valued 8 in the source
memory are reserved. Thus, we can insert the message of ”xna := 2” as shown in Fig. 39. Inserting message
generated by the execution of ”xna := 2” still needs to reserve some timestamps previous it. For example,
the new message can have the form as ”〈x : 2@((f ′r +t ′)/2, t ′],V⊥〉”, where t ′ = (f ′+ f ′r)/2. The range
(f ′r , (f ′r +t ′)/2] is reserved for inserting messages.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:77

Target: x

Loc.

Timestamp.

0 2 8

Source: x

Loc.

Timestamp.

0 5 1 2 8

Vt .cur.Tna(x)

Vs .cur.Tna(x)

t

f ′′r ϕ ′(x, t)

Fig. 39. Function of timestamps reservation for source write - II

Target: x

Loc.

Timestamp.

0

Source: x

Loc.

Timestamp.

0 5

Vt .cur.Trlx(x)

Vs .cur.Trlx(x)

Fig. 40. Necessity to require no reservation on non-atomic locations

We also require that there is no reservations on non-atomic locations in ϕ, ι ` Mt ∼ Ms defined in Fig. 36. It
forbids that other source threads insert some newmessages, that have correspondingmessages in the target level,
to break the item (1) in the step invariant. Consider the condition in Fig. 40. The execution of the environment
(Rely condition) may cancel such reservation and insert new message between the message valued 0 and 5. It
will break the item (1) in the step invariant as shown in Fig. 41.

Match state in dead code elimination proof. We define the match state in proving dead code elimination. Some
auxiliary definitions that will be used in defining match state are shown in Fig. 42. We define the match state in
Fig. 43.

Correctness proof of dead code elimination. To prove that correctness of dead code elimination, we need to
prove that the following Lemma. 11.9 holds.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:78 • Anonymous

Target: x

Loc.

Timestamp.

0 8

Source: x

Loc.

Timestamp.

0 8 5

Vt .cur.Trlx(x)

Vs .cur.Trlx(x)

Fig. 41. Necessity to require no reservation on non-atomic locations - II

covered_C(x, t ′,Ms) ≜ ∃〈x : v@(f , t],V 〉 ∈ Ms . t
′ ∈ (f , t]

TM(ϕ, x,Tt , (Ts ,Ms)) ≜ (∀(x, t) ∈ dom(ϕ). Tt (x) < t =⇒ Ts (x) < ϕ(x, t))∧
(∃t ′. ϕ(x,Tt (x)) = t ′ ∧ t ′ ≤ Ts (x) ∧ (∀t0 ∈ (t ′,Ts (x)]. covered_C(x, t0,Ms)))

InvViewdce(ϕ, ι,Vt , (Vs ,Ms)) ≜
(* For current view *)
(∀x ∈ ι. (ϕ(x, curt .Tna(x)) = curs .Tna(x) ∧ ϕ(x, curt .Trlx(x)) = curs .Trlx(x)))∧
(∀x < ι. TM(ϕ, x, curt .Trlx, (curs .Trlx,Ms)))∧
(* For acquire view *)
(∀x ∈ ι. (ϕ(x, acqt .Tna(x)) = curs .Tna(x) ∧ ϕ(x, acqt .Trlx(x)) = curs .Trlx(x)))∧
(∀x < ι. TM(ϕ, x, acqt .Trlx, (acqs .Trlx,Ms)))∧
(* For release view *)
(∀x. x ∈ ι =⇒ ϕ(relt (x), rels (x))

where Vt = (curt , acqt , relt) andVs = (curs , acqs , rels)

(ϕ,Vt ,Vs) |= {x} ≜
ϕ(x,Vt .cur.Tna(x)) = Vs .cur.Tna(x) ∧ ϕ(x,Vt .acq.Tna(x)) = Vs .acq.Tna(x)∧
ϕ(x,Vt .cur.Trlx(x)) = Vs .cur.Trlx(x) ∧ ϕ(x,Vt .acq.Trlx(x)) = Vs .acq.Trlx(x)

(Rt ,Rs) |= {r } ≜ Rt (r) = Rs (r)

(ϕ, (Rt ,Vt), (Rs ,Vs)) |= Lnl ≜
(∀x < Lnl. (ϕ,Vt ,Vs) |= {x}) ∧ (∀r < Lnl. (Rt ,Rs) |= {r })

ϕ, ι ` Pt ∼dce Ps ≜ [Pt]ι ≈ [Ps]ι ∧ ϕ(Pt) = TPsU ∧ (∀m ∈ P̃t .m.from < m.to)
Fig. 42. Auxiliary definitions in match state for dead code elimination

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:79

cur_acq(ι,ϕ, (curt , acqt), (curs , acqs)) ≜
∀x < ι. (curt .Trlx(x) < acqt .Trlx(x) ∧ ϕ(x, acqt .Trlx(x)) = acqs .Trlx(x))∨

(curt .Trlx(x) = acqt .Trlx(x) ∧ curs .Trlx(x) = acqs .Trlx(x))

Lv_Analyzer(Cs) = Ll TransCd (Cs ,Ll) = Ct
Bs = Cs (l)[i . . .] TransBd (Bs ,Ll (l)[i+1 . . .]) = Bt

(ϕ, (Rt ,Vt), (Rs ,Vs)) |= Ll (l)(i)
ϕ, ι ` ((Rt , Bt ,Ct),Vt) ∼dce ((Rs , Bs ,Cs),Vs)

Kt = Ks = ϵ
ϕ, ι ` Kt ∼dce Ks

∀Vt ,Vs ,ϕ
′. (ϕ ′, (Rt ,Vt), (Rs ,Vs)) |= ∅
=⇒ ϕ ′, ι ` ((Rt , Bt ,Ct),Vt) ∼dce ((Rs , Bs ,Cs),Vs)

ϕ, ι ` K ′t ∼dce K ′s
ϕ, ι ` ((Rt , Bt ,Ct) :: K ′t) ∼dce ((Rs , Bs ,Cs) :: K ′s)

PLv_Analyzer(πs) = A Translaterd (πs ,A) = πt
ϕ, ι ` ((Rt , Bt ,Ct),Vt) ∼dce ((Rs , Bs ,Cs),Vs) ϕ, ι ` Kt ∼dce Ks

ϕ, ι ` ((Rt , Bt ,Ct ,Kt , πt),Vt) ∼dce ((Rs , Bs ,Cs ,Ks , πs),Vs)

Idce(ϕ ′, ι, (St ,Mt ,Ss ,Ms)) [Mt]ι ≈ [Ms]ι
ϕ ′, ι ` (TSt .σ , TSt .Vt) ∼dce (TSs .σ , TSs .V) ϕ, ι ` TSt .P ∼ TSs .P

(β = ◦ ∧ ϕ = ϕ ′) ∨ (β = • ∧ ϕ ⊆ ϕ ′)
cur_acq(ι,ϕ ′, (TSt .V .cur, TSt .V .acq), (TSs .V .cur, TSs .V .acq))

Φdce(ϕ, ι, (TSt ,St ,Mt), (TSs ,Ss ,Ms), β)

Fig. 43. Match state for dead code elimination

Lemma 11.9 (Well-defined dead code elimination).
∀πs , πt , ι. DCE(πs , ι) = πt =⇒ Idce, ι |= πt ≼ πs

Proof. Prove by applying Lemma. 11.10. □

Lemma 11.10 (match state implies simulation - dead code elimination).
∀ϕ, ι, TSt ,St ,Mt , TSs ,Ss ,Ms , β .

Φdce(ϕ, ι, (TSt ,St ,Mt), (TSs ,Ss ,Ms), β)
=⇒ Idce, ι |= (TSt ,St ,Mt) ≼β ,∅

ϕ (TSs ,Ss ,Ms)
Proof. Prove by cofix and applying Lemma. 11.11, 11.12, 11.13 and 11.14. □

Lemma 11.11 (Match state dce preserving - tau).
∀ϕ, ι, TSt ,St ,Mt , TSs ,Ss ,Ms , β, TS′t ,S′t ,M ′t , rc.

Φdce(ϕ, Idce, ι, (TSt ,St ,Mt), (TSs ,Ss ,Ms), β)∧
ι ` (TSt ,St ,Mt)

τ−−→ (TS′t ,S′t ,M ′t)
=⇒ (∃TS′s ,S′s ,M ′s .

ι ` (TSs ,Ss ,Ms)
na−−→ (TS′s ,S′s ,M ′s)∧

Φdce(ϕ, ι, (TS′t ,S′t ,M ′t), (TS′s ,S′s ,M ′s), •)))∨
ι ` (TSs ,Ss ,Ms)

na−−→ abort

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:80 • Anonymous

Lemma 11.12 (Match state dce preserving - na).
∀ϕ, ι, TSt ,St ,Mt , TSs ,Ss ,Ms , β, TS′t ,S′t ,M ′t , te ∈ {R(na, x, _),W(na, x, _)}.

Φdce(ϕ, ι, (TSt ,St ,Mt), (TSs ,Ss ,Ms), β)∧
ι ` (TSt ,St ,Mt)

te−−→ (TS′t ,S′t ,M ′t)
=⇒ ∃TS′s ,S′s ,M ′s .

ι ` (TSs ,Ss ,Ms)
te−−→ (TS′s ,S′s ,M ′s)∧

Φdce(ϕ, ι, (TS′t ,S′t ,M ′t), (TS′s ,S′s ,M ′s), •)
Lemma 11.13 (Match state dce preserving - atm).

∀ϕ, ι, TSt ,St ,Mt , TSs ,Ss ,Ms , β, TS′t ,S′t ,M ′t , te ∈ AT.
Φdce(ϕ, ι, (TSt ,St ,Mt), (TSs ,Ss ,Ms), β)∧
ι ` (TSt ,St ,Mt)

te−−→ (TS′t ,S′t ,M ′t)
=⇒ ∃TS′s ,S′s ,M ′s .

ι ` (TSs ,Ss ,Ms)
te−−→ (TS′s ,S′s ,M ′s)∧

Φdce(ϕ, ι, (TS′t ,S′t ,M ′t), (TS′s ,S′s ,M ′s), ◦)
Lemma 11.14 (Match state dce preserving - rely).

∀ι,ϕ,ϕ ′, TSt , TSs , S = (St ,Mt ,Ss ,Ms), S′ = (S′t ,M ′t ,S′s ,M ′s).
Φdce(ϕ, ι, (TSt ,St ,Mt), (TSs ,Ss ,Ms), ◦)∧
R(ι, (ϕ, S), (ϕ ′, S′), TSt .P, TSs .P) ∧ Idce(ι,ϕ ′, S′)

=⇒ Φdce(ϕ ′, ι, (TSt ,S′t ,M ′t), (TSs ,S′s ,M ′s), ◦)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:81

V ≤ V ′ ≜ V .Tna ≤ V ′.Tna ∧V .Trlx ≤ V ′.Trlx
V ≤ V ′ ≜ cur ≤ cur′ ∧ acq ≤ acq′ ∧ (∀x. rel(x) ≤ rel′(x))

where V = (cur, acq, rel) andV ′ = (cur′, acq′, rel′)
M ≤ M ′ ≜ M ≈ M ′∧

(∀〈x : v@(f , t],V 〉 ∈ M . ∃V ′. 〈x : v@(f , t],V ′〉 ∈ M ′ ∧V ≤ V ′)

Ms ≤ Mt Ss ≤ St TMtU = dom(ϕ)
(∀(x, t) ∈ dom(ϕ). ϕ(x, t) = t)
Ilicm(ι,ϕ, (St ,Mt ,Ss ,Ms))

Fig. 44. Invariant in loop invariant code motion

wdph(Bt , lentry,Cs , ι) ::=



wdph(B′t , lentry,Cs , ι) if Bt = r := e, B′t and r < fv(Cs)
wdph(B′t , lentry,Cs , ι) if Bt = r := xna, B′t and

r < fv(Cs) and ι(x) = na

true if Bt = jmp lentry

false otherwise

ptB_ph_rel(Bt , Bs , pre-header)
ptB_ph_rel((c, Bt), (c, Bs), pre-header)

pre-header(l) = l ′
ptB_ph_rel(jmp l ′, jmp l, pre-header)

pre-header(l1) = l ′1
ptB_ph_rel((be e, l1, l2), (be e, l ′1, l2), pre-header)

pre-header(l2) = l ′2
ptB_ph_rel((be e, l1, l2), (be e, l1, l ′2), pre-header)

pre-header(l1) = l ′1 pre-header(l2) = l ′2
ptB_ph_rel((be e, l1, l2), (be e, l ′1, l ′2), pre-header)

Fig. 45. Auxiliary definitions in the match state of loop invariant code motion proof

11.3 Correctness proof of Loop Invariant Code Motion
Invariant in loop invariant code motion. We show the invariant Ilicm for shared resource in Fig. 44.

Match state in loop invariant code motion. We define the match state in loop invariant code motion in Fig. 46.
Some auxiliary definitions in defining loop invariant code motion are shown in Fig. 45.

Correctness proof of loop invariant code motion. We present the correctness proof of loop invariant code motion
in the following.

Lemma 11.15 (Well-defined loop invariant code motion).

∀πs , πt , ι. LInv(πs , ι) = πt =⇒ Ilicm, ι |= πt ≼ πs

Proof. From the premises, we have the following.

LInv(πs , ι) = πt (1)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:82 • Anonymous

TransC′(Cs , ∅, loops, loops) = (Ct , pre-header)
loops_P(l) = loops ∀r ∈ fv(Cs). Rt (r) = Rs (r) fv(Bs) ⊆ fv(Cs)

Bt = Bs ∨ ptB_ph_rel(Bt , Bs , pre-header)
loops_P, ι ` (Rt , Bt ,Ct , πt) ∼licm (Rs , Bs ,Cs , πs)

TransC′(Cs , ∅, loops, loops) = (Ct , pre-header)
loops_P(l) = loops ∀r ∈ fv(Cs). Rt (r) = Rs (r)

wdph(Bt , lentry,Cs , ι) Cs (lentry) = Bs
loops_P, ι ` (Rt , Bt ,Ct , πt) ∼licm (Rs , Bs ,Cs , πs)

Kt = Ks = ∅
loops_P, ι ` (Kt , πt) ∼licm (Ks , πs)

Kt = (Rt , Bt ,Ct) :: K ′t Ks = (Rs , Bs ,Cs) :: K ′s
TransC′(Cs , ∅, loops, loops) = (Ct , pre-header)

loops_P(l) = loops ∀r ∈ fv(Cs). Rt (r) = Rs (r) fv(Bs) ⊆ fv(Cs)
Bt = Bs ∨ ptB_ph_rel(Bt , Bs , pre-header)

loops, ι ` (K ′t , πt) ∼licm (K ′s , πs)
loops_P, ι ` (Kt , πt) ∼licm (Ks , πs)

LInv(πs , ι) = πt det_loop_inv(πs , ι) = loops_P
loops_P, ι ` (Rt , Bt ,Ct , πt) ∼licm (Rs , Bs ,Cs , πs) loops_P, ι ` (Kt , πt) ∼licm (Ks , πs)

ι ` (Rt , Bt ,Ct ,Kt , πt) ∼licm (Rs , Bs ,Cs ,Ks , πs)
ι ` σt ∼licm σs Vs ≤ Vt Ps = Pt

ι ` (σt ,Vt , Pt) ∼licm (σs ,Vs , Ps)

Ilicm(ι,ϕ ′, (St ,Mt ,Ss ,Ms)) ι ` TSt ∼licm TSs
(β = ◦ ∧ ϕ = ϕ ′) ∨ (β = • ∧ ϕ ⊆ ϕ ′) TTSt .PU ⊆ dom(ϕ)

Φlicm(ϕ, ι, (TSt ,St ,Mt), (TSs ,Ss ,Ms), β)

Fig. 46. Match state in loop invariant code motion proof

We need to prove the following.

Ilicm, ι |= πt ≼ πs (g)

We unfold (g) and need to prove the following.

Ilicm(ι,ϕ0, (S⊥,M0,S⊥,M0)) (g1)
∀σt , l . Init(πt , l) = σt =⇒

∃σs . Init(πs , l) = σs ∧ Ilicm, ι |= ((σt ,V⊥, ∅),S⊥,M0) ≼◦,∅ϕ ((σs ,V⊥, ∅),S⊥,M0)
(g2)

The goal (g1) can be proved by definitions directly.
We focus on the correctness proof of (g2). We have the following assumptions.

Ilicm(ι,ϕ0, (S⊥,M0,S⊥,M0)) (2)
Init(πt , l) = σt (3)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:83

By applying Lemma. 11.16 on (3), (2) and (1), we have that there exists σs such that:

Init(πs , l) = σs (4)
Φlicm(ϕ0, ι, ((σt ,V⊥, ∅),S⊥,M0), ((σs ,V⊥, ∅),S⊥,M0), ◦, ∅) (5)

By applying Lemma. 11.17 on (5), we have the following.

Ilicm, ι |= ((σt ,V⊥, ∅),S⊥,M0) ≼◦,∅ϕ0
((σs ,V⊥, ∅),S⊥,M0) (6)

From (4) and (6), we finish the proof. □

Lemma 11.16 (match state holding in initial state - licm).

∀πt , f,σt ,ϕ, ι,St ,Mt ,Ss ,Ms .
Init(πt , f) = σt ∧ Ilicm(ι,ϕ, (St ,Mt ,Ss ,Ms))∧
LInv(πs , ι) = πt

=⇒ ∃σs . Init(πs , l) = σs∧
Φlicm(ϕ, ι, ((σt ,V⊥, ∅),St ,Mt), ((σs ,V⊥, ∅),Ss ,Ms), ◦)

Proof. From the premises, we have the following.

Init(πt , f) = σt (1)
Ilicm(ι,ϕ, (St ,Mt ,Ss ,Ms)) (2)
LInv(πs , ι) = πt (3)

We unfold (1) and have that there exist Ct , Bt and lt such that:

σt = (R⊥, Bt ,Ct , ϵ, πt) (1.1)
πt (f) = (Ct , lt) (1.2)
Ct (lt) = Bt (1.3)

We unfold (3) and have that there exists loops_P such that:

loops_P = det_loop_inv(πs , ι) (3.1)
∀f,Ct , lt . πt (f) = (Ct , lt) =⇒
∃Cs , ls , loops.
loops_P(f) = loops ∧ πs (f) = (Cs , ls)∧
TransC(Cs , ls , loops) = (Ct , lt)

(3.2)

We apply (3.2) on (1.2) and have that there exist Cs , ls and loops such that:

loops_P(f) = loops (4)
πs (f) = (Cs , ls) (5)
TransC(Cs , ls , loops) = (Ct , lt) (6)

We unfold (6) and have that there exists pre-header such that:

TransC′(Cs , ∅, loops, loops) = (Ct , pre-header) (7)

We discuss whether ls is in the domain of pre-header.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:84 • Anonymous

• We first consider that ls is in the domain of pre-header.
pre-header(ls) = lt (8)

From Lemma. 10.1, we have the following.
∀(lentry, lexit, loop_inv) ∈ loops, (_, r) ∈ loop_inv.

r < fv(Cs) ∧ lentry ∈ dom(Cs) ∧ lexit ∈ dom(Cs)∧
(∀(x, _) ∈ loop_inv. x < ι)

(9)

By applying Lemma. 11.18 on (8), (1.3) (9) and (7), we have that there exists Bs such that:
Cs (ls) = Bs (8.1)
wdph(Bt , ls ,Cs , ι) (8.2)

From (5) and (8.1), we have that there exists σs such that:
σs = (R⊥, Bs ,Cs , ϵ, πs) (10)
Init(πs , l) = σs (11)

We focus on the proof of the match state holding.
Φlicm(ϕ, ι, ((σt ,V⊥, ∅),St ,Mt), ((σs ,V⊥, ∅),Ss ,Ms), ◦) (g1)

We unfold (g1) and we need to prove that the following hold.
Ilicm(ι,ϕ, (St ,Mt ,Ss ,Ms)) (g1.1)
((σt ,V⊥, ∅),St ,Mt) ∼licm ((σs ,V⊥, ∅),Ss ,Ms) (g1.2)

From (2), we prove (g1.1). We unfold (g1.2) and we need to prove the following.
LInv(πs , ι) = πt (g1.2.1)
det_loop_inv(πs , ι) = loops_P (g1.2.2)
loops_P ` (R⊥, Bt ,Ct , πt) ∼licm (R⊥, Bs ,Cs , πs) (g1.2.3)

From (3), we prove (g1.2.1). From (3.1), we prove (g1.2.2). From (7), (4), (8.2) and (8.1), we prove (g1.2.3).
• Then, we consider that ls is not in the domain of pre-header.

ls = lt (12)
By applying Lemma. 11.19 on (1.3) and (7), we have that there exists Bs such that:

Cs (ls) = Bs (12.1)
(Bt = Bs ∨ ptB_ph_rel(Bt , Bs , pre-header)) (12.2)

From (5) and (12.1), we have that there exists σs such that:
σs = (R⊥, Bs ,Cs , ϵ, πs) (13)
Init(πs , l) = σs (14)

We focus on the proof of the match state holding.
Φlicm(ϕ, ι, ((σt ,V⊥, ∅),St ,Mt), ((σs ,V⊥, ∅),Ss ,Ms), ◦) (g2)

We unfold (g2) and we need to prove that the following hold mainly.
Ilicm(ι,ϕ, (St ,Mt ,Ss ,Ms)) (g2.1)
ι ` ((σt ,V⊥, ∅),St ,Mt) ∼licm ((σs ,V⊥, ∅),Ss ,Ms) (g2.2)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:85

From (2), we prove (g2.1). We unfold (g2.2) and we need to prove the following.

LInv(πs , ι) = πt (g2.2.1)
det_loop_inv(πs , ι) = loops_P (g2.2.2)
loops_P ` (R⊥, Bt ,Ct , πt) ∼licm (R⊥, Bs ,Cs , πs) (g2.2.3)

From (3), we prove (g1.2.1). From (3.1), we prove (g1.2.2). From (7), (4), (12.1) and (12.2), we prove (g2.2.3).
□

Lemma 11.17 (match state implies simulation - licm).

∀ϕ, ι, TSt ,St ,Mt , TSs ,Ss ,Ms , β .
Φlicm(ϕ, ι, (TSt ,St ,Mt), (TSs ,Ss ,Ms), β)

=⇒ Ilicm, ι |= (TSt ,St ,Mt) ≼β ,∅
ϕ (TSs ,Ss ,Ms)

Proof. By co-fix. From the premises, we have the following.

Φlicm(ϕ, ι, (TSt ,St ,Mt), (TSs ,Ss ,Ms), β) (1)

We need to prove the following.

Ilicm, ι |= (TSt ,St ,Mt) ≼β ,∅
ϕ (TSs ,Ss ,Ms) (g)

We unfold (g) and need to prove the following.
• The invariant between the target thread and source thread configurations holds.

SI(ι,ϕ, (TSt ,Mt), (TSs ,Ms), ∅) (g1)

We prove (g1) by applying Lemma. 11.20.
• for any TS′t , S′t , M ′t and te, if

ι ` (TSt ,St ,Mt)
te−−→ (TS′t ,S′t ,M ′t) (2)

We need to prove the following.
– if te ∈ AT, we need to prove that there exist TS′s , S′s , M ′s and ϕ ′ such that:

ι ` (TSs ,Ss ,Ms)
na−−→∗ te−−→ (TS′s ,S′s ,M ′s) (g2.1)

ϕ ⊆ ϕ ′ ∧ Ilicm(ι,ϕ ′, (S′t ,M ′t ,S′s ,M ′s)) (g2.2)

Ilicm, ι |= (TS′t ,S′t ,M ′t) ≼◦,∅ϕ ′ (TS
′′
s ,S′′s ,M ′′s) (g2.3)

We finish the proof by applying Lemma. 11.21 on (1) and (2) and from co-inductive hypothesis.
– if te ∈ NA, there exist TS′s , S′s , M ′s , and D1, such that:

(TSt .P,Mt), (TS′t .P,M ′t) ` ∅
te; D1 (g3.1)

ι ` (TSs ,Ss ,Ms ,D1)
na−−→∗ (TS′s ,S′s ,M ′s , ∅) (g3.2)

Ilicm, ι |= (TS′t ,S′t ,M ′t) ≼•,∅ϕ (TS′s ,S′s ,M ′s) (g3.3)

We finish the proof from Lemma. 11.22 and co-inductive hypothesis.
– The case that te ∈ PRC is simpler. Thus, we omit the proof details.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:86 • Anonymous

– If β = ◦, let S = (St ,Mt ,Ss ,Ms) and we need to prove that for any ϕ ′ and S′ = (S′t ,M ′t ,S′s ,M ′s), if
R(ι, (ϕ, S), (ϕ ′, S′), TSt .P, TSs .P) ∧ Ilicm(ι,ϕ ′, S′) (3)

the following holds.
Ilicm, ι |= (TSt ,S′t ,M ′t) ≼◦,∅ϕ ′ (TSs ,S

′
s ,M

′
s) (g4.2)

By applying Lemma. 11.23 on (1) and (3), we have the following.

Φlicm(ϕ ′, ι, (TSt ,S′t ,M ′t), (TSs ,S′s ,M ′s), ◦) (4)

We finish the proof of such case from (4) and co-inductive hypothesis.
– The done case is similar with the case that te ∈ AT and we omit the proof details here.
– Finally, we consider the abort case. From the premises, we have the following.

ι ` (TSt ,St ,Mt) −−→ abort (5)

And we need to prove that there exist TS′s , S′s and M ′s such that:

ι ` (TSs ,Ss ,M)
na−−→∗ (TS′s ,S′s ,M ′s) ∧ ι ` (TS′s ,S′s ,M ′s) −−→ abort (g6)

□

Lemma 11.18 (well-defined preheader - I).
∀pre-header, ls , lt , loops,Cs ,Ct , Bt , ι.

pre-header(ls) = lt ∧ Ct (lt) = Bt∧
TransC′(Cs , ∅, loops, loops) = (Ct , pre-header)∧
(∀(lenty, lexit, loop_inv) ∈ loops. lentry, lexit ∈ dom(Cs)∧

(∀(x, _) ∈ loop_inv. x < ι) ∧ (∀(_, r) ∈ loop_inv. r < fv(Cs)))
=⇒ ∃Bs . Cs (ls) = Bs ∧ wdph(Bt , ls ,Cs , ι)

Lemma 11.19 (well-defined preheader - II).
∀pre-header, ls , lt , loops.

Ct (l) = Bt∧
TransC′(Cs , ∅, loops, loops) = (Ct , pre-header)

=⇒ ∃Bs . Cs (l) = Bs∧
(Bs = Bt ∨ ptB_ph_rel(Bt , Bs , pre-header))

Lemma 11.20 (match state implies invT - licm).
∀ϕ, ι, TSt ,St ,Mt , TSs ,Ss ,Ms , β .

Φlicm(ϕ, ι, (TSt ,St ,Mt), (TSs ,Ss ,Ms), β)
=⇒ SI(ϕ, ι, (TSt ,St ,Mt), (TSs ,Ss ,Ms), β, ∅)

Lemma 11.21 (match state licm preserving - atomic&output).
∀ϕ, ι, TSt ,St ,Mt , TS′t ,S′t ,M ′t , TSs ,Ss ,Ms , β, te ∈ (Atm ∪ {out(v)}).

Φlicm(ϕ, ι, (TSt ,St ,Mt), (TSs ,Ss ,Ms), β)∧
ι ` (TSt ,St ,Mt)

te−−→ (TS′t ,S′t ,M ′t)
=⇒ ∃TS′s ,S′s ,M ′s ,ϕ ′.

Φlicm(ϕ ′, ι, (TS′t ,S′t ,M ′t), (TS′s ,S′s ,M ′s), ◦)∧
ϕ ⊆ ϕ ′ ∧ ι ` (TSs ,Ss ,Ms)

te−−→ (TS′s ,S′s ,M ′s)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:87

Lemma 11.22 (match state licm preserving - non-atomic).
∀ϕ, ι, TSt ,St ,Mt , TS′t ,S′t ,M ′t , TSs ,Ss ,Ms , β,ws.

Φlicm(ϕ, ι, (TSt ,St ,Mt), (TSs ,Ss ,Ms), β)∧
ι ` (TSt ,St ,Mt)

na−−→
ws
(TS′t ,S′t ,M ′t)

=⇒ ∃TS′s ,S′s ,M ′s ,ws′.
Φlicm(ϕ, ι, (TS′t ,S′t ,M ′t), (TS′s ,S′s ,M ′s), •)∧
ι ` (TSs ,Ss ,Ms)

na−−→
ws′
∗ (TS′s ,S′s ,M ′s) ∧ ws ⊆ ws′

Lemma 11.23 (match state licm preserving - rely).
∀ϕ, ι, TSt ,St ,Mt , TSs ,Ss ,Ms ,ϕ

′,S′t ,M ′t ,S′s ,M ′s .
Φlicm(ϕ, ι, (TSt ,St ,Mt), (TSs ,Ss ,Ms), ◦)∧
R(ι, (ϕ, (St ,Mt ,Ss ,Ms), (ϕ ′, (S′t ,M ′t ,S′s ,M ′s), TSt .P, TSs .P)∧
Ilicm(ι,ϕ ′, (S′t ,M ′t ,S′s ,M ′s))

=⇒ Φlicm(ϕ ′, ι, (TSt ,S′t ,M ′t), (TSs ,S′s ,M ′s), ◦)
Lemma 11.24 (match state licm preserving abort step).

∀ϕ, ι, TSt ,St ,Mt , TSs ,Ss ,Ms , β .
Φlicm(ϕ, ι, (TSt ,St ,Mt), (TSs ,Ss ,Ms), β)∧
ι ` (TSt ,St ,Mt) −−→ abort

=⇒ ι ` (TSs ,Ss ,Ms) −−→ abort

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:88 • Anonymous

Mt = Ms St = Ss TMtU = dom(ϕ)
(∀(x, t) ∈ dom(ϕ). ϕ(x, t) = t)
Icse(ι,ϕ, (St ,Mt), (Ss ,Ms))

Fig. 47. Invariant in common subexpression elimination proof

(R,V,M) |= (r , e) ::= R(r) = JeKR
(R,V,M) |= (r , x) ::= ∃t . 〈x : R(r)@(_, t], _〉 ∈ M ∧ (V .cur.Tna(x) ≤ t ≤ V .cur.Trlx(x))
(R,V,M) |=ι La ::= (∀(r , e) ∈ La . (R,V,M) |= (r , e))∧

(∀(r , x) ∈ La . (R,V,M) |=ι (r , x) ∧ x < ι)

Ave_Analyzer(Cs , l0) = La TransCcse(Cs ,La) = Ct
Bs = Cs (l)[i . . .] TransBcse(Bs , LBa) = Bt

Rt = Rs (Rs ,Vs ,Ms) |=ι IN[LBa]
∀lp ∈ succ(Bs). OUT[LBa] ≥ IN[La(lp)]
Vs ,Ms , ι ` (Rt , Bt ,Ct) ∼cse (Rs , Bs ,Cs)

Kt = Ks = ϵ
ι ` Kt ∼cse Ks

∀Vs ,Ms .Vs ,Ms , ι ` (Rt , Bt ,Ct) ∼cse (Rs , Bs ,Cs)
ι ` K ′t ∼cse K ′s

ι ` ((Rt , Bt ,Ct) :: K ′t) ∼cse ((Rs , Bs ,Cs) :: K ′s)

Ave_Analyzer(πs) = Aa Translatercse(πs ,Aa) = πt
Vs ,Ms , ι ` (Rt , Bt ,Ct) ∼cse (Rs , Bs ,Cs) ι ` Kt ∼cse Ks

Vs ,Ms , ι ` (Rt , Bt ,Ct ,Kt , πt) ∼cse (Rs , Bs ,Cs ,Ks , πs)
Vs ,Ms , ι ` σt ∼cse σs Vt = Vs Pt = Ps

ι ` (σt ,Vt , Pt) ∼cse ((σs ,Vs , Ps),Ms)

Icse(ι,ϕ ′, (St ,Mt ,Ss ,Ms)) ι ` TSt ∼cse (TSs ,Ms)
(β = ◦ ∧ ϕ = ϕ ′) ∨ (β = • ∧ ϕ ⊆ ϕ ′) TTSt .PU ⊆ dom(ϕ)

Φcse(ϕ, ι, (TSt ,St ,Mt), (TSs ,Ss ,Ms), β)

Fig. 48. Match state in common subexpression elimination proof

11.4 Correctness proof of Common Subexpression Elimination
Invariant in common subexpression elimination proof. We show the invariant Icse for shared resource in Fig. 47.

Match state in common subexpression elimination proof. We define the match state in common subexpression
elimination proof in Fig. 48.

Correctness proof of common subexpression elimination optimizer. The correctness proof of common subexpres-
sion elimination optimizer is similar with the correctness proof of constant propagation.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:89

A CAPPED MEMORY
We give the formal definition of contructing capped memory below.
• The last message of a memory M to a location x.

m(M, x) ::= arg max
m∈M (x)

m.to

• The cap timemap of a memory M .
T̂ (M) ::= λx.m(M̃, x).to

• Cap message of a memory M to a location x.
m̂(M, x) ::= 〈x : (m(M, x).to,m(M, x).to+1]〉

• Capped memory.

Definition A.1 (Capped Message). Mc ∈ M̂ holds iff M ⊆ Mc and the following hold:
(1) for anym1,m2 ∈ M , ifm1.var = m2.var,m1.to < m2.to, ¬(∃m ∈ M .m.var = m1.var ∧m1.to < m.to <

m2.to) andm1.to < m2.from, then 〈m1.var : (m1.to,m.from]〉 ∈ Mc ;
(2) ∀x ∈ Var. m̂(M, x) ∈ Mc ;
(3) for anym ∈ Mc , ifm < M , then there existsm′ ∈ M , such thatm′.var =m.var andm′.to < m.from.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:90 • Anonymous

for any i ∈ {1, . . . ,n}. Init(π , fi) = σi TSi = (σi ,Vi , ∅)
TP = {1 ; TS1, . . . ,n ; TSn } t ∈ {1, . . . ,n} M = {〈x : 0@(0, 0],V⊥〉 | x ∈ Var}

let (π , ι) in f1 ‖ · · · ‖ fn
load
======� (TP, t, λx .0,M)ι (Load)

ι ` (TP(t),S,M) na−−→+ (TS′,S′,M ′)
consistent(TS′,M ′, ι)

(TP, t,S,M)ι na
=====� (TP{t ; TS′}, t,S′,M ′)ι

(NA-step)

ι ` (TP(t),S,M)
prc
−−−→+ (TS′,S′,M ′)

consistent(TS′,M ′, ι)

(TP, t,S,M)ι prc
=====� (TP{t ; TS′}, t,S′,M ′)ι

(PRC-step)

ι ` (TP(t),S,M)
prc
−−−→∗ (TS0,S0,M0)

ι ` (TS0,S0,M0)
atmBlk−−−−−−→+ (TS′,S′,M ′)

consistent(TS′,M ′, ι)

(TP, t,S,M)ι at
=====� (TP{t ; TS′}, t,S′,M ′)ι

(ATM-step)

ι ` (TP(t),S,M) na−−→∗ (TS0,S0,M0)
ι ` (TS0,S0,M0)

out(v)
−−−−−−→ (TS′,S′,M ′)

consistent(TS′,M ′, ι)

(TP, t,S,M)ι out(v)
========� (TP{t ; TS′}, t,S′,M ′)ι

(Out-step)

t′ ∈ dom(TP)
(TP, t,S,M)ι sw

=====� (TP, t′,S,M)ι (sw-step)

ι ` (TP(t),S,M) −−→ done
t′ ∈ dom(TP\{t})

(TP, t,S,M)ι tterm
=======� (TP\{t}, t′,S,M)ι (thrd-term)

ι ` (TP(t),S,M) −−→ done
dom(TP) = {t}

(TP, t,S,M)ι ===� done
(prog-done)

ι ` (TP(t),S,M) −−−→∗ (TS′,S′,M ′) ι ` (TS′,S′,M ′) −−−→ abort
(TP, t,S,M)ι =====� abort

(abort)

Fig. 49. Machine step in auxiliary promising semantics

B PROOF OF SEMANTICS EQUIVALENCE
We show the correctness proof of Lemma. 6.1 in this section. In this proof, we first define an auxiliary promising
semantics.

Auxiliary promising semantics. In order to facilitate the proof of the semanitcs equivalence between promis-
ing semnatics and the non-preemptive semantics, which will be introduced in Sec. 6, we provide the auxiliary
promising semantics defined in Fig. 49 (an auxiliary definition is defined below).

ι ` (TS,S,M) atmBlk−−−−−→ (TS′,S′,M ′) ::=
∃TS0,S0,M0, TS1,S1,M1.

ι ` (TS,S,M) na−−→∗ (TS0,S0,M0) ∧ ι ` (TS0,S0,M0)
at−−→ (TS1,S1,M1)∧

ι ` (TS1,S1,M1)
prc
−−−→∗ (TS2,S2,M2)

We can prove that the following conclusion holds.

Lemma B.1 (PS to aux-PS). For anyW andW ′, ifW ==⇒W ′, thenW ===�∗W ′.

Proof. Prove by applying Lemma. B.2. □

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:91

AProgEtr(P,B) iff ∃W ,n. (P load
=====�W) ∧ AEtrn(W ,B)

AEtr0(W , ϵ)
W ===� abort

AEtrn+1(W , abort)
W ===� done

AEtrn+1(W , done)

W
out(v)
=======�W ′ AEtrn(W ′,B)
AEtrn+1(W , out(v) :: B)

W ===�W ′ AEtrn(W ′,B)
AEtrn+1(W ,B)

Fig. 50. Event trace under the auxiliary promisng semantics

Lemma B.2 (PS steps split).
∀TS,S,M, TS′,S′,M ′, ι,n.

ι ` (TS,S,M) −−→n (TS′,S′,M ′)
=⇒ ∃TS0,S0,M0, TS1,S1,M1.

ι ` (TS,S,M)
prc
−−→∗ (TS0,S0,M0)∧

ι ` (TS0,S0,M0)
atmBlk−−−−−→∗ (TS1,S1,M1)∧

ι ` (TS1,S1,M1)
na−−→∗ (TS′,S′,M ′)

From Lemma. B.1, we can prove the equivalence between the promising semantics and the auxiliary promising
semantics as the following shown.

Lemma B.3 (Semantics eqivalence - PS2APS).
∀π , ι, f1, . . . , fn,B.

ProgEtr(let π in f1 ‖ · · · ‖ fn,B) ⇐⇒ AProgEtr(let π in f1 ‖ · · · ‖ fn,B)
Proof. Prove by applying Lemma. B.1. □

Equivalence between the auxiliary promising semantics and the non-preemptive semantics. Then, we prove that
the auxiliary promising semantics and the non-preemptive semantics are equivalent.

Lemma B.4 (Semantics eqvialence - APS2NP).
∀π , f1, . . . , fn, ι,B.

AProgEtr(let (π , ι) in f1 ‖ · · · ‖ fn,B) ⇐⇒ NPProgEtr(let (π , ι) in f1 | . . . | fn,B)
Proof. For ”NPProgEtr(let (π , ι) in f1 | . . . | fn,B) =⇒ AProgEtr(let (π , ι) in f1 ‖ · · · ‖ fn,B)”, since every

step in the non-preemptive semantics can be easily converted to a step of promising semantics, it is obviously
that every event trace in the non-preemptive semantics can be produced in promising semantics.

We show the proof of ”AProgEtr(let (π , ι) in f1 ‖ · · · ‖ fn,B) =⇒ NPProgEtr(let (π , ι) in f1 | . . . | fn,B)”.
We do intros and have the following.

AProgEtr(let (π , ι) in f1 ‖ · · · ‖ fn,B) (1)
We unfold (1) and get that there exists TP, t, S, M and n such that the followings hold.

let (π , ι) in f1 ‖ · · · ‖ fn
load
=====� (TP, t,S,M)ι (2)

AEtrn((TP, t,S,M)ι,B) (3)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:92 • Anonymous

W
na/sw
=======�∗W ′

sw-procs0(W ,W ′, ϵ)
W

na/sw
=======�∗W ′ W ′ ===� done
sw-procsn+1(W ,W ′, done)

W
na/sw
=======�∗W ′ W ′ ===� abort
sw-procsn+1(W ,W ′, abort)

W
na/sw
=======�∗W1 W1

out(v)
=======�W2 sw-procsn(W2,W

′,B)
sw-procsn+1(W ,W ′, out(v) :: B)

W
na/sw
=======�∗W1

(W1
at
====�W2) ∨ (W1

prc
=====�W2) ∨ (W1

tterm
======�W2)

sw-procsn(W2,W
′,B)

sw-procsn+1(W ,W ′,B)

W t =W ′

NAStep0(W ,W ′)
W

na
=====�W0 NAStepn(W t0

0 ,W
′)

NAStepn+1(W ,W ′)

W t =W ′

PRCStep0(W ,W ′)
W

prc
=====�W0 PRCStepn(W0,W

′)
PRCStepn+1(W ,W ′)

((TP, t,S,M)ι)t′ ::= (TP, t′,S,M)ι

Fig. 51. Auxiliary definitions in semantics equivalent proof

We apply Lemma. B.5 on (3) and get that there exists n′ andW ′ such that the followings hold:

sw-procsn
′((TP, t,S,M)ι,W ′,B) (4)

We can construct a non-preemptive program state such that:

let (π , ι) in f1 | . . . | fn :
load
==⇒ (TP, t,S,M, ◦)ι (5)

We apply Lemma. B.6 on (4) and get that the following holds.

NPEtr∗((TP, t,S,M, ◦)ι,B)

□

Lemma B.5 (AEtr to sw-procs).

∀W ,n,B. AEtrn(W ,B) =⇒
∃n′,W ′. sw-procsn

′(W ,W ′,B)

Proof. Prove by induction on n. □

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:93

Lemma B.6 (sw-procs to NPEtr).

∀TP,S,M, t, ι,W ′,Ŵ ,n,B.
sw-procsn((TP, t,S,M)ι, t′,W ′,B) ∧ wdSt(TP,S,M)

=⇒ ∃t′.NPEtr∗((TP, t′,S,M, ◦)ι,B)

Proof. Prove by induction on n.

0: We get that B = ϵ . We can prove that NPEtr0((TP, t,S,M)ι, ϵ).

n+1: We do intro and have the following.

sw-procsn+1((TP, t,S,M)ι,W ′,B) (1)
wdSt(TP,S,M) (2)

We unfold (1) and discuss each case respectively.
• B ∈ {done, abort}. We finish the proof directly.
• B = out(v) :: B ′. We have that there existW1 andW2 such that:

(TP, t,S,M)ι na/sw
=======�∗W1 (3)

W1
out(v)
=======�W2 (4)

sw-procsn(W2,W
′,B) (5)

We apply Lemma. B.7 on (3) and (4) and have that there existW01 andW02 such that:

(TP, t,S,M)ι prc/sw
=======�∗W01 (6)

W01
out(v)
=======�W02 (7)

W02
na/sw
=======�∗W2 (8)

LetW02 = (TP02, t02,S02,M02)ι . From (6) and (7), we have the following that there exists Ŵ01 such that:

(TP, t,S,M, ◦)ι :==⇒∗Ŵ01 (9)

Ŵ01 :
out(v)
====⇒ (TP02, t02,S02,M02, ◦)ι (10)

From (8) and (5), we have the following.

sw-procsn((TP02, t02,S02,M02)ι,W ′,B) (11)

We finish the proof by applying the inductive hypothesis on (11).
• We consider the case that the program takes an atomic step. We have that there existW1 andW2 such that:

(TP, t,S,M)ι na/sw
=======�∗W1 (12)

W1
at
====�W2 (13)

sw-procsn(W2,W
′,B) (14)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:94 • Anonymous

We apply Lemma. B.8 on (12) and (13) and have that there existW01 andW02 such that:

(TP, t,S,M)ι prc/sw
=======�∗W01 (15)

W01
at
====�W02 (16)

W02
na/sw
=======�∗W2 (17)

LetW02 = (TP02, t02,S02,M02)ι . From (15) and (16), we have the following.
(TP, t,S,M, ◦)ι :==⇒+ (TP02, t02,S02,M02, ◦)ι (18)

From (17) and (14), we have the following.
sw-procsn((TP02, t02,S02,M02)ι,W ′,B) (19)

We finish the proof by applying the inductive hypothesis on (19).
• Similarily, if the program takes a PRC-step, we finish the proof by applying Lemma. B.9 and the induc-

tive hypothesis. And if the program takes a thread termination step, we finish the proof by applying
Lemma. B.10 and the inductive hypothesis.

□

Lemma B.7 (Switch point fowarding - output).
∀W ,W ′,W ′′,n.

W
na/sw
=======�nW ′ ∧W ′ out(v)

=======�W ′′

=⇒ ∃W0,W1.W
prc/sw
=======�∗W0 ∧W0

out(v)
=======�W1 ∧W1

na/sw
=======�∗W ′′

Proof. From the premises, we have the following.

W
na/sw
=======�nW ′ (1)

W ′ out(v)
=======�W ′′ (2)

By applying Lemma. B.11 on (1), we have that there exist t such that.
NAStep∗(W t,W ′) (3)

By applying Lemma. B.12 on (3) and (2), we have that there existW0,W1, t′ and t0 such that:
PRCStep∗(W t′,W0) (4)

W0
out(v)
=======�W1 (5)

W1
na/sw
=======�∗W ′′ (6)

From (4), we have the following.
W t′ prc/sw
=======�∗W0 (7)

We finish the proof. □

Lemma B.8 (Switch point fowarding - atomic).
∀W ,W ′,W ′′,n.

W
na/sw
=======�nW ′ ∧W ′ at

====�W ′′

=⇒ ∃W0,W1.W
prc/sw
=======�∗W0 ∧W0

at
====�W1 ∧W1

na/sw
=======�∗W ′′

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:95

Proof. From the premise, we have the following.

W
na/sw
=======�nW ′ (8)

W ′ at
====�W ′′ (9)

By applying Lemma. B.11 on (8), we have that there exists t such that:
NAStep∗(W t,W ′) (10)

By applying Lemma. B.13 on (10), (9), we have that there existW0,W1, t′ and t0 such that:
PRCStep∗(W t′,W0) (11)

W0
at
====�W1 (12)

W1
na/sw
=======�∗W ′′ (13)

From (11), we have the following.
W

prc/sw
=======�∗W0 (14)

We finish the proof. □

Lemma B.9 (Switch point fowarding - prc).
∀W ,W ′,W ′′,n.

W
na/sw
=======�nW ′ ∧W ′ prc

=====�W ′′

=⇒ ∃W0.W
prc/sw
=======�∗W0 ∧W0

na/sw
=======�∗W ′′

Proof. From the premises, we have the following.

W
na/sw
=======�nW ′ (15)

W ′ prc
=====�W ′′ (16)

We apply Lemma. B.11 on (15) and have that there exists t such that:
NAStep∗(W t,W ′) (17)

By applying Lemma. B.14 on (17) and (16), we have that there existW0 and t′ such that:
PRCStep∗(W t′,W0) (18)

W0
na/sw
=======�∗W ′′ (19)

From (18), we have the following.
W

na/sw
=======�∗W0 (20)

□

Lemma B.10 (Switch point fowarding - thread termination).
∀W ,W ′,W ′′,n.

W
na/sw
=======�nW ′ ∧W ′ tterm

======�W ′′

=⇒ ∃W0,W1.W
prc/sw
=======�∗W0 ∧W0

tterm
======�W1 ∧W1

na/sw
=======�∗W ′′

We show some auxiliary lemmas in the following that are used in the proof of the above lemmas.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:96 • Anonymous

Lemma B.11 (NA/sw to NA step).

∀W ,W ′,n. (W na/sw
=======�nW ′) =⇒ ∃t . NAStep∗(W t,W ′)

Lemma B.12 (Switch point forwarding - output aux).
∀W ,W ′,W ′′,n.

NAStepn(W ,W ′) ∧W ′ out(v)
=======�W ′′

=⇒ ∃W0,W1, t, t0.

PRCStep∗(W t,W0) ∧W t0
0

out(v)
=======�W1 ∧W1

na/sw
=======�∗W ′′

Lemma B.13 (Switch point forwarding - atomic aux).
∀W ,W ′,W ′′,n.

NAStepn(W ,W ′) ∧W ′ at
====�W ′′

=⇒ ∃W0,W1, t, t0.

PRCStep∗(W t,W0) ∧W t0
0

at
====�W1 ∧W1

na/sw
=======�∗W ′′

Proof. Prove by induction on n.

0: We finish the proof directly.

n+1: From the premises, we have the following.
NAStepn+1(W ,W ′) (21)

W ′ at
====�W ′′ (22)

We unfold (21) and have that there existW0 and t0 such that:

W
na
====�W0 (23)

NAStepn(W t0
0 ,W

′) (24)
We apply the inductive hypothesis on (24) and (22), and have that there existW1,W2, t′0, t1 such that:

PRCStep∗(W t′0
0 ,W1) (25)

W t1
1

at
====�W2 (26)

W2
na/sw
=======�∗W ′′ (27)

We apply Lemma. B.15 on (24) and (25), and have that there existW3, t and t3 such that:
PRCStep∗(W t,W3) (28)

W t3
3

na
====�W t3

1 (29)
By applying Lemma. B.16 on (29) and (26), we have that there existW4 andW5 such that:

PRCStep∗(W t3
3 ,W4) (30)

W t1
4

at
====�W5 (31)

W5
na/sw
=======�∗W2 (32)

Thus, we are done. □

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:97

M ≈ιat M ′ ::= (∀〈x : v@(f , t],V 〉 ∈ M .
∃V ′. (〈x : v@(f , t],V ′〉 ∈ M ′ ∧ (ι(x) = at =⇒ V = V ′)))∧

(∀〈x : v@(f , t],V ′〉 ∈ M ′. 〈x : v@(f , t], _〉 ∈ M)∧
(∀x, f , t . 〈x : (f , t]〉 ∈ M ⇐⇒ 〈x : (f , t]〉 ∈ M ′)

Fig. 52. Auxiliary definitions in proving semantics equivalence

Lemma B.14 (Switch point forwarding - prc aux).
∀W ,W ′,W ′′,n.

NAStepn(W ,W ′) ∧W ′ prc
=====�W ′′

=⇒ ∃W0, t. PRCStep∗(W t,W0) ∧W0
na/sw
=======�∗W ′′

Lemma B.15 (NA step delay - prc).
∀W ,W0,W1, t0.

W
na
====�W0 ∧ PRCStepn(W t0

0 ,W1)
=⇒ ∃W2, t, t1.

PRCStep∗(W t
0,W2) ∧W t1

2

na
====�W t1

1

Lemma B.16 (NA step delay - atomic step).
∀W ,W0, t0.

W
na
====�W0 ∧W t0

0

at
====�W ′

=⇒ ∃W1,W2.

PRCStep∗(W ,W1) ∧W t0
1

at
====�W2 ∧W2

na/sw
=======�∗W ′

Proof. In this proof, we assume that the program configuration is well-defined. From the premises, we have
the following.

W
na
====�W0 (1)

W t0
0

at
====�W ′ (2)

We letW = (TP, t,S,M)ι and have wdSt(TP,S,M). We unfold (1) and have that there exist TS0, S0 and M0

such that:
ι ` (TP(t),S,M) na−−→+ (TS0,S0,M0) (1.1)
consistent(TS0,S0,M0, ι) (1.2)
TP0 = TP{t ; TS0} (1.3)
W0 = (TP0, t,S0,M0)ι (1.4)

We unfold (2). We have that there exist TS′0, S′0, M ′0, TS′, S′ and M ′ such that:

ι ` (TP0(t0),S0,M0)
prc
−−→∗ (TS′0,S′0,M ′0) (2.1)

ι ` (TS′0,S′0,M ′0)
atmBlk−−−−−→+ (TS′,S′,M ′) (2.2)

consistent(TS′,S′,M ′, ι) (2.3)
W ′ = (TP0{t0 ; TS′}, t0,S′,M ′)ι (2.4)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:98 • Anonymous

We discuss whether t equals to t0.
• We first consider t = t0. We apply Lemma. B.17 on (1.1) and (2.1) and have that there exist TS1, S1 andM1

such that:

ι ` (TP(t),S,M)
prc
−−→∗ (TS1,S1,M1) (3)

ι ` (TS1,S1,M1)
na−−→∗ (TS′0,S′0,M ′0) (4)

From (3), (4), (2.2) and (2.3), we have the following.

(TP, t,S,M)ι at
====� (TP{t ; TS′}, t,S′,M ′)ι (5)

We finish the proof of such case.
• Then, we consider that t , t0. We apply Lemma. B.18 on (1.1) and there exist TS1 and M1 such that:

ι ` (TP(t),S,M)
prm
−−−→∗ (TS1,S1,M1) (6)

ι ` (TS1,S1,M1)
na−−→+ (TS0,S0,M0) (7)

M1 ≈ιat M0 (8)
We apply Lemma. B.19 on (7), (8) and (1.2) and have the following.

consistent(TS1,S1,M1, ι) (9)
We apply Lemma. B.20 on (7), (8) and (2.1), we have that there exists M ′′1 such that:

ι ` (TP0(t0),S1,M1)
prc
−−→∗ (TS′0,S1,M ′′1) (10)

ι ` (TS1,S1,M ′′1)
na−−→+ (TS0,S′0,M ′0) (11)

M ′′1 ≈ιat M ′0 (12)
We apply Lemma. B.21 on (11), (12) and (2.2) and have that there exists M ′′ such that:

ι ` (TS′0,S1,M ′′1)
atmBlk−−−−−→+ (TS′,S′,M ′′) (13)

ι ` (TS1,S′,M ′′)
na−−→+ (TS0,S′,M ′) (14)

M ′′ ≈ιat M ′ (15)
From (6) and (9), we have the following.

PRCStep∗((TP, t,S,M)ι, (TP{t ; TS1}, t,S1,M1)ι) (16)
Sincewe have ”wdSt(TP,S,M)ι”, according to (3), we have ”wdSt(TP{t ; TS1},S,M1)”.Then, according
to (10) and (13), we have ”wdSt(TP{t ; TS1, t0 ; TS′},S′,M ′′)”. Thus, we have the following.

TS′.P ⊆ M ′′ (17)
By applying Lemma. B.22 on (2.3), (15) and (17), we have the following.

consistent(TS′,S′,M ′′, ι) (18)
From (10), (13) and (18), we have the following.

(TP{t ; TS1}, t,S1,M1)ι
at
====� (TP{t ; TS1, t0 ; TS′}, t0,S′,M ′′)ι (19)

By applying Lemma. B.23 on (1.2), (2.1) and (2.2), we have the following.
consistent(TS0,S′,M ′, ι) (20)

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:99

From (14) and (20), we have the following.

(TP{t ; TS1, t0 ; TS′}, t0,S′,M ′′)ι
na
====� (TP{t ; TS0, t0 ; TS′}, t0,S′,M ′)ι (21)

From (16), (19) and (21), we finish the proof.
□

Lemma B.17 (prc steps forwarding in the same thread).

∀TS,S,M, TS′,S′,M ′, TS′′,S′′,M ′′, ι,n1,n2.
ι ` (TS,S,M) na−−→n1 (TS′,S′,M ′)∧

ι ` (TS′,S′,M ′)
prc
−−−→n2 (TS′′,S′′,M ′′)

=⇒ ∃TS0,S0,M0.

ι ` (TS,S,M)
prc
−−→∗ (TS0,S0,M0)∧

ι ` (TS0,S0,M0)
na−−→∗ (TS′′,S′′,M ′′)

Lemma B.18 (promises forwarding non-atomic steps).

∀TS,S,M, TS′,S′,M ′, ι,n.
ι ` (TS,S,M) na−−→n (TS′,S′,M ′)

=⇒ ∃TS0,M0. ι ` (TS,S,M)
prm
−−−→∗ (TS0,S,M0)∧

ι ` (TS0,S,M0)
na−−→n (TS′,S′,M ′) ∧M0 ≈ιat M ′

Proof. Prove by induction on n. □

Lemma B.19 (consistency forwarding non-atomic steps).

∀TS,S,M, TS′,S′,M ′, ι,n.
ι ` (TS,S,M) na−−→n (TS′,S′,M ′)∧

M ≈atι M ′ ∧ consistent(TS′,S′,M ′, ι)
=⇒ consistent(TS,S,M, ι)

Lemma B.20 (non-atomic steps and prc step reordering).

∀TS1,S,M, TS′1,S1,M1, TS2, TS′2,S2,M2,n1,n2.

ι ` (TS1,S,M)
na−−→n1 (TS′1,S1,M1) ∧M ≈ιat M1∧

ι ` (TS2,S1,M1)
prc
−−−→n2 (TS′2,S2,M2)

=⇒ ∃M20. ι ` (TS2,S,M)
prc
−−−→n2 (TS′2,S,M20)∧

ι ` (TS1,S,M20)
na−−→n1 (TS′1,S2,M2) ∧M20 ≈ιat M2

Lemma B.21 (non-atomic steps and atomic-block step reordering).

∀TS1,S,M, TS′1,S1,M1, TS2, TS′2,S2,M2,n1,n2.

ι ` (TS1,S,M)
na−−→n1 (TS′1,S1,M1) ∧M ≈ιat M1∧

ι ` (TS2,S1,M1)
atmBlk−−−−−−→n2 (TS′2,S2,M2)

=⇒ ∃M20. ι ` (TS2,S,M)
atmBlk−−−−−−→n2 (TS′2,S2,M20)∧

ι ` (TS1,S2,M20)
na−−→n1 (TS′1,S2,M2) ∧M20 ≈ιat M2

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

111:100 • Anonymous

Lemma B.22 (mem approx eqal consistency preserving).
∀TS,S,M, ι,M0.

consistent(TS,S,M, ι) ∧M ≈ιat M0 ∧ TS.P ⊆ M0

=⇒ consistent(TS,S,M0, ι)

Lemma B.23 (consistent forwarding).
∀TS,S,M, TS0,n,S′,M ′, ι.

consistent(TS,S,M, ι) ∧ TS.P#TS0.P∧
ι ` (TS0,S,M) −−→n(_,S′,M ′)

=⇒ consistent(TS,S′,M ′, ι)

Equivalence between the promising semantics and the non-preemptive semantics. We show the correctness proof
of Lemma. 6.1 in the following.

Proof. We finish the proof by applying Lemma. B.3 and 6.1. □

REFERENCES
[1] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Webe. 2011. Mathematizing C++ Concurrency. In Proceedings of the

38th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages (POPL’11). 55–66.
[2] Soham Chakraborty and Viktor Vafeiadis. 2016. Validating optimizations of concurrent C/C++ programs. In Proceedings of the 2016

International Symposium on Code Generation and Optimization (CGO ’16). 216–226.
[3] Soham Chakraborty and Viktor Vafeiadis. 2017. Formalizing the concurrency semantics of an LLVM fragment. In Proceedings of the

2017 International Symposium on Code Generation and Optimization (CGO ’17). 100–110.
[4] Ševč́ik. 2011. Safe Optimisations for Shared-MemoryConcurrent Programs. In Proceedings of ACMSIGPLANConference on Programming

Language Design and Implementation (PLDI ’11).
[5] Minki Cho, Sung-Hwan Lee, Chung-Kil Hur, and Ori Lahav. 2021. Promising 2.0: Global Optimizations in RelaxedMemory Concurrency.

In Proceedings of the 42nd annual ACM SIGPLAN conference on Programming Languages Design and Implementation (PLDI ’21).
[6] CompCert Developers. 2020. CompCert-3.7. http://compcert.inria.fr/release/compcert-3.7.tgz
[7] Hanru Jiang, Hongjin Liang, Siyang Xiang, Junpeng Zha, and Xinyu Feng. 2019. Towards Certified Separate Compilation for Concurrent

Programs. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’19).
[8] Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. 2017. A Promising Semantics for Relaxed-Memory

Concurrency. In Proceedings of the 44th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’17).
[9] Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017. Repairing Sequential Consistency in C/C++11. In

Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’17). 618–632.
[10] Leslie Lamport. 1979. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess Programs. IEEE Trans. Comput.

C-28, 9 (1979), 690–691.
[11] Sung-Hwan Lee, Minki Cho, Anton Podkopaev, Soham Chakraborty, Chung-Kil Hur, Ori Lahav, and Viktor Vafeiadis. 2020. Promising

2.0: Global Optimizations in Relaxed Memory Concurrency. In Proceedings of the 41st annual ACM SIGPLAN conference on Programming
Languages Design and Implementation (PLDI ’20).

[12] Robin Morisset, Pankaj Pawan, and Francesco Zappa Nardelli. 2013. Compiler testing via a theory of sound optimisations in the
C11/C++11 memory model. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI ’13). 187–196.

[13] Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis. 2017. Promising Compilation to ARMv8 POP. In 31st European Conference on
Object-Oriented Programming (ECOOP 2017) (Leibniz International Proceedings in Informatics (LIPIcs)), Vol. 74. 22:1–22:28.

[14] Anton Podkopaev, Ori Lahav, and Viktor Vafeiadis. 2018. Bridging the gap between programming languages and hardware weak
memory models. In Proceedings of the ACM on Programming Languages (POPL’18), Vol. 3. 1–32.

[15] Jaroslav Ševčík, Viktor Vafeiadis, Francesco Zappa Nardelli, Suresh Jagannathan, and Peter Sewell. 2013. CompCertTSO: A Verified
Compiler for Relaxed-Memory Concurrency. J. ACM 60, 3 (2013), 22.

[16] Steven S.Muchnick. 1997. Advanced Compiler Design Implementation. Academic Press.
[17] Youngju Song, Minki Cho, Dongjoo Kim, Yonghyun Kim, Jeehoon Kang, and Chung-Kil Hur. 2020. CompCertM: CompCert with C-

assembly linking and lightweight modular verification. Proceedings of the ACM on Programming Languages 4, 23 (2020), 1–31. Issue
POPL.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

http://compcert.inria.fr/release/compcert-3.7.tgz

Verifying Optimizers for Concurrent Programs on Promising semantics • 111:101

[18] Viktor Vafeiadis, Thibaut Balabonski, Soham Chakraborty, Robin Morisset, and Francesco Zappa Nardelli. 2015. Common Compiler
Optimisations are Invalid in the C11 Memory Model and what we can do about it. In Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’15). 209–220.

[19] Yuting Wang, Pierre Wilke, and Zhong Shao. 2019. An abstract stack based approach to verified compositional compilation to machine
code. Proceedings of the ACM on Programming Languages 3, 62 (2019), 1–30. Issue POPL.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 37, No. 4, Article 111. Publication date: August 2018.

	1 Introduction
	2 Language
	2.1 Syntax of concur-SimpRTL
	2.2 Thread-local transition

	3 Promising semantics
	4 Write-write race freedom
	5 Proof Goal
	6 Non-preemptive semantics
	7 Thread local upward simulation
	8 Whole program simulation and Compositionality
	8.1 Whole program simulation
	8.2 Compositionality
	8.3 Promise certification preservation

	9 Proof of write-write race freedom preserving
	10 Definition of optimizers
	10.1 The result of program analysis
	10.2 Value analysis
	10.3 Liveness analysis
	10.4 Available expression analysis
	10.5 Constant propagation
	10.6 Dead code elimination
	10.7 Loop invariant code motion
	10.8 Common subexpression elimination

	11 Correctness proof of optimizers
	11.1 Correctness proof of Constant Propagation
	11.2 Correctness proof of Dead Code Elimination
	11.3 Correctness proof of Loop Invariant Code Motion
	11.4 Correctness proof of Common Subexpression Elimination

	A Capped Memory
	B Proof of semantics equivalence
	References

