
Verified Validation for Affine Scheduling
in Polyhedral Compilation

Xuyang Li , Hongjin Liang , and Xinyu Feng(B)

State Key Laboratory for Novel Software Technology, Nanjing University,
Nanjing 210023, Jiangsu, China

xuyang.li@smail.nju.edu.cn, {hongjin,xyfeng}@nju.edu.cn

Abstract. Structural nested loops can be abstracted into polyhedral
models, based on which one can perform aggressive loop optimizations;
however, the optimizations are often heuristic and complex, and there-
fore error-prone. Meanwhile, verified compilers, though rigorously cor-
rect, still miss powerful optimizing transformations and therefore pro-
duce less efficient code than industrial ones. To bridge this gap, this
work provides a general verified validation framework based on Bern-
stein’s conditions for affine scheduling, the core component of polyhedral
optimization techniques. It is parameterized over the concrete definitions
and proofs of the instruction language to be reusable. As shown in our
evaluation, the framework is flexible enough to support both existing
verified compilers like CompCert and existing polyhedral compilers like
Pluto. The result is fully mechanized in the Coq proof assistant.

1 Introduction

Nested loops are heavily used in scientific computing, operating over multidimen-
sional arrays. People have tried to analyze and transform such code fragments,
seeking better memory locality or parallelization. Such efforts lead to compilation
and optimization based on polyhedral models [14]. Common industrial compilers
have integrated polyhedral optimizers to empower generated code, like LLVM [16]
and GCC [25]. Some domain-specific areas also resort to polyhedral optimizations,
like image processing [27], and tensor compilation in AI systems [6,34].

Though powerful, polyhedral optimizations are error-prone just like other
loop-specific optimizations [21], which is partly due to its complex and heuristic
algorithms (e.g., the Pluto algorithm [4]) based on integer programming. We aim
to equip the powerful polyhedral techniques with formal guarantees to achieve
verified and optimizing compilation.

This work reports the verified validation for the core component of the poly-
hedral compilation. Verified validation is a kind of compiler verification tech-
nique. The validation algorithm takes the source and target programs as its
inputs and checks that the target always behaves the same as the source. The
validation algorithm itself should be verified for a more rigorous correctness guar-
antee. Several passes of CompCert are verified this way, including the parser [17],
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
W.-N. Chin and Z. Xu (Eds.): TASE 2024, LNCS 14777, pp. 287–305, 2024.
https://doi.org/10.1007/978-3-031-64626-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-64626-3_17&domain=pdf
http://orcid.org/0009-0007-7978-4723
http://orcid.org/0000-0002-4337-6548
http://orcid.org/0000-0003-3972-9395
https://doi.org/10.1007/978-3-031-64626-3_17

288 X. Li et al.

Fig. 1. The pipeline of polyhedral compilation. The blue part is our focus. (Color figure
online)

register allocation [28], loop-invariant code motion [22], superblock scheduling
[29], lazy code motion and strength reduction [15].

We focus on the validation for the affine scheduling pass in polyhedral com-
pilation. As Fig. 1 shows, polyhedral compilation comprises three passes, namely
extraction, scheduling and code generation. Extraction and code generation are
responsible for the conversions between the structural nested loops and the math-
ematical polyhedral model. The scheduling pass does semantic-preserving trans-
formation of polyhedral models. It can be further decomposed into several steps.
Affine scheduling [11,12] is the main step. It reorders iterations of the loop for
better locality and parallelization. Correctness of the reordering is known as
Bernstein’s conditions [13], which requires the preservation of write-after-write
(WAW), write-after-read (WAR) and read-after-write (RAW) dependencies.

This work develops a general verified validation framework for affine schedul-
ing in polyhedral compilation. It makes the following new contributions:

– We implement and verify a general validation framework in the Coq proof
assistant, partly reusing previous mechanizations in Verified Polyhedron
Library (VPL) [5] and the verified polyhedral code generator PolyGen [8]. Its
algorithm checks Bernstein’s conditions and is apt for affine scheduling. Fur-
ther, as nested loops prevail in different programming languages, the frame-
work is parameterized over instruction-level languages for reusability.

– We instantiate the framework with a variant of CompCert’s instruction lan-
guage, called CInstr, to show the practicality of the framework and the pos-
sibility towards an extension of CompCert with polyhedral optimization to
complement CompCert’s current loop optimizations.

– We evaluate the validation algorithm’s efficiency and completeness with the
Pluto compiler and its test suite. Shown in the result, the implementation is
able to prove the equivalence between the polyhedral models before and after
Pluto’s affine scheduling of all the 62 test cases with reasonable overhead.

Verified Validation for Affine Scheduling in Polyhedral Compilation 289

Fig. 2. Sample code πcov for covariance matrix calculation.

In the following parts of the paper, we give an overview of polyhedral com-
pilation in Sect. 2, and present the basic technical settings for our polyhedral
model in Sect. 3. In Sect. 4, we outline the validation algorithm for affine trans-
formations together with its proofs. In Sect. 5, we show how our framework can
be applied to existing verified compiler CompCert and the polyhedral compiler
Pluto. Finally, we discuss related work in Sect. 6, and conclude in Sect. 7. The
complete artifact in Coq is available at https://github.com/verif-scop/PolCert.

2 Background

In this section, we give an overview of polyhedral models and show the key ideas
to validate model transformations w.r.t. Bernstein’s conditions.

2.1 Overview of Polyhedral Models

The polyhedral model is an expressive representation of a subclass of nested
loops described by the following grammar:

s ::= for (i = ε1; i <= ε2; i++) { s } | s;s | if (ε <= 0) { s } | I

where the variable i is called loop iterators, and ε stands for affine expressions
in the form of a1 ∗ x1 + · · · + an ∗ xn + c. Here we use a1, . . . , an and c to
represent integer literals, and x1, . . . , xn for surrounding loop iterators (like i)
or parameters (normally symbolic constants representing the problem size). I
stands for primitive instructions such as assignments, which may contain array
access expressions arr[ε1]. . . [εn] and never modify loop iterators.

Such code fragments can be effectively analyzed and transformed into poly-
hedral models, with the assumption that all variables are non-aliased. Figure 2
shows sample fragment πcov of covariance matrix calculation from PolyBench [26].
It has instructions I0 and I1, arrays symmat and data, loop iterators j1, j2 and
i, and parameters M and N.

Since instructions can be executed multiple times in the iterations, we use
iteration vector p to identify individual execution instances of each instruction,
like [M, N; j1, j2, i] for I0 and [M, N; j1, j2] for I1. Concrete values of j1, j2 and

https://github.com/verif-scop/PolCert

290 X. Li et al.

i specify the specific iteration where the instruction is executed. We use I(p) to
locate the instance of the instruction I with the iteration vector p.

In the polyhedral model, we use a domain D to represent the set of iteration
vectors for each instruction. Back to our example, domains D0,D1 of I0 and I1

respectively are shown below. With the affine bound constraints of each iterator,
we can see each Di is essentially a polyhedron.

D0 = {[M, N; j1, j2, i] | 1 ≤ j1 ≤ M ∧ j1 ≤ j2 ≤ M ∧ 1 ≤ i ≤ N}
D1 = {[M, N; j1, j2] | 1 ≤ j1 ≤ M ∧ j1 ≤ j2 ≤ M}

The execution order of all instances is specified with an affine function θ,
namely schedule, mapping iteration vectors to timestamps. A timestamp is also
a vector that can be lexicographically ordered, with each dimension broadly
corresponding to a layer of nested loop. For identity transformations that do
not reorder instruction instances, the schedules are simply identity functions, as
shown by the schedules θ0 and θ1 below for I0 and I1 respectively.

θ0([M, N; j1, j2, i]) = (j1, j2, i)
θ1([M, N; j1, j2]) = (j1, j2)

Polyhedral models also need information about instructions’ memory access
patterns to reason about their execution. We use a pair of an identifier and a
vector to represent the location of a memory access, where the identifier is the
name of a multidimensional array, and the vector represents the array indices.

(MemCell) c ∈ Id × List(Z)

For each instruction, we use two access functions to describe the write-set and
read-set of each instance. Each access function maps an iteration vector p to
the corresponding set of memory cells. For our sample, read and write access
functions W0,R0,W1 and R1 for I0 and I1 are given below.

W0([M, N; j1, j2, i]) = {(symmat, [j1, j2])}
R0([M, N; j1, j2, i]) = {(symmat, [j1, j2]), (data, [i, j1]), (data, [i, j2])}
W1([M, N; j1, j2]) = {(symmat, [j2, j1])}
R1([M, N; j1, j2]) = {(symmat, [j1, j2])}

Then the whole polyhedral model Pcov of πcov is defined as a set of tuples,
each tuple consisting of an instruction, the corresponding domain, schedule, and
access functions.

Pcov = {(I0, D0, θ0, W0, R0), (I1, D1, θ1, W1, R1)}
Normally, as in Fig. 1, after we calculate the polyhedral model Pcov of πcov,

a scheduling algorithm is applied to transform Pcov to a new polyhedral model
P ′
cov. Here we focus on the key affine scheduling sub-pass, which tries to find

new schedules θ′
0, θ

′
1 for I0, I1.

P ′
cov = Schedule(Pcov) = {(I0, D0, θ

′
0, W0, R0), (I1, D1, θ

′
1, W1, R1)}

where θ′
0([M, N; j1, j2, i]) = (0 , i , j1, j2), θ′

1([M, N; j1, j2]) = (1 , j1, j2)

Verified Validation for Affine Scheduling in Polyhedral Compilation 291

Fig. 3. Optimized code π′
cov for covariance matrix calculation.

This specific transformation applies a combination of loop fission (see the extra
dimension with values 0, 1) and loop interchange (see the fronted iterator i) to
the old schedule. It will be intuitive after the final code generation, recovering
the structural loop structure, say π′

cov in Fig. 3.
The above compilation pipeline from πcov to π′

cov is producible by Pluto
compiler [4]. It achieves about 4 times speed-up on our machine with M=N=1500.

2.2 Validation via Bernstein’s Conditions

A compilation validation algorithm takes in source and target programs, and
reports true if it can establish refinement relation, false otherwise. To design
a validation algorithm for a specific compilation pass, a decidable correctness
criterion of that pass is needed. Intuitively, affine scheduling is a reordering
transformation of instances. Such transformation’s correctness is well-studied as
Bernstein’s conditions [3,13].

Bernstein’s conditions describe when it is correct to reorder two operations.
Let W(u) and R(u) be the write-set and read-set of an operation u respectively.
Bernstein’s conditions require W(u)∩W(v) = W(u)∩R(v) = R(u)∩W(v) = ∅. That
is, Bernstein’s conditions require the preservation of write-after-write (WAW),
write-after-read (WAR) and read-after-write (RAW) dependencies.

In summary, to validate the polyhedral affine scheduling pass, we need to
implement a validation algorithm based on Bernstein’s conditions. Further, to
achieve formal correctness guarantees, the algorithm should be itself formally
verified by showing its sufficiency to guarantee an affine scheduling’s correctness,
that is the refinement relation between the target and the source.

3 Language Setting

In this section, we present the formalization of the polyhedral model, and the
instruction language interface for our parameterized framework.

292 X. Li et al.

3.1 Polyhedral Models

We give the formal definition of polyhedral models PolyProg in Fig. 4. We use
P = (I,V,Γ) to denote a polyhedral program, which contains a polyhedral
instruction list I, a parameter list V and a typing context Γ (which is explained
in Sect. 3.2). For each list, say I, we use |I| to represent its length, and I[n] for
its n-th element (from zero).

PolyProg is parameterized over the instruction language (see Sect. 3.2), bor-
rowing its definitions such as identifiers (of type Id), instructions (denoted by
I), states (denoted by σ), semantics of instruction instances (in the form of
p � I, σ

Δr,Δw−−−−→ σ′) . We refer readers to Sect. 3.2 for their details.

Fig. 4. Syntax of PolyProg .

Fig. 5. Auxiliary definitions of PolyProg ’s semantics.

A polyhedral instruction I is a tuple (I,D, θ,R,W). The instruction I is the
base instruction. The polyhedron D is the domain of the instruction; we call
every vector p ∈ D the iteration vector. θ is the affine schedule which maps each
p in D to a timestamp t (also a vector, as explained in Sect. 2.1). R,W denotes
the instruction’s read access function and write access function, respectively.
Note that we omit the linear algebra representations and implementations of the
notions for presentation simplicity, and use their more intuitive mathematical
notions instead (e.g., sets and functions).

The polyhedral program’s semantics judgment is of the form � P, σ −−→ σ′

in Fig. 6, saying that, starting from an initial state σ, the polyhedral program
P executes and terminates at the final state σ′. The semantics first flattens the
polyhedral instruction list I into instances L (defined in Fig. 5) and sorts it
(rule Init), then iteratively executes the instance with the least timestamp (rule
Progress), until there are no remaining instances (rule Done).

Below we give explanations of the semantic components occurring in Fig. 6.

– An instance ι is a four-tuple (I,n, p, t) (see Fig. 5), recording its instruction
I, its n in list I, its iteration vector p and its timestamp t. We order instances
with their timestamps lexicographically, with notations like ≺,�,�.

– Propositions Compat, Retrieve and NonAlias together describe valid initial
states and are defined within the instruction language (see Sect. 3.2).

Verified Validation for Affine Scheduling in Polyhedral Compilation 293

Fig. 6. Semantics of PolyProg.

– The proposition flatten(I, E ,L) defines how a list of polyhedral instructions
I is expanded into a set of instances L, with the parameters E (e.g., [M, N] in
the example in Sect. 2.1). It holds if and only if:
1. Elements in L have unique (n, p) pairs.
2. For any instance ι = (I,n, p, t) ∈ L, we have I[n] = (I,D, θ,R,W), and

(a) p ∈ D and p’s prefix of length |E| is equal to E ,
(b) θ(p) = t.

– Permut(L,L′) says L and L′ are permutations of each other (they contain the
same set of instances), and Sorted(L,�) says L is sorted by relation �.

We define the refinement relation Pt � Ps between two polyhedral programs
Ps and Pt in Definition 1, to which the validation’s correctness refers. It says,
starting from any valid state σ, if the target program Pt terminates at state σ′,
the source Ps also terminates at σ′.

Definition 1 (Refinement Relation between Polyhedral Programs).

Pt � Ps � ∀σ, σ′. 	 Pt, σ −−→ σ′ =⇒ 	 Ps, σ −−→ σ′.

3.2 Instruction Language Interface

The polyhedral compilation does high-level structural transformations, not rely-
ing on the concrete definition of the underlying instruction language. However,
the underlying language must expose its memory access patterns and guarantee
some properties. We modularize these essential definitions as the module type I

(see Fig. 7). Our polyhedral model is parameterized over instances of the type
I.

An instruction language must define its identifier Id, its variable type T (nor-
mally multi-dimensional arrays), its base instruction’s syntax I, and its state S.
We use notations I, τ and σ for concrete instruction, type, and state.

We use Γ to denote a typing context, which is a list of variable-type pairs that
contains all live variables and their corresponding types for the code fragment.

(TypCtxt) Γ ∈ List(Id × T)

294 X. Li et al.

The semantics is defined in the form of p � I, σ
Δr,Δw−−−−→ σ′. It says that, the

instance of the base instruction I under the iteration vector p executes from the
initial state σ and terminates at the final state σ′, reading and writing memory
cells Δr and Δw (see Fig. 4 for the definitions). The iteration vector p contains
the exact values for parameters V and all the iterators. That is, p[i − 1] is the
value of the i -th parameter (if i ≤ |V|), and p[|V| + j − 1] is the value of the
j -depth iterator.

Fig. 7. Definition of instruction language module I.

The proposition Compat describes the validity of the initial states w.r.t. the
program’s typing context, e.g. correct allocations. The proposition Retrieve col-
lects the parameters V’s values E from the initial state σ, which will be the
constant prefix of every iteration vector. The proposition NonAlias describes
non-aliasing states; the preservation of the state’s non-aliasing property w.r.t.
instruction’s semantics is captured by lemma NonAliasPsrv.

Polyhedral models summarize access patterns with read and write access
functions. A procedure Check should be defined to validate the consistency
between every instruction’s semantics and its access functions. It should sat-
isfy the correctness property Correct(Check), which says: if Check returns true
for instruction I and its read and write access functions R and W, then the read
and write memory footprints Δr,Δw of I’s any execution under iteration vector
p are over-approximated by R(p) and W(p), respectively.

Finally, the instruction language should respect Bernstein’s conditions, speci-
fied with lemma BCPermut. It says that, from a non-aliasing state, if two instruc-
tions I1 and I2 are executed in sequence under some iteration vectors and their
footprints satisfy Bernstein’s conditions, then the permutation of their execu-
tions does not affect the final state.

Verified Validation for Affine Scheduling in Polyhedral Compilation 295

4 Validation Algorithm and Its Proofs

In this section, we outline our validation algorithm and its correctness proofs.

4.1 Validation Algorithm

Preprocessing. We first simplify the inputs with the function Compose, as
defined below. The validator assumes the two input polyhedral programs only
differ in each instruction’s schedule functions and tries to compose them into
an extended program P̂. If the two inputs are not composable, the validator
returns false directly. Note that the function seq transforms a list of optional
values into an optional list, returning Some if all elements are not None, and None
otherwise.

(ExtPolyInstr) Î ::= (I, D, θs, θt, R, W)

(ExtPolyInstrs) Î ::= List(ExtPolyInstr)
(ExtPolyProg) P̂ ::= (Î, V, Γ)

Compose((Is, Vs, Γs), (It, Vt, Γt))::={
Some (Î, Vs, Γs) if seq (map Compose′ (zip Is It))) = Some Î ∧ Vs = Vt ∧ Γs = Γt

None otherwise
Compose′((Is, Ds, θs, Rs, Ws), (It, Dt, θt, Rt, Wt))::={

Some (Is, Ds, θs, θt, Rs, Ws) if Is = It ∧ Ds = Dt ∧ Rs = Rt ∧ Ws = Wt

None otherwise

The composability suggests instances of the two input polyhedral programs
are of one-to-one correspondence. We also compose two corresponding instances
into one extended instance ι̂, carrying both the old and new timestamps. It can be
ordered either by its old timestamp using ≺s,�s,�s or its new timestamp using
≺t,�t,�t. Similarly, lists of extended instances exist. We introduce operators
〈·〉s and 〈·〉t to split the extended definitions to the originals.

(ExtInstance) ι̂ ::= (I,n, p, ts, tt)
(ExtInstances) L̂ ::= List(ExtInstance)

Further, the proposition flatten is lifted, so that flatten(Î, E , L̂) expands an
extended polyhedral instruction list into an extended instance list. The extended
instance list is just a compact representation for the non-extended, and we have
〈L̂〉s = Ls and 〈L̂〉t = Lt if flatten(〈Î〉s, E ,Ls) and flatten(〈Î〉t, E ,Lt).

Instruction-Level Validation. The function Vinstr checks if Bernstein’s con-
ditions (w.r.t. access functions) are satisfied by every two permuted instances of
instructions Î and Î ′, i.e., no violation of WAW, WAR or RAW dependencies.
It invokes dependency preservation checkers WAWPrsv,RAWPrsv,WARPrsv on
input instructions. Given that each program comprises multiple instructions,

296 X. Li et al.

and potential dependencies could exist between any two of them, Vinstr must be
applied to all instruction pairs.

Vinstr(Î , Î ′,m) = WAWPrsv(Î , Î ′,m) ∧ RAWPrsv(Î , Î ′,m) ∧ WARPrsv(Î , Î ′,m)

Taking WAWPrsv as an example, it constructs emptiness tests to find permuted
instances accessing overlapped memory cells for writes. Its additional argument
m will be the length |V| of parameters, used to enforce the same value assumption
of parameters in every iteration vector. The notation p[: m] slices the iteration
vector p to its first m elements, i.e., the values of parameters. RAWPrsv and
WARPrsv are defined in similar ways.

WAWPrsv(Î , Î ′,m) =

let Î = (I, D, θs, θt, R, W) in
let Î ′ = (I′, D′, θ′

s, θ
′
t, R′, W ′) in⎧⎪⎨

⎪⎩
true if {(p, p′) | p ∈ D ∧ p′ ∈ D′ ∧ p[: m] = p′[: m]

∧ θs(p) ≺ θs(p′) ∧ θt(p) � θt(p′) ∧ W(p) ∩ W ′(p′)
= ∅} = ∅
false otherwise

Validation of Access Functions. However, the function Vinstr directly uses
access functions of each instruction for granted, not checking its consistency
with the instruction’s semantics. To achieve formal correctness guarantees,
the user should provide a checking procedure Check and prove its correctness
Correct(Check) for her language (see Sect. 3.2). Procedure Check is invoked on
every instruction.

Only when the procedure Check reports true for every instruction, the results
of Vinstr are valid w.r.t. the language’s semantics, and the premise of lemma
BCPermut, which describes Bernstein’s condition with the semantics, is fulfill-
able.

Overall Validation Algorithm. So far, we have all the ingredients to define
the overall validation algorithm Validate. It first composes the two input poly-
hedral programs into one and invokes Vinstr for every two extended instructions.
Finally, it invokes user-defined access function checker Check for every instruc-
tion. If all checks pass, the algorithm returns true; otherwise, it cannot establish
the refinement relation and returns false.

Definition 2 (Definition of the Validation Algorithm).

Validate(Ps, Pt) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∀Î , Î ′ ∈ Î. Vinstr(Î , Î ′, |V|) = true
∧∀Î ∈ Î. Check(Î .I, Î.W, Î.R) = true

if Compose(Ps, Pt) = Some (Î, V, Γ)

false if Compose(Ps, Pt) = None

Verified Validation for Affine Scheduling in Polyhedral Compilation 297

4.2 Proof Goal and Its Sketch

The correctness of the validator Validate, which is our proof goal, is given in
Theorem 1. It says that whenever it reports true on input programs Ps and Pt,
it guarantees the establishment of their refinement relation Pt � Ps.

Theorem 1 (Correctness of the Validator).

∀Ps,Pt. Validate(Ps,Pt) = true =⇒ Pt � Ps.

Now we outline the proof of Theorem 1.

Proof. Unfold the goal. We have an extended instance list L̂ for the composed
program P̂. Now for every possible permutation L̂t of L̂ where Sorted(L̂t,�t),
which determines a possible iteration 〈L̂t〉t for the target program, we need to
find a semantic equivalent instance list L̂s where Sorted(L̂s,�s) that determines
the iteration 〈L̂s〉s for the source program.

Fig. 8. Definition of stable permutation.

First we define the relation ∼ to λι̂, ι̂′. ι̂ �s ι̂′ ∧ ι̂ �t ι̂′, which establishes if
two extended instances are permuted.

Now we sort L̂t and let L̂s = sort(L̂t,�s). The sorting algorithm sort estab-
lishes Sorted(L̂s,�s) ∧ Permut(L̂t, L̂s) and the additional property:

∃n. StablePermut(L̂t, L̂s,∼, n)

where StablePermut is defined in Fig. 8. StablePermut(L̂t, L̂s,∼, n) says there
exists a permuting sequence of length n that transforms L̂t to L̂s, and each
permutation always swaps adjacent instances satisfying relation ∼ (i.e., only do
necessary swaps); this fact is obvious as L̂t is sorted by �t and if sort is designed
efficiently (so that it never increases inversion number during its operation w.r.t.
�s, i.e., only swaps two instances satisfying �s).

Now we move on to prove two list’s equivalence, by induction on StablePer-
mut. The rule SPmtSwap is the only rule that enables the permutation, swap-
ping two adjacent instances; other rules are correct trivially or by induction
hypothesis.

298 X. Li et al.

The true result of the validation guarantees that any two necessarily swapped
instances (i.e., satisfy relation ∼) have no WAW, WAR, or RAW dependencies
w.r.t. access functions. From Correct(Check), we know the access functions over-
approximate every instruction’s real memory access pattern. Then whenever we
swap two adjacent instances ι̂1, ι̂2 with the rule SPmtSwap, we know that they
have no real WAW, RAW, or WAR dependencies.

Recall that all variables in the initial state are non-aliased. This property is
preserved during execution thanks to the language’s property NonAliasPsrv.

By the provided property BCPermut of the instruction language (see
Sect. 3.2), saying that two instances are permutable if they have no real WAW,
WAR, or RAW dependencies and all variables are non-aliased, we finish the
proof. ��

5 Evaluation

In this section, we show how the framework can be applied to existing verified
compilers and polyhedral compilers, and discuss our engineering efforts.

5.1 Support Existing Verified Compiler

To demonstrate the practicality of our approach, we instantiate the validator
with a variant of CompCert’s instruction language (called CInstr), making the
proof complete. Several manual-written tests, like Pcov and P ′

cov in Sect. 2, are
successfully validated.

Now we explain the main components of CInstr’s formalization.

– The syntax I of CInstr is a subset of CompCert’s instruction language1,
including only assignments with multi-dimensional array accesses. We reuse
CompCert’s unary and binary operators while defining expressions. Id is
defined as positive integers as in CompCert. Type T is defined as k -
dimensional array types of the base type (CompCert’s signed 32-bit integer).

– The state S is directly inherited from CompCert’s formalization, which con-
tains an environment that records definitions of global and local variables, and
the CompCert memory model [18,19]. In such formalization, each variable is
associated with a block identifier in the memory model.

– The semantics of CInstr reuses most CompCert’s semantics, like its evalu-
ation of normal expressions. The exception is that CInstr evaluates array
subscripts in Z, rather than fixed-width integer arithmetic. The CompCert
memory model is one-dimensional, so multi-dimensional array accesses should
be correctly mapped. Without loss of generality, loop iterators are considered
ghost variables in Z that do not write to the state during iteration; their
values are converted to fixed-width integers when necessary.

– The proposition Compat(Γ, σ) is defined as the appropriate allocation of typ-
ing context Γ in state σ, similar to how CompCert initializes variables. The
proposition Retrieve(V, E , σ) asserts how each parameter’s value is retrieved

1 https://compcert.org/doc/html/compcert.cfrontend.Csyntax.html.

https://compcert.org/doc/html/compcert.cfrontend.Csyntax.html

Verified Validation for Affine Scheduling in Polyhedral Compilation 299

from the state; it involves casting fix-width integers to Z. The proposition
NonAlias(σ) signifies that each variable’s reference (i.e., the assigned block
identifier) is not equivalent to any other.

– The procedure Check(I,W,R) is defined to symbolically evaluate every
array-access expression of instruction I to get its access functions
and check if it is contained by input access functions W and R.
For example, the instruction I: res += arr[i][(j+i)+(j-i)] has write
and read access functions W�([i, j]) = {(res, [])} and R�([i, j]) =
{(res, []), (arr, [i, 2*j])}; if the inputs are W = W� and R([i, j]) =
{(res, []), (arr, [i, 2*j]), (redundant,[]) }, the procedure returns true.

– Finally, with tedious yet straightforward proofs, we establish properties
NonAliasPsrv, Correct(Check), and BCPermut for the above definitions.

5.2 Support Existing Polyhedral Compiler

Polyhedral compilers like Pluto use similar polyhedral representations as
PolyProg , like the OpenScop format [2]. After developing the converter for Open-
Scop and PolyProg , we can validate the Pluto’s affine scheduling pass.

However, we have to give up some formal guarantees because Pluto under-
specifies its inputs. To be concrete, Pluto’s validator is instantiated with empty
instruction language, and the procedure Check always returns true. This is
because Pluto has no formal specification of its inputs, which only contain tex-
tual code fragments without sufficient contexts like typing to fully describe a
nested loop. Consequently, as instructions have no formal semantics, we cannot
define a verified checker for their semantics and access functions.

Nevertheless, it still makes sense to adopt our framework to Pluto. Like
other polyhedral compilers, Pluto implicitly presumes its input programs agree
on some properties like non-aliasing states and in-bound array accesses [10],
which we believe are well-summarized by our instruction interface I in Sect. 3.2.
Though we have to suspend the definition of the instruction language and give
up checking the input access functions, we can still utilize the verified validation
algorithm.

We collect all relevant tests and examples from Pluto’s repository2 as our test
suite, counting to 62. We configure Pluto so that it only does affine scheduling,
but still does its best:

pluto --smartfuse --rar \
--notile --noparallel --noprevector --nounrolljam [.c]

Let’s say Pluto compiles Ps to Pt. Table 1 gives Pluto affine sched-
uler’s running time (P-Time) and validator’s running time (V-Time, for both
Validate(Ps,Pt) and Validate(Pt,Ps)) for each test3. The validator successfully
validates every test’s compilation, guaranteeing Ps � Pt ∧ Pt � Ps. Measure-
ments are performed on an Intel i7-11700 processor with 64 GB memory, run-
ning in Windows Subsystem for Linux (WSL2) of Ubuntu 18.04 on Windows
2 https://github.com/bondhugula/pluto.
3 Please note that P-Time and V-Time for each test are not comparable, as they per-

tain to implementations of different algorithms in different programming languages.

https://github.com/bondhugula/pluto

300 X. Li et al.

10.0.19045. The result shows the validation algorithm runs in a reasonable time.
As examples, the test case tce (Tensor Contraction Engine for four indexes)
with the largest runtime (around 4.5 s) has 4 instructions operating over four-
dimensional arrays, nested within loops at a depth of 5; for the corner test
noloop, which contains no loops but one trivial assignment, the validation spends
zero time.

Discussion on Validation’s Completeness. We already mechanize formal
proofs for the validator’s soundness, which guarantees that the validator never

Table 1. Evaluation results on Pluto’s test suite.

Test P-Time (ms) V-Time (ms,ms) Test P-Time (ms) V-time (ms,ms)

covcol 3.5 434.6, 320.7 dsyr2k 2.6 106.0, 83.4
fdtd-2d 46.4 1615.5, 1296.3 gemver 7.0 247.9, 240.4
lu 6.1 410.6, 331.2 mvt 2.2 70.2, 56.3
ssymm 40.7 726.0, 551.2 tce 568.6 4442.0, 4422.5
adi 77.5 2531.7, 2377.8 corcol 5.5 442.5, 362.1
dct 21.8 879.4, 739.4 dsyrk 1.8 96.8, 78.9
floyd 12.1 502.6, 421.7 jacobi-1d- 3.8 184.0, 167.8
matmul-init 2.9 257.8, 192.4 pca 202.5 2923.6, 2679.5
strmm 1.9 141.4, 110.8 tmm 1.6 109.7, 89.6
advect3d 1023.1 579.1, 498.1 corcol3 13.6 851.3, 733.4
doitgen 10.4 1069.2, 837.4 fdtd-1d 6.0 268.7, 229.9
jacobi-2d-... 17.7 619.5, 543.5 matmul 3.2 157.1, 125.5
seidel 24.5 818.1, 725.5 strsm 6.4 209.3, 161.2
trisolv 5.1 338.9, 248.8 1dloop-invar 0.3 6.7, 6.0
costfunc 0.8 47.4, 35.0 fusion1 0.9 15.3, 13.9
fusion2 4.7 36.8, 31.6 fusion3 3.3 33.6, 33.8
fusion4 4.3 26.2, 23.4 fusion5 1.3 41.3, 38.9
fusion6 0.5 24.2, 25.4 fusion7 0.4 14.3, 13.8
fusion8 0.6 4.6, 3.8 fusion9 4.3 111.5, 110.2
fusion10 4.6 32.4, 25.7 intratileopt1 0.4 11.0, 7.8
intratileopt2 0.3 28.7, 21.3 intratileopt3 0.7 40.8, 35.9
intratileopt4 0.8 40.6, 33.3 matmul-seq 7.9 329.8, 275.7
matmul-seq3 19.8 531.4, 502.4 multi-loop- 1.2 46.3, 45.6
multi-stmt-... 14.7 57.4, 53.6 mxv 1.2 73.9, 61.8
mxv-seq 2.6 102.4, 96.2 mxv-seq3 6.3 200.4, 194.5
negparam 1.5 128.4, 118.4 nodep 0.4 26.5, 18.1
noloop 0.0 0.2, 0.0 polynomial 1.4 100.8, 90.0
seq 1.1 54.2, 50.5 shift 1.9 101.6, 88.2
spatial 0.3 29.9, 21.0 tricky1 5.7 105.6, 93.7
tricky2 0.5 19.3, 16.2 tricky3 3.7 105.1, 107.0
tricky4 0.2 6.1, 4.8 wavefront 0.7 39.0, 32.3

Verified Validation for Affine Scheduling in Polyhedral Compilation 301

gives false positive results. Now we discuss its completeness: does the validator
try its best to prove the correctness, validating valid transformations as much
as possible? This matters because a validator always returning false is useless.

We argue that the validator is complete enough in practice, as shown in the
evaluation. The completeness of the validation algorithm relies on the complete-
ness of VPL’s emptiness check isEmpty(), which only gives one-way implication
∀P. isEmpty(P) =⇒ P = ∅. If we assume VPL’s implementation is com-
plete enough, then the validation algorithm should be equally complete. That’s
because the well-studied Bernstein’s conditions basing the validation, should be
the very correctness criterion of all reordering transformations like affine schedul-
ing. Polyhedral scheduling algorithms were designed with this in mind, such as
the legality constraints in Pluto’s core algorithm that allow permutations of
instances only when Bernstein’s conditions are established [4].

5.3 Engineering Efforts

This work is fully mechanized in Coq, based on the Verified Polyhedron Library
(VPL) [5] and the basic libraries and formalizations of PolyGen [8].

We’ve written around 17000 lines of Coq and 1000 lines of OCaml not count-
ing blanks, comments and original proofs. In Coq, our proof efforts mainly involve
additions to existing linear algebra and polyhedron libraries, formalization of
PolyProg ’s properties based on the instruction interface I, implementation and
verification of the validator and CInstr. In OCaml code, we provide basic func-
tionalities like parser and printer for OpenScop format, compiler driver, building
and testing scripts, etc.

6 Related Work

In this section, we discuss verification of polyhedral compilation and tensor com-
pilation, as well as verified validation for other compiler optimizations.

6.1 Verification of Polyhedral Compilation

Courant and Leroy [8] provide basic formalizations of the polyhedral model and
the first verified polyhedral code generator based on VPL [5]. Pilkiewicz [24] pro-
vides a prototypical verified validator (called s2sloop) of polyhedral scheduling
ten years ago, sharing the idea to base the validation algorithm on Bernstein’s
conditions. In our hindsight, its abeyance is attributed to its excessive use of
dependent type (making its proof engineering harder) and the lack of supported
libraries, such as VPL. As emphasis, we do not merely reimplement his work.
We go a step further, giving stronger proof and a well-designed framework with
extensive evaluation. To be more specific with the first point, s2sloop’s final theo-
rem demands determinism (say, Det()) of its first input program as an additional
assumption, which makes it weaker than ours (see Sect. 4.2):

Correct(Validate) � ∀Ps,Pt. Validate(Ps,Pt) = true ∧ Det(Ps) ⇒ Pt � Ps

302 X. Li et al.

This matters as a polyhedral compiler may make use of non-determinism to
express parallelism [33], and the validator should be able to handle two paral-
lelized inputs.

Similarly, Namjoshi and Singhania [23] provides a validator based on depen-
dency violation (i.e., Bernstein’s condition) for their semi-automatic polyhedral
scheduling framework. However, the validator is itself unverified and only sup-
ports sequential programs. Our work can equip it with stronger correctness guar-
antees.

Polyhedral models assume arbitrary precision arithmetic for expressions in
specific positions, which is not compatible with real-world fixed-width integer
arithmetic that possibly overflows. Cuervo Parrino et al. [9] attempt to bridge
such semantics gap using an optimistic approach [10].

6.2 Verification of Tensor Compilation

Tensor compilations allow users to model complex matrix computations with
high-level mathematical representations and help to compile them to efficient
low-level codes (involving nested loop), and validation in such domain also
attracts attention. Clément and Cohen [7] design an end-to-end validation
method between affine Halide algorithm [27] and its low-level imperative gen-
erated code. Liu et al. [20] design a Halide-like system within Coq, enabling
developers to design and verify optimized schedules at the same time with the
provided tactics, semi-automatically. Bang et al. [1] supports validating tensor-
related dialects of mlir with appropriate SMT encoding; it does not support
aggressive optimizations like the polyhedral-based yet.

6.3 Verified Validation for Compiler Optimization

Only a few validation algorithms for compiler optimization are formally ver-
ified. Tristan and Leroy [30–32] provides verified validators for instruction
scheduling, software pipelining, and lazy code motion within CompCert; Gour-
din et al. [22],Monniaux and Six [29],Six et al. [15] use block-level simulation
to support verified validation of loop unrolling, loop invariant code motion,
superblock scheduling, strength reduction and others within CompCert. All of
these works focus on low-level RTL code, which is conceptually a control flow
graph. These validation algorithms must synchronize two graphs correctly. To
validate reordered instructions, they compare the summaries of subgraphs (such
as basic blocks) obtained through symbolic execution, rather than directly check-
ing Bernstein’s conditions, which may require heavy dependence analysis.

7 Conclusions and Future Work

In this paper, we provide a well-designed verified validation framework for affine
scheduling in polyhedral compilation, fully mechanized in Coq proof assistant. It
is highly extensible, as we demonstrate by instantiating it with CInstr, a variant

Verified Validation for Affine Scheduling in Polyhedral Compilation 303

of CompCert’s instruction language. Its core algorithm checks Bernstein’s con-
ditions for two input polyhedral models, which is complete and efficient enough
to validate all 62 Pluto’s tests as shown in our evaluation. We believe this work
makes solid progress towards verified optimizing compilation.

As future work, it would be interesting to support advanced polyhedral tech-
niques like tiling. Moreover, to seamlessly integrate polyhedral compilation into
CompCert, we still need efficient extraction and its verification, which requires
bridging the semantics gaps between C and polyhedral model [9,10].

Acknowledgments. We thank anonymous referees for their suggestions and com-
ments on earlier versions of this paper. This work is supported in part by National
Natural Science Foundation of China (NSFC) under Grant No. 62232015.

References

1. Bang, S., Nam, S., Chun, I., Jhoo, H.Y., Lee, J.: Smt-based translation validation
for machine learning compiler. In: Computer Aided Verification: 34th International
Conference, CAV 2022, Haifa, Israel, 7–10 August 2022, Proceedings, Part II, p.
386-407, Springer, Berlin (2022). https://doi.org/10.1007/978-3-031-13188-2_19

2. Bastoul, C.: Openscop: A specification and a library for data exchange in polyhe-
dral compilation tools. Paris-Sud University, France (September, Technical Report
(2011)

3. Bernstein, A.J.: Analysis of programs for parallel processing. IEEE Trans. Electron.
Comput. 15, 757–763 (1966). https://doi.org/10.1109/PGEC.1966.264565

4. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practical auto-
matic polyhedral parallelizer and locality optimizer. SIGPLAN Not. 43(6), 101–113
(2008). https://doi.org/10.1145/1379022.1375595

5. Boulmé, S., Maréchaly, A., Monniaux, D., Périn, M., Yu, H.: The verified poly-
hedron library: an overview. In: 2018 20th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing (SYNASC), pp. 9–17, September
2018. https://doi.org/10.1109/SYNASC.2018.00014

6. Chen, T., et al.: Tvm: an automated end-to-end optimizing compiler for deep learn-
ing. In: Proceedings of the 13th USENIX Conference on Operating Systems Design
and Implementation, OSDI 2018, pp. 579–594, USENIX Association, USA (2018)

7. Clément, B., Cohen, A.: End-to-end translation validation for the halide lan-
guage. Proc. ACM Program. Lang. 6(OOPSLA1) (2022). https://doi.org/10.1145/
3527328

8. Courant, N., Leroy, X.: Verified code generation for the polyhedral model. Proc.
ACM Program. Lang. 5(POPL) (2021). https://doi.org/10.1145/3434321

9. Cuervo Parrino, B., Narboux, J., Violard, E., Magaud, N.: Dealing with arith-
metic overflows in the polyhedral model. In: Bondhugula, U., Loechner, V. (eds.)
IMPACT 2012–2nd International Workshop on Polyhedral Compilation Tech-
niques. Louis-Noel Pouchet, Paris, France, January 2012

10. Doerfert, J., Grosser, T., Hack, S.: Optimistic loop optimization. In: Proceedings
of the 2017 International Symposium on Code Generation and Optimization, CGO
2017, pp. 292-304, IEEE Press (2017). https://doi.org/10.1109/CGO.2017.7863748

11. Feautrier, P.: Some efficient solutions to the affine scheduling problem: Part i. one-
dimensional time. Int. J. Parall. Program. 21(5), 313–348 (1992a). https://doi.
org/10.1007/BF01407835

https://doi.org/10.1007/978-3-031-13188-2_19
https://doi.org/10.1109/PGEC.1966.264565
https://doi.org/10.1145/1379022.1375595
https://doi.org/10.1109/SYNASC.2018.00014
https://doi.org/10.1145/3527328
https://doi.org/10.1145/3527328
https://doi.org/10.1145/3434321
https://doi.org/10.1109/CGO.2017.7863748
https://doi.org/10.1007/BF01407835
https://doi.org/10.1007/BF01407835

304 X. Li et al.

12. Feautrier, P.: Some efficient solutions to the affine scheduling problem. part ii.
multidimensional time. Int. J. Parall. Program. 21, 389–420 (1992b). https://doi.
org/10.1007/BF01379404

13. Feautrier, P.: Bernstein’s Conditions, pp. 130–134. Springer US, Boston, MA
(2011).https://doi.org/10.1007/978-0-387-09766-4_521

14. Feautrier, P., Lengauer, C.: Polyhedron model. In: Padua, D. (ed.) Encyclopedia
of Parallel Computing, pp. 1581–1592, Springer, Boston (2011). https://doi.org/
10.1007/978-0-387-09766-4_502

15. Gourdin, L., Bonneau, B., Boulmé, S., Monniaux, D., Bérard, A.: Formally
verifying optimizations with block simulations. Proc. ACM Program. Lang.
7(OOPSLA2) (2023). https://doi.org/10.1145/3622799

16. Grosser, T., Zheng, H., Aloor, R., Simbürger, A., Größlinger, A., Pouchet, L.N.:
Polly - polyhedral optimization in LLVM. In: Alias, C., Bastoul, C. (eds.) 1st Inter-
national Workshop on Polyhedral Compilation Techniques (IMPACT). Chamonix,
France (2011)

17. Jourdan, J.-H., Pottier, F., Leroy, X.: Validating LR(1) parsers. In: Seidl, H. (ed.)
ESOP 2012. LNCS, vol. 7211, pp. 397–416. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-28869-2_20

18. Leroy, X., Appel, A.W., Blazy, S., Stewart, G.: The CompCert memory model,
version 2. Research report RR-7987, INRIA (Jun 2012)

19. Leroy, X., Blazy, S.: Formal verification of a C-like memory model and its uses
for verifying program transformations. J. Autom. Reasoning 41(1), 1–31 (2008).
https://doi.org/10.1007/s10817-008-9099-0

20. Liu, A., Bernstein, G.L., Chlipala, A., Ragan-Kelley, J.: Verified tensor-program
optimization via high-level scheduling rewrites. Proc. ACM Program. Lang.
6(POPL) (2022). https://doi.org/10.1145/3498717

21. Livinskii, V., Babokin, D., Regehr, J.: Fuzzing loop optimizations in compilers for
c++ and data-parallel languages. Proc. ACM Program. Lang. 7(PLDI) (2023).
https://doi.org/10.1145/3591295

22. Monniaux, D., Six, C.: Formally verified loop-invariant code motion and assorted
optimizations. ACM Trans. Embed. Comput. Syst. 22(1) (2022). https://doi.org/
10.1145/3529507

23. Namjoshi, K.S., Singhania, N.: Loopy: programmable and formally verified loop
transformations. In: Rival, X. (ed.) SAS 2016. LNCS, vol. 9837, pp. 383–402.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53413-7_19

24. Pilkiewicz, A.: s2sloop: a validator for polyhedral transformations. https://github.
com/pilki/s2sLoop (2010-2013)

25. Pop, S., Cohen, A., Bastoul, C., Girbal, S., Silber, G.A., Vasilache, N.: Graphite:
polyhedral analyses and optimizations for QCC. In: Proceedings of the 2006 GCC
Developers Summit, p. 2006 (2006)

26. Pouchet, L.N., Bondhugula, U., et al.: The polybench benchmarks. https://www.
cs.colostate.edu/~pouchet/software/polybench/ (2010-2015)

27. Ragan-Kelley, J., et al.: Halide: decoupling algorithms from schedules for high-
performance image processing. Commun. ACM 61(1), 106–115 (2017). https://
doi.org/10.1145/3150211

28. Rideau, S., Leroy, X.: Validating register allocation and spilling. In: Gupta, R. (ed.)
CC 2010. LNCS, vol. 6011, pp. 224–243. Springer, Heidelberg (2010). https://doi.
org/10.1007/978-3-642-11970-5_13

29. Six, C., Gourdin, L., Boulmé, S., Monniaux, D., Fasse, J., Nardino, N.: Formally
verified superblock scheduling. In: Proceedings of the 11th ACM SIGPLAN Inter-

https://doi.org/10.1007/BF01379404
https://doi.org/10.1007/BF01379404
https://doi.org/10.1007/978-0-387-09766-4_521
https://doi.org/10.1007/978-0-387-09766-4_502
https://doi.org/10.1007/978-0-387-09766-4_502
https://doi.org/10.1145/3622799
https://doi.org/10.1007/978-3-642-28869-2_20
https://doi.org/10.1007/978-3-642-28869-2_20
https://doi.org/10.1007/s10817-008-9099-0
https://doi.org/10.1145/3498717
https://doi.org/10.1145/3591295
https://doi.org/10.1145/3529507
https://doi.org/10.1145/3529507
https://doi.org/10.1007/978-3-662-53413-7_19
https://github.com/pilki/s2sLoop
https://github.com/pilki/s2sLoop
https://www.cs.colostate.edu/~pouchet/software/polybench/
https://www.cs.colostate.edu/~pouchet/software/polybench/
https://doi.org/10.1145/3150211
https://doi.org/10.1145/3150211
https://doi.org/10.1007/978-3-642-11970-5_13
https://doi.org/10.1007/978-3-642-11970-5_13

Verified Validation for Affine Scheduling in Polyhedral Compilation 305

national Conference on Certified Programs and Proofs, CPP 2022, pp. 40–54, Asso-
ciation for Computing Machinery, New York, NY, USA (2022). https://doi.org/
10.1145/3497775.3503679

30. Tristan, J.B., Leroy, X.: Formal verification of translation validators: a case study
on instruction scheduling optimizations. SIGPLAN Not. 43(1), 17–27 (2008).
https://doi.org/10.1145/1328897.1328444

31. Tristan, J.B., Leroy, X.: Verified validation of lazy code motion. SIGPLAN Not.
44(6), 316–326 (2009). https://doi.org/10.1145/1543135.1542512

32. Tristan, J.B., Leroy, X.: A simple, verified validator for software pipelining. In: Pro-
ceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2010, pp. 83–92, Association for Computing
Machinery, New York, NY, USA (2010). https://doi.org/10.1145/1706299.1706311

33. Verdoolaege, S., Guelton, S., Grosser, T., Cohen, A.: Schedule trees. In: Rajopad-
hye, S., Verdoolaege, S. (eds.) Proceedings of the 4th International Workshop on
Polyhedral Compilation Techniques (IMPACT), Vienna, Austria, January 2014

34. Zhao, J., et al.: Akg: automatic kernel generation for neural processing units using
polyhedral transformations. In: Proceedings of the 42nd ACM SIGPLAN Interna-
tional Conference on Programming Language Design and Implementation, PLDI
2021, pp. 1233–1248, Association for Computing Machinery, New York, NY, USA
(2021). https://doi.org/10.1145/3453483.3454106

https://doi.org/10.1145/3497775.3503679
https://doi.org/10.1145/3497775.3503679
https://doi.org/10.1145/1328897.1328444
https://doi.org/10.1145/1543135.1542512
https://doi.org/10.1145/1706299.1706311
https://doi.org/10.1145/3453483.3454106

	Verified Validation for Affine Scheduling in Polyhedral Compilation
	1 Introduction
	2 Background
	2.1 Overview of Polyhedral Models
	2.2 Validation via Bernstein's Conditions

	3 Language Setting
	3.1 Polyhedral Models
	3.2 Instruction Language Interface

	4 Validation Algorithm and Its Proofs
	4.1 Validation Algorithm
	4.2 Proof Goal and Its Sketch

	5 Evaluation
	5.1 Support Existing Verified Compiler
	5.2 Support Existing Polyhedral Compiler
	5.3 Engineering Efforts

	6 Related Work
	6.1 Verification of Polyhedral Compilation
	6.2 Verification of Tensor Compilation
	6.3 Verified Validation for Compiler Optimization

	7 Conclusions and Future Work
	References

