
Abstraction for Conflict-Free Replicated Data Types

Hongjin Liang

State Key Laboratory for Novel Software Technology

Nanjing University

Nanjing, Jiangsu, China

hongjin@nju.edu.cn

Xinyu Feng
∗

State Key Laboratory for Novel Software Technology

Nanjing University

Nanjing, Jiangsu, China

xyfeng@nju.edu.cn

Abstract

Strong eventual consistency (SEC) has been used as a classic

notion of correctness for Conflict-Free Replicated Data Types

(CRDTs). However, it does not give proper abstractions of

functionality, thus is not helpful for modular verification of

client programs using CRDTs. We propose a new correctness

formulation for CRDTs, called Abstract Converging Consis-

tency (ACC), to specify both data consistency and functional

correctness. ACC gives abstract atomic specifications (as an

abstraction) to CRDT operations, and establishes consistency

between the concrete execution traces and the execution us-

ing the abstract atomic operations. The abstraction allows us

to verify the CRDT implementation and its client programs

separately, resulting in more modular and elegant proofs

than monolithic approaches for whole program verification.

We give a generic proof method to verify ACC of CRDT

implementations, and a rely-guarantee style program logic

to verify client programs. Our Abstraction theorem shows

that ACC is equivalent to contextual refinement, linking the

verification of CRDT implementations and clients together

to derive functional correctness of whole programs.

CCS Concepts: • Theory of computation → Program

verification; Abstraction; Distributed algorithms; • Soft-
ware and its engineering → Correctness; Semantics.

Keywords: Replicated Data Types, Eventual Consistency,

Contextual Refinement, Program Logic, Modular Verification

ACM Reference Format:

Hongjin Liang and Xinyu Feng. 2021. Abstraction for Conflict-Free

Replicated Data Types. In Proceedings of the 42nd ACM SIGPLAN In-
ternational Conference on Programming Language Design and Imple-
mentation (PLDI ’21), June 20–25, 2021, Virtual, Canada. ACM, New

York, NY, USA, 92 pages. https://doi.org/10.1145/3453483.3454067

∗
Corresponding author.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PLDI ’21, June 20–25, 2021, Virtual, Canada
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8391-2/21/06. . . $15.00

https://doi.org/10.1145/3453483.3454067

1 Introduction

Replicated data types are distributed implementations of data

types that replicate data in different nodes of geographically

distributed systems to improve availability and performance.

A correct implementation needs to ensure that clients ac-

cessing different replicas have a consistent view of the data.

Unfortunately, the CAP theorem [7] shows that, in the pres-

ence of network partitions, it is impossible to achieve both

availability and strong consistency.

Conflict-Free Replicated Data Types (CRDTs) [19] are re-

cently proposed to address the tensions between availability

and consistency. On the one hand, CRDTs are designed to

have availability. The nodes executing CRDTs can process

client requests without synchronization. Later the updates

are sent to other nodes, asynchronously and possibly in dif-

ferent orders. On the other hand, since concurrent updates

may conflict, CRDTs follow certain carefully-designed strate-

gies to resolve conflicts and provide a weak form of consis-

tency. For instance, the last-writer-wins registers [19] resolve

conflicts between concurrent writes by enforcing a global

total order among the writes using time-stamps. The main

strategy of add-wins sets [19] is to enforce that an add always

wins over a concurrent remove of the same element. Benefit-

ing from the conflict resolution strategies, CRDTs guarantee

strong eventual consistency (SEC) [19], where two nodes are

guaranteed to converge (i.e., having identical states) once

they have received the same set of updates.

Unfortunately, SEC fails to specify the functional correct-

ness of CRDTs. It is unclear to what extent a CRDT algorithm

really implements the desired data type. For instance, can the

last-writer-wins registers ensure that every read receives the

most recent write, and what is the most recent write? Do the

add-wins sets always behave like sequential sets, and what

does “behaving like sequential sets” mean exactly? More

importantly, without proper abstraction about functionality

of CRDTs, it is difficult to verify client programs of CRDTs in
a modular and layered way.

We use “let Π in 𝐶1 ∥ . . . ∥ 𝐶𝑛” to represent a program

consisting of client programs 𝐶1, . . . , 𝐶𝑛 , and the implemen-

tation Π of a CRDT. The clients run on distributed nodes

and access the CRDT by invoking the operations defined in

Π. To reason about the behaviors of the whole program, we

need to verify both the correctness of the CRDT implemen-

tation Π and the behaviors of the client programs. A proper

abstraction Γ for the CRDT would allow us to verify them

https://doi.org/10.1145/3453483.3454067
https://doi.org/10.1145/3453483.3454067

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

separately. As shown in Fig. 1, we only need to verify the

correctness of the CRDT implementation Π with respect to

the abstraction Γ once and for all, no matter in what con-

text (i.e., the collection of clients) it is used. Then we reason

about the clients as if they were using the abstract object

Γ, without worrying about the implementation details in Π
(e.g., time-stamps or various auxiliary data).

However, building a general abstraction mechanism and a

framework for verifying functional correctness of CRDTs and

their clients turns out to be extremely challenging, mostly

because of the diversity of conflict resolution strategies. We

observe that the strategies can be divided into two classes.

Most CRDTs use uniform conflict resolution strategies (UCR),

such as time-stamps, which do not give privilege to particular

operations, while add-wins sets and remove-wins sets use

operation-dependent conflict resolution strategies “𝑋 -wins”.

The latter case relies on the functionality and the semantic

relationship between operations, which makes the reasoning

much more difficult than the former case.

Contributions. In this paper, we try to build abstraction

and verification frameworks for CRDTs of both classes. The

abstraction is in the form of atomic object specifications Γ,
which are traditionally used for sequential data types and

shared-memory concurrent objects. To facilitate the client

reasoning, each Γ is also accompanied with a conflict relation

⊲⊳ which specifies non-commutative abstract operations of

the object (see Sec. 4). Our specifications are simple, allowing

one to easily tell what abstract data type a CRDT algorithm

really implements. They are also abstract enough to hide

low-level implementation details such as time-stamps.

For UCR-CRDTs, Fig. 1 gives an overview of our frame-

work.We proposeAbstract ConvergingConsistency (ACC),

a new formulation of correctness (1 in Fig. 1, also in Sec. 5).

ACC establishes an abstract view of execution based on the

atomic specifications Γ, so reflects the desired functionality.

The abstract views of execution sequences may be different

on different nodes, but they must be coherent on conflicting

abstract operations (related in ⊲⊳) so that SEC is guaranteed.

We prove theAbstraction Theorem (see Sec. 6), showing

that ACC is equivalent to a contextual refinement between

the concrete implementation Π of CRDT operations and the

atomic specification Γ, where the specification is executed in

a novel abstract operational semantics. The Abstraction The-

orem allows one to reason about client programs at a high

abstraction level, by replacing concrete CRDT implementa-

tions with the specifications. It decouples the verification

of clients and CRDTs, as shown in Fig. 1. The contextual

refinement can be viewed as an alternative and more client-

friendly correctness formulation for UCR-CRDTs.

Based on the abstraction, we present a rely-guarantee-

style program logic for verifying client programs at the

high abstraction level (2 in Fig. 1, also in Sec. 7). Together

with the contextual refinement, our logic offers a way to

CRDT Implementations Π

Abstraction: Γ (object spec.) and ACC(Π, (Γ, ⊲⊳))
1

Clients 𝐶1 ∥ . . . ∥𝐶𝑛
Program logic

for clients

2

Proof method

for CRDTs

3

Figure 1. Our abstraction and verification framework.

verify the functional correctness of the whole system. We

have applied our logic to reason about several interesting

client programs (see Appendix F).

We also develop a proof method for systematically ver-

ifying ACC (3 in Fig. 1, also in Sec. 8). We have applied it
to verify seven major UCR-CRDT algorithms [19], including
the replicated counter (with both increment and decrement

operations), the grow-only set, the last-writer-wins (LWW)

register, the LWW-element set, the 2P-set, the continuous

sequence, and the replicated growable array (RGA).

To the best of our knowledge, our work gives the first

framework for compositional verification of whole programs,

including both UCR-CRDT implementations and client code,

based on contextual refinement and the abstraction theorem.

We actually show that different implementation algorithms

for the same data type, such as the continuous sequence and

RGA for lists, or the LWW-element set and the 2P-set for

sets, can be verified using the same abstract specification.
Verifying a client program of the data type in our frame-

work guarantees its correctness no matter which specific

implementation algorithm it uses.

For 𝑋 -wins CRDTs, we extend the specification with the

explicit operation-dependent conflict resolution strategy, and

propose XACC as an extension of ACC for correctness defi-

nition. We still establish the Abstraction Theorem, by giving

a more relaxed abstract semantics to clients with object spec-

ifications. We also verify the functional correctness of the

add-wins set and remove-wins set with respect to XACC.

2 Informal Development

Below we discuss the main challenges to formalize the cor-

rectness of CRDTs, and give an overview of our approaches.

2.1 The RGA Example

As amotivating example, Fig. 2 shows a simplified version [1]

of the RGA algorithm [17] which in practice is the core algo-

rithm for collaboratively edited documents. RGA implements

a list object with three operations: addAfter(a,b) adds the

element b after a in the list, remove(a) removes the element

a from the list, and read() returns the whole list. For simplic-

ity, we assume that the elements are unique, an element is

added or removed at most once, and the list always contains

a sentinel element ◦.

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

1 var N := ∅, T := ∅;
2 var ts := (0, cid);

3 operation addAfter(a, b){
4 assume(a = ◦ ∨
5 a ≠ ◦ ∧ (_,_,a) ∈ N ∧ a ∉ T);
6 local i := (ts.fst+1, cid);
7 return;
8 gen_eff AddAft(a, i, b);
9 }

10 effector AddAft(a, i, b){
11 N := N ∪ {(a, i, b)};
12 if (ts < i) ts := i;
13 }

14 operation read(){
15 return trav(N,T);
16 gen_eff IdEff;
17 }

18 operation remove(a){
19 assume((_,_,a) ∈ N
20 ∧ a ∉ T ∧ a ≠ ◦);
21 return;
22 gen_eff Rmv(a);
23 }

24 effector Rmv(a){
25 T := T ∪ {a};
26 }

Figure 2. The Replicated Growable Array (RGA).

For CRDTs, each operation has two phases. In the first
phase, a client on the node issues the operation. We call the

node the origin of the operation. The origin node performs

some initial local computation and responds to the client’s

request using the return command. It also generates an

effector (see gen_eff in lines 8, 16 and 22), which captures

the updates on the shared (replicated) state. The effector is

executed immediately at the origin node, and is broadcast

to all other nodes. In the second phase, each node applies

the effector asynchronously over its local replica. Note that

read-only queries (e.g., the read() operation) generate the

identity effector IdEff (line 16 in Fig. 2). We do not need to

broadcast IdEff since it does not change the state.

(ts0, a)

(ts1, e) (ts2, b) (ts3, c)

(ts4, d)

RGA represents the list

using a time-stamped tree.

Every tree node (𝑎, 𝑖, 𝑏)
consists of a key element𝑏,

a time-stamp 𝑖 associated

with 𝑏, and the key ele-

ment 𝑎 of its parent node. It
is added by the operation

addAfter(a, b). Then a

tree is encoded as a set of triples. For instance, the tree above

can be represented by the set N:

N = {(◦, ts0, a), (a, ts1, e), (a, ts2, b), (a, ts3, c), (c, ts4, d)}

We assume ◦ is the root node of the tree. Besides the tree N,
the algorithm also uses T as a tombstone set recording all the

elements that are removed. Each replica state also contains

ts to record the newest time-stamp at the replica.

The read-only query operation read() calls the function

trav. It first orders the sibling nodes on the tree N in de-

creasing time-stamp order, and then traverses the tree by

depth-first search. From the resulting list, all the elements in

the tombstone set T are removed and the list consisting of

the remaining elements is returned. For instance, suppose

addAfter(a, b);
x := read();

addAfter(a, c);
y := read();

t1

t2

addAfter(a,b)

addAfter(a,c)

x:=read()

y:=read()

(a)

addAfter(a, b);
x := read();

u := read();
if (b ∈ u)

addAfter(a, c);
y := read();

t1

t2

addAfter(a,b)

u:=read() addAfter(a,c)

x:=read()

y:=read()

(b)

Figure 3. Clients of RGA and their executions.

the tombstone set T for the tree N shown above is {e}. The
read() should return acdb if ts0 < ts1 < ts2 < ts3 < ts4.

The addAfter(a,b) operation generates the time-stamp

i for b. Here time-stamps are implemented using pairs (𝑛, t),
where 𝑛 is a natural number and t is a node ID (we write

cid for the current node ID). Every two time-stamps are

comparable: (𝑛1, t1) > (𝑛2, t2) holds if (𝑛1 > 𝑛2) or (𝑛1 =

𝑛2) ∧ (t1 > t2). The effector of addAfter(a,b) simply adds

(a,i,b) into the tree N and refreshes the time-stamp ts at
the recipient node. The effector of remove(a) adds a into T.

Clients. The top of Fig. 3(a) shows a simple client program

of RGA. It consists of two client threads calling the RGA oper-

ations. We represent the whole program as let ΠRGA in 𝐶1 ∥

𝐶2, where ΠRGA denotes the RGA implementation in Fig. 2.

The bottom of Fig. 3(a) shows an execution of the program,

assuming the clients running on two distinct nodes t1 and t2.
The dots denote the client requests at the origin node (and

the blue dots denote read-only queries). An arrow means

sending an effector to a certain node.

We model an execution trace as a sequence E of events

recording the execution of all the operations (both originals

and effectors), and E|t as the subsequence consisting of only
events occurring on the node t. So the execution shown

in Fig. 3(a) is defined as the following trace E (assuming

ts1 < ts2 and the initial list contains a only). We also record

the arguments and return values (if any) of each operation.

(t1, addAfter(a, b), ts1), (t2, addAfter(a, c), ts2),
(t2, AddAft(a, ts1, b)), (t1, AddAft(a, ts2, c)),
(t1, read(), acb), (t2, read(), acb)

The event (t1, addAfter(a, b), ts1) represents the invocation
of an operation on the origin node t1, where the time-stamp

ts1 is generated for the corresponding effector. The event

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

(t2, AddAft(a, ts1, b)) represents the execution of an effector
on t2 (sent from other nodes). Then the local traces E|t1 and
E|t2 are the following:
(t1, addAfter(a, b), ts1), (t1, AddAft(a, ts2, c)), (t1, read(), acb)
(t2, addAfter(a, c), ts2), (t2, AddAft(a, ts1, b)), (t2, read(), acb)

Note that each node only sees its own read-only queries.

2.2 Functional Correctness (FC) of CRDTs

Correctness of CRDTs should capture both SEC and func-

tionality of the data types, so that we can reason about the

behaviors of clients (e.g., those in Fig. 3) without looking into

the code of CRDT implementation (e.g., the RGA algorithm

in Fig. 2), assuming the correctness of CRDT. It is easy to see

that the RGA algorithm guarantees SEC since all the effec-

tors produced by the algorithm are commutative with each

other, but what is the expected functionality? From clients’

point of view, the object is shared by all client threads and

may be updated concurrently through the provided oper-

ations. Ideally we want to allow the client to maintain a

simple atomic view of each object operation, so that we can

interpret the client’s behaviors in terms of executions of a

sequence of these abstract atomic operations. For instance,

the nodes t1 and t2 in Fig. 3(a) may both interpret their local

execution traces as the following sequential execution of

atomic operations:

addAfter-atom(a, b), addAfter-atom(a, c), (read(), acb)
Here addAfter-atom(x, y) represents an abstract atomic

specification of addAfter(x, y). Its effects are applied atomi-

cally to the RGA object. It is abstract and does not generate

any effectors or time-stamps. Note that the result acb of the fi-
nal read determines the order between addAfter-atom(a, b)
and addAfter-atom(a, c). Therefore, for the node t2, the ab-
stract operations have to be executed in a different order

from the order of the effectors in its concrete trace E|t2 .
Unlike SEC, which is about the consistency of data replica

on different nodes, the functional correctness (FC) is defined
from the viewpoint of each individual node (or client). It

specifies the consistency between the execution trace of con-

crete operations on a node and the corresponding abstract

execution trace.

Defining FC. The above example shows that each node t
may interpret an execution E in terms of a sequential exe-

cution of the corresponding atomic operations, which we

describe by a total order art over these operations. Our FC re-

quires, for every prefix E ′
of E, the sub-trace E ′ |t that t sees

locally may correspond to an abstract trace E ′′
following

the total order art, such that performing E ′ |t has the same

effects as performing E ′′
, that is, they generate the same state

(modulo the state abstraction), and the same return value if
E ′ |t ends with a query operation.

In the example both art1 and art2 order addAfter-atom(a, b)
before addAfter-atom(a, c). For t2, we consider its local

traces of all the prefixes of E:

E1 : (t2, addAfter(a, c), ts2)
E2 : (t2, addAfter(a, c), ts2), (t2, AddAft(a, ts1, b))
E3 : (t2, addAfter(a, c), ts2), (t2, AddAft(a, ts1, b)),

(t2, read(), acb)

We can check that E1 generates the same state as the atomic

execution of addAfter-atom(a, c) (since the trace consists
of only one event, it trivially satisfies the total order art2),
and E2 corresponds to

addAfter-atom(a, b), addAfter-atom(a, c)

For E3, we also check the final return value is the same with

such a query in the abstract trace.

2.3 Ordering of Operations and ACC

Both SEC and FC above are defined in a declarative manner

and are not very informative to the clients of CRDTs. For

instance, FC only requires the existence of an order art on
each node t to order the abstract operations, and says nothing
about what the art is like. So the clients still cannot tell the

execution orders between CRDT operations.

To help reason about client programs, we want to specify

the ordering of operations that CRDTs can enforce. More

specifically, for each total order art of abstract operations on
each node t, we want to give more constraints to tell how to

relate it to the concrete execution order, and how to relate

different art on different nodes so that SEC is guaranteed.

For instance, a direct mapping of each concrete step to

the corresponding abstract atomic one following the real-

time order on a node usually does not work. In the example

shown in Fig. 3(a), art2 has to order addAfter-atom(a, b)
before addAfter-atom(a, c), which is different from the real-

time order of concrete operations in E|t2 . Then what are the
appropriate orders of the abstract operations?

Preserving the visibility order. Consider the client of

RGA in Fig. 3(b). In the execution, the first read of t2 is made

after the arrival of the effector of addAfter(a,b) from t1.
In this case we say addAfter(a,b) is visible to u:=read().
In general, an operation 𝑎 is visible to an operation 𝑏 at the

node t if the effector of 𝑎 has been applied at t before t issues
𝑏. The visibility order encodes the “happens-before” relations

between operations for a certain node.

Naturally we expect u, x and y to read out ab, acb and

acb respectively (assuming the initial list contains a only).
This means, when we map the concrete steps at a thread

to a sequence of abstract atomic operations, the abstract

executions should follow the visibility order.

Different nodes may observe different orders. In FC

we require each node t to maintain an order art of abstract
operations. SEC would be obvious if all art are the same.

However, as we would see below, this requirement is overly

restrictive and cannot be satisfied by some CRDTs.

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

addAfter(a, p);
addAfter(c, d);
u := read();

addAfter(c, e);
addAfter(a, q);
v := read();

t1

t2

1 addAfter(a,p) 2 addAfter(c,d)

3 addAfter(c,e) 4 addAfter(a,q)

u:=read()

v:=read()

Figure 4. A client of continuous sequence. Assuming the

initial sequence is ac, is it possible for u and v to read apqced?

Consider the program in Fig. 4. It is also a client of CRDT

sequence, but implemented using the continuous sequence

algorithm [19] instead of RGA. The continuous sequence

tags each addAfter operation with a real number, the value

of which reflects the intended position of the newly added

element (assuming tags of elements on the sequence are in

increasing order). For instance, assuming the initial sequence

is ac, operation 1 will tag p with a real number between the

tags of a and its subsequent element c. The read operation

then orders the elements by their tags and returns the result-

ing sequence. Note that the tags are different from the time

stamps in RGA, and the happens-before order does not imply

the order of tags. For instance, we know the tag generated

by 2 is greater than 1 , but the tag of 4 is smaller than 3 .

In this example it is possible to read apqced at the end,

as long as the tag generated by 1 happens to be smaller

than that of 4 , while the tag of 3 is smaller than that of 2 .

To interpret the final sequence apqced, node t1 has to order

the abstract operation 4 before 1 , and order 2 before 3 .

In addition, it needs to preserve the visibility order, as we

explained before. So it needs to order 1 before 2 . Therefore,

the only acceptable order for t1 is 4 1 2 3 . Similarly, the

only possible order for t2 is 2 3 4 1 . So 1 and 2 (also 3

and 4) must be ordered differently by t1 and t2.
Therefore we should allow different nodes to have differ-

ent local views of the abstract executions. In particular, the
visibility orders of operations originated in other nodes may
not be respected. We can also find similar examples in other

CRDTs such as the add-wins set.

However, the orders cannot be arbitrarily different because

we need to guarantee SEC. They have to be consistent in

some way. What kind of consistency should be enforced then?

Conflicting operations should follow the same order.

CRDTs achieve SEC by turning non-commutative abstract

operations into commutative effectors. Arbitrary orderings

of commutative operations always lead to the same state.

We say two abstract operations 𝑓1 and 𝑓2 are conflicting,
represented as 𝑓1 ⊲⊳ 𝑓2, if they are not commutative. In Fig. 4,

addAfter(a, p) and addAfter(a, q) are conflicting, but
addAfter(a, p) and addAfter(c, d) are not.

Naturally, to reach the same state, we require the abstract

executions on different nodes execute conflicting operations

in the same order. In Fig. 4, the abstract executions 4 1 2 3

and 2 3 4 1 order 4 and 1 (2 and 3) the same way.

Abstract Converging Consistency (ACC). We formalize

our correctness notion of CRDTs as Abstract Converging

Consistency (ACC), which is a relation between the concrete

implementation of a CRDT (represented asΠ) and its abstract
specification (represented as a pair (Γ, ⊲⊳), where Γ is the

abstract atomic specification of the operations, and ⊲⊳ is a

symmetric binary relation between conflicting operations).

ACC requires FC defined in Sec. 2.2, and the order con-

straints over abstract executions described in this section.

More specifically, ACC(Π, (Γ, ⊲⊳)) requires that, for any ex-

ecution trace E of Π, each node t can find a total order art
over abstract atomic operations in Γ, such that:

• For each prefix E ′
, there is a corresponding sequence

E ′′
of abstract operations. E ′′

follows the order art
and generates the same effects with E ′ |t;

• art preserves the local visibility order on t; and
• For any two nodes t1 and t2, art1 and art2 can be differ-

ent, but they must assign the same order for conflicting

operations specified in ⊲⊳.

We can prove that ACC defined above guarantees SEC.

Note that the last point only requires the existence of a
consistent ordering of conflicting operations, with no further

constraints. This is not a problem for UCR-CRDTs that use

uniform operation-independent conflict resolving strategies.

However, for CRDTs like add-wins and remove-wins sets, we

may rely on the specific strategy (𝑋 -wins) to reason about

the behaviors of clients. In this case we need to further refine

the above ACC definition.

2.4 Extended ACC for 𝑋 -Wins CRDTs

We show an execution of add-wins sets in Fig. 5(a). A set pro-

vides three operations: lookup(e), add(e) and remove(e).
The add-wins set algorithm assigns a unique tag to each

element when it is added. In Fig. 5 we highlight the tags by

labeling the dots effectors rather than originals. We use 0

and 1 to represent the elements in the set, and a and b for the
tags. So an element may be added to the set multiple times

but each time with a different tag. The remove operation re-

moves all the occurrences of the element in the local replica.

The effector of remove carries the set of element-tag pairs

removed locally. On receiving the effector, the remote hosts

remove only these pairs from their local replicas.

For instance, in Fig. 5(a) when t2 issues a remove(1) re-

quest (operation 6), it sees only (1, b) in the local replica

and sends the effector Rmv((1, b)) to t1. When it arrives

at t1, the pairs (1, b) and (1, c) are both in t1’s replica, but
only (1, b) is removed. Therefore the subsequent lookup(1)

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

t1

t2

1 Add(0,a)

2 Add(1,b)

3 Add(1,c)

4 Add(0,d)

5 Rmv((0,a))

6 Rmv((1,b))

lookup(0)

lookup(0)

lookup(1)

lookup(1)

(a)

t1

t2

1 Add(0,a)

2 Add(0,b)

3 Rmv((0,a))

4 Rmv((0,b))

lookup(0)

lookup(0)

lookup(0)

lookup(0)

(b)

Figure 5. Executions of the add-wins set.

still returns true. This illustrates the add-wins conflict resolv-
ing strategy: for concurrent add (3) and remove (6), the

abstract view is to execute add after remove.
It is interesting to see that the add-wins conflict resolving

strategy is different from the time-stamp-based approaches

since it is tiedwith the functionality of specific operations. As

the dual, there is also the remove-wins set algorithm which

applies the remove-wins strategy. Note that the add-wins set
and the remove-wins set assume causal delivery between

add and remove operations. This is also different from other

CRDTs, which do not need to rely on causal delivery.

The add-wins sets and remove-wins sets may have differ-

ent behaviors, which are observable by clients. If the client

relies on the specific strategy and cares about the difference,

our above ACC definition would be too abstract to distin-

guish them. We solve this problem by introducing a won-by
relation ◀ in the abstract specification to describe the con-

flict resolving strategy. We have remove(e) ◀ add(e) for

add-wins set, and the reverse for remove-wins set. Since we

only need to resolve conflicts for conflicting operations, the

◀ relation is a subset of the conflict relation ⊲⊳. Correspond-

ingly, we refine the third point of ACC in 2.3 with an extra

requirement that all the art respect the ◀ order.

Unfortunately, this simple extension of ACC would not

work. Consider the execution shown in Fig. 5(b). For each

node, we can see the two lookup operations return true and
false respectively. However, we cannot find a total order

ar satisfying ACC. For t1, we have to order 1 before 3 (to

preserve the visibility order), and 3 before 2 (to respect the

◀ order). Therefore 4 has to be the last operation, other-

wise the abstract execution cannot generate the same return

values as the concrete one, failing FC. However, ordering 4

after the concurrent 1 would violate the ◀ order.

This problem is caused by our over-simplified interpre-

tation of the “add-wins” conflict-resolving strategy, which

says we should always order remove(e) before add(e) if

they are concurrent. However, in our example, when 4 ar-

rives at t1, the effect of 1 has already been canceled out by

3 . Therefore at this moment whether 1 has been executed

before or not should make no difference.

To address this problem, we give a more precise descrip-

tion of the strategy, which says concurrent remove(e) should
be ordered before add(e) only if the effect of add(e) is still

reflected in the state (i.e., its effect has not been canceled out

by others). Since the cancellation of effects is functionality

dependent, we introduce another canceled-by relation▷ over

abstract operations in the specification. Informally, we let

the operation 𝑓 be canceled by 𝑓 ′ (𝑓 ▷ 𝑓 ′) if the following
two requirements hold:

• 𝑓 may win others as specified in ◀; and

• for any other abstract operations 𝑓1, . . . , 𝑓𝑛 (𝑛 ≥ 0) in

between, the abstract operation sequence 𝑓 , 𝑓1, . . . , 𝑓𝑛 ,

𝑓 ′ has the same effects as 𝑓1, . . . , 𝑓𝑛 , 𝑓
′
.

Therefore, for add-wins sets, we have add(e) ▷ remove(e)
but not the inverse (which violates the first requirement).

We relax the third point of ACC accordingly, and ignore

the canceled operations when we check the consistency be-

tween the total orders art for different nodes t. This relaxed
ACC allows the total orders art1 and art2 in Fig. 5(b) to be

defined as 1 3 2 4 and 2 4 1 3 , respectively. When 4 is ex-

ecuted at t1, we only need to check that 3 and 4 are ordered

consistently, and ignore 1 and 2 because they have been

canceled (by 3 and 4 respectively) at this moment. Also

because 3 and 4 are not conflicting (they are commutative),

it is okay to order them differently in art1 and art2 .
With the more refined specification, we can redefine the

correctness as XACC(Π, (Γ, ⊲⊳,◀,▷)). It also assumes causal

delivery of messages, as required by add-wins and remove-

wins sets. Note that UCR-CRDTs satisfying ACC(Π, (Γ, ⊲⊳))
in Sec. 2.3 also satisfy XACC(Π, (Γ, ⊲⊳, ∅, ∅)) — Since their

conflict resolving policies are not tied with particular opera-

tions, we can simply set ◀ and ▷ to be empty.

Compositionality. Like linearizability, our definition of

ACC/XACC is compositional. That is, for a set of CRDTs

Π1, . . . , Π𝑛 , if every Π𝑖 satisfies XACC(Π𝑖 , (Γ𝑖 , ⊲⊳𝑖 ,◀𝑖 ,▷𝑖)),
then the clients can use them together and view them as a

single big object satisfying XACC(−→Π , (−→Γ ,−→⊲⊳,−→◀,
−→▷)), where

−→
Π represents the disjoint union of all the operations Π1 ⊎
. . . ⊎ Π𝑛 , and

−→
Γ , −→⊲⊳ , −→◀ and

−→▷ are defined similarly. Note

here we assume the CRDTs do not share data.

2.5 Abstraction and Client Reasoning

It is important to note that the goal of this work is not to give
axiomatic definitions to tell the validity of a single execution

trace, although we use traces above (e.g., those shown in

Figs. 3 and 4) to explain the key ideas. Our goal is to support

static program verification, where we need to consider all

the execution traces that can be possibly generated by the

program, and the reasoning is based on the program text

without actually running it. This is much more challenging

than reasoning about a single trace.

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

t1

t2

add(0)

remove(0)

For instance, if we look at the ex-

ecution of a CRDT set on the right,

it is easy to tell what the final state

is: it must contain 0 for add-wins

sets, but mustn’t for remove-wins sets. Knowing the con-

crete implementation mechanism, the result can be easily

predicted. The deceiving simplicity may make one doubt

the need of abstraction. However, if we consider the simple

client program (add(0); || remove(0);) that generates
the trace, we know it may generate both results (since there

are other possible executions where one operation happens

before the other), no matter which CRDT set we use
1
. This

example shows that we have to consider all possible order-

ing of operations for program reasoning, which can be very

complicated in non-trivial clients. Abstracting away the im-

plementation details and taking an atomic view of operations

can greatly simplify the reasoning.

Remark. Picking the appropriate abstraction level for CRDT

specifications is one of the key challenges we need to address.

On the one hand, the abstractions need to hide as much

implementation detail as possible. On the other hand, they

need to be useful for client reasoning, i.e., it does not abstract

away important functionality properties of the data type.

For 𝑋 -wins CRDTs, we need to decide whether or not

to hide the functionality-dependent “𝑋 -wins” strategies. It

might be possible to have a weaker ACC definition that

unifies UCR and 𝑋 -Wins CRDTs, but it would not support

the reasoning about some special clients whose functionality

depends on the differences between add-wins sets, remove-

wins sets and UCR sets. Consider the following client:

add(0);remove(0);
x := read();

add(0);remove(0);
y := read();

At the end the post-condition 0 ∈ 𝑥 ⇒ 0 ∉ 𝑦 holds when

the client uses the remove-wins set or UCR sets (e.g., the

LWW-element set) but not when it uses the add-wins set.

Abstracting away the differences of these sets would prevent

the verification of the above program.

3 Basic Technical Settings

Figure 6 shows the syntax of the language. The whole pro-

gram 𝑃 consists of 𝑛 clients 𝐶 , each running on different

nodes. They share the object Π, which is replicated on all

the nodes. Each client executes sequentially, accessing the

local client state in the node. It can also access the object state
through the command 𝑥 := 𝑓 (𝐸), which calls the operation

𝑓 of the object with the argument 𝐸.

We model the object Π as a mapping from an operation

name 𝑓 and its argument to the actual operation over the

object state. When a client calls an operation, it executes

in two steps. First the operation is applied over the object

state and generates a return value and an effector 𝛿 . The

1
Note it is indeed possible to construct clients that can distinguish add-wins

sets from remove-wins sets, as discussed in the following remarks.

(OpName) 𝑓 ∈ String
(Effector) 𝛿 ∈ LocalState ⇀ LocalState
(ODecl) Π ∈ OpName×Val ⇀ LocalState ⇀ Val×Effector
(Expr) 𝐸 ::= 𝑥 | 𝑛 | 𝐸+𝐸 | . . .

(CltStmt) 𝐶 ::= 𝑥 := 𝑓 (𝐸) | skip | 𝐶;𝐶 | if (𝐸) 𝐶 else 𝐶 | . . .
(Prog) 𝑃 ::= let Π in 𝐶1 ∥ . . . ∥𝐶𝑛

Figure 6. Syntax of the programming language.

effector 𝛿 captures the operation’s effect over the object

state. It is broadcast to all nodes, including the one where the
client request originates. Then the effector 𝛿 is applied on

the local replica of the object data on each node. Note that

on the origin node of the client request, the generation of the

effector and the execution of it over the local replica are done

atomically. To simplify the presentation we assume each

program uses only one object. As we explained in Sec. 2.4,

our correctness definition ACC is compositional and the

results still hold when there are more objects.

We assume an effector is delivered to a node at most once,

but it may never reach a target node. Also we do not as-
sume FIFO message channels. Most of the CRDTs can work

under these assumptions. When stronger assumptions are

needed (e.g., causal delivery), we can add extra constraints

over execution traces.

Events and event traces. The clients 𝐶𝑖 in the program

let Π in 𝐶1 ∥ . . . ∥𝐶𝑛 are executed following the standard in-

terleaving semantics. The semantics generates events when

CRDT operations are executed. An execution trace is the

sequence of events generated during the interleaving execu-

tion. We define the events 𝑒 and execution traces E below:

(Event) 𝑒 ::= (mid, t, (𝑓 , 𝑛, 𝑛′, 𝛿)) | (mid, t, (𝑓 , 𝑛), 𝛿)
(ETrace) E ::= 𝜖 | 𝑒 ::E

Here 𝜖 represents an empty list. The event (mid, t, (𝑓 , 𝑛, 𝑛′, 𝛿))
is called an origin event. It is generated when the object oper-

ation 𝑓 is called on the node t with the argument 𝑛, and the

return value 𝑛′
and the effector 𝛿 are generated by applying

Π(𝑓 , 𝑛) over the local replica. It also contains a unique ID

mid for the original request of the operation. When the effec-

tor 𝛿 is delivered to and executed at another node t′, the node
t′ generates the event (mid, t′, (𝑓 , 𝑛), 𝛿). It records not only
the local node ID t′ and the effector, but also the information

about the original operation, including the operation name

𝑓 , the argument 𝑛, and the ID mid.
We define T (𝑃,S) as the prefix closure of the event traces

that can be generated by executing 𝑃 from the initial state

S. We also define T (Π,S) as the prefix closure of the event
traces that can be generated by any set of clients accessing

Π with the initial state S.

4 Specifications for CRDTs

The specification of a CRDT object consists of two parts,

the operation specification Γ and the conflict relation ⊲⊳, as

shown in Fig. 7. Γ maps operation names and arguments

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

(OSpec) Γ ∈ OpName × Val ⇀ AbsState → Val × AbsState
(Action) 𝛼 ∈ AbsState → AbsState

⊲⊳ ∈ P (Action × Action)

Figure 7. Object specifications (Γ, ⊲⊳).

to abstract atomic operations of the type AbsState → Val ×
AbsState. That is, each atomic operation applies over an ab-

stract object state and generates the resulting abstract state

and a return value. We assume it is a total function because

as a specification we do not want it to get stuck whenever a

client applies the operation.

We use AbsState to represent the set of object states S
at the abstract level. They may abstract away the implemen-

tation dependent information of the concrete states. For in-

stance, the concrete state of RGA consists of a time-stamped

tree N and a tombstone T, as shown in Sec. 2.1, while the

abstract state is simply a sequence (e.g., acdb).
Since the return value of an operation is meaningful only

to the origin node, while the state transformation needs to be

performed on all replicas, we use opr(Γ(𝑓 , 𝑛)) to represent

the effects of Γ(𝑓 , 𝑛), which does a state transformation. We

call the transformation an action (represented as 𝛼).

The conflict relation ⊲⊳ needs to be a symmetric binary
relation over non-commutative actions. For sets, add(x) and

remove(x) conflict with each other. For RGA,

addAfter(𝑎, 𝑏) ⊲⊳ addAfter(𝑐, 𝑑) iff {𝑎, 𝑏} ∩ {𝑐, 𝑑} ≠ ∅,
addAfter(𝑎, 𝑏) ⊲⊳ remove(𝑐) iff 𝑐 ∈ {𝑎, 𝑏} .

Well-defined specifications must satisfy nonComm(Γ, ⊲⊳),
which requires that all the non-commutative actions in Γ
should be specified in ⊲⊳.

Definition 1. nonComm(Γ, ⊲⊳) iff ∀𝑓1, 𝑛1, 𝑓2, 𝑛2, 𝛼1, 𝛼2,
𝛼1 = opr(Γ(𝑓1, 𝑛1)) ∧ 𝛼2 = opr(Γ(𝑓2, 𝑛2)) ∧ ¬(𝛼1 ⊲⊳ 𝛼2)
=⇒ 𝛼1 # 𝛼2 = 𝛼2 # 𝛼1

where 𝛼 # 𝛼 ′ def

= 𝜆S. 𝛼 ′(𝛼 (S)) .

As we explained in Sec. 2.5, add-wins and remove-wins

sets should be specified with further information about the

conflicting resolving strategies, i.e., the won-by (◀) and

canceled-by (▷) relations over conflicting actions. In the fol-

lowing sections we first present our results for UCR-CRDTs

that do not need ◀ and ▷, and show the extension of them

to support these 𝑋 -wins algorithms in Sec. 9.

We assume ⊲⊳ is symmetric and nonComm(Γ, ⊲⊳) holds
throughout the paper. We overload ⊲⊳ over operations, and

also over events, written as (𝑓 , 𝑛) ⊲⊳Γ (𝑓 ′, 𝑛′) and 𝑒 ⊲⊳Γ 𝑒 ′

respectively (the subscript Γ is used to extract actions corre-

sponding to (𝑓 , 𝑛), (𝑓 ′, 𝑛′), 𝑒 and 𝑒 ′).

5 Abstract Converging Consistency

As shown in Def. 2, ACC𝜑 (Π, (Γ, ⊲⊳)) is parameterized with

an abstraction function 𝜑 , which maps concrete object states

to abstract ones, i.e., 𝜑 ∈ LocalState ⇀ AbsState.

ExecRelated𝜑 (t, (E,S), (Γ, ar)) iff ∀E ′ ⩽ E .
∀(S′

𝑎, 𝑛
′) = aexec(Γ, 𝜑 (S), visible(E ′, t) ⇂ar).

𝜑 (exec_st(S, E ′ |t)) = S′
𝑎 ∧

(∀𝑒 = last(E ′ |t) . is_origt (𝑒) =⇒ rval(𝑒)=𝑛′)
Coh(ar, ar′, (Γ, ⊲⊳)) iff

∀𝑒1, 𝑒2 . (𝑒1 ar 𝑒2) ∧ (𝑒2 ar′ 𝑒1) =⇒ ¬(𝑒1 ⊲⊳Γ 𝑒2)

Figure 8. Auxiliary definitions for ACC.

Definition 2. ACC𝜑 (Π, (Γ, ⊲⊳)) iff

∀S, E . E ∈ T (Π,S) ∧ S ∈ dom(𝜑) =⇒ ACT𝜑 (E,S, (Γ, ⊲⊳))

It requires every event trace E of Π to satisfy ACT shown

in Def. 3, which formalizes the idea in Sec. 2.3.

Definition 3. ACT𝜑 (E,S, (Γ, ⊲⊳)) iff ∃ar1, . . . , ar𝑛 ,

∀t. totalOrdervisible(E,t) (art) ∧ (vis↦−−→
t E ⊆ art) ∧

ExecRelated𝜑 (t, (E,S), (Γ, art)) ∧ ∀t′ ≠ t. Coh(art, art′, (Γ, ⊲⊳))

where we define ExecRelated and Coh in Fig. 8.

Before explaining ACT, we first introduce the notations
for visibility of events. In the execution E an origin event

𝑒 is visible to another event 𝑒 ′ originated from the node t

(i.e., 𝑒
vis↦−−→
t

E 𝑒 ′), if the effector of 𝑒 has reached t before 𝑒 ′ is

issued. We also use visible(E, t) to represent the set of origin
events whose effectors have reached t.

ACT says that each node t may have its own arbitration

order art, which is a total order over the origin events on E
visible to t. Each art must preserve the visibility order on t

(i.e.,

vis↦−−→
t

E ⊆ art).
On functional correctness, ACT requires that the concrete

execution on node t should correspond to the execution

of the abstract events following the arbitration order art
(see ExecRelated𝜑 (t, (E,S), (Γ, art))). As defined in Fig. 8,

ExecRelated says that every state in t’s concrete execution
can be mapped (via 𝜑) to the state in the abstract execution

trace, and that every request issued by t gets the same return

value as the abstract one. The definition checks on every

prefix E ′
of the concrete trace E. We use visible(E ′, t) ⇂ar to

represent a serialization of the set visible(E ′, t) following the
total order ar. Then aexec(Γ,S𝑎, E) executes the sequence
of abstract operations on E, starting from the initial abstract

state S𝑎 . It returns the final state S′
𝑎 and the return value

𝑛′
of the last operation. Similarly, we use exec_st(S, E) to

represent the final state generated by executing the effectors

on E from the initial state S. We omit their definitions here.

The arbitration orders on different nodes can be different,

but must be coherent to guarantee SEC. The coherence re-

quires that conflicting actions are given the same arbitration

order by all the nodes (seeCoh(art, art′, (Γ, ⊲⊳)), as defined in

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

Fig. 8). Combined with (vis↦−−→
t

E ⊆ art) for every t, Coh actu-

ally ensures that art must agree with other nodes’ visibility

orders on conflicting operations.

Properties of ACC. Our ACC guarantees SEC. Below we

first define the convergence of event traces in Def. 4. It is

a property about the concrete level execution only, and it

captures the SEC requirement.

Definition 4. CvT𝜑 (E,S) iff

∀E ′, E ′′, t, t′. E ′⩽E ∧ E ′′⩽E ∧ visible(E ′, t)=visible(E ′′, t′)
=⇒ 𝜑 (exec_st(S, E ′ |t)) = 𝜑 (exec_st(S, E ′′ |t′))

CvT𝜑 (E,S) says, whenever the two nodes t and t′ see
the same set of operations, executing the corresponding

sub-traces on t and t′ results in states corresponding to the

same abstract state. Note we allow t and t′ to pick different

time points in the execution trace E (see E ′⩽E and E ′′⩽
E, which says E ′

and E ′′
can be different prefixes of E),

because there is no global time on the nodes. Besides, the

two resulting states do not have to be identical. Instead, they

only need to be mapped to the same abstract state. This way

we allow the implementation-dependent data in the concrete

states to be different. The convergence of an objectΠ, written
as Cv𝜑 (Π), requires every event trace E of Π to satisfy CvT.

Lemma 5. If ACC𝜑 (Π, (Γ, ⊲⊳)), then Cv𝜑 (Π).
Another important property ofACC𝜑 (Π, (Γ, ⊲⊳)) is its com-

positionality, as we explained in Sec. 2.4.

6 Abstraction Theorem

To simplify the reasoning of clients of CRDTs, we give an

abstract operational semantics of client programs, based on

the abstract specification (Γ, ⊲⊳). The abstract version of the

client program is defined below:

(AProg) P ::= with (Γ, ⊲⊳) do 𝐶1 ∥ . . . ∥𝐶𝑛

It is safe to reason about clients at the abstract level as long

as the CRDT implementation Π contextually refines (Γ, ⊲⊳).
Definition 6. Π ⊑𝜑 (Γ, ⊲⊳) iff, for all clients 𝐶1, . . . ,𝐶𝑛 and

state S ∈ dom(𝜑), for all ⌊E⌋ and 𝜎𝑐 ,
(⌊E⌋, 𝜎𝑐) ∈ Ts (let Π in 𝐶1 ∥ . . . ∥𝐶𝑛,S) =⇒

(obsv𝜑 (⌊E⌋), 𝜎𝑐) ∈ Ts (with (Γ, ⊲⊳) do 𝐶1 ∥ . . . ∥𝐶𝑛, 𝜑 (S))

Informally, Π ⊑𝜑 (Γ, ⊲⊳) says, for any clients and initial

states, executing the clients with Π does not generate more

observable behaviors than the execution using (Γ, ⊲⊳) in the

abstract operational semantics (presented below). Ts (𝑃,S)
and Ts (P,S) are defined similarly as T (𝑃,S) (Sec. A), but
they additionally record the final client state 𝜎𝑐 . Also in the

extended trace ⌊E⌋ they record all the intermediate object
states together with the events. The function obsv𝜑 (⌊E⌋)
maps the extended trace ⌊E⌋ in the concrete semantics to an

abstract trace. Each concrete event is mapped to an abstract

one, and every recorded object state is mapped through the

state abstraction function 𝜑 to an abstract object state.

Theorem 7 (Abstraction Theorem).

ACC𝜑 (Π, (Γ, ⊲⊳)) ⇐⇒ Π ⊑𝜑 (Γ, ⊲⊳).

Abstract operational semantics describes the execution

of programs in the form of with (Γ, ⊲⊳) do 𝐶1 ∥ . . . ∥ 𝐶𝑛 .

Clients are executed following the interleaving semantics.

On each node, we always keep the initial object state S0.

We also maintain a sequence 𝜉t of the abstract operations

that the node t has received. We can view 𝜉t as a runtime
representation of the arbitration order art used in ACC. Given
S0 and 𝜉t, we can always generate the current object state

on the fly by executing all the operations on 𝜉t from S0.

When a node issues an operation, it puts the operation

at the very end of its local 𝜉 to get a new sequence 𝜉 ′. This
reflects the preservation of the visibility order, as required

in ACC, because at this moment the node has seen all the

operations on 𝜉 and therefore they all need to be ordered

before the new operation. We also start from S0 and execute

all the operations on 𝜉 ′ to get the return value of the last

operation. The node then broadcasts the operation itself

(instead of effectors) to all the other nodes.

When a node receives an operation sent from others, it

can non-deterministically insert the operation into any po-

sition of the local sequence 𝜉 , as long as the resulting 𝜉 ′ is
coherent with every other 𝜉t on node t. The coherence re-
quirement is similar to Coh(art, art′, (Γ, ⊲⊳)) defined in Fig. 8.

It requires that conflicting operations follow the same order

in all sequences (𝜉 ′ and all the other 𝜉t). If we cannot find

an insertion position in the local 𝜉 so that the resulting 𝜉 ′

satisfies the coherence requirement, the execution gets stuck.

The semantics of the program can be viewed as the set of

the stuck-free executions.

Since the operation lists 𝜉 on all nodes must be coherent

during the execution, we can prove that the abstract seman-

tics inherently guarantees the convergence of the abstract

object states. Then, the contextual refinement Π ⊑𝜑 (Γ, ⊲⊳)
can ensure Cv𝜑 (Π), the convergence of the concrete object.
With the Abstraction Theorem (Thm 7), we can derive Lem. 5

again: ACC𝜑 (Π, (Γ, ⊲⊳)) can ensure Cv𝜑 (Π) too.

7 Program Logic for Client Verification

To reason about clients using a CRDT object Π, we apply the
Abstraction Theorem, and verify the clients using the more

abstract object specifications (Γ, ⊲⊳) instead.
We design a Hoare-style program logic to verify functional

correctness of client programs, specified in the form of pre-

and post-conditions. The top level judgment is in the form

of ⊢ {P }with (Γ, ⊲⊳) do 𝐶1 ∥ . . . ∥𝐶𝑛{Q }, where P and Q are

traditional Hoare-logic state assertions over both client and

object states. To enable thread-local reasoning, we borrow

ideas from shared-memory concurrency verification and

base our logic on rely-guarantee reasoning [11]. Each 𝐶t is

verified in the form of 𝑅,𝐺 ; Γ, ⊲⊳ ⊢t {𝑝}𝐶t{𝑞}, where 𝑅 and𝐺

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng{
s = a

}
addAfter(a, b);

u := read();
if (b ∈ u)
addAfter(a, c);

x := read();

v := read();
if (c ∈ v)
addAfter(c, d);

y := read();{
d ∈ x ⇒ (s = x = acdb) ∧ (y = x ∨ y = acd)

}
Figure 9. Correctness of a client program of RGA.

are rely and guarantee assertions, specifying the interactions

between the current thread t and its environment threads.

The key challenge for the logic is to deal with the weak
behaviors produced by the abstract semantics in Sec. 6, where

client threads can reorder actions, which is reminiscent of

weak memory models of languages like C11.

Amotivating example. Figure 9 shows a client program of

RGA and its specification. The precondition says the initial

list s is a. The postcondition shows that x and ymust be equal,

if all the operations have been applied before the reads. It also

tells which values x and y may read. Since we do not assume

causal delivery, when the thread t3 receives addAfter(a,c)
from the thread t2, it may not have received addAfter(a,b)
from the thread t1, though addAfter(a,c) is issued only af-

ter t2 receives addAfter(a,b). As a result, it is possible that
y reads acd. But, when t3 finally receives addAfter(a,b), it
must insert addAfter(a,b) before addAfter(a,c) (in the

abstract semantics) to restore the causality (required by the

coherence check). It is impossible for y to read abcd.

Assertions. It seems difficult to use traditional state asser-

tions to express the insertion of an action into the past exe-

cution. Our idea is to introduce action assertions. We extend

the syntax of Hoare logic assertions, 𝑝 , with several new

assertion forms, to specify the set of actions (originate from

either the current thread t𝑐 or its environment) and their

orders of which t𝑐 has knowledge at each program point.

Figure 10 gives the syntax of our assertion language.

The assertions [𝛼]𝑖t and 𝛼
𝑖

t describe singleton action sets

containing only the action 𝛼 . The former says the action 𝛼

(with ID 𝑖) has been issued from its origin t, but we do not

care whether it’s on the way or it has arrived at the current

node, while the latter says the current node has received

𝛼 . We may omit the superscript action ID in an assertion

when it is clear from the context what the action denotes.

For the motivating example of Fig. 9, after t3 succeeds in the

check c ∈ v, its assertion must contain addAfter(a,c)
t2
,

but only [addAfter(a,b)]t1 .
We write emp for an empty action set. The assertion

𝑝 ⊔ 𝑞 allows us to merge two action sets without enforc-

ing new ordering. It can be used to describe non-conflicting

actions. For instance, [addAfter(a,b)]t1 ⊔ remove(e)
t2

says addAfter(a,b) and remove(e) can be ordered either

way. It can also describe a set of conflicting but concurrently

(StateAssn) P ,Q ::= 𝐵 | ¬P | P ∧ Q | P ∨ Q | . . .

(Assn) 𝑝, 𝑞 ::= P | emp | [𝛼]𝑖t | 𝛼
𝑖

t | 𝑝 ⊔ 𝑞 | 𝑝 ⋉ [𝛼]𝑖t
| 𝑝 ⋉ 𝛼

𝑖

t | (𝑝, ⊲⊳) ⋉ [𝛼]𝑖t | (𝑝, ⊲⊳) ⋉ 𝛼
𝑖

t
| 𝑝 ⇛ 𝑞 | ¬𝑝 | 𝑝 ∧ 𝑞 | 𝑝 ∨ 𝑞 | 𝑝 ⇒ 𝑞 | . . .

(RGAssn) 𝑅,𝐺 ::= Emp | 𝑝 ; [𝛼]𝑖t | 𝑅 ∨ 𝑅 | 𝑅 ⇒ 𝑅 | . . .

Figure 10. Syntax of the assertion language.

issued actions, so that we do not need to enumerate all the

possible execution traces. For instance, when the program

(addAfter(a, b); || addAfter(a, c)) terminates, we

have addAfter(a,b)
t1
⊔ addAfter(a,c)

t2
.

We use 𝑝 ⋉ [𝛼]𝑖t, 𝑝 ⋉ 𝛼
𝑖

t, (𝑝, ⊲⊳)⋉ [𝛼]𝑖t and (𝑝, ⊲⊳)⋉ 𝛼
𝑖

t
to add a new action 𝛼 and some new orders about 𝛼 . The

assertion 𝑝 ⋉ [𝛼]𝑖t requires 𝛼 to be ordered after all the ac-

tions in 𝑝 , while (𝑝, ⊲⊳)⋉ [𝛼]𝑖t enforces the ordering between
𝛼 and only the actions which have arrived (e.g., boxed ac-

tions) in the current view of 𝑝 and conflict (⊲⊳) with 𝛼 . The

assertions 𝑝 ⋉ 𝛼
𝑖

t and (𝑝, ⊲⊳)⋉ 𝛼
𝑖

t have similar meanings,

but they also say that 𝛼 has arrived at the current node. For

the thread t3 of Fig. 9, if the test of c ∈ v is true, it knows

the following 𝑝𝑐 : [addAfter(a,b)]t1 ⋉ addAfter(a,c)
t2
.

It says, t3 can infer that addAfter(a,b) must be inserted

before addAfter(a,c) even though addAfter(a,b) may

not have arrived at t3. After t3 calls addAfter(c,d), the as-
sertion becomes (𝑝𝑐 , ⊲⊳) ⋉ addAfter(c,d)

t3
. Here t3 adds

only the ordering between the conflicting addAfter(a,c)
and addAfter(c,d).
It is always safe to discard some ordering information.

That is, (𝑝 ⋉ [𝛼]𝑖t) ⇒ (𝑝 ⊔ [𝛼]𝑖t) holds. It is also safe to

branch on the ordering of actions:

([𝛼]𝑖t ⊔ [𝛼 ′] 𝑗t′) ⇒ [𝛼]𝑖t ⋉ [𝛼 ′] 𝑗t′ ∨ [𝛼 ′] 𝑗t′ ⋉ [𝛼]𝑖t
Standard state assertions, P , can be lifted to action asser-

tions. A set of partially ordered actions satisfies P if all the

final states resulting from executing these actions satisfy P
(as a state assertion). For instance, the following holds:

(s = a ∧ emp) ⊔ (addAfter(a,b)
t1
⋉ addAfter(a,c)

t2
)

⇒ s = acb

When executing the actions, we only execute the actions

that have arrived in the current view. As a result,

(s = a ∧ emp) ⊔ ([addAfter(a,b)]t1 ⋉ addAfter(a,c)
t2
)

⇒ s = ac ∨ s = acb

The assertion 𝑝 ⇛ 𝑞 specifies that the states satisfying 𝑞

result from receiving and applying all the actions on the way

in 𝑝 . It is used when the whole client program terminates

(see the par rule in Fig. 11, where in Qt all the actions must

have arrived at node t). For instance, the following holds:

(s = a ∧ emp) ⊔ ([addAfter(a,b)]t1 ⋉ addAfter(a,c)
t2
)

⇛ s = acb

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

Rely/guarantee assertions. The assertions 𝑅 and 𝐺 (see

Fig. 10) specify the interface between a thread and its envi-

ronment. The guarantee𝐺 specifies the invocations of object

actions made by the thread itself. The rely 𝑅 specifies the

thread’s expectations of the object actions that originate

from its environment.

The assertion Emp says there is no action issued. The

assertion 𝑝 ; [𝛼]𝑖t says that t invokes the action 𝛼 when 𝑝

holds, i.e., 𝑝 is the prerequisite for t to issue the request 𝛼 .

Threads can cooperate if the rely condition of a thread t
is implied by the guarantee of the other t′. We stabilize the

assertion 𝑝 at each program point of t under its rely 𝑅, so

that it is resistant to interference from the environment. To

stabilize an assertion 𝑝 with respect to 𝑅 = (𝑝 ′ ; [𝛼]𝑖t′), we
do the following steps:

(1) Check that the prerequisite 𝑝 ′
for the invocation of 𝛼

is met at 𝑝 . This requires 𝑝 to contain the knowledge

of all the received actions 𝛼 ′ 𝑗

t′′ in 𝑝 ′
, though it is

possible that some of these actions have not arrived at

the current node yet (i.e. they are in brackets in 𝑝).

(2) If the check in (1) is passed, we add [𝛼]𝑖t′ to the ac-

tion set of the current node. We do not need to know

whether or not 𝛼 has arrived at the current node.

(3) The knowledge of the action ordering at the current

node should also be expanded. For those 𝛼 ′
in 𝑝 ′

that

are prerequisite of 𝛼 and are also in conflict (⊲⊳) with 𝛼 ,

𝛼 ′
should be ordered before 𝛼 on all the nodes, since

we require all the nodes to observe the same ordering

of conflicting actions.

For instance, 𝑝
def

= [addAfter(a,b)]t1 is stabilized to the

following 𝑝1 under 𝑅1, for the RGA object:

𝑅1
def

= addAfter(a,b)
t1
; [addAfter(a,c)]t2

𝑝1
def

= 𝑝 ∨ ([addAfter(a,b)]t1 ⋉ [addAfter(a,c)]t2)
(7.1)

In the inference rules (see the call-r and local rules in

Fig. 11), we use the stability check Sta(𝑝, 𝑅, ⊲⊳). It is passed
by stabilized assertions only. For (7.1), Sta(𝑝1, 𝑅1, ⊲⊳) holds.
Inference rules. Figure 11 presents the key inference rules.

The par rule is almost the standard parallel composition

rule in rely-guarantee reasoning. We let each thread start

its execution from an empty action set (see P ∧ emp). At
the end, we derive the state assertion Qt by receiving all the

actions in 𝑞t (see 𝑞t ⇛ Qt). In the state assertions, we merge

the client state and the object state into one, assuming their

variables are from different name spaces. We also assume

that the rely/guarantee conditions specify object states only.

In the call rule, we first compute the return value 𝑛′
of

the call, using 𝑝
𝜇

↠ 𝑛′
, where 𝜇 ∈ AbsState → Val is the

return value generator of Γ(𝑓 , 𝑛). 𝑝
𝜇

↠ 𝑛′
says, applying 𝜇

over any final state of executing the actions following the

specified order in 𝑝 returns 𝑛′
. We then assign 𝑛′

to 𝑥 . The

assertion 𝑞 holds after the assignment, following the forward

∀t ∈ [1..𝑛] : 𝑅t,𝐺t; Γ, ⊲⊳ ⊢t {P ∧ emp}𝐶t{𝑞t}
(∨t′≠t𝐺t′) ⇒ 𝑅t 𝑞t ⇛ Qt

⊢ {P }with (Γ, ⊲⊳) do 𝐶1 ∥ . . . ∥𝐶𝑛{
∧

t Qt}
(par)

𝑝 ⇒ 𝐸 = 𝑛 split(Γ(𝑓 , 𝑛)) = (𝜇, 𝛼) 𝑝
𝜇
↠ 𝑛′

𝑥 = 𝑛′ ∧ ∃𝑣 . 𝑝 [𝑣/𝑥] ⇒ 𝑞 𝑞 ; [𝛼]𝑖t ⇒ 𝐺

Emp,𝐺 ; Γ, ⊲⊳ ⊢t {𝑝}𝑥 := 𝑓 (𝐸){(𝑞, ⊲⊳) ⋉ 𝛼
𝑖

t}
(call)

Emp,𝐺 ; Γ, ⊲⊳ ⊢t {𝑝}𝑥 := 𝑓 (𝐸){𝑞}
Sta({𝑝, 𝑞}, 𝑅, ⊲⊳) cmt-closed({𝑝, 𝑞})

𝑅,𝐺 ; Γ, ⊲⊳ ⊢t {𝑝}𝑥 := 𝑓 (𝐸){𝑞} (call-r)

𝑅′,𝐺 ′
; Γ, ⊲⊳ ⊢t {𝑝 ′}𝐶{𝑞′}

𝑝 ⇒ 𝑝 ′ 𝑅 ⇒ 𝑅′ 𝑞′ ⇒ 𝑞 𝐺 ′ ⇒ 𝐺

𝑅,𝐺 ; Γ, ⊲⊳ ⊢t {𝑝}𝐶{𝑞}
(csq)

Sta(𝑝, 𝑅, ⊲⊳) cmt-closed(𝑝)
𝑅,𝐺 ; Γ, ⊲⊳ ⊢t {𝑝}𝑥 := 𝐸{∃𝑣 . 𝑥 =𝐸 [𝑣/𝑥] ∧ 𝑝 [𝑣/𝑥]} (local)

Figure 11. Selected inference rules.

assignment rule in Hoare logic. Finally we add the newly

generated action 𝛼 to the action set in𝑞, and use the resulting

assertion (𝑞, ⊲⊳) ⋉ 𝛼
𝑖

t as the postcondition. The invocation

of 𝛼 following 𝑞 (i.e., 𝑞 ; [𝛼]𝑖t) needs to satisfy 𝐺 . The

superscript 𝑖 needs to be the same as specified in 𝐺 .

One may wonder that it is too restrictive for the call rule

to require the argument 𝑛 and return value 𝑛′
to be constant

values. When the precondition 𝑝 cannot determine a unique

argument or return value (i.e., (𝑝 ⇒ 𝐸 = 𝑛) or (𝑝
𝜇

↠ 𝑛′)
does not hold), we can first apply a standard disjunction rule

to branch on 𝑝 , and apply the call rule on each branch.

Note that in this step we only reason about the behavior

of the function call without considering the environment.

Therefore we use an empty rely condition Emp here. To allow
a weaker 𝑅, we can apply the csq rule to stabilize the post-

condition by weakening (𝑞, ⊲⊳)⋉ 𝛼
𝑖

t. Then we apply call-r

rule, which requires the pre- and post-conditions be stable

with respect to 𝑅 and satisfy cmt-closed. Here cmt-closed(𝑝)
iff 𝑝 is preserved after receiving one or more actions that are

already issued in 𝑝 .

The local rule allows us to reason about local computa-

tion of a thread. The pre- and post-conditions are the same

as those in the forward assignment rule in Hoare logic.

Verification of the motivating example. In Fig. 12 we

sketch the proof of t3 in the motivating example of Fig. 9.

More examples are in Appendix F.

We first define the rely/guarantee conditions of each thread.

𝐺t1 says that the thread t1 guarantees the invocation of 𝛼𝑏
unconditionally. 𝐺t2 says that t2 calls 𝛼𝑐 after it receives 𝛼𝑏 .
Similarly, 𝐺t3 says that t3 calls 𝛼𝑑 after it receives 𝛼𝑐 . Here

we write −♦ 𝛼
𝑖

t for 𝛼
𝑖

t ⊔ true.
By the par rule, we only need to verify each thread in-

dependently. For thread t3, we first stabilize 𝑝𝑎 under 𝑅t3 ,

resulting in the assertion (1) in Fig. 12. After finding c ∈ v, we

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

𝑝𝑎
def

= (s = a) ∧ emp 𝛼𝑏
def

= addAfter(a,b)

𝛼𝑐
def

= addAfter(a,c) 𝛼𝑑
def

= addAfter(c,d)

𝐺t1
def

= true ; [𝛼𝑏]t1 𝑅t1
def

= 𝐺t2 ∨𝐺t3

𝐺t2
def

= (−♦ 𝛼𝑏 t1
) ; [𝛼𝑐]t2 𝑅t2

def

= 𝐺t1 ∨𝐺t3

𝐺t3
def

= (−♦ 𝛼𝑐 t2
) ; [𝛼𝑑]t3 𝑅t3

def

= 𝐺t1 ∨𝐺t2{
𝑝𝑎 ∨ 𝑝𝑎 ⊔ [𝛼𝑏]t1 ∨ 𝑝𝑎 ⊔ ([𝛼𝑏]t1 ⋉ [𝛼𝑐]t2)

}
(1)

v := read();
if (c ∈ v){

𝑝𝑎 ⊔ ([𝛼𝑏]t1 ⋉ 𝛼𝑐 t2
)
}

(2)

addAfter(c, d);{
𝑝𝑎 ⊔ ([𝛼𝑏]t1 ⋉ 𝛼𝑐 t2

⋉ 𝛼𝑑 t3
)
}

(3)

y := read();{
s = acdb ⇒ y = s ∨ y = acd

}
(4)

Figure 12. Verification of the client with RGA.

can discard the branches where 𝛼𝑐 is not arrived. So we get

the assertion (2). Then, t3 calls addAfter(c,d). The immedi-

ate post-condition (𝑝 ⊔ ([𝛼𝑏]t1 ⋉ 𝛼𝑐 t2
), ⊲⊳) ⋉ 𝛼𝑑 t3

can be

derived from the call rule. Using the csq rule, we weaken it

to the assertion (3), which is stable and cmt-closed. Finally
we get the assertion (4). It has the branch y = acd because it

is possible that t3 has not yet received 𝛼𝑏 by the read.

Logic soundness: If ⊢ {P }P{Q }, then |= {P }P{Q }. The
Hoare triple |= {P }P{Q } is defined using the abstract seman-

tics in Sec. 6. The formal model and the soundness proofs

are in Appendix E.

Invariant-based reasoning. Our logic can be easily ex-

tended to verify object invariants. We can add an extra in-

variant assertion 𝐼 in the judgment, which will be in the form

of 𝐼 , 𝑅,𝐺 ; Γ, ⊲⊳ ⊢t {𝑝}𝐶{𝑞}. Then in the call-r rule in Fig. 11

we add the extra requirements 𝑝 ⇒ 𝐼 and 𝑞 ⇒ 𝐼 .

8 Verifying CRDT Implementations

Our proof method for ACC asks users to first provide speci-

fications ↣ and V about implementations:

↣ ∈ P (Effector × Effector) (the time-stamp order)

V ∈ LocalState → P (Effector) (the view function)

The time-stamp order ↣ is a partial order between effec-
tors. It describes the algorithm’s conflict-resolution strategy,

e.g., the write with a larger time-stamp wins. For the RGA

algorithm, we instantiate ↣ as follows:

𝛿 ↣ 𝛿 ′ iff ∃a, i, b, a’, i’, b’. 𝛿 = AddAft(a,i,b)
∧ (𝛿 ′=AddAft(a’,i’,b’) ∧ i<i’

∨ 𝛿 ′=Rmv(a) ∨ 𝛿 ′=Rmv(b))
Here ↣ orders the AddAft effectors by comparing their

time-stamps. It also orders an AddAft before the conflicting

Rmv effectors (which is not time-stamped). Note that ↣ is

specified at the implementation level. One should not confuse

it with the won-by order ◀ over abstract operations, which

we introduce in Sec. 2.4 and Sec. 9.

The view function V maps each local state S to a set

of effectors that must have been applied before reaching S.
With it, our proof method can be local, in that the reasoning

of each execution step relies on the current local state on the

node only, without referring to the execution traces. For the

RGA algorithm, V is instantiated as follows:

V(S) def

= { 𝛿 | ∃a, i, b. (a, i, b) ∈S(N) ∧ 𝛿 =AddAft(a,i,b)
∨ ∃a. a∈S(T) ∧ 𝛿 =Rmv(a) }

Our proof method, CRDT-TS𝜑 (Π, (Γ, ⊲⊳),↣,V), is a con-
junction of the following proof obligations:

• Commutative effectors: the effectors generated by Π
are all commutative.

• Same return value: the corresponding operations in

Π and Γ have the same return value if executed at

𝜑-related states.

• State correspondence: starting from 𝜑-related states S
and S𝑎 , executing a valid effector 𝛿 (generated from

Π) and the corresponding abstract operation should

lead to 𝜑-related states. 𝛿 is valid if↣ does not order

it before any 𝛿 ′ visible from S, i.e. 𝛿 ′ ∈ V(S).
• Some simple well-formedness checks for ↣ and V to

ensure the user-specified↣ andV make sense.

Theorem 8.

CRDT-TS𝜑 (Π, (Γ, ⊲⊳),↣,V) =⇒ ACC𝜑 (Π, (Γ, ⊲⊳)).
Examples. Using Theorem 8, we have verified seven CRDT

algorithms [19], including the replicated counter (with both

increment and decrement operations), the grow-only set, the

last-writer-wins (LWW) register, the LWW-element set, the

2P-set, the continuous sequence, and the replicated growable

array (RGA). To verify algorithms whose ⊲⊳ is empty (such

as the counter), we let↣ be ∅ andV be 𝜆S. ∅. Proofs of the
examples are in Appendix H.

Using the verification framework. Our verification frame-

work consists of the program logic (in Sec. 7) and the proof

method (in Sec. 8). As Fig. 1 shows, one needs to do the

following to verify a whole program let Π in 𝐶1 ∥ . . . ∥𝐶𝑛 :

• Provide the specifications for CRDTs. The operation

specification Γ is the same as the one for sequential

data types. It is also easy to come up with the conflict

relation ⊲⊳, which is between all the non-commutative

abstract operations in Γ.
• Apply the program logic for client reasoning. Similar

to standard rely-guarantee reasoning, the user needs

to provide the rely/guarantee conditions, intermediate

assertions, and do the proofs following the logic rules.

• Apply the proof method for CRDT implementations.

All one needs to do is to provide↣ andV , and prove

the set of proof obligations. The proof obligations are

all first-order formulae. They do not universally quan-

tify over execution traces, but only over states and

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

effectors. Thus they can be discharged without induc-

tion, and can potentially be discharged by SMT solvers.

9 𝑋 -Wins CRDTs

Algorithms like add-wins sets and remove-wins sets resolve

conflicts following a specific 𝑋 -wins strategy, while the op-

eration 𝑋 wins only when its effect is not canceled. We

generalize ACC to support these algorithms, by enforcing

the 𝑋 -wins strategy specified using the won-by (◀) and

canceled-by (▷) relations. Like ⊲⊳ (see Fig. 7), they are also

binary relation over actions. The full specification is now a

quadruple (Γ, ⊲⊳,◀,▷).
For add-wins sets, add(x)wins over concurrent remove(x)

(remove(x) ◀ add(x)), but it can also be canceled by subse-

quent remove(x) (add(x) ▷ remove(x)); while for remove-

wins sets, we have the inverse.

◀ and ▷ can only relate conflicting operations, that is,

◀⊆⊲⊳ and ▷⊆⊲⊳. Also ▷ should be valid in that 𝛼 ′
indeed

nullifies the effects of 𝛼 if 𝛼 ▷ 𝛼 ′
. Like ⊲⊳, we also overload

◀ and ▷ over operations and events.

We generalize ACC with the extended specification, and

define XACC𝜑 (Π, (Γ, ⊲⊳,◀,▷)). It requires every trace E of

Π to satisfy XACT if causalDelivery(E). Here we assume

causal delivery of messages, which is required by both add-

wins and remove-wins sets. It says, if an origin event 𝑒1
happens before another origin event 𝑒2, then for any node t
the effector of 𝑒1 reaches t earlier than that of 𝑒2.

Definition 9. XACT𝜑 (E,S, (Γ, ⊲⊳,◀,▷)) iff ∃ar1, . . . , ar𝑛 ,
∀t. totalOrdervisible(E,t) (art) ∧ (vis↦−−→

t E ⊆ art)
∧ PresvCancel(art, t, E, (Γ,▷)) ∧ ExecRelated𝜑 (t, (E,S), (Γ, art))
∧ ∀t′ ≠ t. RCoh(t,t′) ((art, art′), E, (Γ, ⊲⊳,◀,▷))

where we define RCoh in Fig. 13.

XACT (see Def. 9) is similar to ACT, but it enforces the
more relaxed coherence relation RCoh between the arbitra-

tion orders on different nodes. As defined in Fig. 13, RCoh
requires that the arbitration orders art and art′ of the nodes
t and t′ enforce the same ordering for conflicting events

𝑒0 and 𝑒1, if neither 𝑒0 or 𝑒1 are canceled (i.e., {𝑒0, 𝑒1} ⊆
nc-vis(E ′, t, (Γ,▷)) ∩ nc-vis(E ′′, t′, (Γ,▷))). Moreover, the

ordering must follow the won-by order◀ if these two events

are concurrent (i.e., neither one happens before the other). It

is more relaxed than Coh in that, if either 𝑒0 or 𝑒1 is canceled

by others, they can be ordered differently in art and art′ .
XACT also requires PresvCancel(art, t, E, (Γ,▷)). It says,

if 𝑒1 is canceled by 𝑒2 and is also visible to 𝑒2 on certain node,

the arbitration order art must order 𝑒1 before 𝑒2.

Similar to ACC, XACC also ensures SEC, and is composi-

tional. We prove that both the add-wins and remove-wins

sets satisfy XACC.

The Abstraction Theorem. We also revise the abstract

operational semantics in Sec. 6, to give clients an abstract

view of the𝑋 -wins strategy. We then redefine the contextual

RCoh(t,t′) ((art, art′), E, (Γ, ⊲⊳,◀,▷)) iff ∀E ′, E ′′, 𝑒0, 𝑒1 .
E ′ ⩽ E ∧ E ′′ ⩽ E ∧ 𝑒0 ⊲⊳Γ 𝑒1 ∧

{𝑒0, 𝑒1} ⊆ nc-vis(E ′, t, (Γ,▷)) ∩ nc-vis(E ′′, t′, (Γ,▷))
=⇒ ((𝑒0, 𝑒1) ∈ art ∩ art′ ∨ (𝑒1, 𝑒0) ∈ art ∩ art′) ∧

(ConcurrentE (𝑒0, 𝑒1) ∧ (𝑒0 ◀Γ 𝑒1) =⇒ (𝑒0, 𝑒1) ∈ art)
nc-vis(E, t, (Γ,▷)) def

= {𝑒 | 𝑒 ∈ visible(E, t) ∧
¬(∃𝑒 ′. 𝑒 ′ ∈ visible(E, t) ∧ (𝑒 ▷Γ 𝑒 ′) ∧ (𝑒 vis↦−−→ E 𝑒 ′))}

Figure 13. Auxiliary definitions for XACC.

refinement Π ⊑𝜑 (Γ, ⊲⊳,◀,▷). It is similar to Π ⊑𝜑 (Γ, ⊲⊳)
(Def. 6), but uses the new abstract semantics and assumes

causal delivery on concrete executions. Correspondingly, we

have a new abstraction theorem showing its equivalence to

XACC (see Appendix B).

10 Related Work

Attiya et al. [1] propose a functional correctness criterion

specifically for the RGA algorithm. They do not use an opera-

tional atomic specification as we do, but instead characterize

the lists’ functionality axiomatically (e.g., by requiring an

element be in the list if it has been inserted but not deleted).

Both our ACC and their work require different nodes to take

the same arbitration order between addAfter events. Our

ACC is more general and can apply to other data types too.

Jagadeesan and Riely [10] propose a correctness criterion

encoding both SEC and functional correctness for CRDTs.

Their “sequential specification” is a set of legal sequential

traces. It is accompanied with a dependency relation be-

tween abstract operations, which plays a similar role as our

⊲⊳ relation. Their correctness definition computes the depen-
dent cuts of an execution of CRDT, which is similar to our

visible(E, t) projected to conflicting actions. They require all
nodes to have the same arbitration orders (i.e., linearizations),

but over dependent actions only. This is in spirit similar to

our approach, which requires the arbitration orders of differ-

ent nodes to be coherent on conflicting actions. To support

add-wins sets, their linearizations view different calls to the

same operation as interchangeable (a.k.a. puns). By contrast,

our XACC encodes the 𝑋 -wins strategy of these algorithms

directly, taking the effects of cancellation into account. Sim-

ilar ideas of cancellation can be found in the earlier work

on checking serializability [4]. Note that Jagadeesan and

Riely [10] do not give a proof method for client reasoning.
Also, they verify the CRDT algorithms case by case without

giving a generic proof method.

Wang et al. [21] propose RA-linearizability for CRDTs.

Their specifications are non-atomic, and often have to ex-

pose some low-level implementation details. For instance,

their specification for RGA needs the tombstone set of re-

moved elements, and their specification for add-wins sets

splits a remove into two abstract operations. By contrast, we
use atomic and implementation-independent specifications.

They also give proof methods for RA-linearizability, which

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

contain some trace-based proof obligations such as commu-

tativity, while our proof obligations for ACC are state-based.

Besides, they do not provide formal solutions for program

logic for client verification.

Gotsman et al. [9] verify data integrity invariants for

clients of replicated data types. They do not prove pre- and

post-conditions as we do, which can be used specify more

interesting functional properties. They introduce a token

system with a conflict relation ⊲⊳ to relate operations that

need to be causally dependent. We use the same symbol ⊲⊳

to relate non-commmutative abstract operations.

Lewchenko et al. [14] propose conflict-aware replicated

data types (CARD), and design a refinement type system that

enables verification of pre- and post-conditions for clients of

CARD. There is also much work about general verification

approaches for distributed systems and their clients (e.g., [18,

23]). Our program logic is customized for clients of CRDTs

only. We can utilize certain properties (e.g., SEC) of CRDTs

in the verification of clients.

Several papers (e.g., [3, 5, 6, 20, 24]) use concurrent speci-

fications for replicated data types. On the one hand, concur-

rent specifications are more general than sequential spec-

ifications, so they can in principle support any replicated

data types. On the other hand, it is unclear how to utilize

the concurrent specifications in client reasoning.

Gomes et al. [8] verify SEC of CRDTs in Isabelle/HOL.

Their method is based on global execution traces. Our proof

method is local and state-based, and verifies functional cor-

rectness as well as SEC. Nagar and Jagannathan [15] verify

SEC of CRDTs automatically. Their verification is parame-

terized with consistency policies offered by the underlying

network (e.g., whether message delivery is causal). Kaki et

al. [12] verify invariants for clients of replicated data types.

Their approach is based on symbolic execution with a bound

on concurrent operations. They also repair the invariant vio-

lations of clients by strengthening the network’s consistency

policies. It would be interesting to also study our ACC and

our client logic with various network consistency policies.

There is alsowork that verifies eventual consistency and/or

causal consistency by model-checking (e.g., [2, 3]), or for

some particular data types such as key-value stores [13].

11 Conclusion and Future Work

We develop a theory of data abstraction for CRDTs, with inde-

pendent proof methods to verify CRDT implementations and

client programs respectively. Our Abstraction Theorem, as

one of the key results in the theory, decomposes the verifica-

tion of the two sides so that they can be done independently

and modularly. It forms a semantic basis for understanding

CRDTs, based on which we believe more proof techniques

and tools can be developed in the future.

Limitations. This paper mostly focuses on UCR-CRDTs.

For 𝑋 -wins CRDTs, we formulate XACC and prove both the

add-wins set and remove-wins set satisfy XACC. It might

be possible to develop a general proof method for verifying

XACC, similar to CRDT-TS for verifying ACC (Sec. 8), but

one needs to be careful to avoid overfitting, since we do not

have many interesting 𝑋 -wins CRDTs to test the generality.

Also, we leave the program logic for clients using 𝑋 -wins

CRDTs as future work. To reason about their clients, one

needs to take into account the 𝑋 -wins strategy specified us-

ing the won-by (◀) and canceled-by (▷) relations, and ensure

soundness of the logic w.r.t. the new abstract operational

semantics discussed in Sec. 9.

Our verification of CRDTs is done at the algorithm level.

To bridge the real code with the operations defined in Π (see

Fig. 6), one only needs refinement proofs for sequential pro-

grams since the real implementation code runs sequentially

on individual hosts.

This paper considers only operation-based CRDTs. Our

results may be adapted to support state-based CRDTs when

assuming causal delivery, but it seems nontrivial to build

abstractions that on the one hand reflect the algorithms’

resistance to unreliable networks, and on the other hand

are still useful for client reasoning. Nair et al. [16] recently

propose a proof method for verifying invariant preservation

of state-based replicated objects. It would be interesting to

incorporate their ideas into our work.

Wewould also like to further test the applicability of our re-

sults by considering new operation-based CRDT algorithms

(e.g., those constructed by semidirect products [22]). It is

also interesting to mechanize our results in proof assistants

and explore the possibility of building tools to automate the

verification process.

Acknowledgments

We thank our shepherd Hongseok Yang and anonymous ref-

erees for their suggestions and comments on earlier versions

of this paper. This work is supported in part by grants from

National Natural Science Foundation of China (NSFC) under

Grant Nos. 61922039 and 61632005.

References

[1] Hagit Attiya, Sebastian Burckhardt, Alexey Gotsman, Adam Morri-

son, Hongseok Yang, and Marek Zawirski. 2016. Specification and

Complexity of Collaborative Text Editing. In PODC 2016. 259–268.
[2] Ahmed Bouajjani, Constantin Enea, Rachid Guerraoui, and Jad Hamza.

2017. On Verifying Causal Consistency. In POPL 2017. 626–638.
[3] Ahmed Bouajjani, Constantin Enea, and Jad Hamza. 2014. Verifying

Eventual Consistency of Optimistic Replication Systems. In POPL 2014.
285–296.

[4] Lucas Brutschy, Dimitar Dimitrov, Peter Müller, and Martin Vechev.

2017. Serializability for Eventual Consistency: Criterion, Analysis, and

Applications. In POPL 2017. 458–472.
[5] Sebastian Burckhardt. 2014. Principles of Eventual Consistency. Found.

Trends Program. Lang. 1, 1-2 (Oct. 2014), 1–150.
[6] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek

Zawirski. 2014. Replicated Data Types: Specification, Verification,

Optimality. In POPL 2014. 271–284.

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

[7] Seth Gilbert and Nancy Lynch. 2002. Brewer’s Conjecture and the

Feasibility of Consistent, Available, Partition-tolerant Web Services.

SIGACT News 33, 2 (June 2002), 51–59.
[8] Victor B. F. Gomes, Martin Kleppmann, Dominic P. Mulligan, and

Alastair R. Beresford. 2017. Verifying strong eventual consistency in

distributed systems. PACMPL 1, OOPSLA (2017), 109:1–109:28.

[9] Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh,

and Marc Shapiro. 2016. ’Cause I’m Strong Enough: Reasoning About

Consistency Choices in Distributed Systems. In POPL 2016. 371–384.
[10] Radha Jagadeesan and James Riely. 2018. Eventual Consistency for

CRDTs. In ESOP 2018. 968–995.
[11] Cliff B. Jones. 1983. Tentative Steps Toward a Development Method

for Interfering Programs. ACM Trans. Program. Lang. Syst. 5, 4 (1983),
596–619.

[12] Gowtham Kaki, Kapil Earanky, KC Sivaramakrishnan, and Suresh

Jagannathan. 2018. Safe Replication through Bounded Concurrency

Verification. Proc. ACM Program. Lang. 2, OOPSLA, Article 164 (2018).
[13] Mohsen Lesani, Christian J. Bell, and Adam Chlipala. 2016. Chapar:

Certified Causally Consistent Distributed Key-value Stores. In POPL
2016. 357–370.

[14] Nicholas V. Lewchenko, Arjun Radhakrishna, Akash Gaonkar, and

Pavol Černý. 2019. Sequential Programming for Replicated Data Stores.

Proc. ACM Program. Lang. 3, ICFP, Article 106 (2019).
[15] Kartik Nagar and Suresh Jagannathan. 2019. Automated Parameterized

Verification of CRDTs. In CAV 2019. 459–477.

[16] Sreeja S. Nair, Gustavo Petri, and Marc Shapiro. 2020. Proving the

Safety of Highly-Available Distributed Objects. In ESOP 2020. 544–571.
[17] Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, and Joonwon Lee. 2011.

Replicated abstract data types: Building blocks for collaborative appli-

cations. J. Parallel and Distrib. Comput. 71, 3 (2011), 354 – 368.

[18] Ilya Sergey, James R. Wilcox, and Zachary Tatlock. 2017. Programming

and Proving with Distributed Protocols. Proc. ACM Program. Lang. 2,
POPL, Article 28 (2017).

[19] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.

2011. A comprehensive study of Convergent and Commutative Repli-

cated Data Types. Research Report RR-7506, INRIA.

[20] Paolo Viotti and Marko Vukolić. 2016. Consistency in Non-

Transactional Distributed Storage Systems. ACM Comput. Surv. 49, 1
(June 2016), 19:1–19:34.

[21] Chao Wang, Constantin Enea, Suha Orhun Mutluergil, and Gustavo

Petri. 2019. Replication-aware Linearizability. In PLDI 2019. 980–993.
[22] Matthew Weidner, Heather Miller, and Christopher Meiklejohn. 2020.

Composing and Decomposing Op-Based CRDTs with Semidirect Prod-

ucts. Proc. ACM Program. Lang. 4, ICFP, Article 94 (Aug. 2020).
[23] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi

Wang, Michael D. Ernst, and Thomas Anderson. 2015. Verdi: A Frame-

work for Implementing and Formally Verifying Distributed Systems.

In PLDI 2015. 357–368.
[24] Peter Zeller, Annette Bieniusa, and Arnd Poetzsch-Heffter. 2014. For-

mal Specification and Verification of CRDTs. In FORTE 2014. 33–48.

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

(NodeID) t ∈ Nat (MsgID) mid ∈ Nat
(MsgSoup) 𝑀 ∈ MsgID ⇀ (OpName × Val) × Effector

(LocalState) S ∈ PVar ⇀ Val
(RtNode) 𝜍 ::= (𝐶,S) | (Π,S, 𝑀)
(State) 𝜎 ::= {t1 ; 𝜍1, . . . , t𝑛 ; 𝜍𝑛}
(World)𝑊 ::= (𝜎𝑐 , 𝜎𝑜 , 𝑀)
(Event) 𝑒 ::= (mid, t, (𝑓 , 𝑛, 𝑛′, 𝛿)) | (mid, t, (𝑓 , 𝑛), 𝛿)
(Label) 𝜄 ::= 𝑒 | 𝜏 (ETrace) E ::= 𝜖 | 𝑒 ::E

Figure 14. States and events.

∀t ∈ [1..𝑛] . 𝜎𝑐 (t) = (𝐶t, ∅)
∀t ∈ [1..𝑛] . 𝜎𝑜 (t) = (Π,S0 ⊎ {cid ; t}, ∅)

(let Π in 𝐶1 ∥ . . . ∥𝐶𝑛,S0) pload−−−→ (𝜎𝑐 , 𝜎𝑜 , ∅)

𝜎𝑐 (t) = 𝜍𝑐 𝜎𝑜 (t) = 𝜍𝑜 (𝜍𝑐 , 𝜍𝑜 , 𝑀) 𝜄−→ t (𝜍 ′𝑐 , 𝜍 ′𝑜 , 𝑀 ′)

(𝜎𝑐 , 𝜎𝑜 , 𝑀) 𝜄↦−→ (𝜎𝑐 {t ; 𝜍 ′𝑐 }, 𝜎𝑜 {t ; 𝜍 ′𝑜 }, 𝑀 ′)
∀t. 𝜎𝑐 (t) = (skip,St

𝑐) ∀t. 𝜎𝑜 (t) = (Π,St
𝑜 , 𝑀)

(𝜎𝑐 , 𝜎𝑜 , 𝑀) ↦−→ (end, (S1

𝑐 , . . . ,S𝑛
𝑐), (S1

𝑜 , . . . ,S𝑛
𝑜))

(a) world transitions

J𝐸KS𝑐
= 𝑛 Π(𝑓 , 𝑛) (S𝑜) = (𝑛′, 𝛿) 𝛿 (S𝑜) = S′

𝑜

mid ∉ dom(𝑀𝑠) 𝑀 ′
𝑠 = 𝑀𝑠 ⊎ {mid ; ((𝑓 , 𝑛), 𝛿)}

𝑀 ′
𝑑
= 𝑀𝑑 ⊎ {mid ; ((𝑓 , 𝑛), 𝛿)}

((𝑥 := 𝑓 (𝐸),S𝑐), (Π,S𝑜 , 𝑀𝑑), 𝑀𝑠)
(mid,t,(𝑓 ,𝑛,𝑛′,𝛿))
−−−−−−−−−−−−−−→ t

((skip,S𝑐 {𝑥 ; 𝑛′}), (Π,S′
𝑜 , 𝑀

′
𝑑
), 𝑀 ′

𝑠)

𝑀𝑠 (mid) = ((𝑓 , 𝑛), 𝛿) 𝛿 (S𝑜) = S′
𝑜

mid ∉ dom(𝑀𝑑) 𝑀 ′
𝑑
= 𝑀𝑑 ⊎ {mid ; ((𝑓 , 𝑛), 𝛿)}

(𝜍𝑐 , (Π,S𝑜 , 𝑀𝑑), 𝑀𝑠)
(mid,t,(𝑓 ,𝑛),𝛿)
−−−−−−−−−−−−→ t (𝜍𝑐 , (Π,S′

𝑜 , 𝑀
′
𝑑
), 𝑀𝑠)

(b) local transitions

Figure 15. Selected operational semantics rules.

A The Basic Technical Settings

Figure 6 shows the syntax of the language. The program 𝑃 consists of 𝑛 clients 𝐶 running on different nodes. They share the

object Π, which is replicated on all the nodes. Each client executes sequentially, accessing the local client state in the node. It

can also access the object state through the command 𝑥 := 𝑓 (𝐸), which calls the operation 𝑓 of the object with the argument 𝐸.

We model the object Π as a mapping from an operation name 𝑓 and its argument to the actual operation over the object state.

When a client calls an operation, it executes in two steps. First the operation is applied over the object state and generates a

return value and an effector 𝛿 . The effector 𝛿 captures the operation’s effect over the object state. It is broadcast to all nodes,

including the one where the client request originates. Then the effector 𝛿 is applied on the local replica of the object data on

each node. Note that on the origin node of the client request, the generation of the effector and the execution of it over the

local replica are done atomically.

We give the state model in Fig. 14. The whole program configuration (a world𝑊) consists of the client configuration 𝜎𝑐 , the

object configuration 𝜎𝑜 , and a global message pool𝑀 consisting of all the broadcast messages, containing both delivered and

undelivered. The client configuration 𝜎𝑐 maps a node ID t to the pair 𝜍 consisting of the client code 𝐶 and its local state S. A
local state S is a mapping from program variables to their values. The object configuration 𝜎𝑜 maps a node ID t to the triple

(Π,S, 𝑀), an alternative form of 𝜍 . Here Π is the set of object operations, S is the local replica of the object, and𝑀 is a local
message pool containing all the incoming messages. Note that the client state and the object state on each node are disjoint.

The only way that a client can access the object state is to call the operations in Π.

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

𝑒
t−→E 𝑒 ′ iff ∃mid, t0, 𝑓 , 𝑛, 𝑛′, 𝛿 .

𝑒 = (mid, t0, (𝑓 , 𝑛, 𝑛′, 𝛿)) ∧ 𝑒 ∈ E∧
𝑒 ′ = (mid, t, (𝑓 , 𝑛), 𝛿) ∧ 𝑒 ′ ∈ E

𝑒
t
=⇒

E
𝑒 ′ iff 𝑒

t−→E 𝑒 ′ ∨ 𝑒 = 𝑒 ′ ∧ is_origt (𝑒) ∧ 𝑒 ∈ E

𝑒1 ≺
t
E 𝑒2 iff ∃𝑒 ′

1
, 𝑒 ′
2
. (𝑒1

t
=⇒

E
𝑒 ′
1
) ∧ (𝑒2

t
=⇒

E
𝑒 ′
2
) ∧ (𝑒 ′

1
<E 𝑒 ′

2
)

𝑒
vis↦−−→
t E 𝑒 ′ iff

(
𝑒 ≺t

E 𝑒 ′
)
∧ is_origt (𝑒 ′)

𝑒
vis↦−−→ E 𝑒 ′ iff ∃t. 𝑒 vis↦−−→

t E 𝑒 ′

hb↦−−→ E
def

= (vis↦−−→ E)+

visible(E, t) def

= {𝑒 | ∃𝑒 ′. 𝑒 t
=⇒

E
𝑒 ′}

es⇂ar def

=

𝜖 if es = ∅
𝑒 :: (es′ ⇂ar) if es = es′⊎{𝑒} ∧

∀𝑒 ′ ∈ es′. (𝑒 ′, 𝑒) ∉ ar

exec_st(S, E) def

=

S if E = 𝜖

exec_st(S′, E ′) if E = 𝑒 ::E ′∧
eff(𝑒) (S) = S′

Figure 16. Events and event traces.

We present some key operational semantics rules in Fig. 15. The first rule in Fig. 15(a) creates the initial program configuration

by replicating the initial object state S0 on all the nodes. The third rule says the whole program terminates if each client

terminates, and each node has received all the messages (therefore each local message buffer is the same with the global one).

The second rule says whenever a node takes one step, the whole program steps accordingly. The local stepping relation on

each node is in the form of (𝜍𝑐 , 𝜍𝑜 , 𝑀) 𝜄−→ t (𝜍 ′𝑐 , 𝜍 ′𝑜 , 𝑀 ′), which is defined in Fig. 15(b). Here the label 𝜄 indicates the type of the

transition (see Fig. 14).

When a client makes an object operation call 𝑥 := 𝑓 (𝐸), as shown in the first rule of Fig. 15(b), the operation defined in Π is

applied over the object replica S𝑜 and generates the return value 𝑛′
and the effector 𝛿 . Then the message ((𝑓 , 𝑛), 𝛿) is put into

the global message pool, associated with a fresh message ID. Here 𝑛 is the value of the argument 𝐸. This message is put into

the local message pool immediately and the effector 𝛿 is applied over the object replica to generate a new object state S′
𝑜 . We

use the event (mid, t, (𝑓 , 𝑛, 𝑛′, 𝛿)) as the label of the transition to record the call of the operation (𝑓 , 𝑛) from the node t. We call

the event the origin of the operation (𝑓 , 𝑛).
The next rule says when a node receives a broadcast message ((𝑓 , 𝑛), 𝛿), i.e., the message is in the global message pool

but not in the local one yet, it is put into the local message pool and the effector 𝛿 is applied to the object replica to update

the state. This step generates the event (mid, t, (𝑓 , 𝑛), 𝛿) as the label to show the processing on the replica t of a state update
request 𝛿 originated from a different node. Other client steps affect the client state S𝑐 only. Such steps are called silent steps.

We omit the rules here.

Our semantics does not guarantee delivery of messages. A message can stay in the global message pool forever but not

being put into the local message pool of certain node. It does not guarantee any order of delivery either, since messages in the

global pool can be processed in any order.

Notations on events and event traces. Events 𝑒 are defined in Fig. 14. We use msgid(𝑒), tid(𝑒), op(𝑒), and eff(𝑒) to get

the mid, t, (𝑓 , 𝑛) and 𝛿 components in 𝑒 respectively. rval(𝑒) gets the return value 𝑛′
if 𝑒 is in the form of (mid, t, (𝑓 , 𝑛, 𝑛′, 𝛿)),

undefined otherwise.

The event trace E is a sequence of events. We use𝑊
E−→ ∗𝑊 ′

to represent that the zero-step or multiple-step transition from

𝑊 to𝑊 ′
generates the event trace E. Then we define T (𝑃,S) as the prefix closure of the event traces that can be generated

by the execution of 𝑃 starting from S, as shown below. We also define T (Π,S) as the prefix closure of the event traces that
can be generated by any set of clients accessing Π with the initial state S.

T (𝑃,S) def

= {E | ∃𝑊,𝑊 ′. ((𝑃,S) pload−−−→𝑊) ∧ (𝑊 E↦−→∗𝑊 ′)}
T (Π,S) def

= {E | ∃𝐶1, . . . ,𝐶𝑛 . E ∈ T (let Π in 𝐶1 ∥ . . . ∥𝐶𝑛,S)}

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

We use 𝑒 ∈ E to represent that 𝑒 is on the trace E, 𝑒 <E 𝑒 ′ to denote 𝑒 occurs before 𝑒 ′ on E, and 𝑒 ≤E 𝑒 ′ to mean either

𝑒 <E 𝑒 ′, or 𝑒 and 𝑒 ′ are the same event. E ′ ⩽ E means E ′
is a prefix of E. is_origt (𝑒) says 𝑒 is an origin event on the node t.

Then orig(E) represents the set of all the origin events on E. Fig. 16 defines various relations between events on E. 𝑒 t−→E 𝑒 ′

says that the node t receives the 𝑒 ′, which is an effector of the origin 𝑒 , and 𝑒
t
=⇒

E
𝑒 ′ requires either 𝑒

t−→E 𝑒 ′, or 𝑒 ′ and 𝑒 are the

same event originated at t. In the framed box in Fig. 16 we show an example execution, where we use black dots to represent

the origins and white ones their effectors. So we know 𝑒1
t2−→E 𝑒 ′

1
and 𝑒1

t1
==⇒

E
𝑒1. The order 𝑒1 ≺

t
E 𝑒2 says the node t receives

the effector of 𝑒1 earlier than that of 𝑒2. In the example execution, we know 𝑒1 ≺
t1
E 𝑒2, 𝑒2 ≺

t2
E 𝑒1, 𝑒2 ≺

t1
E 𝑒3, and 𝑒2 ≺

t2
E 𝑒3. The

visibility order 𝑒
vis↦−−→
t

E 𝑒 ′ says, when the origin event 𝑒 ′ is issued on t, t has already received the effector of 𝑒 . In the example

execution, we have 𝑒1
vis↦−−→
t2

E 𝑒3 and 𝑒2
vis↦−−→
t2

E 𝑒3. The relation 𝑒
vis↦−−→ E 𝑒 ′ hides the node where 𝑒 ′ occurs. The happens-before

order

hb↦−−→ E over origin events on E is the transitive closure of

vis↦−−→ E . The set visible(E, t) of origin events visible on the node

t are the events whose effectors have reached t.

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

(AProg) P ::= with (Γ, ⊲⊳) do 𝐶1 ∥ . . . ∥𝐶𝑛

(AOpEvent) e ::= (mid, (𝑓 , 𝑛)) (AOpHist) 𝜉 ::= 𝜖 | e ::𝜉
(ARtNode) R ::= (Γ,S, 𝜉) (ANdSet) Σ ::= {t1 ; R1, . . . , t𝑛 ; R𝑛}

(AMsgSoup) M ::= {mid1 ; (𝑓1, 𝑛1), . . . ,mid𝑘 ; (𝑓𝑘 , 𝑛𝑘)}
(AWorld) W ::= (𝜎𝑐 , Σ,M, ⊲⊳)

(ObsvEvent) o ::= (mid, t, (𝑓 , 𝑛, 𝑛′)) | (mid, t, (𝑓 , 𝑛))
(ALabel) l ::= o | 𝜏 (ObsvTrace) O ::= 𝜖 | o ::O

(a) world and event trace

for all t ∈ [1..𝑛] : 𝜎𝑐 (t) = (skip,St
𝑐) Σ(t) = (Γ,S0, 𝜉t)

dom(M) = dom(𝜉t) St
𝑜 = aexecST(Γ,S0, 𝜉t)

(𝜎𝑐 , Σ,M, ⊲⊳) ◦↦−→ (end, (S1

𝑐 , . . . ,S𝑛
𝑐), (S1

𝑜 , . . . ,S𝑛
𝑜))

(𝜎𝑐 (t), Σ(t),M) l◦−→ t (𝜍 ′,R′,M′) R′= (Γ,S0, 𝜉)
∀t′ ≠ t. AbsCoh(𝜉, Σ(t′).𝜉, (Γ, ⊲⊳))

(𝜎𝑐 , Σ,M, ⊲⊳)
l◦↦−→ (𝜎𝑐 {t ; 𝜍 ′}, Σ{t ; R′},M′, ⊲⊳)
(b) world transitions

𝜍𝑐 = (𝑥 := 𝑓 (𝐸),S𝑐) J𝐸KS𝑐
=𝑛 mid∉dom(M)

M′=M⊎{mid; (𝑓 , 𝑛)} 𝜉 ′=𝜉++[(mid, (𝑓 , 𝑛))]
aexecRV(Γ,S, 𝜉 ′)=𝑛′ 𝜍 ′𝑐 = (skip,S𝑐 {𝑥;𝑛′})

(𝜍𝑐 , (Γ,S, 𝜉),M) ◦
(mid,t,(𝑓 ,𝑛,𝑛′))
−−−−−−−−−−−−−→ t (𝜍 ′𝑐 , (Γ,S, 𝜉 ′),M′)

M(mid) = (𝑓 , 𝑛) mid ∉ dom(𝜉)
𝜉 = 𝜉0++𝜉1 𝜉 ′ = 𝜉0++[(mid, (𝑓 , 𝑛))]++𝜉1

(𝜍𝑐 , (Γ,S, 𝜉),M) ◦
(mid,t,(𝑓 ,𝑛))
−−−−−−−−−−−→ t (𝜍𝑐 , (Γ,S, 𝜉 ′),M)

(c) local transitions

Figure 17. Abstract operational semantics for CRDTs.

B Proofs of the Abstraction Theorems

B.1 For ACC

B.1.1 The Abstract Operational Semantics Fig. 17 defines the high-level small-step operational semantics for the abstract

program P, where clients interact with the specification Γ. It also relies on the conflict relation ⊲⊳ to order the incoming

operations. At the abstract level, each replica R consists of the code Γ, the initial object state S, and the list 𝜉 of operations

that have been done on this replica. Here 𝜉 is similar to the local message pool 𝑀 in the concrete object replica, but it also

maintains the abstract execution order. Note that in R we do not record the current object state, which can always be generated

from the initial state S and the list 𝜉 of operations.

The rules for world transitions in Fig. 17(b) are similar to those in Fig. 15(a). We omit the load rule which creates the initial

world from P. The first rule in Fig. 17(b) says, when the whole program terminates, we replay the operations on the list 𝜉 to

generate the final object state on each node. The next rule requires that the local operation sequences 𝜉 generated in each local

step (𝜍,R,M) l◦−→ t (𝜍 ′,R′,M′) (the transition rules are shown in Fig. 17(c)) must be coherent with the operation sequences

on all other nodes. Here the coherence is the abstract counterpart of Coh in Fig. 8:

AbsCoh(𝜉, 𝜉 ′, (Γ, ⊲⊳)) iff

∀e1, e2 . e1 <𝜉 e2 ∧ e2 <𝜉′ e1 =⇒ ¬(e1 ⊲⊳Γ e2)
where e <𝜉 e′ iff ∃𝑖, 𝑗 . 𝜉 (𝑖) = e ∧ 𝜉 (𝑗) = e′ ∧ 𝑖 < 𝑗

It says that conflicting operations must be ordered the same way in 𝜉 of all nodes. We can see 𝜉 here can be viewed as the

arbitration order ar in our ACC definition in Sec. 5.

Figure 17(c) shows the local transition rules. Each node maintains the initial object state S. When a client issues a request, as

shown in the first rule, the message is appended at the end of 𝜉 . Then all the operations on the resulting 𝜉 ′ are executed on the

fly from the initial state S to calculate the return value 𝑛′
. Here the definition of aexecRV(Γ,S, 𝜉) is similar to aexecRV(Γ,S, E)

in Sec. 5.

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

When a node receives an operation request sent from others, the message is non-deterministically inserted into 𝜉 , as shown

in the second rule. In this case we do not execute the operation, since the node is not the origin of the request and does not

need the return value. Note that, although the insertion is non-deterministic, the resulting 𝜉 needs to be coherent with the lists

on other nodes, as the last world transition rule in Fig. 17(b) requires.

Since the local operation lists 𝜉 on all nodes must be coherent during the execution, we can prove that the abstract semantics

inherently guarantees the convergence of the abstract object states. Then, the contextual refinement Π ⊑𝜑 (Γ, ⊲⊳) can ensure

Cv𝜑 (Π), the convergence of the concrete object. With the Abstraction Theorem, we can derive Lem. 5 again: ACC𝜑 (Π, (Γ, ⊲⊳))
can ensure Cv𝜑 (Π) too.

B.1.2 Proofs for the Abstraction Theorem (Theorem 7) The contextual refinement Π ⊑𝜑 (Γ, ⊲⊳) says, for any object

states and event traces generated by an execution at the concrete level, the corresponding abstract states and traces can be

generated at the abstract level (using the abstract semantics presented below). Ts (𝑃,S) and Ts (P,S) are defined similarly as

T (𝑃,S) (Sec. A), but they additionally record the final states and all the intermediate object states (S𝑖
𝑐 for the final client-local

state and S𝑖𝑜 for the trace of object states) of every node 𝑖 of an execution. The function obsv(E) maps the event trace E at the

concrete level to the one at the abstract level. We also lift 𝜑 to state traces. 𝜑 (S𝑜) maps every object state in the sequence S𝑜 to

an abstract state.

Definition 10. Π ⊑𝜑 (Γ, ⊲⊳) iff, for all clients 𝐶1, . . . ,𝐶𝑛 and state S ∈ dom(𝜑), for all E,S1

𝑐 , . . . ,S𝑛
𝑐 , S

1

𝑜 , . . . , S
𝑛
𝑜 ,

(E, (S1

𝑐 , . . . ,S𝑛
𝑐), (S1𝑜 , . . . , S𝑛𝑜)) ∈ Ts (let Π in 𝐶1 ∥ . . . ∥𝐶𝑛,S)

=⇒ (obsv(E), (S1

𝑐 , . . . ,S𝑛
𝑐), (𝜑 (S1𝑜), . . . , 𝜑 (S𝑛𝑜)))

∈ Ts (with (Γ, ⊲⊳) do 𝐶1 ∥ . . . ∥𝐶𝑛, 𝜑 (S))

Figure 18 shows the formal definitions of Ts (𝑃,S) and Ts (P,S𝑎) used in contextual refinement. Ts (𝑃,S) and Ts (P,S) are
defined similarly as T (𝑃,S) (Sec. A), but they additionally record the final states and all the intermediate object states (S𝑖

𝑐 for

the final client-local state and S𝑖𝑜 for the trace of object states) of every node 𝑖 of an execution. The function obsv(E) maps the

event trace E at the concrete level to the one at the abstract level. We also lift 𝜑 to state traces. 𝜑 (S𝑜) maps every object state

in the sequence S𝑜 to an abstract state.

Below we prove separately the two directions of the equivalence: ACC𝜑 (Π, (Γ, ⊲⊳)) ⇐⇒ Π ⊑𝜑 (Γ, ⊲⊳).

Proof of Theorem 7 (=⇒). For any 𝐶1, . . . ,𝐶𝑛,S,S𝑎 , S1

𝑐 , . . . ,S𝑛
𝑐 , S

1

𝑜 , . . . , S
𝑛
𝑜 and E, suppose (E, (S1

𝑐 , . . . ,S𝑛
𝑐), (S1𝑜 , . . . , S𝑛𝑜)) ∈

Ts (let Π in 𝐶1 ∥ . . . ∥𝐶𝑛,S) and 𝜑 (S) = S𝑎 . Let O = obsv(E). We want to prove that

(O, (S1

𝑐 , . . . ,S𝑛
𝑐), (𝜑 (S1𝑜), . . . , 𝜑 (S𝑛𝑜))) ∈ Ts (with (Γ, ⊲⊳) do 𝐶1 ∥ . . . ∥𝐶𝑛, 𝜑 (S)).

From ACC𝜑 (Π, (Γ, ⊲⊳)), we know

ACT𝜑 (E,S, (Γ, ⊲⊳)) .

Thus we know

∃ar1, . . . , ar𝑛 .
∀t. totalOrdervisible(E,t) (art) ∧ (vis↦−−→

t
E ⊆ art) ∧ ExecRelated𝜑 (t, (E,S), (Γ, art))

∧ ∀t′ ≠ t. Coh(art, art′, (Γ, ⊲⊳))

Since (E, (S1

𝑐 , . . . ,S𝑛
𝑐), (S1𝑜 , . . . , S𝑛𝑜)) ∈ Ts (let Π in 𝐶1 ∥ . . . ∥𝐶𝑛,S), we know there exist𝑚,𝑊 and𝑊 ′

such that

((let Π in 𝐶1 ∥ . . . ∥𝐶𝑛,S) pload−−−→𝑊) ∧ (𝑊
(E,(S1

𝑐 ,...,S𝑛
𝑐),(S1𝑜 ,...,S𝑛𝑜))

======================⇒𝑚𝑊 ′),
𝑊 = (𝜎𝑐 , 𝜎𝑜 , ∅),𝑊 ′ = (𝜎 ′

𝑐 , 𝜎
′
𝑜 , 𝑀

′
𝑠),

∀t ∈ [1..𝑛] . 𝜎 ′
𝑐 (t) = (_,St

𝑐),
∀t ∈ [1..𝑛] . 𝜎 ′

𝑜 (t) = (Π,St
𝑜 , 𝑀

′
t).

Let

W = (𝜎𝑐 , Σ, ∅, ⊲⊳) andW′ = (𝜎 ′
𝑐 , Σ

′,M′
𝑠 , ⊲⊳), where

∀t ∈ [1..𝑛] . Σ(t) = (Γ,S𝑎, 𝜖)
∀t ∈ [1..𝑛] . Σ′(t) = (Γ,S𝑎, 𝜉

′
t)

M′
𝑠 = abs(𝑀 ′

𝑠) , where abs(𝑀 ′
𝑠)

def

= {(mid, (𝑓 , 𝑛)) | ∃𝛿. 𝑀 ′
𝑠 (mid) = ((𝑓 , 𝑛), 𝛿)}

∀t ∈ [1..𝑛] . 𝜉 ′t = abs(𝑀 ′
t ⇂art)

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

(StSeq) S ::= 𝜖 | S ::S

𝑊 = (𝜎𝑐 , 𝜎𝑜 , _) dom(𝜎𝑐) = dom(𝜎𝑜) = [1..𝑛] ∀𝑖 . 𝜎𝑐 (𝑖) = (_,S𝑖
𝑐) ∀𝑖 . 𝜎𝑜 (𝑖) = (_,S𝑖

𝑜 , _)

𝑊
(𝜖,(S1

𝑐 ,...,S𝑛
𝑐),([S1

𝑜],..., [S𝑛
𝑜]))

=============================⇒0𝑊

𝑊
𝑒↦−→𝑊 ′′ 𝑊 ′′ (E′,(S1

𝑐 ,...,S𝑛
𝑐),(S′′1 ,...,S′′𝑛))

=========================⇒𝑘𝑊 ′

𝑊 = (𝜎𝑐 , 𝜎𝑜 , _) ∀𝑖 . 𝜎𝑜 (𝑖) = (_,S𝑖
𝑜 , _) E = 𝑒 ::E ′ ∀𝑖 . S𝑖𝑜 = S𝑖

𝑜 ::S
′′
𝑖

𝑊
(E,(S1

𝑐 ,...,S𝑛
𝑐),(S1𝑜 ,...,S𝑛𝑜))

=========================⇒𝑘+1𝑊 ′

𝑊
𝜏↦−→𝑊 ′′ 𝑊 ′′ (E,(S1

𝑐 ,...,S𝑛
𝑐),(S1𝑜 ,...,S𝑛𝑜))

=========================⇒𝑘𝑊 ′

𝑊
(E,(S1

𝑐 ,...,S𝑛
𝑐),(S1𝑜 ,...,S𝑛𝑜))

=========================⇒𝑘+1𝑊 ′

Ts (𝑃,S)
def

= {(E, (S1

𝑐 , . . . ,S𝑛
𝑐), (S1𝑜 , . . . , S𝑛𝑜)) | ∃𝑊,𝑊 ′. ((𝑃,S) pload−−−→𝑊) ∧ (𝑊

(E,(S1

𝑐 ,...,S𝑛
𝑐),(S1𝑜 ,...,S𝑛𝑜))

=========================⇒∗𝑊 ′)}

(a) at the concrete level

W = (𝜎𝑐 , Σ, _, _) dom(𝜎𝑐) = dom(Σ) = [1..𝑛] ∀𝑖 . 𝜎𝑐 (𝑖) = (_,S𝑖
𝑐) ∀𝑖 . aexecST(Σ(𝑖)) = S𝑖

𝑜

W
(𝜖,(S1

𝑐 ,...,S𝑛
𝑐),([S1

𝑜],..., [S𝑛
𝑜]))

=============================⇒0W

W
o↦−→ W′′ W′′ (O′,(S1

𝑐 ,...,S𝑛
𝑐),(S′′1 ,...,S′′𝑛))

=========================⇒𝑘 W′

W = (𝜎𝑐 , Σ, _, _) ∀𝑖 . aexecST(Σ(𝑖)) = S𝑖
𝑜 O = o ::O′ ∀𝑖 . S𝑖𝑜 = S𝑖

𝑜 ::S
′′
𝑖

W
(O,(S1

𝑐 ,...,S𝑛
𝑐),(S1𝑜 ,...,S𝑛𝑜))

========================⇒𝑘+1W′

W
𝜏↦−→ W′′ W′′ (O,(S1

𝑐 ,...,S𝑛
𝑐),(S1𝑜 ,...,S𝑛𝑜))

========================⇒𝑘 W′

W
(O,(S1

𝑐 ,...,S𝑛
𝑐),(S1𝑜 ,...,S𝑛𝑜))

========================⇒𝑘+1W′

Ts (P,S)
def

= {(O, (S1

𝑐 , . . . ,S𝑛
𝑐), (S1𝑜 , . . . , S𝑛𝑜)) | ∃W,W′. ((P,S) ◦pload−−−→W) ∧ (W

(O,(S1

𝑐 ,...,S𝑛
𝑐),(S1𝑜 ,...,S𝑛𝑜))

========================⇒∗W′)}

(b) at the abstract level

obsv(E) def

=

(mid, t, (𝑓 , 𝑛, 𝑛′)) ::obsv(E ′) if E = (mid, t, (𝑓 , 𝑛, 𝑛′, 𝛿)) ::E ′

(mid, t, (𝑓 , 𝑛)) ::obsv(E ′) if E = (mid, t, (𝑓 , 𝑛), 𝛿) ::E ′

𝜖 if E = 𝜖

𝜑 (S) def

=

{
𝜖 if S = 𝜖

𝜑 (S) ::𝜑 (S′) if S = S ::S′

(b) the functions obsv(E) and 𝜑 (S)

Figure 18. The trace sets used in contextual refinements.

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

Since (with (Γ, ⊲⊳) do 𝐶1 ∥ . . . ∥𝐶𝑛,S𝑎) ◦p
load−−−→W, we only need to prove

W
(O,(S1

𝑐 ,...,S𝑛
𝑐),(𝜑 (S1𝑜),...,𝜑 (S𝑛𝑜)))

============================⇒𝑚W′
.

The proof is by induction over𝑚.

• 𝑚 = 0. Trivial.

• 𝑚 = 𝑘 + 1.

Since𝑊
(E,(S1

𝑐 ,...,S𝑛
𝑐),(S1𝑜 ,...,S𝑛𝑜))

======================⇒𝑚𝑊 ′
, we know there exist E ′

, 𝜄 and𝑊 ′′
such that

𝑊
(E′,(S′

1
,...,S′

𝑛),(S′′1 ,...,S′′𝑛))
======================⇒𝑘𝑊 ′′

and𝑊 ′′ 𝜄−→𝑊 ′
,

and, if 𝜄 = 𝜏 , then E = E ′
and ∀𝑖 . S𝑖𝑜 = S′′𝑖 ; otherwise, E = E ′++[𝜄] and ∀𝑖 . S𝑖𝑜 = S′′𝑖 ++[S𝑖

𝑜].
Suppose𝑊 ′′ = (𝜎 ′′

𝑐 , 𝜎
′′
𝑜 , 𝑀

′′
𝑠), where ∀t ∈ [1..𝑛] . 𝜎 ′′

𝑜 (t) = (Π,S′′
t , 𝑀

′′
t). Let

O′ = obsv(E ′), l = obsv(𝜄) andW′′ = (𝜎 ′′
𝑐 , Σ

′′,M′′
𝑠 , ⊲⊳), where

∀t ∈ [1..𝑛] . Σ′′(t) = (Γ,S𝑎, 𝜉
′′
t)

M′′
𝑠 = abs(𝑀 ′′

𝑠)
∀t ∈ [1..𝑛] . 𝜉 ′′t = abs(𝑀 ′′

t ⇂ar′t)
∀t ∈ [1..𝑛] . ar′t = art |visible(E′,t)

To apply the induction hypothesis, we prove:

∀t. totalOrdervisible(E′,t) (ar′t) ∧ (vis↦−−→
t

E′ ⊆ ar′t) ∧ ExecRelated𝜑 (t, (E ′,S), (Γ, ar′t))
∧ ∀t′ ≠ t. Coh(ar′t, ar′t′, (Γ, ⊲⊳))

By the induction hypothesis, we know

W
(E′,(S′

1
,...,S′

𝑛),(𝜑 (S′′
1
),...,𝜑 (S′′𝑛)))

============================⇒𝑘W′′
.

Since ∀t. ExecRelated𝜑 (t, (E,S), (Γ, art)), we know
∀t. 𝜑 (St

𝑜) = 𝜑 (exec_st(S, E|t)) = aexecST(Γ,S𝑎, visible(E, t) ⇂art) = aexecST(Γ,S𝑎, 𝜉
′
t).

Thus we only need to proveW′′ l◦↦−→ W′
.

• Suppose 𝜄 = 𝜏 and E = E ′
. Then𝑊 ′′ −→𝑊 ′

is a client step. ThusW′′ ◦↦−→ W′
.

• Suppose 𝜄 = 𝑒 and E = E ′++[𝑒].
Suppose tid(𝑒) = t. We first prove (𝜎 ′′

𝑐 (t), Σ′′(t),M′′
𝑠)

l◦−→ t (𝜎 ′
𝑐 (t), Σ′(t),M′

𝑠).
The proof is by case analysis over the event 𝑒 .

• 𝑒 = (mid, t, (𝑓 , 𝑛, 𝑛′, 𝛿)).
From the operational semantics, we know there exists 𝑥 , 𝐸 and 𝐶 ′

t such that

𝜎 ′′
𝑐 (t) = ((𝑥 := 𝑓 (𝐸);𝐶 ′

t),S′′
𝑐) S′

𝑐 = S′′
𝑐 {𝑥 ; 𝑛′} 𝜎 ′

𝑐 = 𝜎 ′′
𝑐 {t ; (𝐶 ′

t ,S′
𝑐)}

J𝐸KS′′
𝑐
= 𝑛 Π(𝑓 , 𝑛) (S′′) = (𝑛′, 𝛿) mid ∉ dom(𝑀 ′′

𝑠)
𝑀 ′

𝑠 = 𝑀 ′′
𝑠 ⊎ {mid ; ((𝑓 , 𝑛), 𝛿)} 𝛿 (S′′) = S′ 𝑀 ′

t = 𝑀 ′′
t ⊎ {mid ; ((𝑓 , 𝑛), 𝛿)}

Since mid ∉ dom(𝑀 ′′
𝑠), we know

mid ∉ dom(M′′
𝑠)

Also, from the concrete operational semantics, we can prove:

⌊(E ′ |t)⌋ = 𝑀 ′′
t

Thus we know

∀𝑒 ′ ∈ 𝑀 ′′
t . 𝑒

′ vis↦−−→
t

E 𝑒

Then, since

vis↦−−→
t

E ⊆ art, we know

∀𝑒 ′ ∈ 𝑀 ′′
t . (𝑒 ′, 𝑒) ∈ art

Let

M′
𝑠 = M

′′
𝑠 ⊎ {mid ; (𝑓 , 𝑛)} and 𝜉 ′t = 𝜉 ′′t ++[(mid, (𝑓 , 𝑛))]

Thus

M′
𝑠 = abs(𝑀 ′

𝑠)
Since 𝜉 ′′t = abs(𝑀 ′′

t ⇂art) and𝑀 ′
t = 𝑀 ′′

t ⊎ {mid ; ((𝑓 , 𝑛), 𝛿)}, we know
𝜉 ′t = abs(𝑀 ′

t ⇂art)

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

Also, since ExecRelated𝜑 (t, (E,S), (Γ, art)), we know
𝑛′ = rval(𝑒) = aexecRV(Γ,S𝑎, 𝑀

′
t ⇂art).

Thus we know

aexecRV(Γ,S𝑎, 𝜉
′
t) = 𝑛′

Thus by the abstract operational semantics, we know

(𝜎 ′′
𝑐 (t), Σ′′(t),M′′

𝑠)
l◦−→ t (𝜎 ′

𝑐 (t), Σ′(t),M′
𝑠).

• 𝑒 = (mid, t, (𝑓 , 𝑛), 𝛿).
From the operational semantics, we know

𝑀 ′′
𝑠 (mid) = ((𝑓 , 𝑛), 𝛿) mid ∉ dom(𝑀 ′′

t) 𝛿 (S′′) = S′

𝑀 ′
t = 𝑀 ′′

t ⊎ {mid ; ((𝑓 , 𝑛), 𝛿)} 𝑀 ′
𝑠 = 𝑀 ′′

𝑠

Thus we know

M′′
𝑠 (mid) = (𝑓 , 𝑛) mid ∉ dom(𝜉 ′′t)

Let

M′
𝑠 = M

′′
𝑠

Thus

M′
𝑠 = abs(𝑀 ′

𝑠)
Let

𝜉 ′t = abs(𝑀 ′
t ⇂art)

Then, since 𝜉 ′′t = abs(𝑀 ′′
t ⇂art), we know there exist 𝜉1 and 𝜉2 such that

𝜉 ′′t = 𝜉1++𝜉2 and 𝜉
′
t = 𝜉1++[(mid, (𝑓 , 𝑛))]++𝜉2

Thus by the abstract operational semantics, we know

(𝜎 ′′
𝑐 (t), Σ′′(t),M′′

𝑠)
l◦−→ t (𝜎 ′

𝑐 (t), Σ′(t),M′
𝑠).

Next we prove ∀t′ ≠ t. AbsCoh(𝜉 ′t , 𝜉 ′t′, (Γ, ⊲⊳)).
For any e1 and e2, suppose e1 <𝜉′t

e2 and e2 <𝜉′t′
e1. Since 𝜉 ′t = abs(𝑀 ′

t ⇂art) and 𝜉 ′t′ = abs(𝑀 ′
t′ ⇂art′), we know there

exist 𝑒1 and 𝑒2 such that

abs(𝑒1) = e1, abs(𝑒2) = e2, 𝑒1 ∈ 𝑀 ′
t ∩𝑀 ′

t′ , 𝑒2 ∈ 𝑀 ′
t ∩𝑀 ′

t′ , 𝑒1 art 𝑒2, 𝑒2 art′ 𝑒1.
Since Coh(art, art′, (Γ, ⊲⊳)), we know

¬(𝑒1 ⊲⊳Γ 𝑒2)
Thus we know ¬(e1 ⊲⊳Γ e2). As a result, we know

AbsCoh(𝜉 ′t , 𝜉 ′t′, (Γ, ⊲⊳)).
Thus we know

W′′ l◦↦−→ W′
.

Thus we are done. □

Proof of Theorem 7 (⇐=). For any S, S𝑎 and E, suppose E ∈ T (Π,S) and 𝜑 (S) = S𝑎 . We want to prove ACT𝜑 (E,S, (Γ, ⊲⊳)).
That is, we want to prove:

∃ar1, . . . , ar𝑛 .
∀t. totalOrdervisible(E,t) (art) ∧ (vis↦−−→

t
E ⊆ art) ∧ ExecRelated𝜑 (t, (E,S), (Γ, art))

∧ ∀t′ ≠ t. Coh(art, art′, (Γ, ⊲⊳))

From E ∈ T (Π,S), we know there exist S1

𝑐 , . . . ,S𝑛
𝑐 and S1𝑜 , . . . , S

𝑛
𝑜 such that

(E, (S1

𝑐 , . . . ,S𝑛
𝑐), (S1𝑜 , . . . , S𝑛𝑜)) ∈ Ts (let Π in 𝐶1 ∥ . . . ∥𝐶𝑛,S).

Let O = obsv(E). From Π ⊑𝜑 (Γ, ⊲⊳), we know

(O, (S1

𝑐 , . . . ,S𝑛
𝑐), (𝜑 (S1𝑜), . . . , 𝜑 (S𝑛𝑜))) ∈ Ts (with (Γ, ⊲⊳) do 𝐶1 ∥ . . . ∥𝐶𝑛, 𝜑 (S)).

Thus we know there existW0 andW such that

(with (Γ, ⊲⊳) do 𝐶1 ∥ . . . ∥𝐶𝑛,S𝑎) ◦p
load−−−→W0, W0

(O,(S1

𝑐 ,...,S𝑛
𝑐),(𝜑 (S1𝑜),...,𝜑 (S𝑛𝑜)))

============================⇒ ∗W

W0 = (𝜎0, Σ0, ∅, ⊲⊳),W = (𝜎, Σ,M𝑠 , ⊲⊳),
∀t. 𝜎0 (t) = (𝐶t, ∅), ∀t. Σ0 (t) = (Γ, 𝜑 (S), 𝜖), ∀t. Σ(t) = (Γ, 𝜑 (S), 𝜉t).

For any t, let

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

art = {(𝑒1, 𝑒2) | {𝑒1, 𝑒2} ⊆ visible(E, t) ∧ abs(𝑒1) <𝜉t abs(𝑒2)}

where abs(𝑒) def

= (mid, (𝑓 , 𝑛)) if 𝑒 = (mid, t, (𝑓 , 𝑛, 𝑛′, 𝛿)).
• By the abstract operational semantics, we know dom(visible(O, t)) = dom(𝜉t). Then, since O = obsv(E), we know

dom(visible(E, t)) = dom(𝜉t). Thus totalOrdervisible(E,t) (art) holds.
• For any 𝑒1 and 𝑒2, if 𝑒1

vis↦−−→
t

E 𝑒2, since O = obsv(E), we know obsv(𝑒1)
vis↦−−→
t
O obsv(𝑒2). Then, from the abstract

operational semantics, we know abs(𝑒1) <𝜉t abs(𝑒2). Thus (𝑒1, 𝑒2) ∈ art. So,
vis↦−−→
t

E ⊆ art.

• Below we prove ExecRelated𝜑 (t, (E,S), (Γ, art)).
• For any E ′ ⩽ E, we prove 𝜑 (exec_st(S, E ′ |t)) = aexecST(Γ, 𝜑 (S), visible(E ′, t) ⇂art).
Suppose the length of E ′

is 𝑘 , and the (𝑘 + 1)-th state in the sequence St𝑜 is St
𝑜 . Since (E, (S1

𝑐 , . . . ,S𝑛
𝑐), (S1𝑜 , . . . , S𝑛𝑜)) ∈

Ts (let Π in 𝐶1 ∥ . . . ∥𝐶𝑛,S), we know
exec_st(S, E ′ |t) = St

𝑜 .

Let O′ = obsv(E ′). Since E ′ ⩽ E and O = obsv(E), we know O′ ⩽ O. Thus
(visible(O′, t) ⇂art) = (𝜉t |visible(O′,t))

SinceW0

(O,(S1

𝑐 ,...,S𝑛
𝑐),(𝜑 (S1𝑜),...,𝜑 (S𝑛𝑜)))

============================⇒ ∗W, we know

aexec_st(Γ, 𝜑 (S), (𝜉t |visible(O′,t))) = 𝜑 (St
𝑜)

Thus 𝜑 (exec_st(S, E ′ |t)) = aexecST(Γ, 𝜑 (S), visible(E ′, t) ⇂art).
• For any E ′ ⩽ E, for any 𝑒 such that last(E ′) = 𝑒 and is_origt (𝑒), we prove rval(𝑒) = aexecRV(Γ, 𝜑 (S), visible(E ′, t) ⇂
art).

Let O′ = obsv(E ′). SinceW0

(O,(S1

𝑐 ,...,S𝑛
𝑐),(𝜑 (S1𝑜),...,𝜑 (S𝑛𝑜)))

============================⇒ ∗W, we know there existW1,W2, O1, l, O2 such that

W0

O1◦↦−→ ∗W1,W1

l◦↦−→ W2,W2

O2◦↦−→ ∗W,

O = O1++[l]++O2, O1++[l] = O′
, l = obsv(𝑒).

SupposeW2 = (𝜎2, Σ2,M
′′
𝑠 , ⊲⊳), and ∀t. Σ2 (t) = (Γ, 𝜑 (S), 𝜉 ′′t). Thus

rval(𝑒) = rval(l)
= aexec_rv(Γ, 𝜑 (S), 𝜉 ′′t)
= aexec_rv(Γ, 𝜑 (S), visible(O1++[l], t) ⇂art)
= aexec_rv(Γ, 𝜑 (S), visible(E ′, t) ⇂art)

• Below we prove ∀t′ ≠ t. Coh(art, art′, (Γ, ⊲⊳)). That is, for any 𝑒1 and 𝑒2, if (𝑒1, 𝑒2) ∈ art and (𝑒2, 𝑒1) ∈ art′ , we want to
prove ¬(𝑒1 ⊲⊳Γ 𝑒2).
Since (𝑒1, 𝑒2) ∈ art and (𝑒2, 𝑒1) ∈ art′ , we know

abs(𝑒1) <𝜉t abs(𝑒2) and abs(𝑒2) <𝜉t′ abs(𝑒1).
By the abstract operational semantics, we know there exist t0 ∈ {t, t′} andW1,W2, O1, l, O2 such that

W0

O1◦↦−→ ∗W1,W1

l◦↦−→ W2,W2

O2◦↦−→ ∗W,

O = O1++[l]++O2, tid(l) = t0,
W2 = (𝜎2, Σ2,M

′′
𝑠 , ⊲⊳), ∀t. Σ2 (t) = (Γ, 𝜑 (S), 𝜉 ′′t),

{abs(𝑒1), abs(𝑒2)} ⊆ ⌊𝜉 ′′t ⌋, {abs(𝑒1), abs(𝑒2)} ⊆ ⌊𝜉 ′′t′ ⌋.
So we know

AbsCoh(𝜉 ′′t , 𝜉 ′′t′ , (Γ, ⊲⊳)), abs(𝑒1) <𝜉′′t
abs(𝑒2), abs(𝑒2) <𝜉′′t′

abs(𝑒1).
Thus ¬(abs(𝑒1) ⊲⊳Γ abs(𝑒2)). So we know ¬(𝑒1 ⊲⊳Γ 𝑒2).

Thus we are done. □

B.2 For XACC

B.2.1 Full Definition of XACC Algorithms like add-wins sets and remove-wins sets resolve conflicts following a specific

“𝑋 -wins” strategy, while the operation 𝑋 wins only when its effect is not canceled. We generalize ACC to support these

algorithms, by enforcing the “𝑋 -wins” strategy specified using the won-by (◀) and canceled-by (▷) relations. Like ⊲⊳ (see

Fig. 7), they are also binary relation over actions. The full specification is now a quadruple (Γ, ⊲⊳,◀,▷).
For add-wins sets, add(x) wins over concurrent remove(x) (remove(x) ◀ add(x)), but it can also be cancelled by

subsequent remove(x) (add(x) ▷ remove(x)); while for remove-wins sets, we have the inverse.

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

RCoh(t,t′) ((art, art′), E, (Γ, ⊲⊳,◀,▷)) iff ∀E ′, E ′′, 𝑒0, 𝑒1 .
E ′ ⩽ E ∧ E ′′ ⩽ E ∧ 𝑒0 ⊲⊳Γ 𝑒1 ∧

{𝑒0, 𝑒1} ⊆ nc-vis(E ′, t, (Γ,▷)) ∩ nc-vis(E ′′, t′, (Γ,▷))
=⇒ ((𝑒0, 𝑒1) ∈ art ∩ art′ ∨ (𝑒1, 𝑒0) ∈ art ∩ art′) ∧

(ConcurrentE (𝑒0, 𝑒1) ∧ (𝑒0 ◀Γ 𝑒1) =⇒ (𝑒0, 𝑒1) ∈ art)

nc-vis(E, t, (Γ,▷)) def

= {𝑒 | 𝑒 ∈ visible(E, t) ∧
¬(∃𝑒 ′. 𝑒 ′ ∈ visible(E, t) ∧ (𝑒 ▷Γ 𝑒 ′) ∧ (𝑒 vis↦−−→ E 𝑒 ′))}

ConcurrentE (𝑒0, 𝑒1) iff ¬(𝑒0
hb↦−−→ E 𝑒1) ∧ ¬(𝑒1

hb↦−−→ E 𝑒0)

PresvCancel(art, t, E, (Γ,▷)) iff

(
vis↦−−→ E ∩ ▷Γ

)
|visible(E,t) ⊆ art

Figure 19. Auxiliary Definitions for XACC

◀ and ▷ can only relate conflicting operations, that is, ◀⊆⊲⊳ and ▷⊆⊲⊳. Also ▷ should indeed capture the cancellation of

effects, as defined in Def. 11. Like ⊲⊳, we also overload ◀ and ▷ over operations and events.

Definition 11. cancel(▷) iff ∀𝛼, 𝛼 ′. 𝛼 ▷ 𝛼 ′ =⇒
∀𝛼1, . . . , 𝛼𝑛 . 𝛼 # 𝛼1 # . . . # 𝛼𝑛 # 𝛼 ′ = 𝛼1 # . . . # 𝛼𝑛 # 𝛼 ′

Definition 12 (Causal Delivery). causalDelivery(E) iff

∀𝑒1, 𝑒2 . (𝑒1
hb↦−−→ E 𝑒2) =⇒ ∀t. 𝑒2 ∈ visible(E, t) =⇒ 𝑒1 ≺

t
E 𝑒2

Definition 13. XACC𝜑 (Π, (Γ, ⊲⊳,◀,▷)) iff
∀S, E . E ∈ T (Π,S) ∧ S ∈ dom(𝜑) ∧ causalDelivery(E)

=⇒ XACT𝜑 (E,S, (Γ, ⊲⊳,◀,▷))

Definition 14. XACT𝜑 (E,S, (Γ, ⊲⊳,◀,▷)) iff ∃ar1, . . . , ar𝑛 ,

∀t. totalOrdervisible(E,t) (art) ∧ (vis↦−−→
t E ⊆ art)

∧ PresvCancel(art, t, E, (Γ,▷)) ∧ ExecRelated𝜑 (t, (E,S), (Γ, art))
∧ ∀t′ ≠ t. RCoh(t,t′) ((art, art′), E, (Γ, ⊲⊳,◀,▷))

where we define PresvCancel and RCoh in Fig. 19.

XACT (see Def. 14) is similar to ACT, but it enforces the more relaxed coherence relation RCoh between the arbitration

orders on different nodes. As defined in Fig. 19, RCoh requires that the arbitration orders art and art′ of the nodes t and t′

enforce the same ordering for conflicting events 𝑒0 and 𝑒1, if neither 𝑒0 or 𝑒1 are canceled (i.e., {𝑒0, 𝑒1} ⊆ nc-vis(E ′, t, (Γ,▷
)) ∩ nc-vis(E ′′, t′, (Γ,▷))). Moreover, the ordering must follow the won-by order ◀ if these two events are concurrent (i.e.,

neither one happens before the other). It is more relaxed in that, if either 𝑒0 or 𝑒1 is cancelled by others, they can be ordered

differently in art and art′ . We illustrate one such scenario below.

t

t3

t2

t1 𝑒0

𝑒 ′′
0

𝑒 ′
0

𝑒

𝑒 ′

𝑒1

𝑒 ′
1

In the right figure, suppose 𝑒0 ▷ 𝑒 and 𝑒1 ◀ 𝑒0 (e.g., 𝑒0, 𝑒 and 𝑒1 are add, remove and

remove operations of an add-wins set). From the figure we see 𝑒0
vis↦−−→ E 𝑒 , Therefore 𝑒0 ∉

nc-vis(E, t, (Γ,▷)). Therefore we do not need to care about the ordering between the conflicting
𝑒0 and 𝑒1 in art. This is reasonable because, by the assumption of causal delivery we know 𝑒 ′

0

arrives at t earlier than 𝑒 ′. Therefore, 𝑒 ′
0
on t is canceled by 𝑒 ′ and its effect is invisible to 𝑒 ′

1
,

so the order between 𝑒0 and 𝑒1 does not matter from the node t’s point of view.
XACT also requires PresvCancel(art, t, E, (Γ,▷)). It says, if 𝑒1 is canceled by 𝑒2 and 𝑒1 is

visible to 𝑒2 on certain node (i.e., 𝑒1
vis↦−−→ E 𝑒2), the arbitration order art must order 𝑒1 before 𝑒2.

For this reason the node t in the above figure must order 𝑒0 before 𝑒 .

B.2.2 The New Abstract Operational Semantics Figure 20 shows the new abstract operational semantics rules. For the

replica R on each node t, we add a set of message IDs, ms, to keep track of the actions that t receives and is aware of their

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

cancellation, i.e., t also has received the actions that cancel those in ms. We also add a relation between actions, er, which
removes the ordering on canceled actions in 𝜉 .

In the worldW, each message in the global message poolM now contains not only an action (𝑓 , 𝑛), but also a set of message

IDs, which are the set of actions canceled by (𝑓 , 𝑛) on its origin node. We also keep track of the visibility relation of actions, V,
which is a mapping from a message ID mid to the set of message IDs which are visible to mid. We use V to enforce causal

delivery in the abstract semantics.

The semantics rules are similar to those in Fig. 17, The main changes are made over the third world transition rule in

Fig. 17(b) and over the first two local transition rules in Fig. 17(c).

For the new local transition rules in Fig. 20(c), when the client issues an operation request, as shown in the first rule, we

calculate the set of operations ms1 canceled by this operation and record them in ms (i.e., ms′ = ms ∪ms1). In addition, we

pack ms together with the operation (𝑓 , 𝑛) into the message and put the message into the global and the local message pools.

The second rule says, if a node receives an operation request, it must have received all those operations that happen before

this incoming operation (i.e., V(mid) ⊆ dom(𝜉)), due to causal delivery. We also record the set of canceled operations ms1
in the local ms, and non-deterministically insert the incoming operation into the resulting 𝜉 where we require the canceled

operations ms1 are all ordered before the incoming operation (i.e., ms1 ⊆ dom(𝜉0)).
For the main global transition rule, the third rule in Fig. 20(b), we checks the coherence using AbsCoh-W, which follows

RCoh in the definition of XACC.

B.2.3 Proofs for the Abstraction Theorem Below we prove separately the two directions of the equivalence:

Theorem 15. XACC𝜑 (Π, (Γ, ⊲⊳,◀,▷)) ⇐⇒ Π ⊑𝜑 (Γ, ⊲⊳,◀,▷).

Figure 21 gives auxiliary definitions used in the proofs.

Proof of Theorem 15 (=⇒). For any 𝐶1, . . . ,𝐶𝑛,S,S𝑎 , S1

𝑐 , . . . ,S𝑛
𝑐 , S

1

𝑜 , . . . , S
𝑛
𝑜 and E,

suppose (E, (S1

𝑐 , . . . ,S𝑛
𝑐), (S1𝑜 , . . . , S𝑛𝑜)) ∈ Ts (let Π in 𝐶1 ∥ . . . ∥𝐶𝑛,S), causalDelivery(E) and 𝜑 (S) = S𝑎 . Let O = obsv(E).

We want to prove that

(O, (S1

𝑐 , . . . ,S𝑛
𝑐), (𝜑 (S1𝑜), . . . , 𝜑 (S𝑛𝑜))) ∈ Ts (with (Γ, ⊲⊳,◀,▷) do 𝐶1 ∥ . . . ∥𝐶𝑛, 𝜑 (S)).

From XACC𝜑 (Π, (Γ, ⊲⊳,◀,▷)), we know there exists 𝜑 such that

XACT𝜑 (E,S, (Γ, ⊲⊳,◀,▷)) .

Thus we know

∃ar1, . . . , ar𝑛 .
∀t. totalOrdervisible(E,t) (art) ∧ (vis↦−−→

t
E ⊆ art)

∧ PresvCancel(art, t, E, (Γ,▷)) ∧ ExecRelated𝜑 (t, (E,S), (Γ, art))
∧ ∀t′ ≠ t. RCoh(t,t′) ((art, art′), E, (Γ, ⊲⊳,◀,▷))

Since (E, (S1

𝑐 , . . . ,S𝑛
𝑐), (S1𝑜 , . . . , S𝑛𝑜)) ∈ Ts (let Π in 𝐶1 ∥ . . . ∥𝐶𝑛,S), we know there exist𝑚,𝑊 and𝑊 ′

such that

((let Π in 𝐶1 ∥ . . . ∥𝐶𝑛,S) pload−−−→𝑊) ∧ (𝑊
(E,(S1

𝑐 ,...,S𝑛
𝑐),(S1𝑜 ,...,S𝑛𝑜))

======================⇒𝑚𝑊 ′),
𝑊 = (𝜎𝑐 , 𝜎𝑜 , ∅),𝑊 ′ = (𝜎 ′

𝑐 , 𝜎
′
𝑜 , 𝑀

′
𝑠),

∀t ∈ [1..𝑛] . 𝜎 ′
𝑐 (t) = (_,St

𝑐),
∀t ∈ [1..𝑛] . 𝜎 ′

𝑜 (t) = (Π,St
𝑜 , 𝑀

′
t).

Let

W = (𝜎𝑐 , Σ, ∅, ∅, ⊲⊳,◀) andW′ = (𝜎 ′
𝑐 , Σ

′,M′
𝑠 ,V

′, ⊲⊳,◀), where
∀t ∈ [1..𝑛] . Σ(t) = ((Γ,▷),S𝑎, 𝜖, ∅, ∅)
∀t ∈ [1..𝑛] . Σ′(t) = ((Γ,▷),S𝑎, 𝜉

′
t ,ms′t, er′

t)
M′

𝑠 = abs-ms(𝑀 ′
𝑠 , E, (Γ,▷))

V′ = {(msgid(𝑒), {msgid(𝑒 ′) | 𝑒 ′ vis↦−−→ E 𝑒}) | 𝑒 ∈ orig(E)}
∀t ∈ [1..𝑛] . ms′t = get-all-ms(Γ,▷) (E, t)
∀t ∈ [1..𝑛] . 𝜉 ′t = abs(𝑀 ′

t ⇂art)
∀t ∈ [1..𝑛] . er′

t =
⋃

E′⩽E (art |nc-vis(E′,t,(Γ,▷)))

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

(AbsProg) P ::= with (Γ, ⊲⊳,◀,▷) do 𝐶1 ∥ . . . ∥𝐶𝑛

(AbsOpEvent) e ::= (mid, (𝑓 , 𝑛))
(AbsOpHist) 𝜉 ::= 𝜖 | e ::𝜉
(MsgIDSet) ms ∈ P (MsgID)
(AbsEvtRel) er ∈ P (AbsOpEvent × AbsOpEvent)
(AbsReplica) R ::= ((Γ,▷),S, 𝜉,ms, er)
(AbsState) Σ ::= {t1 ; R1, . . . , t𝑛 ; R𝑛}

(AbsMsgSoup) M ∈ MsgID ⇀ (OpName × Val) ×MsgIDSet
(VisMap) V ∈ MsgID ⇀ MsgIDSet

(AbsWorld) W ::= (𝜎𝑐 , Σ,M,V, ⊲⊳,◀)
(ObsvEvent) o ::= (mid, t, (𝑓 , 𝑛, 𝑛′)) | (mid, t, (𝑓 , 𝑛)) (AbsLabel) l ::= o | 𝜏

(ObsvTrace) O ::= 𝜖 | o ::O

(a) world and event trace

∀t ∈ [1..𝑛] . 𝜎𝑐 (t) = (𝐶t, ∅) ∀t ∈ [1..𝑛] . Σ(t) = ((Γ,▷),S0, 𝜖, ∅, ∅)

(with (Γ, ⊲⊳,◀,▷) do 𝐶1 ∥ . . . ∥𝐶𝑛,S0) ⋄p
load−−−→ (𝜎𝑐 , Σ, ∅, ∅, ⊲⊳,◀)

dom(𝜎𝑐) = [1..𝑛] for all t ∈ dom(𝜎𝑐) : 𝜎𝑐 (t) = (skip,St) Σ(t) = ((Γ,▷),S0, 𝜉t,mst, ert)
dom(𝜉t) = dom(M) S′

t = aexecST(Γ,S0, 𝜉t)
(𝜎𝑐 , Σ,M,V, ⊲⊳,◀) ⋄↦−→ (end, (S1, . . . ,S𝑛), (S′

1
, . . . ,S′

𝑛))

𝜎𝑐 (t)=𝜍 Σ(t)=R (𝜍,R,M,V) l⋄−→ t (𝜍 ′,R′,M′,V′) R′ = ((Γ,▷),S0, 𝜉,ms, er)
Σ(t′) = ((Γ,▷),S0, 𝜉

′,ms′, er′) ∀t′ ≠ t. AbsCoh-W(er, er′,V, (Γ, ⊲⊳,◀))

(𝜎𝑐 , Σ,M,V, ⊲⊳,◀) l⋄↦−→ (𝜎𝑐 {t ; 𝜍 ′}, Σ{t ; R′},M′,V′, ⊲⊳,◀)
where AbsCoh-W(er, er′,V, (Γ, ⊲⊳,◀)) iff

∀e1, e2 . ({(e1, e2), (e2, e1)} ∩ er ≠ ∅) ∧ ({(e1, e2), (e2, e1)} ∩ er′ ≠ ∅) ∧ (e1 ⊲⊳Γ e2)
=⇒ ((e1, e2) ∈ er ∩ er′ ∨ (e2, e1) ∈ er ∩ er′)

∧ (e1 .mid ∉ V(e2 .mid) ∧ e2 .mid ∉ V(e1 .mid) ∧ (e1 ◀Γ e2) =⇒ e1 er e2)

(b) world transitions

J𝐸KS𝑐
= 𝑛 mid ∉ dom(M𝑠) ms1 = cancelled(Γ,▷) (𝜉, (𝑓 , 𝑛))

M′
𝑠 = M𝑠 ⊎ {mid ; ((𝑓 , 𝑛),ms1)} ms′ = ms ∪ms1 V′ = V ⊎ {mid ; dom(𝜉)}

e = (mid, (𝑓 , 𝑛)) 𝜉 ′ = 𝜉++[e] aexecRV(Γ,S, 𝜉 ′) = 𝑛′ er′ = er ∪ (⌊𝜉\ms′⌋ × {e})

((𝑥 := 𝑓 (𝐸),S𝑐), ((Γ,▷),S, 𝜉,ms, er),M𝑠 ,V) ⋄
(mid,t,(𝑓 ,𝑛,𝑛′))
−−−−−−−−−−−−−→ t ((skip,S𝑐 {𝑥 ; 𝑛′}), ((Γ,▷),S, 𝜉 ′,ms′, er′),M′

𝑠 ,V
′)

where cancelled(Γ,▷) (𝜉, (𝑓 , 𝑛))
def

=

{mid | ∃𝑓 ′, 𝑛′. ((mid, (𝑓 ′, 𝑛′)) ∈ 𝜉) ∧ ((𝑓 ′, 𝑛′) ▷Γ (𝑓 , 𝑛))},
and (𝜉\ms) removes from 𝜉 those events in ms, and ⌊𝜉⌋ turns the sequence to a set.

M𝑠 (mid) = ((𝑓 , 𝑛),ms1) mid ∉ dom(𝜉) V(mid) ⊆ dom(𝜉) 𝜉 = 𝜉0++𝜉1 ms1 ⊆ dom(𝜉0)
e = (mid, (𝑓 , 𝑛)) 𝜉 ′ = 𝜉0++[e]++𝜉1 er′ = er ∪ (⌊𝜉0\ms′⌋ × {e}) ∪ ({e} × ⌊𝜉1\ms′⌋) ms′ = ms ∪ms1

(𝜍𝑐 , ((Γ,▷),S, 𝜉,ms, er),M𝑠 ,V) ⋄
(mid,t,(𝑓 ,𝑛))
−−−−−−−−−−−→ t (𝜍𝑐 , ((Γ,▷),S, 𝜉 ′,ms′, er′),M𝑠 ,V)

(c) local transitions

Figure 20. Abstract operational semantics for XACC objects.

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

abs(mid, t, (𝑓 , 𝑛, 𝑛′, 𝛿)) def

= (mid, (𝑓 , 𝑛))

get-ms(Γ,▷) (E, 𝑒)
def

= {𝑒 ′ | (𝑒 ′ vis↦−−→ E 𝑒) ∧ (𝑒 ′ ▷Γ 𝑒)}

abs-ms(𝑀, E, (Γ,▷)) def

=

{(mid, ((𝑓 , 𝑛),ms)) | ∃𝛿. 𝑀 (mid) = ((𝑓 , 𝑛), 𝛿) ∧ ∃𝑒. 𝑒 ∈ orig(E) ∧msgid(𝑒) = mid ∧ms = get-ms(Γ,▷) (E, 𝑒)}

get-all-ms(Γ,▷) (E, t)
def

=
⋃{get-ms(Γ,▷) (E, 𝑒) | 𝑒 ∈ visible(E, t)}

Figure 21. Auxiliary Definitions for the Proof of Theorem 15.

where we give the definitions of abs, abs-ms and get-all-ms in Fig. 21.

Since (with (Γ, ⊲⊳,◀,▷) do 𝐶1 ∥ . . . ∥𝐶𝑛,S𝑎) ⋄p
load−−−→W, we only need to prove

W
(O,(S1

𝑐 ,...,S𝑛
𝑐),(𝜑 (S1𝑜),...,𝜑 (S𝑛𝑜)))

============================⇒𝑚W′
.

The proof is by induction over𝑚.

• 𝑚 = 0. Trivial.

• 𝑚 = 𝑘 + 1.

Since𝑊
(E,(S1

𝑐 ,...,S𝑛
𝑐),(S1𝑜 ,...,S𝑛𝑜))

======================⇒𝑚𝑊 ′
, we know there exist E ′

, 𝜄 and𝑊 ′′
such that

𝑊
(E′,(S′

1
,...,S′

𝑛),(S′′1 ,...,S′′𝑛))
======================⇒𝑘𝑊 ′′

and𝑊 ′′ 𝜄−→𝑊 ′
,

and, if 𝜄 = 𝜏 , then E = E ′
and ∀𝑖 . S𝑖𝑜 = S′′𝑖 ; otherwise, E = E ′++[𝜄] and ∀𝑖 . S𝑖𝑜 = S′′𝑖 ++[S𝑖

𝑜].
Suppose𝑊 ′′ = (𝜎 ′′

𝑐 , 𝜎
′′
𝑜 , 𝑀

′′
𝑠), where ∀t ∈ [1..𝑛] . 𝜎 ′′

𝑜 (t) = (Π,S′′, 𝑀 ′′
t). Let

O′ = obsv(E ′), l = obsv(𝜄) andW′′ = (𝜎 ′′
𝑐 , Σ

′′,M′′
𝑠 ,V

′′, ⊲⊳,◀), where
∀t ∈ [1..𝑛] . Σ′′(t) = ((Γ,▷),S𝑎, 𝜉

′′
t ,ms′′t , er′′

t)
M′′

𝑠 = abs-ms(𝑀 ′′
𝑠 , E ′, (Γ,▷))

V′′ = {(msgid(𝑒), {msgid(𝑒 ′) | 𝑒 ′ vis↦−−→ E′ 𝑒}) | 𝑒 ∈ orig(E ′)}
∀t ∈ [1..𝑛] . ms′′t = get-all-ms(Γ,▷) (E ′, t)
∀t ∈ [1..𝑛] . 𝜉 ′′t = abs(𝑀 ′′

t ⇂ar′t)
∀t ∈ [1..𝑛] . er′′

t =
⋃

E′′⩽E′ (ar′t |nc-vis(E′′,t,(Γ,▷)))
∀t ∈ [1..𝑛] . ar′t = art |visible(E′,t)

To apply the induction hypothesis, we prove:

∀t. totalOrdervisible(E′,t) (ar′t) ∧ (vis↦−−→
t

E′ ⊆ ar′t)
∧ PresvCancel(ar′t, t, E ′, (Γ,▷))
∧ ExecRelated𝜑 (t, (E ′,S), (Γ, ar′t))
∧ ∀t′ ≠ t. RCoh(t,t′) ((ar′t, ar′t′), E ′, (Γ, ⊲⊳,◀,▷))

By the induction hypothesis, we know

W
(E′,(S′

1
,...,S′

𝑛),(𝜑 (S′′
1
),...,𝜑 (S′′𝑛)))

============================⇒𝑘W′′
.

Since ∀t. ExecRelated𝜑 (t, (E,S), (Γ, art)), we know
∀t. 𝜑 (St

𝑜) = 𝜑 (exec_st(S, E|t)) = aexecST(Γ,S𝑎, visible(E, t) ⇂art).
From the concrete operational semantics, we can prove:

visible(E, t) = 𝑀 ′
t

Thus

∀t. aexecST(Γ,S𝑎, visible(E, t) ⇂art) = aexecST(Γ,S𝑎, 𝜉
′
t).

Thus

∀t. 𝜑 (St
𝑜) = aexecST(Γ,S𝑎, 𝜉

′
t).

So we only need to proveW′′ l⋄↦−→ W′
.

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

• Suppose 𝜄 = 𝜏 and E = E ′
. Then𝑊 ′′ −→𝑊 ′

is a client step. ThusW′′ ⋄↦−→ W′
.

• Suppose 𝜄 = 𝑒 and E = E ′++[𝑒].
Suppose tid(𝑒) = t. We first prove (𝜎 ′′

𝑐 (t), Σ′′(t),M′′
𝑠 ,V

′′) l⋄−→ t (𝜎 ′
𝑐 (t), Σ′(t),M′

𝑠 ,V
′). The proof is by case analysis

over the event 𝑒 .

• 𝑒 = (mid, t, (𝑓 , 𝑛, 𝑛′, 𝛿)).
From the operational semantics, we know there exists 𝑥 , 𝐸 and 𝐶 ′

t such that

𝜎 ′′
𝑐 (t) = ((𝑥 := 𝑓 (𝐸);𝐶 ′

t),S′′
𝑐) S′

𝑐 = S′′
𝑐 {𝑥 ; 𝑛′} 𝜎 ′

𝑐 = 𝜎 ′′
𝑐 {t ; (𝐶 ′

t ,S′
𝑐)}

J𝐸KS′′
𝑐
= 𝑛 Π(𝑓 , 𝑛) (S′′) = (𝑛′, 𝛿) mid ∉ dom(𝑀 ′′

𝑠)
𝑀 ′

𝑠 = 𝑀 ′′
𝑠 ⊎ {mid ; ((𝑓 , 𝑛), 𝛿)} 𝛿 (S′′) = S′ 𝑀 ′

t = 𝑀 ′′
t ⊎ {mid ; ((𝑓 , 𝑛), 𝛿)}

Since mid ∉ dom(𝑀 ′′
𝑠), we know

mid ∉ dom(M′′
𝑠)

Also, from the concrete operational semantics, we can prove:

visible(E ′, t) = 𝑀 ′′
t

Thus we know

∀𝑒 ′ ∈ 𝑀 ′′
t . 𝑒

′ vis↦−−→
t

E 𝑒

Then, since

vis↦−−→
t

E ⊆ art, we know

∀𝑒 ′ ∈ 𝑀 ′′
t . (𝑒 ′, 𝑒) ∈ art

Let

ms = cancelled(Γ,▷) (𝜉 ′′t , (𝑓 , 𝑛)).
Then we know

ms = get-ms(Γ,▷) (E, 𝑒).
Let

e = (mid, (𝑓 , 𝑛)),M′
𝑠 = M

′′
𝑠 ⊎ {mid ; ((𝑓 , 𝑛),ms)}, ms′t = ms′′t ∪ms, 𝜉 ′t = 𝜉 ′′t ++[e].

SinceM′′
𝑠 = abs-ms(𝑀 ′′

𝑠 , E ′, (Γ,▷)), we know
M′

𝑠 = abs-ms(𝑀 ′
𝑠 , E, (Γ,▷))

Since ms′′t = get-all-ms(Γ,▷) (E ′, t), we know
ms′t = get-all-ms(Γ,▷) (E, t)

Since 𝜉 ′′t = abs(𝑀 ′′
t ⇂ar′t), we know

𝜉 ′t = abs(𝑀 ′
t ⇂art)

Also, since ExecRelated𝜑 (t, (E,S), (Γ, art)), we know
𝑛′ = rval(𝑒) = aexecRV(Γ,S𝑎, 𝑀

′
t ⇂art)

Thus we know

aexecRV(Γ,S𝑎, 𝜉
′
t) = 𝑛′

Let

V′ = V′′ ⊎ {mid ; dom(𝜉 ′′t)}, er′ = er′′ ∪ (⌊𝜉 ′′t \ms′t⌋ × {e}).
Thus we know

V′ = {(msgid(𝑒), {msgid(𝑒 ′) | 𝑒 ′ vis↦−−→ E 𝑒}) | 𝑒 ∈ orig(E)},
∀t ∈ [1..𝑛] . er′

t =
⋃

E′′⩽E (art |nc-vis(E′′,t,(Γ,▷)))
And, by the abstract operational semantics, we know

(𝜎 ′′
𝑐 (t), Σ′′(t),M′′

𝑠 ,V
′′) l⋄−→ t (𝜎 ′

𝑐 (t), Σ′(t),M′
𝑠 ,V

′).
• 𝑒 = (mid, t, (𝑓 , 𝑛), 𝛿).
From the operational semantics, we know

𝑀 ′′
𝑠 (mid) = ((𝑓 , 𝑛), 𝛿) mid ∉ dom(𝑀 ′′

t) 𝛿 (S′′) = S′

𝑀 ′
t = 𝑀 ′′

t ⊎ {mid ; ((𝑓 , 𝑛), 𝛿)} 𝑀 ′
𝑠 = 𝑀 ′′

𝑠

SinceM′′
𝑠 = abs-ms(𝑀 ′′

𝑠 , E ′, (Γ,▷)), we know there exists ms such that

M′′
𝑠 (mid) = ((𝑓 , 𝑛),ms), ∃𝑒. 𝑒 ∈ orig(E ′) ∧msgid(𝑒) = mid ∧ms = get-ms(Γ,▷) (E ′, 𝑒)

Since causalDelivery(E), we know
ms ⊆ dom(𝜉 ′′t) and V′′(mid) ⊆ dom(𝜉 ′′t).

Since 𝜉 ′′t = abs(𝑀 ′′
t ⇂ar′t), we know

mid ∉ dom(𝜉 ′′t)
Let

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

M′
𝑠 = M

′′
𝑠 and ms′t = ms′′t ∪ms.

Thus

M′
𝑠 = abs-ms(𝑀 ′

𝑠 , E, (Γ,▷)), ms′t = get-all-ms(Γ,▷) (E, t).
Let

𝜉 ′t = abs(𝑀 ′
t ⇂art)

Then, since 𝜉 ′′t = abs(𝑀 ′′
t ⇂ar′t), we know there exist 𝜉1 and 𝜉2 such that

𝜉 ′′t = 𝜉1++𝜉2 and 𝜉
′
t = 𝜉1++[(mid, (𝑓 , 𝑛))]++𝜉2

From PresvCancel(art, t, E, (Γ,▷)), we know
(

vis↦−−→ E ∩ ▷Γ

)
|visible(E,t) ⊆ art. Thus

∀𝑒 ′. 𝑒 ′ ∈ ms =⇒ (𝑒 ′, 𝑒) ∈ art.
Thus

ms ⊆ dom(𝜉1).
Let

er′ = er′′ ∪ (⌊𝜉1\ms′t⌋ × {(mid, (𝑓 , 𝑛))}) ∪ ({(mid, (𝑓 , 𝑛))} × ⌊𝜉2\ms′t⌋).
Thus we know

∀t ∈ [1..𝑛] . er′
t =

⋃
E′′⩽E (art |nc-vis(E′′,t,(Γ,▷)))

And, by the abstract operational semantics, we know

(𝜎 ′′
𝑐 (t), Σ′′(t),M′′

𝑠 ,V
′′) l⋄−→ t (𝜎 ′

𝑐 (t), Σ′(t),M′
𝑠 ,V

′).
Next we prove ∀t′ ≠ t. AbsCoh-W(er′

t, er′
t′,V

′, (Γ, ⊲⊳,◀)).
For any e1 and e2, suppose {(e1, e2), (e2, e1)} ∩ er′

t ≠ ∅, {(e1, e2), (e2, e1)} ∩ er′
t′ ≠ ∅ and e1 ⊲⊳Γ e2, we want to prove

((e1, e2) ∈ er′
t∩er′

t′∨(e2, e1) ∈ er′
t∩er′

t′) and (e1 .mid ∉ V′(e2 .mid)∧e2.mid ∉ V′(e1 .mid)∧(e1 ◀Γ e2) =⇒ e1 er′
t e2).

Since {(e1, e2), (e2, e1)} ∩ er′
t ≠ ∅, from er′

t =
⋃

E′⩽E (art |nc-vis(E′,t,(Γ,▷))), we know there exist 𝑒1, 𝑒2 and E ′ ⩽ E such

that

abs(𝑒1) = e1, abs(𝑒2) = e2, {𝑒1, 𝑒2} ⊆ nc-vis(E ′, t, (Γ,▷))
Similarly, we know there exists E ′′ ⩽ E such that

{𝑒1, 𝑒2} ⊆ nc-vis(E ′′, t′, (Γ,▷))
From RCoh(t,t′) ((art, art′), E, (Γ, ⊲⊳,◀,▷)), we know

((𝑒1, 𝑒2) ∈ art ∩ art′ ∨ (𝑒2, 𝑒1) ∈ art ∩ art′) and (ConcurrentE (𝑒1, 𝑒2) ∧ (𝑒1 ◀Γ 𝑒2) =⇒ (𝑒1, 𝑒2) ∈ art)
Thus we know

((e1, e2) ∈ er′
t ∩ er′

t′ ∨ (e2, e1) ∈ er′
t ∩ er′

t′)
Besides, if e1.mid ∉ V′(e2.mid) ∧ e2 .mid ∉ V′(e1.mid), we know

¬(𝑒1
vis↦−−→ E 𝑒2) ∧ ¬(𝑒2

vis↦−−→ E 𝑒1)
From causalDelivery(E), we know

ConcurrentE (𝑒1, 𝑒2).
So (𝑒1 ◀Γ 𝑒2) =⇒ (𝑒1, 𝑒2) ∈ art. Thus

(e1 ◀Γ e2) =⇒ e1 er′
t e2

As a result, we know

AbsCoh-W(er′
t, er′

t′,V
′, (Γ, ⊲⊳,◀)).

Thus we know

W′′ l⋄↦−→ W′
.

Thus we are done. □

Proof of Theorem 15 (⇐=). For any S, S𝑎 and E, suppose E ∈ T (Π,S) and 𝜑 (S) = S𝑎 and causalDelivery(E). We want to

prove XACT𝜑 (E,S, (Γ, ⊲⊳,◀,▷)). That is, we want to prove:

∃ar1, . . . , ar𝑛 .
∀t. totalOrdervisible(E,t) (art) ∧ (vis↦−−→

t
E ⊆ art)

∧ PresvCancel(art, t, E, (Γ,▷)) ∧ ExecRelated𝜑 (t, (E,S), (Γ, art))
∧ ∀t′ ≠ t. RCoh(t,t′) ((art, art′), E, (Γ, ⊲⊳,◀,▷))

From E ∈ T (Π,S), we know there exist S1

𝑐 , . . . ,S𝑛
𝑐 and S1𝑜 , . . . , S

𝑛
𝑜 such that

(E, (S1

𝑐 , . . . ,S𝑛
𝑐), (S1𝑜 , . . . , S𝑛𝑜)) ∈ Ts (let Π in 𝐶1 ∥ . . . ∥𝐶𝑛,S).

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

Let O = obsv(E). From Π ⊑𝜑 (Γ, ⊲⊳,◀,▷), we know

(O, (S1

𝑐 , . . . ,S𝑛
𝑐), (𝜑 (S1𝑜), . . . , 𝜑 (S𝑛𝑜))) ∈ Ts (with (Γ, ⊲⊳,◀,▷) do 𝐶1 ∥ . . . ∥𝐶𝑛, 𝜑 (S)).

Thus we know there existW0 andW such that

(with (Γ, ⊲⊳,◀,▷) do 𝐶1 ∥ . . . ∥𝐶𝑛,S𝑎) ⋄p
load−−−→W0, W0

(O,(S1

𝑐 ,...,S𝑛
𝑐),(𝜑 (S1𝑜),...,𝜑 (S𝑛𝑜)))

============================⇒ ∗W

W0 = (𝜎0, Σ0, ∅, ∅, ⊲⊳,◀),W = (𝜎, Σ,M𝑠 ,V, ⊲⊳,◀),
∀t. 𝜎0 (t) = (𝐶t, ∅), ∀t ∈ [1..𝑛] . Σ0 (t) = ((Γ,▷),S𝑎, 𝜖, ∅, ∅), ∀t ∈ [1..𝑛] . Σ(t) = ((Γ,▷),S𝑎, 𝜉t,mst, ert)

For any t, let

art = {(𝑒1, 𝑒2) | {𝑒1, 𝑒2} ⊆ visible(E, t) ∧ abs(𝑒1) <𝜉t abs(𝑒2)}

where abs(𝑒) def

= (mid, (𝑓 , 𝑛)) if 𝑒 = (mid, t, (𝑓 , 𝑛, 𝑛′, 𝛿)).
• By the abstract operational semantics, we know dom(visible(O, t)) = dom(𝜉t). Then, since O = obsv(E), we know

dom(visible(E, t)) = dom(𝜉t). Thus totalOrdervisible(E,t) (art) holds.
• For any 𝑒1 and 𝑒2, if 𝑒1

vis↦−−→
t

E 𝑒2, since O = obsv(E), we know obsv(𝑒1)
vis↦−−→
t
O obsv(𝑒2). Then, from the abstract

operational semantics, we know abs(𝑒1) <𝜉t abs(𝑒2). Thus (𝑒1, 𝑒2) ∈ art. So,
vis↦−−→
t

E ⊆ art.

• Below we prove PresvCancel(art, t, E, (Γ,▷)).
For any 𝑒1 and 𝑒2, if 𝑒1

vis↦−−→ E 𝑒2, 𝑒1 ▷Γ 𝑒2 and {𝑒1, 𝑒2} ⊆ visible(E, t), since O = obsv(E), we know obsv(𝑒1)
vis↦−−→

O obsv(𝑒2). From causalDelivery(E), we know
obsv(𝑒1) ≺t

O
obsv(𝑒2).

Since 𝑒1 ▷Γ 𝑒2 and obsv(𝑒1)
vis↦−−→ O obsv(𝑒2), we know msgid(𝑒1) ∈ M𝑠 (msgid(𝑒2)) .ms. By the abstract operational

semantics we know

abs(𝑒1) <𝜉t abs(𝑒2).
Thus (𝑒1, 𝑒2) ∈ art. So, PresvCancel(art, t, E, (Γ,▷)).

• Below we prove ExecRelated𝜑 (t, (E,S), (Γ, art)).
• For any E ′ ⩽ E, we prove 𝜑 (exec_st(S, E ′ |t)) = aexecST(Γ, 𝜑 (S), visible(E ′, t) ⇂art).
Suppose the length of E ′

is 𝑘 , and the 𝑘 + 1-th state in the sequence St𝑜 is St
𝑜 . Since (E, (S1

𝑐 , . . . ,S𝑛
𝑐), (S1𝑜 , . . . , S𝑛𝑜)) ∈

Ts (let Π in 𝐶1 ∥ . . . ∥𝐶𝑛,S), we know
exec_st(S, E ′ |t) = St

𝑜 .

Let O′ = obsv(E ′). Since E ′ ⩽ E and O = obsv(E), we know O′ ⩽ O. Thus
(visible(O′, t) ⇂art) = (𝜉t |visible(O′,t))

SinceW0

(O,(S1

𝑐 ,...,S𝑛
𝑐),(𝜑 (S1𝑜),...,𝜑 (S𝑛𝑜)))

============================⇒ ∗W, we know

aexec_st(Γ, 𝜑 (S), (𝜉t |visible(O′,t))) = 𝜑 (St
𝑜)

Thus 𝜑 (exec_st(S, E ′ |t)) = aexecST(Γ, 𝜑 (S), visible(E ′, t) ⇂art).
• For any E ′ ⩽ E, for any 𝑒 such that last(E ′) = 𝑒 and is_origt (𝑒), we prove rval(𝑒) = aexecRV(Γ, 𝜑 (S), visible(E ′, t) ⇂
art).

Let O′ = obsv(E ′). SinceW0

(O,(S1

𝑐 ,...,S𝑛
𝑐),(𝜑 (S1𝑜),...,𝜑 (S𝑛𝑜)))

============================⇒ ∗W, we know there existW1,W2, O1, l, O2 such that

W0

O1⋄↦−→ ∗W1,W1

l⋄↦−→ W2,W2

O2⋄↦−→ ∗W,

O = O1++[l]++O2, O1++[l] = O′
, l = obsv(𝑒).

SupposeW2 = (𝜎2, Σ2,M
′′
𝑠 , ⊲⊳), and ∀t. Σ2 (t) = (Γ, 𝜑 (S), 𝜉 ′′t). Thus

rval(𝑒) = rval(l)
= aexec_rv(Γ, 𝜑 (S), 𝜉 ′′t)
= aexec_rv(Γ, 𝜑 (S), visible(O1++[l], t) ⇂art)
= aexec_rv(Γ, 𝜑 (S), visible(E ′, t) ⇂art)

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

• Below we prove ∀t′ ≠ t. RCoh(t,t′) ((art, art′), E, (Γ, ⊲⊳,◀,▷)). That is, for any E ′
, E ′′

, 𝑒1 and 𝑒2, if E ′ ⩽ E, E ′′ ⩽ E,
{𝑒1, 𝑒2} ⊆ nc-vis(E ′, t, (Γ,▷)), {𝑒1, 𝑒2} ⊆ nc-vis(E ′′, t′, (Γ,▷)) and 𝑒1 ⊲⊳Γ 𝑒2, we want to prove ((𝑒1, 𝑒2) ∈ art ∩ art′ ∨
(𝑒2, 𝑒1) ∈ art ∩ art′) and (ConcurrentE (𝑒1, 𝑒2) ∧ (𝑒1 ◀Γ 𝑒2) =⇒ (𝑒1, 𝑒2) ∈ art).
Let e1 = abs(𝑒1) and e2 = abs(𝑒2). Since {𝑒1, 𝑒2} ⊆ nc-vis(E ′, t, (Γ,▷)) and {𝑒1, 𝑒2} ⊆ nc-vis(E ′′, t′, (Γ,▷)), by the

abstract operational semantics, we know there exist t0 ∈ {t, t′} andW1,W2, O1, l, O2 such that

W0

O1◦↦−→ ∗W1,W1

l◦↦−→ W2,W2

O2◦↦−→ ∗W,

O = O1++[l]++O2, tid(l) = t0,
W2 = (𝜎2, Σ2,M

′′
𝑠 ,V

′′, ⊲⊳,◀), ∀t. Σ2 (t) = ((Γ,▷),S𝑎, 𝜉
′′
t ,ms′′t , er′′

t),
{(e1, e2), (e2, e1)} ∩ er′′

t ≠ ∅, {(e1, e2), (e2, e1)} ∩ er′′
t′ ≠ ∅.

So we know

AbsCoh-W(er′′
t , er′′

t′ ,V
′′, (Γ, ⊲⊳,◀)).

Since 𝑒1 ⊲⊳Γ 𝑒2, we know

((e1, e2) ∈ er′′
t ∩ er′′

t′ ∨ (e2, e1) ∈ er′′
t ∩ er′′

t′) and
(e1 .mid ∉ V′′(e2.mid) ∧ e2.mid ∉ V′′(e1.mid) ∧ (e1 ◀Γ e2) =⇒ e1 er′′

t e2).
Thus we know

((𝑒1, 𝑒2) ∈ art ∩ art′ ∨ (𝑒2, 𝑒1) ∈ art ∩ art′)
If ConcurrentE (𝑒1, 𝑒2), from the abstract operational semantics, we know e1.mid ∉ V′′(e2 .mid) ∧ e2.mid ∉ V′′(e1.mid).
Thus (e1 ◀Γ e2) =⇒ e1 er′′

t e2. So we have (𝑒1 ◀Γ 𝑒2) =⇒ (𝑒1, 𝑒2) ∈ art. So RCoh(t,t′) ((art, art′), E, (Γ, ⊲⊳,◀,▷)).
Thus we are done. □

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

C Proofs of the Convergence Lemmas

C.1 For ACC (Lemma 5)

Although we can prove Lemma 5 directly, here we take another proof path via the Abstraction Theorem. We first show

that the abstract semantics in Fig. 17 inherently guarantees the convergence of the abstract object states (Lemma 17 below).

Then we derive that the contextual refinement Π ⊑𝜑 (Γ, ⊲⊳) can ensure Cv𝜑 (Π), the convergence of the concrete object

(Lemma 18 below). By the equivalence between ACC𝜑 (Π, (Γ, ⊲⊳)) and Π ⊑𝜑 (Γ, ⊲⊳) (the Abstraction Theorem), we derive

Lemma 5: ACC𝜑 (Π, (Γ, ⊲⊳)) can ensure Cv𝜑 (Π) too.

Definition 16. CvA(Γ, ⊲⊳) iff for any 𝐶1, . . . ,𝐶𝑛 , S,W0,W,W′
, O, O′

, t, t′,

(with (Γ, ⊲⊳) do 𝐶1 ∥ . . . ∥𝐶𝑛,S) ◦p
load−−−→W0

∧ (W0

O◦↦−→ ∗W) ∧ (W O′◦↦−→ ∗W′) ∧ visible(O, t) = visible(O++O′, t′)
=⇒ aexecST(Γ,S,W(t).𝜉) = aexecST(Γ,S,W′(t′).𝜉)

Here we use W(t).𝜉 to represent 𝜉 on the node t in W, and visible(O, t) is defined similarly as its concrete counterpart

visible(E, t) (see Fig. 16).

Lemma 17. If nonComm(Γ, ⊲⊳), then CvA(Γ, ⊲⊳).

Lemma 18 (⊑ implies Cv). If nonComm(Γ, ⊲⊳) and Π ⊑𝜑 (Γ, ⊲⊳), then Cv𝜑 (Π).

Proof of Lemma 17. We first unfold the definition of CvA(Γ, ⊲⊳): for any 𝐶1, . . . ,𝐶𝑛 , S, W0, W, W′
, O, O′

, t and t′, suppose

(with (Γ, ⊲⊳) do 𝐶1 ∥ . . . ∥𝐶𝑛,S) ◦p
load−−−→ W0,W0

O◦↦−→ ∗W,W
O′◦↦−→ ∗W′

and visible(O, t) = visible(O++O′, t′), then we want to

prove aexecST(Γ,S,W(t).𝜉) = aexecST(Γ,S,W′(t′).𝜉).
Let 𝜉 ′t =W(t).𝜉 and 𝜉 ′t′ =W′(t′).𝜉 . From visible(O, t) = visible(O++O′, t′), by the abstract semantics, we know

⌊𝜉 ′t⌋ = ⌊𝜉 ′t′⌋.

SinceW0

O++O′◦↦−→ ∗W′
, from the abstract semantics, we know there exists 𝜉 ′′t such that 𝜉 ′t ⊆ 𝜉 ′′t and

AbsCoh(𝜉 ′′t , 𝜉 ′t′, (Γ, ⊲⊳)).

Thus we know

AbsCoh(𝜉 ′t , 𝜉 ′t′, (Γ, ⊲⊳)).

Also, by the abstract semantics, we know ∀(mid, (𝑓 , 𝑛)) ∈ 𝜉 ′t . (𝑓 , 𝑛) ∈ dom(Γ). Thus we know there exists S′
such that

aexecST(Γ,S, 𝜉 ′t) = S′
. Then we know S′ = aexecST(Γ,S, 𝜉 ′t′) by applying Lemma 19. □

Lemma 19. For any 𝜉1, 𝜉2, S and S′
, if nonComm(Γ, ⊲⊳), ⌊𝜉1⌋ = ⌊𝜉2⌋, AbsCoh(𝜉1, 𝜉2, (Γ, ⊲⊳)) and aexecST(Γ,S, 𝜉1) = S′

, then

S′ = aexecST(Γ,S, 𝜉2).

Proof. Suppose the length of 𝜉1 is 𝑛. By induction over 𝑛.

• 𝑛 = 0. Thus 𝜉1 = 𝜉2 = 𝜖 and S′ = S. Thus S′ = aexecST(Γ,S, 𝜉2).
• 𝑛 =𝑚 + 1. Suppose 𝜉1 = e1 ::𝜉 ′1 and 𝜉2 = e′

1
::𝜉 ′

2
.

• e1 = e′
1
. Then we know

⌊𝜉 ′
1
⌋ = ⌊𝜉 ′

2
⌋ and AbsCoh(𝜉 ′

1
, 𝜉 ′

2
, (Γ, ⊲⊳)).

Let S′′ = aexecST(Γ,S, [e1]). Thus aexecST(Γ,S′′, 𝜉 ′
1
) = S′

. Then, by the induction hypothesis, we know

S′ = aexecST(Γ,S′′, 𝜉 ′
2
).

Thus S′ = aexecST(Γ,S, 𝜉2).
• e1 ≠ e′

1
. Suppose 𝜉1 = e1 ::e2 :: . . . ::e𝑛 and 𝜉2 = e′

1
::e′

2
:: . . . ::e′𝑛 .

Since ⌊𝜉1⌋ = ⌊𝜉2⌋, we know there exists 𝑖 > 1 such that 𝑒1 = 𝑒 ′𝑖 .
Let 𝜉3 = e′𝑖 ::𝜉

′
3
and 𝜉 ′

3
= e′

1
:: . . . ::e′𝑖−1 ::e

′
𝑖+1 :: . . . ::e

′
𝑛 .

Below we first prove aexecST(Γ,S, 𝜉3) = S′
.

Since ⌊𝜉1⌋ = ⌊𝜉2⌋ and AbsCoh(𝜉1, 𝜉2, (Γ, ⊲⊳)), we know
⌊𝜉 ′

1
⌋ = ⌊𝜉 ′

3
⌋ and AbsCoh(𝜉 ′

1
, 𝜉 ′

3
, (Γ, ⊲⊳)).

Let S′′ = aexecST(Γ,S, [e1]). Thus aexecST(Γ,S′′, 𝜉 ′
1
) = S′

. Then, by the induction hypothesis, we know

S′ = aexecST(Γ,S′′, 𝜉 ′
3
).

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

Thus S′ = aexecST(Γ,S, 𝜉3).
Next, we prove S′ = aexecST(Γ,S, 𝜉2).
Since AbsCoh(𝜉1, 𝜉2, (Γ, ⊲⊳)), we know

AbsCoh(𝜉3, 𝜉2, (Γ, ⊲⊳)).
By Lemma 20, we know S′ = aexecST(Γ,S, 𝜉2).

Thus we are done. □

Lemma 20. For any 𝜉1, 𝜉2, S and S′
, if nonComm(Γ, ⊲⊳), 𝜉1 = [e1]++𝜉 ′1++𝜉 ′′1 , 𝜉2 = 𝜉 ′

1
++[e1]++𝜉 ′′1 , AbsCoh(𝜉1, 𝜉2, (Γ, ⊲⊳)) and

aexecST(Γ,S, 𝜉1) = S′
, then S′ = aexecST(Γ,S, 𝜉2).

Proof. Suppose the length of 𝜉 ′
1
is 𝑛. By induction over 𝑛.

• 𝑛 = 0. Trivial.

• 𝑛 =𝑚 + 1. Suppose 𝜉 ′
1
= 𝜉 ′

2
++[e2]. Thus 𝜉1 = [e1]++𝜉 ′2++[e2]++𝜉 ′′1 and 𝜉2 = 𝜉 ′

2
++[e2]++[e1]++𝜉 ′′1 .

Let 𝜉3 = 𝜉 ′
2
++[e1]++[e2]++𝜉 ′′1 .

Below we first prove aexecST(Γ,S, 𝜉3) = S′
.

Since AbsCoh(𝜉1, 𝜉2, (Γ, ⊲⊳)), we know
AbsCoh(𝜉1, 𝜉3, (Γ, ⊲⊳)).

Then, by the induction hypothesis, we know

S′ = aexecST(Γ,S, 𝜉3).
Next, we prove aexecST(Γ,S, 𝜉3) = aexecST(Γ,S, 𝜉2).
Let S2 = aexecST(Γ,S, 𝜉 ′

2
).

So we only need to prove aexecST(Γ,S2, [e1]++[e2]++𝜉 ′′1) = aexecST(Γ,S2, [e2]++[e1]++𝜉 ′′1).
Since e1 <𝜉1 e2, e2 <𝜉2 e1 and ⌊𝜉1⌋ = ⌊𝜉2⌋, by AbsCoh(𝜉1, 𝜉2, (Γ, ⊲⊳)), we know

¬(Γ |= e1 ⊲⊳ e2)
Since nonComm(Γ, ⊲⊳), we know

aexecST(Γ,S2, [e2]++[e1]) = aexecST(Γ,S2, [e1]++[e2]).
Thus aexecST(Γ,S2, [e1]++[e2]++𝜉 ′′1) = aexecST(Γ,S2, [e2]++[e1]++𝜉 ′′1).

Thus we are done. □

Proof of Lemma 18. Wefirst unfold the definition ofCv𝜑 (Π): for anyS,S𝑎 , E, E ′
, E ′′

, t and t′, suppose E ∈ T (Π,S),𝜑 (S) = S𝑎 ,

E ′ ⩽ E, E ′′ ⩽ E and visible(E ′, t) = visible(E ′′, t′), then we want to prove 𝜑 (exec_st(S, E ′ |t)) = 𝜑 (exec_st(S, E ′′ |t′)).
Without loss of generality, we can suppose E ′ ⩽ E ′′

(so there exists E ′′′
such that E ′++E ′′′ = E ′′

). From E ∈ T (Π,S) and
E ′′ ⩽ E, we know there exist 𝐶1, . . . ,𝐶𝑛 and S1

𝑐 , . . . ,S𝑛
𝑐 , S

1

𝑜 , . . . , S
𝑛
𝑜 such that

(E ′′, (S1

𝑐 , . . . ,S𝑛
𝑐), (S1𝑜 , . . . , S𝑛𝑜)) ∈ Ts (let Π in 𝐶1 ∥ . . . ∥𝐶𝑛,S).

Suppose the length of E ′
is 𝑘 , and the (𝑘 + 1)-th state and the last state in S𝑖𝑜 is S′

𝑖 and S′′
𝑖 respectively. So we know

∀𝑖 . S′
𝑖 = exec_st(S, E ′ |𝑖), ∀𝑖 . S′′

𝑖 = exec_st(S, E ′′ |𝑖)

From Π ⊑𝜑 (Γ, ⊲⊳), we know

(obsv(E ′′), (S1

𝑐 , . . . ,S𝑛
𝑐), (𝜑 (S1𝑜), . . . , 𝜑 (S𝑛𝑜))) ∈ Ts (with (Γ, ⊲⊳) do 𝐶1 ∥ . . . ∥𝐶𝑛,S𝑎)

Let O = obsv(E ′) and O′ = obsv(E ′′′). So there existW0,W,W′
, 𝜎𝑐 , Σ such that

((with (Γ, ⊲⊳) do 𝐶1 ∥ . . . ∥𝐶𝑛,S𝑎) ◦p
load−−−→W0) ∧ (W0

O◦↦−→ ∗W) ∧ (W O′◦↦−→ ∗W′)
∧ ∀𝑖 . aexecST(Γ,S𝑎,W(𝑖).𝜉) = 𝜑 (S′

𝑖)
∧ ∀𝑖 . aexecST(Γ,S𝑎,W

′(𝑖).𝜉) = 𝜑 (S′′
𝑖)

From visible(E ′, t) = visible(E ′′, t′), we know

visible(O, t) = visible(O++O′, t′).

From Lemma 17, we know CvA(Γ, ⊲⊳). Thus we know

aexecST(Γ,S𝑎,W(t).𝜉) = aexecST(Γ,S𝑎,W
′(t′).𝜉)

Thus 𝜑 (exec_st(S, E ′ |t)) = 𝜑 (exec_st(S, E ′′ |t′)). So we are done. □

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

C.2 For XACC

Below we prove that the new abstract semantics in Fig. 20 also inherently guarantees the convergence of the abstract

object states (Lemma 22 below). Then we derive that the contextual refinement Π ⊑𝜑 (Γ, ⊲⊳,◀,▷) can ensure CCv𝜑 (Π), the
convergence of the concrete object under the assumption of causal delivery (Lemma 23 below). By the equivalence between

XACC𝜑 (Π, (Γ, ⊲⊳,◀,▷)) and Π ⊑𝜑 (Γ, ⊲⊳,◀,▷) (the Abstraction Theorem), we derive Lemma 24: XACC𝜑 (Π, (Γ, ⊲⊳,◀,▷)) can
ensure CCv𝜑 (Π) too.

Definition 21. CvA(Γ, ⊲⊳,◀,▷) iff for any 𝐶1, . . . ,𝐶𝑛 , S,W0,W,W′
, O, O′

, t, t′,

(with (Γ, ⊲⊳,◀,▷) do 𝐶1 ∥ . . . ∥𝐶𝑛,S) ⋄p
load−−−→W0

∧ (W0

O⋄↦−→ ∗W) ∧ (W O′⋄↦−→ ∗W′) ∧ visible(O, t) = visible(O++O′, t′)
=⇒ aexecST(Γ,S,W(t).𝜉) = aexecST(Γ,S,W′(t′).𝜉)

Definition 21 is the same as Definition 16, except here we use the new abstract semantics.

Lemma 22. If nonComm(Γ, ⊲⊳) and cancel(▷), then CvA(Γ, ⊲⊳,◀,▷).

Lemma 23 (⊑ implies Cv). If nonComm(Γ, ⊲⊳), cancel(▷) and Π ⊑𝜑 (Γ, ⊲⊳,◀,▷), then CCv𝜑 (Π).

Lemma 24 (XACC implies Cv). If nonComm(Γ, ⊲⊳), cancel(▷) and XACC𝜑 (Π, (Γ, ⊲⊳,◀,▷)), then CCv𝜑 (Π).

Proof of Lemma 22. We first unfold the definition of CvA(Γ, ⊲⊳): for any 𝐶1, . . . ,𝐶𝑛 , S, W0, W, W′
, O, O′

, t and t′, suppose

(with (Γ, ⊲⊳,◀,▷) do 𝐶1 ∥ . . . ∥ 𝐶𝑛,S) ⋄p
load−−−→ W0, W0

O⋄↦−→ ∗W, W
O′⋄↦−→ ∗W′

and visible(O, t) = visible(O++O′, t′), then we

want to prove aexecST(Γ,S,W(t).𝜉) = aexecST(Γ,S,W′(t′).𝜉).
Suppose

W = (𝜎𝑐 , Σ,M𝑠 ,V, ⊲⊳,◀) andW′ = (𝜎 ′
𝑐 , Σ

′,M′
𝑠 ,V

′, ⊲⊳,◀), where
∀t ∈ [1..𝑛] . Σ(t) = ((Γ,▷),S𝑎, 𝜉t,mst, ert)
∀t ∈ [1..𝑛] . Σ′(t) = ((Γ,▷),S𝑎, 𝜉

′
t ,ms′t, er′

t)

From visible(O, t) = visible(O++O′, t′), by the abstract semantics, we know

⌊𝜉t⌋ = ⌊𝜉 ′t′⌋.

Below we first prove AbsCoh(𝜉t\mst, 𝜉 ′t′\ms′t′, (Γ, ⊲⊳)).
• That is, we want to prove: if e1 <𝜉t\mst e2 and e2 <𝜉′t′\ms′t′

e1, then ¬(e1 ⊲⊳Γ e2).
Since e1 <𝜉t\mst e2 and e2 <𝜉′t′\ms′t′

e1, by Lemma 25, we know

(e1, e2) ∈ ert and (e2, e1) ∈ er′
t′ .

From the abstract semantics, we know there exist er′′
t and V′′

such that ert ⊆ er′′
t and

AbsCoh-W(er′′
t , er′

t′,V
′′, (Γ, ⊲⊳,◀))

Also from the abstract semantics, we know neither er′′
t or er′

t′ is symmetric. Thus we know

(e1, e2) ∈ er′′
t , (e2, e1) ∉ er′′

t ,

(e2, e1) ∈ er′
t′ , (e1, e2) ∉ er′

t′ ,

So, by the definition of AbsCoh-W, we know

¬(e1 ⊲⊳Γ e2).
Thus we have proved AbsCoh(𝜉t\mst, 𝜉 ′t′\ms′t′, (Γ, ⊲⊳)).

From the abstract semantics, we know

mst = get-all-ms(Γ,▷) (O, t)
ms′t′ = get-all-ms(Γ,▷) (O++O′, t′)

where get-all-ms(Γ,▷) (O, t) is defined similarly as get-all-ms(Γ,▷) (E, t) in Figure 21:

get-ms(Γ,▷) (O, o)
def

= {o′ | (o′ vis↦−−→O o) ∧ (o′ ▷Γ o)}

get-all-ms(Γ,▷) (O, t)
def

=
⋃{get-ms(Γ,▷) (O, o) | o ∈ visible(O, t)}

Then, since visible(O, t) = visible(O++O′, t′), we know

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

mst = ms′t′ .

Since ⌊𝜉t⌋ = ⌊𝜉 ′t′⌋, we know

⌊𝜉t\mst⌋ = ⌊𝜉 ′t′\ms′t′⌋.

Then, by applying Lemma 19, we know

aexecST(Γ,S, 𝜉t\mst) = aexecST(Γ,S, 𝜉 ′t′\ms′t′).

By Lemma 26, we know

aexecST(Γ,S, 𝜉t) = aexecST(Γ,S, 𝜉t\mst)
aexecST(Γ,S, 𝜉 ′t′) = aexecST(Γ,S, 𝜉 ′t′\ms′t′)

Thus aexecST(Γ,S, 𝜉t) = aexecST(Γ,S, 𝜉 ′t′). So we are done. □

Lemma 25. If (P,S) ⋄pload−−−→W0,W0

O⋄↦−→𝑚W,W = (𝜎𝑐 , Σ,M𝑠 ,V, ⊲⊳,◀), Σ(t) = ((Γ,▷),S𝑎, 𝜉t,mst, ert), then <𝜉t\mst⊆ ert.

Proof. By induction over𝑚. □

Lemma26. If (with (Γ, ⊲⊳,◀,▷) do 𝐶1 ∥ . . . ∥𝐶𝑛,S) ⋄p
load−−−→W0,W0

O⋄↦−→ ∗W,W
O1⋄↦−→ ∗W1, cancel(▷),ms = get-all-ms(Γ,▷) (O, t),

𝜉 =W1 (t).𝜉 , then aexecST(Γ,S, 𝜉) = aexecST(Γ,S, 𝜉\ms).

Proof. By induction over the length𝑚 of (O|t).
• 𝑚 = 0. So ms = ∅. Thus we are done.
• 𝑚 = 𝑘 + 1. Let o′ = last(O|t). So there exist o and O′

such that o
t
=⇒
O

o′ and O′++[o′] ⩽ O.
Let ms′ = get-all-ms(Γ,▷) (O′, t). Then, by the induction hypothesis, we know

aexecST(Γ,S, 𝜉) = aexecST(Γ,S, 𝜉\ms′).
So we only need to prove aexecST(Γ,S, 𝜉\ms′) = aexecST(Γ,S, 𝜉\ms).
Since visible(O, t) = visible(O′, t) ∪ {o}, we know

aexecST(Γ,S, 𝜉\ms) = aexecST(Γ,S, (𝜉\ms′)\get-ms(Γ,▷) (O, o))
By the abstract semantics, we know

∀o′′ ∈ get-ms(Γ,▷) (O, o). o′′ <𝜉 o

From cancel(▷), we know
aexecST(Γ,S, 𝜉\ms′) = aexecST(Γ,S, (𝜉\ms′)\get-ms(Γ,▷) (O, o))

So aexecST(Γ,S, 𝜉\ms′) = aexecST(Γ,S, 𝜉\ms). Thus aexecST(Γ,S, 𝜉) = aexecST(Γ,S, 𝜉\ms).
Thus we are done. □

Proof of Lemma 23. Similar to the proof of Lemma 18. □

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

D Compositionality of ACC/XACC

In this section, we consider the problem of compositionality of ACC (XACC), that is, whether the composition of multiple

ACC (XACC) objects are also ACC (XACC). We prove Lemma 29 (Compositionality of ACC) and Lemma 30 (Compositionality

of XACC) below. We also prove Lemma 31, saying that nonComm (see Def. 1) is compositional.

Suppose the concrete program 𝑃 is let Π in 𝐶1 ∥ . . . ∥𝐶𝑛 , and the whole object Π can be split into multiple small objects Π1,

. . . , Π𝑛 , where ∀𝑖 ≠ 𝑗 . dom(Π𝑖) ∩ dom(Π 𝑗) = ∅. Also, suppose the object state S can be split into disjoint S1, . . . ,S𝑛 . That is,

Π = Π1 ⊎ . . . ⊎ Π𝑚 and S = S1 ⊎ . . . ⊎ S𝑚 . We can write Π𝑖 ⊆ Π and S𝑖 ⊆ S.
For each single object Π𝑖 , we define E|Π𝑖

to project the trace E to the events of operations in Π𝑖 . That is,

E|Π
def

=

𝜖 if E = 𝜖

𝑒 :: (E ′ |Π) if E = 𝑒 ::E ′ ∧ op(𝑒) ∈ dom(Π)
(E ′ |Π) if E = 𝑒 ::E ′ ∧ op(𝑒) ∉ dom(Π)

We give each object Π𝑖 a specification (Γ𝑖 , ⊲⊳𝑖). We assume each ⊲⊳𝑖 is a relation over actions of Γ𝑖 , i.e.,

⊲⊳𝑖 ⊆ act(Γ𝑖) × act(Γ𝑖), where act(Γ) = {𝛼 | ∃𝑓 , 𝑛. split(Γ(𝑓 , 𝑛)) = (_, 𝛼)}.
Also we assume ∀𝑖 . (dom(Γ𝑖) = dom(Π𝑖)) ∧ ∀𝑗 ≠ 𝑖 . (act(Γ𝑖) ∩ act(Γ𝑗) = ∅). Their abstract object states are disjoint too. Also, it
is natural to assume that the operations in Γ𝑖 do not conflict with the operations in Γ𝑗 , since the object states of Γ𝑖 and Γ𝑗 are
disjoint. So we define the composition of ⊲⊳𝑖 and ⊲⊳ 𝑗 simply as their disjoint union.

We also need each Π𝑖 and Γ𝑖 to have strong locality. We have defined SLocality(Γ) in Def. 40. We define SLocality(Π) as
follows. Here fv(Π) returns the free variables in Π and its effectors.

Definition 27. SLocality(Π) iff all the following holds:

1. for any 𝑓 , 𝑛, 𝑛′
, 𝛿 , S and S1, if Π(𝑓 , 𝑛) (S) = (𝑛′, 𝛿) and dom(S) ∩ dom(S1) = ∅, then Π(𝑓 , 𝑛) (S ⊎ S1) = (𝑛′, 𝛿).

2. for any 𝑓 , 𝑛, 𝛿 , S, S′
and S1, if validΠ (𝑓 , 𝑛, 𝛿), 𝛿 (S) = S′

and dom(S) ∩ dom(S1) = ∅, then 𝛿 (S ⊎ S1) = S′ ⊎ S1.

3. for any 𝑓 , 𝑛, 𝑛′
, 𝛿 ,S andS1, if Π(𝑓 , 𝑛) (S⊎S1) = (𝑛′, 𝛿) and fv(Π) ⊆ dom(S), then there existsS′

such thatS′′ = S′⊎S1

and Π(𝑓 , 𝑛) (S) = (𝑛′, 𝛿).
4. for any 𝑓 , 𝑛, 𝛿 , S, S′′

and S1, if validΠ (𝑓 , 𝑛, 𝛿), 𝛿 (S ⊎ S1) = S′′
and fv(Π) ⊆ dom(S), then there exists S′

such that

S′′ = S′ ⊎ S1 and 𝛿 (S) = S′
.

Definition 28. well-disjoint((𝜑1,Π1, Γ1, ⊲⊳1), (𝜑2,Π2, Γ2, ⊲⊳2)) iff SLocality(Π1), SLocality(Π2), SLocality(Γ1), SLocality(Γ2),
dom(𝜑1) ∩ dom(𝜑2) = ∅, range(𝜑1) ∩ range(𝜑2) = ∅, dom(Π1) ∩ dom(Π2) = ∅, dom(Γ1) = dom(Π1), dom(Γ2) = dom(Π2),
⊲⊳1 ⊆ act(Γ1) × act(Γ1), ⊲⊳2 ⊆ act(Γ2) × act(Γ2), act(Γ1) ∩ act(Γ2) = ∅.

Lemma 29. If ACC𝜑1
(Π1, (Γ1, ⊲⊳1)), ACC𝜑2

(Π2, (Γ2, ⊲⊳2)) and well-disjoint((𝜑1,Π1, Γ1, ⊲⊳1), (𝜑2,Π2, Γ2, ⊲⊳2)),
then ACC𝜑1⊎𝜑2

(Π1 ⊎ Π2, (Γ1 ⊎ Γ2, ⊲⊳1 ⊎ ⊲⊳2)).

Proof of Lemma 29. By unfolding the definition of ACC, we want to prove: ∀S, E . E ∈ T (Π1 ⊎Π2,S) ∧S ∈ dom(𝜑1 ⊎𝜑2) =⇒
ACT𝜑1⊎𝜑2

(E,S, (Γ1 ⊎ Γ2, ⊲⊳1 ⊎ ⊲⊳2)).
Since S ∈ dom(𝜑1 ⊎ 𝜑2), we know there exist S1 and S2 such that

S = S1 ⊎ S2, S1 ∈ dom(𝜑1) and S2 ∈ dom(𝜑2).

Let E1 = E|Π1
and E2 = E|Π2

. Since E ∈ T (Π1 ⊎ Π2,S), we know

op(E) ⊆ dom(Π1) ⊎ dom(Π2)

By Lemma 32, we know

E1 ∈ T (Π1,S1) and E2 ∈ T (Π2,S2).

Then, from ACC𝜑1
(Π1, (Γ1, ⊲⊳1)) and ACC𝜑2

(Π2, (Γ2, ⊲⊳2)), we know

ACT𝜑1
(E1,S1, (Γ1, ⊲⊳1)) and ACT𝜑2

(E2,S2, (Γ2, ⊲⊳2)).

By Lemma 33, we know

ACT𝜑1⊎𝜑2
(E,S, (Γ1 ⊎ Γ2, ⊲⊳1 ⊎ ⊲⊳2)).

Thus we are done. □

Lemma 30 (Compositionality of XACC). If

• XACC𝜑1
(Π1, (Γ1, ⊲⊳1,◀1,▷1)) and XACC𝜑2

(Π2, (Γ2, ⊲⊳2,◀2,▷2)),

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

• well-disjoint((𝜑1,Π1, Γ1, ⊲⊳1), (𝜑2,Π2, Γ2, ⊲⊳2))
then XACC𝜑1⊎𝜑2

(Π1 ⊎ Π2, (Γ1 ⊎ Γ2, ⊲⊳1 ⊎ ⊲⊳2,◀1 ⊎ ◀2,▷1 ⊎ ▷2)).

Proof. By unfolding the definition of XACC, we want to prove:

∀S, E . E ∈ T (Π1 ⊎ Π2,S) ∧ S ∈ dom(𝜑1 ⊎ 𝜑2) ∧ causalDelivery(E) =⇒ XACT𝜑1⊎𝜑2
(E,S, (Γ1 ⊎ Γ2, ⊲⊳1 ⊎ ⊲⊳2,◀1 ⊎ ◀2,▷1

⊎ ▷2)).
Since S ∈ dom(𝜑1 ⊎ 𝜑2), we know there exist S1 and S2 such that

S = S1 ⊎ S2, S1 ∈ dom(𝜑1) and S2 ∈ dom(𝜑2).

Let E1 = E|Π1
and E2 = E|Π2

. Since E ∈ T (Π1 ⊎ Π2,S), we know

op(E) ⊆ dom(Π1) ⊎ dom(Π2)

By Lemma 32, we know

E1 ∈ T (Π1,S1) and E2 ∈ T (Π2,S2).

Since causalDelivery(E), we know

causalDelivery(E1) and causalDelivery(E2).

Then, from XACC𝜑1
(Π1, (Γ1, ⊲⊳1,◀1,▷1)) and XACC𝜑2

(Π2, (Γ2, ⊲⊳2,◀2,▷2)), we know

XACT𝜑1
(E1,S1, (Γ1, ⊲⊳1,◀1,▷1)) and XACT𝜑2

(E2,S2, (Γ2, ⊲⊳2,◀2,▷2)).

By Lemma 34, we know

XACT𝜑1⊎𝜑2
(E,S, (Γ1 ⊎ Γ2, ⊲⊳1 ⊎ ⊲⊳2,◀1 ⊎ ◀2,▷1 ⊎ ▷2)).

Thus we are done. □

Lemma 31 (Compositionality of nonComm). If

• nonComm(Γ1, ⊲⊳1) and nonComm(Γ2, ⊲⊳2),
• SLocality(Γ1), SLocality(Γ2), dom(Γ1)∩dom(Γ2) = ∅, ⊲⊳1 ⊆ act(Γ1)×act(Γ1), ⊲⊳2 ⊆ act(Γ2)×act(Γ2), act(Γ1)∩act(Γ2) = ∅,

then nonComm(Γ1 ⊎ Γ2, ⊲⊳1 ⊎ ⊲⊳2).

Proof. By unfolding the definition of nonComm, we want to prove: for any 𝑓1, 𝑛1, 𝑓2, 𝑛2, 𝛼1 and 𝛼2, if split((Γ1 ⊎ Γ2) (𝑓1, 𝑛1)) =
(_, 𝛼1), split((Γ1 ⊎ Γ2) (𝑓2, 𝑛2)) = (_, 𝛼2) and ¬(𝛼1 (⊲⊳1 ⊎ ⊲⊳2)𝛼2), then 𝛼1 # 𝛼2 = 𝛼2 # 𝛼1.
Since split((Γ1 ⊎ Γ2) (𝑓1, 𝑛1)) = (_, 𝛼1) and split((Γ1 ⊎ Γ2) (𝑓2, 𝑛2)) = (_, 𝛼2), we have four cases:
1. split(Γ1 (𝑓1, 𝑛1)) = (_, 𝛼1) and split(Γ1 (𝑓2, 𝑛2)) = (_, 𝛼2). Since ¬(𝛼1 (⊲⊳1 ⊎ ⊲⊳2)𝛼2), we know

¬(𝛼1 ⊲⊳1 𝛼2).
From nonComm(Γ1, ⊲⊳1), we know 𝛼1 # 𝛼2 = 𝛼2 # 𝛼1.

2. split(Γ2 (𝑓1, 𝑛1)) = (_, 𝛼1) and split(Γ2 (𝑓2, 𝑛2)) = (_, 𝛼2). Similar to case (1).

3. split(Γ1 (𝑓1, 𝑛1)) = (_, 𝛼1) and split(Γ2 (𝑓2, 𝑛2)) = (_, 𝛼2). So, for any S such that fv(Γ1) ⊎ fv(Γ2) ⊆ dom(S), we know there

exists S1 and S2 such that

S = S1 ⊎ S2, fv(Γ1) ⊆ dom(S1) and fv(Γ2) ⊆ dom(S2).
Since SLocality(Γ1) and SLocality(Γ2), we know

𝛼1 (S1 ⊎ S2) = 𝛼1 (S1) ⊎ S2 𝛼1 (S1 ⊎ 𝛼2 (S2)) = 𝛼1 (S1) ⊎ 𝛼2 (S2)
𝛼2 (S2 ⊎ S1) = 𝛼2 (S2) ⊎ S1 𝛼2 (S2 ⊎ 𝛼1 (S1)) = 𝛼2 (S2) ⊎ 𝛼1 (S1)

So,

(𝛼1 # 𝛼2) (S) = 𝛼2 (𝛼1 (S1 ⊎ S2))
= 𝛼2 (𝛼1 (S1) ⊎ S2)
= 𝛼2 (S2) ⊎ 𝛼1 (S1)
= 𝛼1 (𝛼2 (S2 ⊎ S1) = (𝛼2 # 𝛼1) (S)

4. split(Γ2 (𝑓1, 𝑛1)) = (_, 𝛼1) and split(Γ1 (𝑓2, 𝑛2)) = (_, 𝛼2). Similar to case (3).

Thus we are done. □

Lemma 32. If

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

• E ∈ T (Π1 ⊎ Π2,S1 ⊎ S2), E1 = E|Π1
, fv(Π1) ⊆ dom(S1),

• SLocality(Π1),
then E1 ∈ T (Π1,S1).

Proof. From the definition of T (Π1,S1), we want to prove: there exist 𝐶1, . . . ,𝐶𝑛 such that E1 ∈ T (let Π1 in 𝐶1 ∥ . . . ∥𝐶𝑛,S1).
Since E ∈ T (Π1 ⊎ Π2,S1 ⊎ S2), we know there exist 𝐶 ′

1
, . . . ,𝐶 ′

𝑛 such that

E ∈ T (let Π1 ⊎ Π2 in 𝐶 ′
1
∥ . . . ∥𝐶 ′

𝑛,S1 ⊎ S2).

For each 𝑖 , first we construct 𝐶 ′′
𝑖

def

= code𝑖 (E|𝑖). Here we define codet (E) as follows.

codet (E)
def

=

skip if E = 𝜖

(𝑥 := 𝑓 (𝑛)); codet (E ′) if E = 𝑒 ::E ′ ∧ 𝑒 = (mid, t, (𝑓 , 𝑛, 𝑛′, 𝛿))
codet (E ′) if E = 𝑒 ::E ′ ∧ ¬is_origt (𝑒)

Then we can prove

E ∈ T (let Π1 ⊎ Π2 in 𝐶 ′′
1
∥ . . . ∥𝐶 ′′

𝑛 ,S1 ⊎ S2).

Next, for each 𝑖 , we construct 𝐶𝑖
def

= 𝐶 ′′
𝑖 |Π1

. Here we define 𝐶 |Π as follows.

𝐶 |Π
def

=

skip if 𝐶 = skip

(𝑥 := 𝑓 (𝑛)); (𝐶 ′ |Π) if 𝐶 = ((𝑥 := 𝑓 (𝑛));𝐶 ′) ∧ (𝑓 , 𝑛) ∈ dom(Π)
𝐶 ′ |Π if 𝐶 = ((𝑥 := 𝑓 (𝑛));𝐶 ′) ∧ (𝑓 , 𝑛) ∉ dom(Π)

Since E1 = E|Π1
, fv(Π1) ⊆ dom(S1) and SLocality(Π1), we can prove

E1 ∈ T (let Π1 in 𝐶1 ∥ . . . ∥𝐶𝑛,S1).

Thus we are done. □

Lemma 33. If

• ACT𝜑1
(E1,S1, (Γ1, ⊲⊳1)) and ACT𝜑2

(E2,S2, (Γ2, ⊲⊳2)),
• S = S1 ⊎ S2, S1 ∈ dom(𝜑1), S2 ∈ dom(𝜑2),
• E1 = E|Π1

, E2 = E|Π2
, op(E) ⊆ dom(Π1) ⊎ dom(Π2),

• dom(𝜑1) ∩ dom(𝜑2) = ∅, range(𝜑1) ∩ range(𝜑2) = ∅, dom(Γ1) = dom(Π1), dom(Γ2) = dom(Π2),
• ⊲⊳1 ⊆ act(Γ1) × act(Γ1), ⊲⊳2 ⊆ act(Γ2) × act(Γ2), act(Γ1) ∩ act(Γ2) = ∅,
• SLocality(Π1), SLocality(Π2), SLocality(Γ1), SLocality(Γ2),

then ACT𝜑1⊎𝜑2
(E,S, (Γ1 ⊎ Γ2, ⊲⊳1 ⊎ ⊲⊳2)).

Proof. From ACT𝜑1
(E1,S1, (Γ1, ⊲⊳1)), we know there exists ar1, . . . , ar𝑛 such that

∀t. totalOrdervisible(E1,t) (art) ∧ (vis↦−−→
t

E1
⊆ art) ∧ ExecRelated𝜑1

(t, (E1,S1), (Γ1, art))
∧ ∀t′ ≠ t. Coh(art, art′, (Γ1, ⊲⊳1))

From ACT𝜑2
(E2,S2, (Γ2, ⊲⊳2)), we know there exists ar′

1
, . . . , ar′𝑛 such that

∀t. totalOrdervisible(E2,t) (ar′t) ∧ (vis↦−−→
t

E2
⊆ ar′t) ∧ ExecRelated𝜑2

(t, (E2,S2), (Γ2, ar′t))
∧ ∀t′ ≠ t. Coh(ar′t, ar′t′, (Γ2, ⊲⊳2))

From Lemma 35, we know

∀t. partialOrder((art ∪ ar′t∪
vis↦−−→
t

E)+).

Thus we know there exist ar′′
1
, . . . , ar′′𝑛 such that

∀t. totalOrdervisible(E,t) (ar′′t) ∧
vis↦−−→
t

E ⊆ ar′′t ∧ art ⊆ ar′′t ∧ ar′t ⊆ ar′′t

From Lemma 36, we know

ExecRelated𝜑1⊎𝜑2
(t, (E,S), (Γ1 ⊎ Γ2, ar′′t)).

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

Take t and t′ such that t ≠ t′. Below we prove Coh(ar′′t , ar′′t′ , (Γ1 ⊎ Γ2, ⊲⊳1 ⊎ ⊲⊳2)). That is, for any 𝑒1 and 𝑒2, if 𝑒1 ar′′t 𝑒2 and

𝑒2 ar′′t′ 𝑒1, we need to prove ¬(Γ1 ⊎ Γ2 |= 𝑒1 (⊲⊳1 ⊎ ⊲⊳2) 𝑒2). Since 𝑒1 ar′′t 𝑒2 and 𝑒2 ar′′t′ 𝑒1, we know

{𝑒1, 𝑒2} ⊆ visible(E, t) ∩ visible(E, t′).

Since E1 = E|Π1
and E2 = E|Π2

and op(E) ⊆ dom(Π1) ⊎ dom(Π2), we know

∀t. visible(E, t) = visible(E1, t) ∪ visible(E2, t).

Since visible(E, t) = visible(E1, t) ∪ visible(E2, t), we have four cases:
1. {𝑒1, 𝑒2} ⊆ visible(E1, t). So {op(𝑒1), op(𝑒2)} ⊆ dom(Π1). Thus

{𝑒1, 𝑒2} ⊆ visible(E1, t′).
Since 𝑒1 ar′′t 𝑒2, totalOrdervisible(E1,t) (art) and art′ ⊆ ar′′t′ , we know

𝑒1 art 𝑒2.
Since 𝑒2 ar′′t′ 𝑒1, totalOrdervisible(E1,t′) (art′) and art′ ⊆ ar′′t′ , we know

𝑒2 art′ 𝑒1.
From Coh(art, art′, (Γ1, ⊲⊳1)), we know

¬(Γ1 |= 𝑒1 ⊲⊳1 𝑒2).
Since {op(𝑒1), op(𝑒2)} ⊆ dom(Π1) = dom(Γ1) and ⊲⊳2 ⊆ act(Γ2) × act(Γ2) and act(Γ1) ∩ act(Γ2) = ∅, we know

¬(Γ1 ⊎ Γ2 |= 𝑒1 (⊲⊳1 ⊎ ⊲⊳2) 𝑒2).
2. {𝑒1, 𝑒2} ⊆ visible(E2, t). Similar to case (1).

3. 𝑒1 ∈ visible(E1, t) and 𝑒2 ∈ visible(E2, t). So
op(𝑒1) ∈ dom(Γ1) and op(𝑒2) ∈ dom(Γ2).

Since ⊲⊳1 ⊆ act(Γ1) × act(Γ1) and ⊲⊳2 ⊆ act(Γ2) × act(Γ2) and act(Γ1) ∩ act(Γ2) = ∅, we know
¬(Γ1 ⊎ Γ2 |= 𝑒1 (⊲⊳1 ⊎ ⊲⊳2) 𝑒2).

4. 𝑒1 ∈ visible(E2, t) and 𝑒2 ∈ visible(E1, t). Similar to case (3).

Thus we are done. □

Lemma 34. If

• XACT𝜑1
(E1,S1, (Γ1, ⊲⊳1,◀1,▷1)) and XACT𝜑2

(E2,S2, (Γ2, ⊲⊳2,◀2,▷2)),
• S = S1 ⊎ S2, S1 ∈ dom(𝜑1), S2 ∈ dom(𝜑2),
• E1 = E|Π1

, E2 = E|Π2
, op(E) ⊆ dom(Π1) ⊎ dom(Π2),

• dom(𝜑1) ∩ dom(𝜑2) = ∅, range(𝜑1) ∩ range(𝜑2) = ∅, dom(Γ1) = dom(Π1), dom(Γ2) = dom(Π2),
• ⊲⊳1 ⊆ act(Γ1) × act(Γ1), ⊲⊳2 ⊆ act(Γ2) × act(Γ2), act(Γ1) ∩ act(Γ2) = ∅,
• SLocality(Π1), SLocality(Π2), SLocality(Γ1), SLocality(Γ2),
• ◀1⊆⊲⊳1, ▷1⊆⊲⊳1, ◀2⊆⊲⊳2, ▷2⊆⊲⊳2,

then XACT𝜑1⊎𝜑2
(E,S, (Γ1 ⊎ Γ2, ⊲⊳1 ⊎ ⊲⊳2,◀1 ⊎ ◀2,▷1 ⊎ ▷2)).

Proof. From XACT𝜑1
(E1,S1, (Γ1, ⊲⊳1,◀1,▷1)), we know there exists ar1, . . . , ar𝑛 such that

∀t. totalOrdervisible(E1,t) (art) ∧ (vis↦−−→
t

E1
⊆ art) ∧ PresvCancel(art, t, E1, (Γ1,▷1))

∧ ExecRelated𝜑1
(t, (E1,S1), (Γ1, art)) ∧ ∀t′ ≠ t. RCoh(t,t′) ((art, art′), E1, (Γ1, ⊲⊳1,◀1,▷1))

From XACT𝜑2
(E2,S2, (Γ2, ⊲⊳2,◀1,▷1)), we know there exists ar′

1
, . . . , ar′𝑛 such that

∀t. totalOrdervisible(E2,t) (ar′t) ∧ (vis↦−−→
t

E2
⊆ ar′t) ∧ PresvCancel(ar′t, t, E2, (Γ2,▷2))

∧ ExecRelated𝜑2
(t, (E2,S2), (Γ2, ar′t)) ∧ ∀t′ ≠ t. RCoh(t,t′) ((ar′t, ar′t′), E2, (Γ2, ⊲⊳2,◀2,▷2))

From Lemma 35, we know

∀t. partialOrder((art ∪ ar′t∪
vis↦−−→
t

E)+).

Thus we know there exist ar′′
1
, . . . , ar′′𝑛 such that

∀t. totalOrdervisible(E,t) (ar′′t) ∧
vis↦−−→
t

E ⊆ ar′′t ∧ art ⊆ ar′′t ∧ ar′t ⊆ ar′′t

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

Since E1 = E|Π1
and E2 = E|Π2

and op(E) ⊆ dom(Π1) ⊎ dom(Π2), we know

∀t. visible(E, t) = visible(E1, t) ⊎ visible(E2, t).

Since dom(Γ1) = dom(Π1), dom(Γ2) = dom(Π2), ⊲⊳1 ⊆ act(Γ1) × act(Γ1), ⊲⊳2 ⊆ act(Γ2) × act(Γ2), act(Γ1) ∩ act(Γ2) = ∅, ▷1⊆⊲⊳1
and ▷2⊆⊲⊳2, we have(

vis↦−−→ E ∩ (▷1 ⊎ ▷2)Γ1⊎Γ2
)
|visible(E,t) ⊆

(
vis↦−−→ E1

∩ (▷1)Γ1
)
|visible(E1,t) ⊎

(
vis↦−−→ E2

∩ (▷2)Γ2
)
|visible(E2,t)

From PresvCancel(art, t, E1, (Γ1,▷1)) and PresvCancel(ar′t, t, E2, (Γ2,▷2)), we know(
vis↦−−→ E1

∩ (▷1)Γ1
)
|visible(E1,t) ⊆ art,

(
vis↦−−→ E2

∩ (▷2)Γ2
)
|visible(E2,t) ⊆ ar′t

Since art ⊆ ar′′t and ar′t ⊆ ar′′t , we know (
vis↦−−→ E ∩ (▷1 ⊎ ▷2)Γ1⊎Γ2

)
|visible(E,t) ⊆ ar′′t

So PresvCancel(ar′′t , t, E, (Γ1 ⊎ Γ2,▷1 ⊎ ▷2)) holds.
From Lemma 36, we know

ExecRelated𝜑1⊎𝜑2
(t, (E,S), (Γ1 ⊎ Γ2, ar′′t)).

Take t and t′ such that t ≠ t′. Below we prove RCoh(t,t′) ((ar′′t , ar′′t′), E, (Γ1⊎Γ2, ⊲⊳1 ⊎ ⊲⊳2,◀1 ⊎ ◀2,▷1 ⊎ ▷2)). That is, for any
E ′
, E ′′

, 𝑒1 and 𝑒2, if E ′ ⩽ E, E ′′ ⩽ E, {𝑒1, 𝑒2} ⊆ nc-vis(E ′, t, (Γ1 ⊎ Γ2,▷1 ⊎ ▷2)), {𝑒1, 𝑒2} ⊆ nc-vis(E ′′, t′, (Γ1 ⊎ Γ2,▷1 ⊎ ▷2))
and 𝑒1 (⊲⊳1 ⊎ ⊲⊳2)Γ1⊎Γ2𝑒2, we want to prove

((𝑒1, 𝑒2) ∈ ar′′t ∩ ar′′t′ ∨ (𝑒2, 𝑒1) ∈ ar′′t ∩ ar′′t′) and (ConcurrentE (𝑒1, 𝑒2) ∧ (𝑒1 (◀1 ⊎ ◀2)Γ1⊎Γ2𝑒2) =⇒ (𝑒1, 𝑒2) ∈ ar′′t).

Let E ′
1
= E ′ |Π1

, E ′
2
= E ′ |Π2

, E ′′
1
= E ′′ |Π1

and E ′′
2
= E ′′ |Π2

. Since E ′ ⩽ E and E ′′ ⩽ E, we know

E ′
1
⩽ E1, E ′′

1
⩽ E1, E ′

2
⩽ E2, E ′′

2
⩽ E2.

Since op(E) ⊆ dom(Π1) ⊎ dom(Π2), we know

visible(E ′, t) = visible(E ′
1
, t) ∪ visible(E ′

2
, t),

visible(E ′′, t′) = visible(E ′′
1
, t′) ∪ visible(E ′′

2
, t′).

Since {𝑒1, 𝑒2} ⊆ nc-vis(E ′, t, (Γ1 ⊎ Γ2,▷1 ⊎ ▷2)) and {𝑒1, 𝑒2} ⊆ nc-vis(E ′′, t′, (Γ1 ⊎ Γ2,▷1 ⊎ ▷2)), we know

{𝑒1, 𝑒2} ⊆ visible(E ′, t) ∩ visible(E ′′, t′).

Since visible(E ′, t) = visible(E ′
1
, t) ∪ visible(E ′

2
, t), we have four cases:

1. {𝑒1, 𝑒2} ⊆ visible(E ′
1
, t). So {op(𝑒1), op(𝑒2)} ⊆ dom(Π1). Thus

{𝑒1, 𝑒2} ⊆ visible(E ′′
1
, t′).

Thus we know

{𝑒1, 𝑒2} ⊆ nc-vis(E ′
1
, t, (Γ1,▷1)) and {𝑒1, 𝑒2} ⊆ nc-vis(E ′′

1
, t′, (Γ1,▷1)).

Also we know

𝑒1 (⊲⊳1)Γ1𝑒2.
From RCoh(t,t′) ((art, art′), E1, (Γ1, ⊲⊳1,◀1,▷1)), we know

((𝑒1, 𝑒2) ∈ art ∩ art′ ∨ (𝑒2, 𝑒1) ∈ art ∩ art′) and (ConcurrentE (𝑒1, 𝑒2) ∧ (𝑒1 (◀1)Γ1𝑒2) =⇒ (𝑒1, 𝑒2) ∈ art).
Thus we know

((𝑒1, 𝑒2) ∈ ar′′t ∩ ar′′t′ ∨ (𝑒2, 𝑒1) ∈ ar′′t ∩ ar′′t′) and (ConcurrentE (𝑒1, 𝑒2) ∧ (𝑒1 (◀1 ⊎ ◀2)Γ1⊎Γ2𝑒2) =⇒ (𝑒1, 𝑒2) ∈ ar′′t).
2. {𝑒1, 𝑒2} ⊆ visible(E2, t). Similar to case (1).

3. 𝑒1 ∈ visible(E1, t) and 𝑒2 ∈ visible(E2, t). So
op(𝑒1) ∈ dom(Γ1) and op(𝑒2) ∈ dom(Γ2).

Since ⊲⊳1 ⊆ act(Γ1) × act(Γ1) and ⊲⊳2 ⊆ act(Γ2) × act(Γ2) and act(Γ1) ∩ act(Γ2) = ∅, we know
¬(𝑒1 (⊲⊳1 ⊎ ⊲⊳2)Γ1⊎Γ2𝑒2).

So this case is impossible.

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

4. 𝑒1 ∈ visible(E2, t) and 𝑒2 ∈ visible(E1, t). Similar to case (3).

Thus we are done. □

Lemma 35. If

• E1 = E|Π1
, E2 = E|Π2

, op(E) ⊆ dom(Π1) ⊎ dom(Π2),
• totalOrdervisible(E1,t) (ar1), totalOrdervisible(E2,t) (ar2),

vis↦−−→
t

E1
⊆ ar1,

vis↦−−→
t

E2
⊆ ar2,

then partialOrder((ar1 ∪ ar2∪
vis↦−−→
t

E)+).

Proof. Let rel = (ar1 ∪ ar2∪
vis↦−−→
t

E). We know transitive(rel+). Below we prove irreflexive(rel+). So we only need to prove:

¬cyclic(rel).
By contradiction. Suppose there exist 𝑛, 𝑒1, . . . , 𝑒𝑛 such that ∀𝑖 ∈ [1..𝑛 − 1] . (𝑒𝑖 , 𝑒𝑖+1) ∈ rel and (𝑒𝑛, 𝑒1) ∈ rel. Without loss of

generality, we can suppose 𝑛 is the length of the smallest cycle. We analyze the following cases.

• 𝑛 = 1. Since totalOrdervisible(E1,t) (ar1) and totalOrdervisible(E2,t) (ar2), we know this case is impossible.

• 𝑛 > 1.

Since totalOrdervisible(E1,t) (ar1), totalOrdervisible(E2,t) (ar2), E1 = E|Π1
, E2 = E|Π2

and dom(Π1) ∩ dom(Π2) = ∅, we know
¬((∀𝑖 ∈ [1..𝑛 − 1] . (𝑒𝑖 , 𝑒𝑖+1) ∈ (ar1 ∪ ar2)) ∧ ((𝑒𝑛, 𝑒1) ∈ (ar1 ∪ ar2)))

So, without loss of generality, we can assume that (𝑒1, 𝑒2) ∈
vis↦−−→
t

E . We analyze the different cases of (𝑒𝑛, 𝑒1) ∈ ar:

• (𝑒𝑛, 𝑒1) ∈
vis↦−−→
t

E . Thus (𝑒𝑛, 𝑒2) ∈
vis↦−−→
t

E . So we have a smaller cycle 𝑒2, . . . , 𝑒𝑛, 𝑒2. Thus we get a contradiction.

• (𝑒𝑛, 𝑒1) ∈ ar1. So
{op(𝑒𝑛), op(𝑒1)} ⊆ dom(Π1).

Since 𝑒2 ∈ E and op(E) ⊆ dom(Π1) ⊎ dom(Π2), we know op(𝑒2) ∈ dom(Π1) ⊎ dom(Π2).
• op(𝑒2) ∈ dom(Π1).
Since (𝑒1, 𝑒2) ∈

vis↦−−→
t

E , we know

(𝑒1, 𝑒2) ∈
vis↦−−→
t

E1
.

Since

vis↦−−→
t

E1
⊆ ar1, we know

(𝑒1, 𝑒2) ∈ ar1.
Since (𝑒𝑛, 𝑒1) ∈ ar1 and totalOrdervisible(E1,t) (ar1), we know

(𝑒𝑛, 𝑒2) ∈ ar1.
So we have a smaller cycle 𝑒2, . . . , 𝑒𝑛, 𝑒2. Thus we get a contradiction.

• op(𝑒2) ∈ dom(Π2). Since op(𝑒𝑛) ∈ dom(Π1), we know 𝑒2 ≠ 𝑒𝑛 . So 𝑛 > 2. We analyze the different cases of

(𝑒2, 𝑒3) ∈ ar:

• (𝑒2, 𝑒3) ∈
vis↦−−→
t

E . Since (𝑒1, 𝑒2) ∈
vis↦−−→
t

E , we know (𝑒1, 𝑒3) ∈
vis↦−−→
t

E . So we have a smaller cycle 𝑒1, 𝑒3, . . . , 𝑒𝑛, 𝑒1. Thus

we get a contradiction.

• (𝑒2, 𝑒3) ∈ ar1. Since op(𝑒2) ∈ dom(Π2), we know this case is impossible.

• (𝑒2, 𝑒3) ∈ ar2. So op(𝑒3) ∈ dom(Π2). Since op(𝑒𝑛) ∈ dom(Π1), we know 𝑒3 ≠ 𝑒𝑛 . So 𝑛 > 3. We analyze the different

cases of (𝑒3, 𝑒4) ∈ ar:

• (𝑒3, 𝑒4) ∈
vis↦−−→
t

E . Since (𝑒1, 𝑒2) ∈
vis↦−−→
t

E , we know (𝑒2, 𝑒4) ∈
vis↦−−→
t

E or (𝑒4, 𝑒2) ∈
vis↦−−→
t

E .

• (𝑒2, 𝑒4) ∈
vis↦−−→
t

E . So we have a smaller cycle 𝑒1, 𝑒2, 𝑒4, . . . , 𝑒𝑛, 𝑒1. Thus we get a contradiction.

• (𝑒4, 𝑒2) ∈
vis↦−−→
t

E . So we have a smaller cycle 𝑒2, 𝑒3, 𝑒4, 𝑒2. Thus we get a contradiction.

• (𝑒3, 𝑒4) ∈ ar1. Since op(𝑒3) ∈ dom(Π2), we know this case is impossible.

• (𝑒3, 𝑒4) ∈ ar2. Since (𝑒2, 𝑒3) ∈ ar2 and totalOrdervisible(E2,t) (ar2), we know
(𝑒2, 𝑒4) ∈ ar2.

So we have a smaller cycle 𝑒1, 𝑒2, 𝑒4, . . . , 𝑒𝑛, 𝑒1. Thus we get a contradiction.

• (𝑒𝑛, 𝑒1) ∈ ar2. Similar to the previous case.

Thus we are done. □

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

Lemma 36. If

• ExecRelated𝜑1
(t, (E1,S1), (Γ1, ar1)) and ExecRelated𝜑2

(t, (E2,S2), (Γ2, ar2)),
• S = S1 ⊎ S2, S1 ∈ dom(𝜑1), S2 ∈ dom(𝜑2),
• E1 = E|Π1

, E2 = E|Π2
, op(E) ⊆ dom(Π1) ⊎ dom(Π2),

• dom(𝜑1) ∩ dom(𝜑2) = ∅, range(𝜑1) ∩ range(𝜑2) = ∅, dom(Γ1) = dom(Π1), dom(Γ2) = dom(Π2),
• SLocality(Π1), SLocality(Π2), SLocality(Γ1), SLocality(Γ2),
• totalOrdervisible(E1,t) (ar1), totalOrdervisible(E2,t) (ar2), totalOrdervisible(E,t) (ar),

vis↦−−→
t

E ⊆ ar, ar1 ⊆ ar, ar2 ⊆ ar,

then ExecRelated𝜑1⊎𝜑2
(t, (E,S), (Γ1 ⊎ Γ2, ar)).

Proof. We want to prove: for any E ′
, if E ′ ⩽ E, then

(𝜑1 ⊎ 𝜑2) (exec_st(S, E ′ |t)) = aexecST(Γ1 ⊎ Γ2, (𝜑1 ⊎ 𝜑2) (S), visible(E ′, t) ⇂ar) and
∀𝑒. last(E ′)=𝑒 ∧ is_origt (𝑒) =⇒ rval(𝑒) = aexecRV(Γ1 ⊎ Γ2, (𝜑1 ⊎ 𝜑2) (S), visible(E ′, t) ⇂ar).

Let E ′
1
= E ′ |Π1

and E ′
2
= E ′ |Π2

. Since E1 = E|Π1
, E2 = E|Π2

and E ′ ⩽ E, we know

E ′
1
⩽ E1 and E ′

2
⩽ E2.

Then, from ExecRelated𝜑1
(t, (E1,S1), (Γ1, ar1)) and ExecRelated𝜑2

(t, (E2,S2), (Γ2, ar2)), we know

𝜑1 (exec_st(S1, E ′
1
|t)) = aexecST(Γ1, 𝜑1 (S1), visible(E ′

1
, t) ⇂ar1),

∀𝑒. last(E ′
1
)=𝑒 ∧ is_origt (𝑒) =⇒ rval(𝑒) = aexecRV(Γ1, 𝜑1 (S1), visible(E ′

1
, t) ⇂ar1),

𝜑2 (exec_st(S2, E ′
2
|t)) = aexecST(Γ2, 𝜑2 (S2), visible(E ′

2
, t) ⇂ar2),

∀𝑒. last(E ′
2
)=𝑒 ∧ is_origt (𝑒) =⇒ rval(𝑒) = aexecRV(Γ2, 𝜑2 (S2), visible(E ′

2
, t) ⇂ar2).

Since E ′
1
= E ′ |Π1

and E ′
2
= E ′ |Π2

, we know

E ′
1
|t = (E ′ |t) |Π1

and E ′
2
|t = (E ′ |t) |Π2

.

By Lemma 37, we know

exec_st(S, E ′ |t) = exec_st(S1, E ′
1
|t) ⊎ exec_st(S2, E ′

2
|t).

Since dom(𝜑1) ∩ dom(𝜑2) = ∅, we know

(𝜑1 ⊎ 𝜑2) (exec_st(S, E ′ |t)) = 𝜑1 (exec_st(S1, E ′
1
|t)) ⊎ 𝜑2 (exec_st(S2, E ′

2
|t)).

Since S = S1 ⊎ S2, we know

(𝜑1 ⊎ 𝜑2) (S) = 𝜑1 (S1) ⊎ 𝜑2 (S2)

Since E ′
1
= E ′ |Π1

, E ′
2
= E ′ |Π2

, dom(Γ1) = dom(Π1) and dom(Γ2) = dom(Π2), we know

E ′
1
= E ′ |Γ1 and E ′

2
= E ′ |Γ2 .

Then, since totalOrdervisible(E1,t) (ar1), totalOrdervisible(E2,t) (ar2), totalOrdervisible(E,t) (ar), ar1 ⊆ ar, ar2 ⊆ ar and E ′ ⩽ E, we
know

visible(E ′
1
, t) ⇂ar1 = (visible(E ′, t) ⇂ar) |Γ1 and visible(E ′

2
, t) ⇂ar2 = (visible(E ′, t) ⇂ar) |Γ2 .

By Lemma 38, we know

aexecST(Γ1 ⊎ Γ2, 𝜑1 (S1) ⊎ 𝜑2 (S2), visible(E ′, t) ⇂ar)
= aexecST(Γ1, 𝜑1 (S1), visible(E ′

1
, t) ⇂ar1) ⊎ aexecST(Γ2, 𝜑2 (S2), visible(E ′

2
, t) ⇂ar2)

Thus we know

(𝜑1 ⊎ 𝜑2) (exec_st(S, E ′ |t)) = aexecST(Γ1 ⊎ Γ2, (𝜑1 ⊎ 𝜑2) (S), visible(E ′, t) ⇂ar).

Next, we prove ∀𝑒. last(E ′)=𝑒 ∧ is_origt (𝑒) =⇒ rval(𝑒) = aexecRV(Γ1 ⊎ Γ2, (𝜑1 ⊎ 𝜑2) (S), visible(E ′, t) ⇂ar). Since op(E) ⊆
dom(Π1) ⊎ dom(Π2), we have two cases:

• op(𝑒) ∈ dom(Π1). Since E ′
1
= E ′ |Π1

and last(E ′)=𝑒 , we know last(E ′
1
)=𝑒 . Thus

rval(𝑒) = aexecRV(Γ1, 𝜑1 (S1), visible(E ′
1
, t) ⇂ar1).

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

Since

vis↦−−→
t

E ⊆ ar, last(E ′)=𝑒 , and is_origt (𝑒), we know
last(visible(E ′, t) ⇂ar) = 𝑒 and last(visible(E ′

1
, t) ⇂ar1) = 𝑒 .

Suppose (visible(E ′
1
, t) ⇂ar1) = E ′′

1
++[𝑒] and (visible(E ′, t) ⇂ar) = E ′′++[𝑒]. Then there exist S′′

1
and 𝑛′

such that

aexecST(Γ1, 𝜑1 (S1), E ′′
1
) = S′′

1
, Γ1 (op(𝑒)) (S′′

1
) = (𝑛′, _) and aexecRV(Γ1, 𝜑1 (S1), visible(E ′

1
, t) ⇂ar1) = 𝑛′

Since visible(E ′
1
, t) ⇂ar1 = (visible(E ′, t) ⇂ar) |Γ1 and visible(E ′

2
, t) ⇂ar2 = (visible(E ′, t) ⇂ar) |Γ2 , we know

E ′′ |Γ1 = E ′′
1
and E ′′ |Γ2 = visible(E ′

2
, t) ⇂ar2.

By Lemma 38, we know

aexecST(Γ1 ⊎ Γ2, 𝜑1 (S1) ⊎ 𝜑2 (S2), E ′′)
= aexecST(Γ1, 𝜑1 (S1), E ′′

1
) ⊎ aexecST(Γ2, 𝜑2 (S2), visible(E ′

2
, t) ⇂ar2)

= S′′
1
⊎ aexecST(Γ2, 𝜑2 (S2), visible(E ′

2
, t) ⇂ar2)

Since Γ1 (op(𝑒)) (S′′
1
) = (𝑛′, _), from SLocality(Γ1), we know

Γ1 (op(𝑒)) (S′′
1
⊎ aexecST(Γ2, 𝜑2 (S2), visible(E ′

2
, t) ⇂ar2)) = (𝑛′, _).

Thus we know

aexecRV(Γ1 ⊎ Γ2, (𝜑1 ⊎ 𝜑2) (S), visible(E ′, t) ⇂ar)
= aexecRV(Γ1 ⊎ Γ2, 𝜑1 (S1) ⊎ 𝜑2 (S2), E ′′++[𝑒])
= 𝑛′ = rval(𝑒)

• op(𝑒) ∈ dom(Π2). Similar to the previous case.

Thus we are done. □

Lemma 37. If

• exec_st(S1, E1) = S′
1
, exec_st(S2, E2) = S′

2
,

• S = S1 ⊎ S2, E1 = E|Π1
, E2 = E|Π2

, op(E) ⊆ dom(Π1) ⊎ dom(Π2),
• SLocality(Π1), SLocality(Π2),

then exec_st(S, E) = S′
1
⊎ S′

2
.

Proof. By induction over the length 𝑛 of E.
• 𝑛 = 0. So E1 = E2 = E = 𝜖 . So exec_st(S, E) = S′

1
⊎ S′

2
.

• 𝑛 = 𝑘 + 1. Suppose E = 𝑒 ::E ′
.

Since op(E) ⊆ dom(Π1) ⊎ dom(Π2), we have two cases:

• op(𝑒) ∈ dom(Π1).
Let E ′

1
= E ′ |Π1

. So we know

E1 = 𝑒 ::E ′
1
and E2 = E ′ |Π2

.

Since exec_st(S1, E1) = S′
1
, we know there exists S′′

1
such that

exec_st(S1, [𝑒]) = S′′
1
and exec_st(S′′

1
, E ′

1
) = S′

1
.

Since SLocality(Π1), we know
exec_st(S1 ⊎ S2, [𝑒]) = S′′

1
⊎ S2.

Also, by the induction hypothesis, we know

exec_st(S′′
1
⊎ S2, E ′) = S′

1
⊎ S′

2
.

So we know exec_st(S, E) = S′
1
⊎ S′

2
.

• op(𝑒) ∈ dom(Π2). Similar to the previous case.

Thus we are done. □

Lemma 38. If

• aexecST(Γ1,S1, E1) = S′
1
, aexecST(Γ2,S2, E2) = S′

2
,

• S = S1 ⊎ S2, E1 = E|Γ1 , E2 = E|Γ2 , op(E) ⊆ dom(Γ1) ⊎ dom(Γ2),
• SLocality(Γ1), SLocality(Γ2),

then aexecST(Γ1 ⊎ Γ2,S, E) = S′
1
⊎ S′

2
.

Proof. By induction over the length 𝑛 of E.
• 𝑛 = 0. So E1 = E2 = E = 𝜖 . So aexecST(Γ1 ⊎ Γ2,S, E) = S′

1
⊎ S′

2
.

• 𝑛 = 𝑘 + 1. Suppose E = 𝑒 ::E ′
.

Since op(E) ⊆ dom(Γ1) ⊎ dom(Γ2), we have two cases:

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

• op(𝑒) ∈ dom(Γ1).
Let E ′

1
= E ′ |Γ1 . So we know

E1 = 𝑒 ::E ′
1
and E2 = E ′ |Γ2 .

Since aexecST(Γ1,S1, E1) = S′
1
, we know there exists S′′

1
such that

aexecST(Γ1,S1, [𝑒]) = S′′
1
and aexecST(Γ1,S′′

1
, E ′

1
) = S′

1
.

Since SLocality(Γ1), we know
aexecST(Γ1,S1 ⊎ S2, [𝑒]) = S′′

1
⊎ S2.

So

aexecST(Γ1 ⊎ Γ2,S1 ⊎ S2, [𝑒]) = S′′
1
⊎ S2.

Also, by the induction hypothesis, we know

aexecST(Γ1 ⊎ Γ2,S′′
1
⊎ S2, E ′) = S′

1
⊎ S′

2
.

So we know aexecST(Γ1 ⊎ Γ2,S, E) = S′
1
⊎ S′

2
.

• op(𝑒) ∈ dom(Γ2). Similar to the previous case.

Thus we are done. □

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

(DoneFlag) 𝑑 ::= prd | cmt (Trace) 𝑇 ::= 𝜖 | (𝑖, t, 𝛼, 𝑑) ::𝑇
(ActSet) A ∈ Nat ⇀ (NodeID × Action × DoneFlag) (ActOrd) 𝜂 ∈ P (Nat × Nat)

A, 𝜂 |= 𝑇 iff ⌊𝑇 ⌋ = A ∧ (∀𝑖, 𝑗 . (𝑖, 𝑗) ∈ 𝜂 ∧ {𝑖, 𝑗} ⊆ dom(A) =⇒ 𝑖 <𝑇 𝑗)

exec(S,𝑇) def

=

exec(𝛼 (S),𝑇 ′) if 𝑇 = (𝑖, t, 𝛼, cmt) ::𝑇 ′

exec(S,𝑇 ′) if 𝑇 = (𝑖, t, 𝛼, prd) ::𝑇 ′

S if 𝑇 = 𝜖

(a) the action model

(S,A, 𝜂) |= P iff ∀𝑇,S′. (A, 𝜂 |= 𝑇) ∧ (S′ = exec(S,𝑇)) =⇒ S′ |=hoare P
(S,A, 𝜂) |= emp iff A = ∅
(S,A, 𝜂) |= Id iff ∀𝑖 ∈ dom(A). A(𝑖) = (_, 𝛼Id, _)
(S,A, 𝜂) |= [𝛼]𝑖t iff A = {𝑖 ; (t, 𝛼, _)}
(S,A, 𝜂) |= 𝛼

𝑖

t iff A = {𝑖 ; (t, 𝛼, cmt)}
(S,A, 𝜂) |= 𝑝 ⊔ 𝑞 iff ∃A1,A2, 𝜂1, 𝜂2 . (A = A1 ∪ A2) ∧ (𝜂 = 𝜂1 ∪ 𝜂2)

∧ ((S,A1, 𝜂1) |= 𝑝) ∧ ((S,A2, 𝜂2) |= 𝑞)
(S,A, 𝜂) |= 𝑝 ⋉ [𝛼]𝑖t iff ∃A ′, 𝜂 ′. ((S,A ′, 𝜂 ′) |= 𝑝) ∧ A = A ′ ⊎ {𝑖 ; (t, 𝛼, _)}

∧ 𝜂 = 𝜂 ′ ⊎ {(𝑗, 𝑖) | 𝑗 ∈ dom(A ′)}
(S,A, 𝜂) |= 𝑝 ⋉ 𝛼

𝑖

t iff ∃A ′, 𝜂 ′. ((S,A ′, 𝜂 ′) |= 𝑝) ∧ A = A ′ ⊎ {𝑖 ; (t, 𝛼, cmt)}
∧ 𝜂 = 𝜂 ′ ⊎ {(𝑗, 𝑖) | 𝑗 ∈ dom(A ′)}

(S,A, 𝜂) |= (𝑝, ⊲⊳) ⋉ [𝛼]𝑖t iff ∃A ′, 𝜂 ′. ((S,A ′, 𝜂 ′) |= 𝑝) ∧ A = A ′ ⊎ {𝑖 ; (t, 𝛼, _)}
∧ 𝜂 = 𝜂 ′ ⊎ {(𝑗, 𝑖) | ∃𝛼 ′. A ′(𝑗) = (_, 𝛼 ′, cmt) ∧ 𝛼 ⊲⊳ 𝛼 ′}

(S,A, 𝜂) |= (𝑝, ⊲⊳) ⋉ 𝛼
𝑖

t iff ∃A ′, 𝜂 ′. ((S,A ′, 𝜂 ′) |= 𝑝) ∧ A = A ′ ⊎ {𝑖 ; (t, 𝛼, cmt)}
∧ 𝜂 = 𝜂 ′ ⊎ {(𝑗, 𝑖) | ∃𝛼 ′. A ′(𝑗) = (_, 𝛼 ′, cmt) ∧ 𝛼 ⊲⊳ 𝛼 ′}

(S,A, 𝜂) |= 𝑝 ⇛ 𝑞 iff (S,A, 𝜂) |= 𝑝 =⇒
∀A ′. A ′ = {(𝑖, (t, 𝛼, cmt)) | A(𝑖) = (t, 𝛼, _)} =⇒ (S,A ′, 𝜂) |= 𝑞

(S,A, 𝜂) |= 𝑝 ⇒ 𝑞 iff ((S,A, 𝜂) |= 𝑝) =⇒ ∀𝑇 . (A, 𝜂 |= 𝑇) =⇒ ∃𝜂 ′. (A, 𝜂 ′ |= 𝑇) ∧ (S,A, 𝜂 ′) |= 𝑞 ∧ (𝜂 ⊆ 𝜂 ′)
−♦ [𝛼]𝑖t

def

= [𝛼]𝑖t ⊔ true −♦ 𝛼
𝑖

t
def

= 𝛼
𝑖

t ⊔ true

(b) semantics of action assertions 𝑝 and 𝑞

((S,A, 𝜂), (𝑖 ′, t′, 𝛼 ′)) |= Emp never holds

((S,A, 𝜂), (𝑖 ′, t′, 𝛼 ′)) |= 𝑝 ; [𝛼]𝑖t iff ((S,A, 𝜂) |= 𝑝) ∧ 𝑖 ∉ dom(A) ∧ 𝑖 = 𝑖 ′ ∧ t = t′ ∧ 𝛼 = 𝛼 ′

IId
def

= ∃𝑖, t. true ; [𝛼Id]𝑖t (here 𝛼Id is the identity action)

(c) semantics of rely/guarantee assertions 𝑅 and 𝐺

𝑝
𝜇
↠ 𝑛′ iff ∀S,A, 𝜂,𝑇 ,S′. ((S,A, 𝜂) |= 𝑝) ∧ (A, 𝜂 |= 𝑇) ∧ (S′ = exec(S,𝑇)) =⇒ 𝜇 (S′) = 𝑛′

cmt-closed(𝑝) iff ∀S,A, 𝜂, 𝑖, t, 𝛼 . (S,A ⊎ {𝑖 ; (t, 𝛼, prd), 𝜂) |= 𝑝 =⇒ (S,A ⊎ {𝑖 ; (t, 𝛼, cmt), 𝜂) |= 𝑝

(d) auxiliary definitions used in inference rules

Figure 22. Semantics of assertions.

E Program Logic for Client Verification: Assertion Semantics and Logic Soundness Proofs

E.1 Semantics of Assertions

We define the syntax of the assertions in Fig. 10 and their semantics in Fig. 22. The action assertions 𝑝 and 𝑞 specify the set of

actions A and their ordering 𝜂 in the current thread’s view.

Actions and their ordering. In order to distinguish actions that originate from different program points, we assign a unique

ID (a natural number) to each action 𝛼 . As defined in Fig. 22(a), the action set A maps each action ID 𝑖 to a triple (t, 𝛼, 𝑑). Here
t specifies the origin node of the request 𝛼 . The flag 𝑑 indicates whether 𝛼 is predicted (prd) or committed (cmt) in the view

of the current thread t𝑐 . As we explained before, at some program point t𝑐 may know that the request of 𝛼 has been issued

but not arrived yet, in which case we say t𝑐 predicts the future receipt of 𝛼 . Later when it actually receives 𝛼 , we think 𝛼 is

committed in t𝑐 ’s view. The action ordering 𝜂 is a relation over action IDs.

As shown in Fig. 22, 𝑝 and 𝑞 are assertions over (S,A, 𝜂). [𝛼]𝑖t and 𝛼
𝑖

t describe singleton action sets. The former says

the action 𝛼 (with ID 𝑖) has been issued from its origin t, but we do not care whether it’s on the way or it as been arrived

at the current node, while the latter says the current node has received such an 𝛼 . To simplify the presentation, we may

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

omit the superscript action ID in an assertion when it is clear from the context what the action denotes. We write emp for

an empty action set. The assertion 𝑝 ⊔ 𝑞 allows us to merge two action sets without enforcing new ordering. For instance,

[addAfter(a,b)]t1 ⊔ remove(e)
t2
says addAfter(a,b) and remove(e) can be ordered either way.

We use 𝑝⋉ [𝛼]𝑖t, 𝑝⋉ 𝛼
𝑖

t, (𝑝, ⊲⊳)⋉ [𝛼]𝑖t and (𝑝, ⊲⊳)⋉ 𝛼
𝑖

t to add a new action 𝛼 and some new orders about 𝛼 . The assertion

𝑝 ⋉ [𝛼]𝑖t requires 𝛼 to be ordered after all the actions in 𝑝 , while (𝑝, ⊲⊳) ⋉ 𝛼
𝑖

t enforces the ordering between 𝛼 (with action ID

𝑖 and origin t) and only the actions that have been committed and conflict (⊲⊳) with 𝛼 . For instance, for the RGA object, if 𝑝 is

[addAfter(a,b)]1t1 ⊔ remove(e)
2

t2
, then the following A1 and 𝜂1 satisfy (𝑝, ⊲⊳) ⋉ addAfter(a,c)

3

t
but does not satisfy

𝑝 ⋉ [addAfter(a,c)]3t :
A1= {1; (t1, addAfter(a,b), prd), 2; (t2, remove(e), cmt), 3; (t, addAfter(a,c), cmt)}, 𝜂1=∅ (E.1)

The assertion (𝑝, ⊲⊳) ⋉ 𝛼
𝑖

t is introduced when the current thread t calls the operation of 𝛼 at the status 𝑝 (see the call rule in

Fig. 11). If 𝛼 ′
in 𝑝 is prd, which means t has not received 𝛼 ′

, we do not care about the orders of 𝛼 ′
and 𝛼 . If 𝛼 ′

does not conflict

with 𝛼 , from nonComm(Γ, ⊲⊳), we know applying 𝛼 and 𝛼 ′
in any order will have the same effects, so the ordering is still

unimportant. As a result, we only enforce the orders that 𝛼 is after the committed and conflicting actions of 𝑝 . (𝑝, ⊲⊳) ⋉ 𝛼
𝑖

t
also requires 𝛼 be committed since the assertion is used only at the origin node of 𝛼 . We define some useful shorthand at the

bottom of Fig. 22(b). We have the following equivalences/implications:

𝛼
𝑖

t ⇔ (emp ⊔ 𝛼
𝑖

t) ⇔ (emp⋉ 𝛼
𝑖

t) ⇔ ((emp, ⊲⊳) ⋉ 𝛼
𝑖

t)
[𝛼]𝑖t ⇔ (emp ⊔ [𝛼]𝑖t) ⇔ (emp⋉ [𝛼]𝑖t) ⇔ ((emp, ⊲⊳) ⋉ [𝛼]𝑖t)
[𝛼]𝑖t ⇒ (−♦ [𝛼]𝑖t) 𝛼

𝑖

t ⇒ (−♦ 𝛼
𝑖

t) (𝑝 ⋉ [𝛼]𝑖t) ⇒ (𝑝 ⊔ [𝛼]𝑖t)
(E.2)

We lift Hoare-logic state assertions P to action assertions. (S,A, 𝜂) |= P requires P hold over any final states resulting from

executing any traces 𝑇 that respect (A, 𝜂). We define traces in Fig. 22(a), which are sequences of actions (𝑖, t, 𝛼, 𝑑). We say

a trace 𝑇 respects A and 𝜂, written as A, 𝜂 |= 𝑇 , if A’s actions constitute 𝑇 and their orderings in 𝜂 are all contained in 𝑇 .

Here ⌊𝑇 ⌋ turns the trace to a set of actions, and 𝑖 <𝑇 𝑗 says that in 𝑇 the action with ID 𝑖 is before the action with ID 𝑗 . As a

consequence, if 𝜂 contains cycles (e.g., 𝜂 = {(1, 2), (2, 1)}), no trace 𝑇 can satisfy A, 𝜂 |= 𝑇 . (But as we will see soon, the way

we add orderings by our logic would not introduce cycles to the action model.) When executing 𝑇 from the initial state S,
written as exec(S,𝑇), we only execute committed actions since predicted actions are not received in the current view. For

instance, suppose in S the RGA sequence s is ae (i.e., S(s) = ae). Then (S,A1, 𝜂1) |= (s = ac) holds (where A1 and 𝜂1 are

defined in (E.1)). Also (S,A2, 𝜂2) |= (s = abce ∨ s = acbe) holds for the following A2 and 𝜂2.

A2 = {1 ; (t1, addAfter(a,b), cmt), 3 ; (t, addAfter(a,c), cmt)}, 𝜂2 = ∅
The assertion 𝑝 ⇛ 𝑞 says, 𝑞 holds after committing all the actions in 𝑝 . It is used when the whole client program terminates

(see the par rule in Fig. 11).

Rely/guarantee assertions and stability. Following rely-guarantee reasoning, 𝑅 and 𝐺 specify the interface between a

thread and its environment. They are binary relations between a (S,A, 𝜂) triple (reflecting the current status) and a newly

issued action (𝑖 ′, t′, 𝛼 ′). The guarantee 𝐺 specifies the invocations of object actions made by the thread itself. The rely 𝑅

specifies the thread’s expectations of the object actions that originate from its environment. As defined in Fig. 22(c), the only

primitive rely/guarantee assertion 𝑝 ; [𝛼]𝑖t says that t invokes the action 𝛼 when 𝑝 holds. Usually we use it to specify the

prerequisite for t to issue the request 𝛼 . We define IId to represent the invocation of an identity action (e.g., read operations). It

specifies stuttering steps.

Threads can cooperate if the rely condition of a thread t is implied by the guarantee of the other t′. The assertion 𝑝 at

each program point of t must be stable under its rely 𝑅, i.e., it is resistant to interference from the environment. We define

the stability check Sta(𝑝, 𝑅, ⊲⊳) in Def. 39. It says that, given the current knowledge (S,A, 𝜂) satisfying 𝑝 , if as specified in

𝑅 the prerequisite (S,A ′, 𝜂 ′) for the invocation of 𝛼 on t′ is met (i.e., A ′ ⊂∼ A and 𝜂 ′ ⊆ 𝜂), then 𝑝 must still hold after the

invocation of 𝛼 , that is (S,A ⊎ {𝑖 ; (t′, 𝛼, _)}, 𝜂 ′′) |= 𝑝 . There are several details we should note.

• For an action to be invoked on certain node t′, its prerequisite actions in A ′
must have all arrived at t′, although they

may not have all arrived at the current node yet. Therefore, we use A ′ ⊂∼ A to say that 𝑝 is aware of the invocations of

the prerequisite actions in A ′
.

• Although 𝑝 needs to hold after the invocation of 𝛼 , 𝑝 does not have to know whether 𝛼 has arrived at the current node.

Thus we use the underscore in (S,A ⊎ {𝑖 ; (t′, 𝛼, _)}, 𝜂 ′′) |= 𝑝 .

• By predicting 𝛼 , 𝑝 expands its knowledge about action ordering from 𝜂 to 𝜂 ′′. For those 𝛼 ′
in A ′

that are prerequisite of

𝛼 and are also in conflict with 𝛼 (i.e., 𝛼 ′ ⊲⊳ 𝛼), 𝛼 ′
should be ordered before 𝛼 on all nodes, since we require all nodes to

observe the same ordering of conflicting actions. Therefore 𝜂 ′′ extends 𝜂 with the new knowledge about the ordering.

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

J𝐸KS𝑐
= 𝑛 split(Γ(𝑓 , 𝑛)) = (𝜇, 𝛼)

𝜂 ⊆ 𝜂1 A, 𝜂1 |= 𝑇 ∀𝑇,S′. (A, 𝜂1 |= 𝑇) ∧ (S′ = exec(S,𝑇)) =⇒ 𝜇 (S′) = 𝑛′

𝑖 ∉ dom(A) A ′ = A ⊎ {𝑖 ; (t, 𝛼, cmt)}
𝜂 ′ = 𝜂1 ⊎ {(𝑗, 𝑖) | ∃𝛼 ′. A(𝑗) = (_, 𝛼 ′, cmt) ∧ 𝛼 ⊲⊳ 𝛼 ′}

((𝑥 := 𝑓 (𝐸),S𝑐), (S,A, 𝜂), (Γ, ⊲⊳)) ↩call−−−→
𝑅

t ((skip,S𝑐 {𝑥 ; 𝑛′}), (S,A ′, 𝜂 ′), (Γ, ⊲⊳))
(call)

((S,A ′, 𝜂 ′), (𝑖, t′, 𝛼)) |=′ 𝑅 A ′ ⊂∼ A 𝜂 ′ ⊆ 𝜂

A ′′ = A ⊎ {𝑖 ; (t′, 𝛼, prd)} 𝜂 ′′ = 𝜂 ⊎ {(𝑗, 𝑖) | ∃𝛼 ′. A ′(𝑗) = (_, 𝛼 ′, cmt) ∧ 𝛼 ⊲⊳ 𝛼 ′}

((𝐶,S𝑐), (S,A, 𝜂), (Γ, ⊲⊳)) ↩prd−−→
𝑅

t ((𝐶,S𝑐), (S,A ′′, 𝜂 ′′), (Γ, ⊲⊳))
(prd-𝑅)

A(𝑖) = (t′, 𝛼, prd) A ′ = A{𝑖 ; (t′, 𝛼, cmt)} ¬(𝑅 ⇒ Emp)

((𝐶,S𝑐), (S,A, 𝜂), (Γ, ⊲⊳)) ↩cmt−−−→
𝑅

t ((𝐶,S𝑐), (S,A ′, 𝜂), (Γ, ⊲⊳))
(cmt)

J𝐸KS𝑐
= 𝑛

((𝑥 := 𝐸,S𝑐), (S,A, 𝜂), (Γ, ⊲⊳)) ↩lc−→
𝑅

t ((skip,S𝑐 {𝑥 ; 𝑛}), (S,A, 𝜂), (Γ, ⊲⊳))
(local)

Figure 23. Local 𝑅-semantics for clients.

Definition 39. Sta(𝑝, 𝑅, ⊲⊳) iff

(S,A, 𝜂) |= 𝑝 ∧ ∀A ′, 𝜂 ′, (𝑖, t′, 𝛼) . (A ′ ⊂∼ A) ∧ (𝜂 ′ ⊆ 𝜂) ∧ ((S,A ′, 𝜂 ′), (𝑖, t′, 𝛼)) |=′ 𝑅
=⇒ (S,A ⊎ {𝑖 ; (t′, 𝛼, _)}, 𝜂 ′′) |= 𝑝

where 𝜂 ′′ = 𝜂 ⊎ {(𝑗, 𝑖) | ∃𝛼 ′. A ′(𝑗) = (_, 𝛼 ′, cmt) ∧ 𝛼 ⊲⊳ 𝛼 ′}
and A ′ ⊂∼ A iff ∀𝑖, t, 𝛼 . A ′(𝑖) = (t, 𝛼, cmt) =⇒ A(𝑖) = (t, 𝛼, _)
and ((S,A ′, 𝜂 ′), (𝑖, t′, 𝛼)) |=′ 𝑅 iff ∀𝑇 . (A ′, 𝜂 ′ |= 𝑇) =⇒ ∃𝜂0 . (A ′, 𝜂0 |= 𝑇) ∧ (𝜂 ′ ⊆ 𝜂0) ∧ ((S,A ′, 𝜂0), (𝑖, t′, 𝛼)) |= 𝑅

E.2 Judgment Semantics and Soundness Theorems

In this section, for any program P = with (Γ, ⊲⊳) do 𝐶1 ∥ . . . ∥𝐶𝑛 , we assume ∀𝑖 . fv(Γ) ∩ fv(𝐶𝑖) = ∅∧∀𝑗 ≠ 𝑖 . fv(𝐶𝑖) ∩ fv(𝐶 𝑗) = ∅.
We also assume that Γ has strong locality, i.e., SLocality(Γ) (which is useful in proving soundness of the par rule).

Definition 40 (Strong Locality). SLocality(Γ) iff both the following holds:

1. for any 𝑓 , 𝑛, 𝑛′
, S, S′

and S1, if Γ(𝑓 , 𝑛) (S) = (𝑛′,S′) and dom(S) ∩ dom(S1) = ∅, then Γ(𝑓 , 𝑛) (S ⊎ S1) = (𝑛′,S′ ⊎S1).
2. for any 𝑓 , 𝑛, 𝑛′

, S, S′′
and S1, if Γ(𝑓 , 𝑛) (S ⊎ S1) = (𝑛′,S′′) and fv(Γ) ⊆ dom(S), then there exists S′

such that

S′′ = S′ ⊎ S1 and Γ(𝑓 , 𝑛) (S) = (𝑛′,S′).

Definition 41 define the semantics for the local judgment 𝑅,𝐺 ; Γ, ⊲⊳ ⊢t {𝑝}𝐶{𝑞}, following standard rely-guarantee. We

define the local 𝑅-semantics in Fig. 23.

Definition 41 (Local Judgment Semantics). 𝑅,𝐺 ; Γ, ⊲⊳ |=t {𝑝}𝐶{𝑞} iff

for any S, A, 𝜂 and S𝑐 , if (S ⊎ S𝑐 ,A, 𝜂) |= 𝑝 , fv(Γ) ⊆ dom(S) and fv(𝐶) ⊆ dom(S𝑐), then the following are true:

1. for any A ′
, 𝜂 ′ and S′

𝑐 , if ((𝐶,S𝑐), (S,A, 𝜂), (Γ, ⊲⊳)) 𝑅
↩−→ ∗

t ((skip,S′
𝑐), (S,A ′, 𝜂 ′), (Γ, ⊲⊳)), then

∀𝑇 ′. (A ′, 𝜂 ′ |= 𝑇 ′) =⇒ ∃𝜂 ′′. (A ′, 𝜂 ′′ |= 𝑇 ′) ∧ (𝜂 ′ ⊆ 𝜂 ′′) ∧ (S′
𝑐 ⊎ S,A ′, 𝜂 ′′) |= 𝑞.

2. for any 𝑛, ((𝐶,S𝑐), (S,A, 𝜂), (Γ, ⊲⊳), 𝑅) guarantees𝑛t 𝐺 .

Definition 42 (Guarantees).

• ((𝐶,S𝑐), (S,A, 𝜂), (Γ, ⊲⊳), 𝑅) guarantees0t 𝐺 always holds.

• ((𝐶,S𝑐), (S,A, 𝜂), (Γ, ⊲⊳), 𝑅) guarantees𝑛+1t 𝐺 iff

for any 𝐶 ′
, S′

𝑐 , A ′
, 𝜂 ′, if ((𝐶,S𝑐), (S,A, 𝜂), (Γ, ⊲⊳)) ↩ l̂−→

𝑅
t ((𝐶 ′,S′

𝑐), (S,A ′, 𝜂 ′), (Γ, ⊲⊳)), then
1. ((𝐶 ′,S′

𝑐), (S,A ′, 𝜂 ′), (Γ, ⊲⊳), 𝑅) guarantees𝑛t 𝐺 ; and

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

Proof by induction

Theorem 44(1): If 𝑅,𝐺 ; Γ, ⊲⊳ ⊢t {𝑝}𝐶{𝑞}, then 𝑅,𝐺 ; Γ, ⊲⊳ |=t {𝑝}𝐶{𝑞}.

Lemma 48: If ⊢ {P }P{Q }, then |=prd {P }P{Q }.

◦↦−→ implies ↦−_ .

Theorem 44(2): If ⊢ {P }P{Q } and nonComm(Γ, ⊲⊳), then |= {P }P{Q }.

par-sound

Figure 24. Logic soundness proof.

2. if l̂ = call, then

there exist 𝑖 , 𝛼 such that A ′ = A ⊎ {𝑖 ; (t, 𝛼, cmt)}, and
∀𝑇 . (A, 𝜂 |= 𝑇) =⇒ ∃𝜂0 . (A, 𝜂0 |= 𝑇) ∧ (𝜂 ⊆ 𝜂0) ∧ ((S,A, 𝜂0), (𝑖, t, 𝛼)) |= 𝐺 .

Definition 43 defines the semantics for the global judgment ⊢ {P }P{Q } based on the the abstract semantics in Figure 17.

Definition 43 (Abstract Global Judgment Semantics). |= {P }P{Q } iff

for any S, O and S1, . . . ,S𝑛,S′
1
, . . . ,S′

𝑛 , if S |=hoare P and (P,S) O◦↦−→ ∗ (end, (S1, . . . ,S𝑛), (S′
1
, . . . ,S′

𝑛)), then S′
1
= . . . = S′

𝑛

and (S1 ⊎ . . . ⊎ S𝑛 ⊎ S′
1
) |=hoare Q .

Theorem 44 (Logic Soundness).

1. If 𝑅,𝐺 ; Γ, ⊲⊳ ⊢t {𝑝}𝐶{𝑞}, then 𝑅,𝐺 ; Γ, ⊲⊳ |=t {𝑝}𝐶{𝑞}.
2. If ⊢ {P }P{Q } and nonComm(Γ, ⊲⊳), then |= {P }P{Q }.
Finally, our logic plus contextual refinement (or ACC, or its proof method) ensure correctness of the whole system.

Definition 45 (Concrete Global Judgment Semantics). |=𝜑 {P }𝑃{Q } iff

for any S, E and S1, . . . ,S𝑛,S′
1
, . . . ,S′

𝑛 , if S |=hoare P and (𝑃,S) E↦−→ ∗ (end, (S1, . . . ,S𝑛), (S′
1
, . . . ,S′

𝑛)), then 𝜑 (S′
1
) = . . . =

𝜑 (S′
𝑛) and (S1 ⊎ . . . ⊎ S𝑛 ⊎ S′

1
) |=hoare Q .

Theorem 46 (Whole System Correctness).

If ⊢ {P }with (Γ, ⊲⊳) do 𝐶1 ∥ . . . ∥𝐶𝑛{Q }, Π ⊑𝜑 (Γ, ⊲⊳), nonComm(Γ, ⊲⊳), P ′ ⇒ 𝜑−1 [P] and fv(Q) ⊆ ⋃
t fv(𝐶t), then

|=𝜑 {P ′}let Π in 𝐶1 ∥ . . . ∥𝐶𝑛{Q }.

E.3 Proof Structure

Theorem 44 is proved in the way in Figure 24. We introduce an intermediate global semantics in Figure 25, and define the

corresponding global judgment semantics in Definition 47. We prove Lemma 48 as the direct soundness for our logic rules,

from which we derive Theorem 44(2) and (3).

Definition 47 (Predict-Commit Global Judgment Semantics). |=prd {P }P{Q } iff

for any S, S1, . . . , S𝑛 , S0, A ′
, 𝜂 ′, if

• S |=hoare P , and
• (P,S) ↦−_ ∗ (end, (S1, . . . ,S𝑛), (S0,A ′, 𝜂 ′)),

then ∀S′
0
. (∃𝑇 . (A ′, 𝜂 ′ |= 𝑇) ∧ exec(S0,𝑇) = S′

0
) =⇒ (S1 ⊎ . . . ⊎ S𝑛 ⊎ S′

0
) |=hoare Q .

Lemma 48. If ⊢ {P }P{Q }, then |=prd {P }P{Q }.
Proof of Lemma 48. From the derivation of ⊢ {P }P{Q }, and from Theorem 44(1) and Lemma 56, we are done. □

Proof of Theorem 44(1). By induction over the derivation of𝑅,𝐺 ; Γ, ⊲⊳ ⊢t {𝑝}𝐶{𝑞}, and from Lemma 49, Lemma 50, and Lemma 55.

□

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

(ActIDSet) ms ∈ P (Nat)
(AbsTrState) Ω ::= {t1 ; (S,A1, 𝜂1,ms1), . . . , t𝑛 ; (S,A𝑛, 𝜂𝑛,ms𝑛)}

fv(Γ) ⊆ dom(S) ∀t ∈ [1..𝑛] . 𝜎𝑐 (t) = (𝐶t, ∅) ∀t ∈ [1..𝑛] . Ω(t) = (S, ∅, ∅, ∅)
(with (Γ, ⊲⊳) do 𝐶1 ∥ . . . ∥𝐶𝑛,S) ↦−_ (𝜎𝑐 ,Ω, (Γ, ⊲⊳))

(load)

dom(𝜎𝑐) = [1..𝑛] ∀t. 𝜎𝑐 (t) = (skip,St)
∀t. Ω(t) = (S,A, 𝜂,ms) ∀𝑖 . A(𝑖) = (_, _, cmt)
(𝜎𝑐 ,Ω, (Γ, ⊲⊳)) ↦−_ (end, (S1, . . . ,S𝑛), (S,A, 𝜂))

(end)

𝜎𝑐 (t) = (𝑥 := 𝑓 (𝐸),S𝑐) J𝐸KS𝑐
= 𝑛 split(Γ(𝑓 , 𝑛)) = (𝜇, 𝛼)

Ω(t) = (S,A, 𝜂,ms) 𝜂 ⊆ 𝜂1 A, 𝜂1 |= 𝑇 ∀𝑇,S′. (A, 𝜂1 |= 𝑇) ∧ (S′ = exec(S,𝑇)) =⇒ 𝜇 (S′) = 𝑛′

Ω′(t) = (S,A ′, 𝜂 ′,ms ∪ms′′) 𝑖 ∉ dom(A) A ′ = A ⊎ {𝑖 ; (t, 𝛼, cmt)}
ms′′ = { 𝑗 | ∃𝛼 ′. A(𝑗) = (_, 𝛼 ′, cmt) ∧ 𝛼 ⊲⊳ 𝛼 ′} 𝜂 ′ = 𝜂1 ⊎ {(𝑗, 𝑖) | 𝑗 ∈ ms′′}
∀t′ ≠ t : Ω(t′) = (S,At′, 𝜂t′,ms) A ′

t′ = At′ ⊎ {𝑖 ; (t, 𝛼, prd)}
Ω′(t′) = (S,A ′

t′, 𝜂
′
t′,ms ∪ms′′) 𝜂 ′t′ = 𝜂t′ ⊎ {(𝑗, 𝑖) | 𝑗 ∈ ms′′}

(𝜎𝑐 ,Ω, (Γ, ⊲⊳)) ↦−_ (𝜎𝑐 {t ; (skip,S𝑐 {𝑥 ; 𝑛′})},Ω′, (Γ, ⊲⊳))
(call&prd)

Ω(t) = (S,A, 𝜂,ms) A(𝑖) = (t′, 𝛼, prd) A ′ = A{𝑖 ; (t′, 𝛼, cmt)}
(𝜎𝑐 ,Ω, (Γ, ⊲⊳)) ↦−_ (𝜎𝑐 ,Ω{t ; (S,A ′, 𝜂,ms)}, (Γ, ⊲⊳))

(cmt)

𝜎𝑐 (t) = (𝑥 := 𝐸,S𝑐) J𝐸KS𝑐
= 𝑛 𝐶 ′ = skip S′

𝑐 = S𝑐 {𝑥 ; 𝑛}
(𝜎𝑐 ,Ω, (Γ, ⊲⊳)) ↦−_ (𝜎𝑐 {t ; (𝐶 ′,S′

𝑐)},Ω, (Γ, ⊲⊳))
(local)

Figure 25. Predict-commit semantics for clients.

E.4 Soundness Proofs for Local Rules and par Rule

Lemma 49 (CALL-sound). If

1. 𝑝 ⇒ 𝐸 = 𝑛, split(Γ(𝑓 , 𝑛)) = (𝜇, 𝛼), 𝑝
𝜇

↠ 𝑛′
, 𝑥 = 𝑛′ ∧ ∃𝑣 . 𝑝 [𝑣/𝑥] ⇒ 𝑞,

2. 𝑞 ; [𝛼]𝑖t ⇒ 𝐺 , fv(𝐺) ⊆ fv(Γ),
then Emp,𝐺 ; Γ, ⊲⊳ |=t {𝑝}𝑥 := 𝑓 (𝐸){(𝑞, ⊲⊳) ⋉ 𝛼

𝑖

t}.

Proof. For any S, A, 𝜂 and S𝑐 , if (S ⊎ S𝑐 ,A, 𝜂) |= 𝑝 , fv(Γ) ⊆ dom(S) and {𝑥} ∪ fv(𝐸) ⊆ dom(S𝑐), we want to prove the

following:

(1) for any 𝑛, if ((𝑥 := 𝑓 (𝐸),S𝑐), (S,A, 𝜂), (Γ, ⊲⊳))
Emp
↩−→𝑛

t ((skip,S′
𝑐), (S,A ′, 𝜂 ′), (Γ, ⊲⊳)), then

∀𝑇 ′. (A ′, 𝜂 ′ |= 𝑇 ′) =⇒ ∃𝜂 ′′. (A ′, 𝜂 ′′ |= 𝑇 ′) ∧ (𝜂 ′ ⊆ 𝜂 ′′) ∧ (S′
𝑐 ⊎ S,A ′, 𝜂 ′′) |= (𝑞, ⊲⊳) ⋉ 𝛼

𝑖

t.

(2) for any 𝑛, ((𝑥 := 𝑓 (𝐸),S𝑐), (S,A, 𝜂), (Γ, ⊲⊳), Emp) guarantees𝑛t 𝐺 .
Since (S ⊎ S𝑐 ,A, 𝜂) |= 𝑝 , fv(Γ) ⊆ dom(S) and {𝑥} ∪ fv(𝐸) ⊆ dom(S𝑐), and since 𝑝 ⇒ 𝐸 = 𝑛, we know

J𝐸KS𝑐
= 𝑛.

From 𝑝
𝜇

↠ 𝑛′
, we know

∀𝑇,S′′. (A, 𝜂 |= 𝑇) ∧ (S′′ = exec(S ⊎ S𝑐 ,𝑇)) =⇒ 𝜇 (S′′) = 𝑛′

From fv(Γ) ⊆ dom(S) and SLocality(Γ), we know

∀𝑇,S′. (A, 𝜂 |= 𝑇) ∧ (S′ = exec(S,𝑇)) =⇒ 𝜇 (S′) = 𝑛′

Since (S ⊎ S𝑐 ,A, 𝜂) |= 𝑝 , we know

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

(S ⊎ S𝑐 {𝑥 ; 𝑛′},A, 𝜂) |= 𝑥 = 𝑛′ ∧ ∃𝑣 . 𝑝 [𝑣/𝑥]

From 𝑥 = 𝑛′ ∧ ∃𝑣 . 𝑝 [𝑣/𝑥] ⇒ 𝑞, we know

(S ⊎ S𝑐 {𝑥 ; 𝑛′},A, 𝜂) |= 𝑞

Let A ′ = A ⊎ {𝑖 ; (t, 𝛼, cmt)} and 𝜂 ′ = 𝜂 ⊎ {(𝑗, 𝑖) | ∃𝛼 ′. A(𝑗) = (_, 𝛼 ′, cmt) ∧ 𝛼 ⊲⊳ 𝛼 ′}. Then

(S ⊎ S𝑐 {𝑥 ; 𝑛′},A ′, 𝜂 ′) |= (𝑞, ⊲⊳) ⋉ 𝛼
𝑖

t

Also we know

((S ⊎ S𝑐 {𝑥 ; 𝑛′},A, 𝜂), (𝑖, t, 𝛼)) |= 𝑞 ; [𝛼]𝑖t
Since 𝑞 ; [𝛼]𝑖t ⇒ 𝐺 , we know

((S ⊎ S𝑐 {𝑥 ; 𝑛′},A, 𝜂), (𝑖, t, 𝛼)) |= 𝐺

Since fv(𝐺) ⊆ fv(Γ) and fv(Γ) ⊆ dom(S), we know

((S,A, 𝜂), (𝑖, t, 𝛼)) |= 𝐺

1. For any A ′
, 𝜂 ′, S′

𝑐 , if ((𝑥 := 𝑓 (𝐸),S𝑐), (S,A, 𝜂), (Γ, ⊲⊳))
Emp
↩−→ ∗

t ((skip,S′
𝑐), (S,A ′, 𝜂 ′), (Γ, ⊲⊳)), from the semantics, we

know

((𝑥 := 𝑓 (𝐸),S𝑐), (S,A, 𝜂), (Γ, ⊲⊳)) ↩call−−−→
𝑅

t ((skip,S′
𝑐), (S,A ′, 𝜂 ′), (Γ, ⊲⊳)),

Thus (S ⊎ S′
𝑐 ,A ′, 𝜂 ′) |= (𝑞, ⊲⊳) ⋉ 𝛼

𝑖

t.

2. Also we know for any 𝑛, ((𝑥 := 𝑓 (𝐸),S𝑐), (S,A, 𝜂), (Γ, ⊲⊳), Emp) guarantees𝑛t 𝐺 .
Thus we are done. □

Lemma 50 (CALL-R-sound). If

1. Emp,𝐺 ; Γ, ⊲⊳ |=t {𝑝}𝑥 := 𝑓 (𝐸){𝑞},
2. Sta({𝑝, 𝑞}, 𝑅, ⊲⊳),
3. cmt-closed({𝑝, 𝑞}),
4. fv(𝑅) ⊆ fv(Γ),

then 𝑅,𝐺 ; Γ, ⊲⊳ |=t {𝑝}𝑥 := 𝑓 (𝐸){𝑞}.

Proof. For any S, A, 𝜂 and S𝑐 , if (S ⊎ S𝑐 ,A, 𝜂) |= 𝑝 , fv(Γ) ⊆ dom(S) and {𝑥} ∪ fv(𝐸) ⊆ dom(S𝑐), we want to prove the

following:

(1) for any 𝑛, if ((𝑥 := 𝑓 (𝐸),S𝑐), (S,A, 𝜂), (Γ, ⊲⊳)) 𝑅
↩−→𝑛

t ((skip,S′
𝑐), (S,A ′, 𝜂 ′), (Γ, ⊲⊳)), then

∀𝑇 ′. (A ′, 𝜂 ′ |= 𝑇 ′) =⇒ ∃𝜂 ′′. (A ′, 𝜂 ′′ |= 𝑇 ′) ∧ (𝜂 ′ ⊆ 𝜂 ′′) ∧ (S′
𝑐 ⊎ S,A ′, 𝜂 ′′) |= 𝑞.

(2) for any 𝑛, ((𝑥 := 𝑓 (𝐸),S𝑐), (S,A, 𝜂), (Γ, ⊲⊳), 𝑅) guarantees𝑛t 𝐺 .
From Emp,𝐺 ; Γ, ⊲⊳ |=t {𝑝}𝑥 := 𝑓 (𝐸){𝑞}, we know

(a) for any A ′
, 𝜂 ′, S′

𝑐 , if ((𝑥 := 𝑓 (𝐸),S𝑐), (S,A, 𝜂), (Γ, ⊲⊳))
Emp
↩−→ ∗

t ((skip,S′
𝑐), (S,A ′, 𝜂 ′), (Γ, ⊲⊳)), then

∀𝑇 ′. (A ′, 𝜂 ′ |= 𝑇 ′) =⇒ ∃𝜂 ′′. (A ′, 𝜂 ′′ |= 𝑇 ′) ∧ (𝜂 ′ ⊆ 𝜂 ′′) ∧ (S′
𝑐 ⊎ S,A ′, 𝜂 ′′) |= 𝑞.

(b) for any 𝑛, ((𝑥 := 𝑓 (𝐸),S𝑐), (S,A, 𝜂), (Γ, ⊲⊳), Emp) guarantees𝑛t 𝐺 .
For (1), by induction over 𝑛. The base case 𝑛 = 0 is trivial. Suppose 𝑛 = 𝑘 + 1.

Since ((𝑥 := 𝑓 (𝐸),S𝑐), (S,A, 𝜂), (Γ, ⊲⊳)) 𝑅
↩−→𝑛

t ((skip,S′
𝑐), (S,A ′, 𝜂 ′), (Γ, ⊲⊳)), we have three cases:

• there exist A ′′
and 𝜂 ′′ such that

((𝑥 := 𝑓 (𝐸),S𝑐), (S,A, 𝜂), (Γ, ⊲⊳)) ↩call−−−→
𝑅

t ((skip,S′
𝑐), (S,A ′′, 𝜂 ′′), (Γ, ⊲⊳)) and

((skip,S′
𝑐), (S,A ′′, 𝜂 ′′), (Γ, ⊲⊳)) 𝑅

↩−→𝑘
t ((skip,S′

𝑐), (S,A ′, 𝜂 ′), (Γ, ⊲⊳)).
From (a), we know

∀𝑇 ′′. (A ′′, 𝜂 ′′ |= 𝑇 ′′) =⇒ ∃𝜂 ′′
1
. (A ′′, 𝜂 ′′

1
|= 𝑇 ′′) ∧ (𝜂 ′′ ⊆ 𝜂 ′′

1
) ∧ (S′

𝑐 ⊎ S,A ′′, 𝜂 ′′
1
) |= 𝑞.

Since Sta(𝑞, 𝑅, ⊲⊳) and cmt-closed(𝑞) and fv(𝑅) ⊆ fv(Γ), we know
∀𝑇 ′. (A ′, 𝜂 ′ |= 𝑇 ′) =⇒ ∃𝜂 ′

1
. (A ′, 𝜂 ′

1
|= 𝑇 ′) ∧ (𝜂 ′ ⊆ 𝜂 ′

1
) ∧ (S′

𝑐 ⊎ S,A ′, 𝜂 ′
1
) |= 𝑞.

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

• there exist A ′′
and 𝜂 ′′ such that

((𝑥 := 𝑓 (𝐸),S𝑐), (S,A, 𝜂), (Γ, ⊲⊳)) ↩prd−−→
𝑅

t ((𝑥 := 𝑓 (𝐸),S𝑐), (S,A ′′, 𝜂 ′′), (Γ, ⊲⊳)) and

((𝑥 := 𝑓 (𝐸),S𝑐), (S,A ′′, 𝜂 ′′), (Γ, ⊲⊳)) 𝑅
↩−→𝑘

t ((skip,S′
𝑐), (S,A ′, 𝜂 ′), (Γ, ⊲⊳)).

Since Sta(𝑝, 𝑅, ⊲⊳), we know
(S ⊎ S𝑐 ,A ′′, 𝜂 ′′) |= 𝑝 .

By the induction hypothesis, we are done.

• there exist A ′′
and 𝜂 ′′ such that

((𝑥 := 𝑓 (𝐸),S𝑐), (S,A, 𝜂), (Γ, ⊲⊳)) ↩cmt−−−→
𝑅

t ((𝑥 := 𝑓 (𝐸),S𝑐), (S,A ′′, 𝜂 ′′), (Γ, ⊲⊳)) and

((𝑥 := 𝑓 (𝐸),S𝑐), (S,A ′′, 𝜂 ′′), (Γ, ⊲⊳)) 𝑅
↩−→𝑘

t ((skip,S′
𝑐), (S,A ′, 𝜂 ′), (Γ, ⊲⊳)).

Since cmt-closed(𝑝), we know
(S ⊎ S𝑐 ,A ′′, 𝜂 ′′) |= 𝑝 .

By the induction hypothesis, we are done.

For (2), by induction over 𝑛 and from (b). Thus we are done. □

Lemma 51 (CSQ-sound). If

1. 𝑅′,𝐺 ′
; Γ, ⊲⊳ |=t {𝑝 ′}𝐶{𝑞′},

2. 𝑝 ⇒ 𝑝 ′
, 𝑅 ⇒ 𝑅′

, 𝑞′ ⇒ 𝑞, 𝐺 ′ ⇒ 𝐺 ,

then 𝑅,𝐺 ; Γ, ⊲⊳ |=t {𝑝}𝐶{𝑞}.

Proof. For any S, A, 𝜂 and S𝑐 , if (S ⊎ S𝑐 ,A, 𝜂) |= 𝑝 , fv(Γ) ⊆ dom(S) and fv(𝐶) ⊆ dom(S𝑐), we want to prove the following:

(1) for any A ′
, 𝜂 ′, S′

𝑐 , if ((𝐶,S𝑐), (S,A, 𝜂), (Γ, ⊲⊳)) 𝑅
↩−→ ∗

t ((skip,S′
𝑐), (S,A ′, 𝜂 ′), (Γ, ⊲⊳)), then

∀𝑇 ′. (A ′, 𝜂 ′ |= 𝑇 ′) =⇒ ∃𝜂 ′′. (A ′, 𝜂 ′′ |= 𝑇 ′) ∧ (𝜂 ′ ⊆ 𝜂 ′′) ∧ (S′
𝑐 ⊎ S,A ′, 𝜂 ′′) |= 𝑞.

(2) for any 𝑛, ((𝐶,S𝑐), (S,A, 𝜂), (Γ, ⊲⊳), 𝑅) guarantees𝑛t 𝐺 .
For (1), from the operational semantics, we know

dom(A) ⊆ dom(A ′), 𝜂 ⊆ 𝜂 ′

∀𝑖, t, 𝛼, 𝑑. A(𝑖) = (t, 𝛼, 𝑑) =⇒ ∃𝑑 ′. A ′(𝑖) = (t, 𝛼, 𝑑 ′) ∧ (𝑑 = cmt =⇒ 𝑑 ′ = cmt)

Since A ′, 𝜂 ′ |= 𝑇 ′
, let 𝑇 = proj(𝑇 ′,A), then we know A, 𝜂 |= 𝑇 . Here we define

proj(𝑇,A) def

=

𝜖 if 𝑇 = 𝜖

(𝑖, t, 𝛼, 𝑑 ′) ::𝑇 ′
if 𝑇 = (𝑖, t, 𝛼, 𝑑) ::𝑇 ′ ∧ A(𝑖) = (t, 𝛼, 𝑑 ′)

𝑇 ′
if 𝑇 = (𝑖, t, 𝛼, 𝑑) ::𝑇 ′ ∧ 𝑖 ∉ dom(A)

Since 𝑝 ⇒ 𝑝 ′
, we know there exists 𝜂1 such that

A, 𝜂1 |= 𝑇 , 𝜂 ⊆ 𝜂1, (S ⊎ S𝑐 ,A, 𝜂1) |= 𝑝 ′
.

From 𝑅′,𝐺 ′
; Γ, ⊲⊳ |=t {𝑝 ′}𝐶{𝑞′}, we know

(a) for any A ′
, 𝜂 ′

1
, S′

𝑐 , if ((𝐶,S𝑐), (S,A, 𝜂1), (Γ, ⊲⊳))
𝑅′

↩−→ ∗
t ((skip,S′

𝑐), (S,A ′, 𝜂 ′
1
), (Γ, ⊲⊳)), then

∀𝑇 ′. (A ′, 𝜂 ′
1
|= 𝑇 ′) =⇒ ∃𝜂 ′′

1
. (A ′, 𝜂 ′′

1
|= 𝑇 ′) ∧ (𝜂 ′

1
⊆ 𝜂 ′′

1
) ∧ (S′

𝑐 ⊎ S,A ′, 𝜂 ′′
1
) |= 𝑞′.

Since 𝑅 ⇒ 𝑅′
and 𝑞′ ⇒ 𝑞, from (a), we know

(b) for any A ′
, 𝜂 ′

1
, S′

𝑐 , if ((𝐶,S𝑐), (S,A, 𝜂1), (Γ, ⊲⊳))
𝑅

↩−→ ∗
t ((skip,S′

𝑐), (S,A ′, 𝜂 ′
1
), (Γ, ⊲⊳)), then

∀𝑇 ′. (A ′, 𝜂 ′
1
|= 𝑇 ′) =⇒ ∃𝜂 ′′

1
. (A ′, 𝜂 ′′

1
|= 𝑇 ′) ∧ (𝜂 ′

1
⊆ 𝜂 ′′

1
) ∧ (S′

𝑐 ⊎ S,A ′, 𝜂 ′′
1
) |= 𝑞.

Suppose 𝜂1 = 𝜂 ⊎ 𝜂2. Since ((𝐶,S𝑐), (S,A, 𝜂), (Γ, ⊲⊳)) 𝑅
↩−→ ∗

t ((skip,S′
𝑐), (S,A ′, 𝜂 ′), (Γ, ⊲⊳)), by Lemma 53, we know

((𝐶,S𝑐), (S,A, 𝜂1), (Γ, ⊲⊳))
𝑅

↩−→ ∗
t ((skip,S′

𝑐), (S,A ′, 𝜂 ′ ∪ 𝜂2), (Γ, ⊲⊳)) and A ′, 𝜂 ′ ∪ 𝜂2 |= 𝑇 ′
.

From (c), we know ∃𝜂 ′′. (A ′, 𝜂 ′′ |= 𝑇 ′) ∧ (𝜂 ′ ⊆ 𝜂 ′′) ∧ (S′
𝑐 ⊎ S,A ′, 𝜂 ′′) |= 𝑞. So (1) is done.

For (2), from (S ⊎ S𝑐 ,A, 𝜂) |= 𝑝 , 𝑝 ⇒ 𝑝 ′
and 𝑅′,𝐺 ′

; Γ, ⊲⊳ |=t {𝑝 ′}𝐶{𝑞′}, we know

∀𝑇 . (A, 𝜂 |= 𝑇) =⇒ ∃𝜂1 . (A, 𝜂1 |= 𝑇) ∧ (𝜂 ⊆ 𝜂1) ∧ ∀𝑛. ((𝐶,S𝑐), (S,A, 𝜂1), (Γ, ⊲⊳), 𝑅′) guarantees𝑛t 𝐺 ′

Since 𝑅 ⇒ 𝑅′
and 𝐺 ′ ⇒ 𝐺 , we know

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

∀𝑇 . (A, 𝜂 |= 𝑇) =⇒ ∃𝜂1. (A, 𝜂1 |= 𝑇) ∧ (𝜂 ⊆ 𝜂1) ∧ ∀𝑛. ((𝐶,S𝑐), (S,A, 𝜂1), (Γ, ⊲⊳), 𝑅) guarantees𝑛t 𝐺

By Lemma 52, we know

∀𝑛. ((𝐶,S𝑐), (S,A, 𝜂), (Γ, ⊲⊳), 𝑅) guarantees𝑛t 𝐺 .

Thus we are done. □

Lemma 52. For all 𝑛, if ∀𝑇 . (A, 𝜂 |= 𝑇) =⇒ ∃𝜂1 . (A, 𝜂1 |= 𝑇) ∧ (𝜂 ⊆ 𝜂1) ∧ ((𝐶,S𝑐), (S,A, 𝜂1), (Γ, ⊲⊳), 𝑅) guarantees𝑛t 𝐺 ,

then ((𝐶,S𝑐), (S,A, 𝜂), (Γ, ⊲⊳), 𝑅) guarantees𝑛t 𝐺 .
Proof. By induction over 𝑛.

• 𝑛 = 0. Trivial.

• 𝑛 = 𝑘 + 1. We want to prove: for any 𝐶 ′
, S′

𝑐 , A ′
, 𝜂 ′, if ((𝐶,S𝑐), (S,A, 𝜂), (Γ, ⊲⊳)) ↩ l̂−→

𝑅
t ((𝐶 ′,S′

𝑐), (S,A ′, 𝜂 ′), (Γ, ⊲⊳)), then
(1) ((𝐶 ′,S′

𝑐), (S,A ′, 𝜂 ′), (Γ, ⊲⊳), 𝑅) guarantees𝑘t 𝐺 ; and
(2) if l̂ = call, then there exist 𝑖 , 𝛼 such that A ′ = A ⊎ {𝑖 ; (t, 𝛼, cmt)}, and

∀𝑇 . (A, 𝜂 |= 𝑇) =⇒ ∃𝜂0 . (A, 𝜂0 |= 𝑇) ∧ (𝜂 ⊆ 𝜂0) ∧ ((S,A, 𝜂0), (𝑖, t, 𝛼)) |= 𝐺 .

• For (1). For any 𝑇 ′
such that A ′, 𝜂 ′ |= 𝑇 ′

, let 𝑇 = proj(𝑇 ′,A), then we know A, 𝜂 |= 𝑇 . By the premise, we know there

exists 𝜂1 such that

(A, 𝜂1 |= 𝑇) ∧ (𝜂 ⊆ 𝜂1) ∧ ((𝐶,S𝑐), (S,A, 𝜂1), (Γ, ⊲⊳), 𝑅) guarantees𝑛t 𝐺 .

Suppose 𝜂1 = 𝜂 ⊎ 𝜂2. Since ((𝐶,S𝑐), (S,A, 𝜂), (Γ, ⊲⊳)) ↩ l̂−→
𝑅

t ((𝐶 ′,S′
𝑐), (S,A ′, 𝜂 ′), (Γ, ⊲⊳)), by Lemma 53, we know

((𝐶,S𝑐), (S,A, 𝜂1), (Γ, ⊲⊳)) ↩
l̂−→
𝑅

t ((𝐶 ′,S′
𝑐), (S,A ′, 𝜂 ′ ∪ 𝜂2), (Γ, ⊲⊳)) and A ′, 𝜂 ′ ∪ 𝜂2 |= 𝑇 ′

.

Let 𝜂 ′
1
= 𝜂 ′ ∪ 𝜂2. From ((𝐶,S𝑐), (S,A, 𝜂1), (Γ, ⊲⊳), 𝑅) guarantees𝑛t 𝐺 , we know

(a) ((𝐶 ′,S′
𝑐), (S,A ′, 𝜂 ′

1
), (Γ, ⊲⊳), 𝑅) guarantees𝑘t 𝐺 .

Sowe have proved∀𝑇 ′. (A ′, 𝜂 ′ |= 𝑇 ′) =⇒ ∃𝜂 ′
1
. (A ′, 𝜂 ′

1
|= 𝑇 ′)∧(𝜂 ′ ⊆ 𝜂 ′

1
)∧((𝐶 ′,S′

𝑐), (S,A ′, 𝜂 ′
1
), (Γ, ⊲⊳), 𝑅) guarantees𝑘t 𝐺 .

By the induction hypothesis, we know

((𝐶 ′,S′
𝑐), (S,A ′, 𝜂 ′), (Γ, ⊲⊳), 𝑅) guarantees𝑘t 𝐺 .

So (1) holds.

• For (2). Suppose l̂ = call. If A, 𝜂 |= 𝑇 , from the premise, we know there exists 𝜂1 such that

(A, 𝜂1 |= 𝑇) ∧ (𝜂 ⊆ 𝜂1) ∧ ((𝐶,S𝑐), (S,A, 𝜂1), (Γ, ⊲⊳), 𝑅) guarantees𝑛t 𝐺 .

Suppose 𝜂1 = 𝜂 ⊎ 𝜂2. Since ((𝐶,S𝑐), (S,A, 𝜂), (Γ, ⊲⊳)) ↩ l̂−→
𝑅

t ((𝐶 ′,S′
𝑐), (S,A ′, 𝜂 ′), (Γ, ⊲⊳)), by the operational semantics,

we know

((𝐶,S𝑐), (S,A, 𝜂1), (Γ, ⊲⊳)) ↩
l̂−→
𝑅

t ((𝐶 ′,S′
𝑐), (S,A ′, 𝜂 ′ ∪ 𝜂2), (Γ, ⊲⊳)).

Let 𝜂 ′
1
= 𝜂 ′ ∪ 𝜂2. From ((𝐶,S𝑐), (S,A, 𝜂1), (Γ, ⊲⊳), 𝑅) guarantees𝑛t 𝐺 , we know

(b) if l̂ = call, then there exist 𝑖 , 𝛼 such that A ′ = A ⊎ {𝑖 ; (t, 𝛼, cmt)}, and
∀𝑇 . (A, 𝜂1 |= 𝑇) =⇒ ∃𝜂0 . (A, 𝜂0 |= 𝑇) ∧ (𝜂1 ⊆ 𝜂0) ∧ ((S,A, 𝜂0), (𝑖, t, 𝛼)) |= 𝐺 .

From (b), since A, 𝜂1 |= 𝑇 and 𝜂 ⊆ 𝜂1, we know (2) holds.

Thus we are done. □

Lemma 53. If

1. ((𝐶,S𝑐), (S,A, 𝜂), (Γ, ⊲⊳)) ↩ l̂−→
𝑅

t ((𝐶 ′,S′
𝑐), (S,A ′, 𝜂 ′), (Γ, ⊲⊳)),

2. 𝜂1 = 𝜂 ⊎ 𝜂2, (A ′, 𝜂 ′ |= 𝑇 ′), 𝑇 = proj(𝑇 ′,A), (A, 𝜂 |= 𝑇), (A, 𝜂1 |= 𝑇),

then ((𝐶,S𝑐), (S,A, 𝜂1), (Γ, ⊲⊳)) ↩
l̂−→
𝑅

t ((𝐶 ′,S′
𝑐), (S,A ′, 𝜂 ′ ∪ 𝜂2), (Γ, ⊲⊳)) and A ′, 𝜂 ′ ∪ 𝜂2 |= 𝑇 ′

.

Proof. By case analysis over the transition step.

• l̂ = call. By inversion over ((𝐶,S𝑐), (S,A, 𝜂), (Γ, ⊲⊳)) ↩ l̂−→
𝑅

t ((𝐶 ′,S′
𝑐), (S,A ′, 𝜂 ′), (Γ, ⊲⊳)), we know

J𝐸KS𝑐
= 𝑛 split(Γ(𝑓 , 𝑛)) = (𝜇, 𝛼)

𝜂 ⊆ 𝜂0 A, 𝜂0 |= 𝑇0 ∀𝑇,S′. (A, 𝜂0 |= 𝑇) ∧ (S′ = exec(S,𝑇)) =⇒ 𝜇 (S′) = 𝑛′

𝑖 ∉ dom(A) A ′ = A ⊎ {𝑖 ; (t, 𝛼, cmt)}
𝜂 ′ = 𝜂0 ⊎ {(𝑗, 𝑖) | ∃𝛼 ′. A(𝑗) = (_, 𝛼 ′, cmt) ∧ 𝛼 ⊲⊳ 𝛼 ′}

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

Let 𝜂 ′
0
= 𝜂0 ∪ 𝜂2. Since 𝜂 ⊆ 𝜂0 and 𝜂1 = 𝜂 ⊎ 𝜂2, we know 𝜂1 ⊆ 𝜂 ′

0
.

Since A ′, 𝜂 ′ |= 𝑇 ′
and 𝑇 = proj(𝑇 ′,A), we know A, 𝜂0 |= 𝑇 . Since A, 𝜂1 |= 𝑇 , we know A, 𝜂 ′

0
|= 𝑇 .

Since 𝜂 ′
0
= 𝜂0 ∪ 𝜂2, we know ∀𝑇 . (A, 𝜂 ′

0
|= 𝑇) =⇒ (A, 𝜂0 |= 𝑇). Thus

∀𝑇,S′. (A, 𝜂 ′
0
|= 𝑇) ∧ (S′ = exec(S,𝑇)) =⇒ 𝜇 (S′) = 𝑛′

.

Thus ((𝐶,S𝑐), (S,A, 𝜂1), (Γ, ⊲⊳)) ↩
l̂−→
𝑅

t ((𝐶 ′,S′
𝑐), (S,A ′, 𝜂 ′ ∪ 𝜂2), (Γ, ⊲⊳)).

Since 𝜂1 = 𝜂 ⊎ 𝜂2, (A ′, 𝜂 ′ |= 𝑇 ′), 𝑇 = proj(𝑇 ′,A), (A, 𝜂1 |= 𝑇), we know A ′, 𝜂 ′ ∪ 𝜂2 |= 𝑇 ′
.

• Other steps. Similar to the previous case.

Thus we are done. □

Lemma 54 (SEQ-sound). If

1. 𝑅,𝐺 ; Γ, ⊲⊳ |=t {𝑝}𝐶1{𝑞},
2. 𝑅,𝐺 ; Γ, ⊲⊳ |=t {𝑞}𝐶2{𝑞′},

then 𝑅,𝐺 ; Γ, ⊲⊳ |=t {𝑝}𝐶1;𝐶2{𝑞′}.

Proof. For any S, A, 𝜂 and S𝑐 , if (S ⊎ S𝑐 ,A, 𝜂) |= 𝑝 , fv(Γ) ⊆ dom(S) and fv(𝐶) ⊆ dom(S𝑐), we want to prove the following:

(1) for any A ′
, 𝜂 ′, S′

𝑐 , if ((𝐶1;𝐶2,S𝑐), (S,A, 𝜂), (Γ, ⊲⊳)) 𝑅
↩−→ ∗

t ((skip,S′
𝑐), (S,A ′, 𝜂 ′), (Γ, ⊲⊳)), then

∀𝑇 ′. (A ′, 𝜂 ′ |= 𝑇 ′) =⇒ ∃𝜂 ′′. (A ′, 𝜂 ′′ |= 𝑇 ′) ∧ (𝜂 ′ ⊆ 𝜂 ′′) ∧ (S′
𝑐 ⊎ S,A ′, 𝜂 ′′) |= 𝑞.

(2) for any 𝑛, ((𝐶1;𝐶2,S𝑐), (S,A, 𝜂), (Γ, ⊲⊳), 𝑅) guarantees𝑛t 𝐺 .
For (1), from the operational semantics, we know there exist S′′

𝑐 , A ′′
and 𝜂 ′′ such that

((𝐶1,S𝑐), (S,A, 𝜂), (Γ, ⊲⊳)) 𝑅
↩−→ ∗

t ((skip,S′′
𝑐), (S,A ′′, 𝜂 ′′), (Γ, ⊲⊳))

((𝐶2,S′′
𝑐), (S,A ′′, 𝜂 ′′), (Γ, ⊲⊳)) 𝑅

↩−→ ∗
t ((skip,S′

𝑐), (S,A ′, 𝜂 ′), (Γ, ⊲⊳))

Since A ′, 𝜂 ′ |= 𝑇 ′
, let 𝑇 ′′ = proj(𝑇 ′,A ′′), then we know A ′′, 𝜂 ′′ |= 𝑇 ′′

. From 𝑅,𝐺 ; Γ, ⊲⊳ |=t {𝑝}𝐶1{𝑞}, we know

(a) for any A ′′
, 𝜂 ′′, S′′

𝑐 , if ((𝐶1,S𝑐), (S,A, 𝜂), (Γ, ⊲⊳)) 𝑅
↩−→ ∗

t ((skip,S′′
𝑐), (S,A ′′, 𝜂 ′′), (Γ, ⊲⊳)), then

∀𝑇 ′′. (A ′′, 𝜂 ′′ |= 𝑇 ′′) =⇒ ∃𝜂 ′′
1
. (A ′′, 𝜂 ′′

1
|= 𝑇 ′′) ∧ (𝜂 ′′ ⊆ 𝜂 ′′

1
) ∧ (S′′

𝑐 ⊎ S,A ′′, 𝜂 ′′
1
) |= 𝑞.

(b) for any 𝑛, ((𝐶1,S𝑐), (S,A, 𝜂), (Γ, ⊲⊳), 𝑅) guarantees𝑛t 𝐺 .
Thus there exists 𝜂 ′′

1
such that

(A ′′, 𝜂 ′′
1
|= 𝑇 ′′) ∧ (𝜂 ′′ ⊆ 𝜂 ′′

1
) ∧ (S′′

𝑐 ⊎ S,A ′′, 𝜂 ′′
1
) |= 𝑞.

Suppose 𝜂 ′′
1
= 𝜂 ′′ ⊎ 𝜂2. Since ((𝐶2,S′′

𝑐), (S,A ′′, 𝜂 ′′), (Γ, ⊲⊳)) 𝑅
↩−→ ∗

t ((skip,S′
𝑐), (S,A ′, 𝜂 ′), (Γ, ⊲⊳)), by Lemma 53, we know

((𝐶2,S′′
𝑐), (S,A ′′, 𝜂 ′′

1
), (Γ, ⊲⊳)) 𝑅

↩−→ ∗
t ((skip,S′

𝑐), (S,A ′, 𝜂 ′ ∪ 𝜂2), (Γ, ⊲⊳)) and A ′, 𝜂 ′ ∪ 𝜂2 |= 𝑇 ′
.

From 𝑅,𝐺 ; Γ, ⊲⊳ |=t {𝑞}𝐶2{𝑞′}, we know

(c) for any A ′
, 𝜂 ′

1
, S′

𝑐 , if ((𝐶2,S′′
𝑐), (S,A ′′, 𝜂 ′′

1
), (Γ, ⊲⊳)) 𝑅

↩−→ ∗
t ((skip,S′

𝑐), (S,A ′, 𝜂 ′
1
), (Γ, ⊲⊳)), then

∀𝑇 ′. (A ′, 𝜂 ′
1
|= 𝑇 ′) =⇒ ∃𝜂 ′

2
. (A ′, 𝜂 ′

2
|= 𝑇 ′) ∧ (𝜂 ′

1
⊆ 𝜂 ′

2
) ∧ (S′

𝑐 ⊎ S,A ′, 𝜂 ′
2
) |= 𝑞′.

Thus there exists 𝜂 ′
2
such that

(A ′, 𝜂 ′
2
|= 𝑇 ′) ∧ (𝜂 ′ ∪ 𝜂2 ⊆ 𝜂 ′

2
) ∧ (S′

𝑐 ⊎ S,A ′, 𝜂 ′
2
) |= 𝑞′.

So (1) is done.

For (2), by induction over 𝑛.

• 𝑛 = 0. Trivial.

• 𝑛 = 𝑘 + 1. We want to prove: for any 𝐶 ′
, S′

𝑐 , A ′
, 𝜂 ′, if ((𝐶1;𝐶2,S𝑐), (S,A, 𝜂), (Γ, ⊲⊳)) ↩ l̂−→

𝑅
t ((𝐶 ′,S′

𝑐), (S,A ′, 𝜂 ′), (Γ, ⊲⊳)),
then

(1) ((𝐶 ′,S′
𝑐), (S,A ′, 𝜂 ′), (Γ, ⊲⊳), 𝑅) guarantees𝑘t 𝐺 ; and

(2) if l̂ = call, then there exist 𝑖 , 𝛼 such that A ′ = A ⊎ {𝑖 ; (t, 𝛼, cmt)}, and there exists 𝜂0 such that 𝜂 ⊆ 𝜂0 and

((S,A, 𝜂0), (𝑖, t, 𝛼)) |= 𝐺 .

We have two cases on 𝐶1.

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

• 𝐶1 ≠ skip. Then there exists𝐶 ′
1
such that𝐶 ′ = (𝐶 ′

1
;𝐶2) and ((𝐶1,S𝑐), (S,A, 𝜂), (Γ, ⊲⊳)) ↩ l̂−→

𝑅
t ((𝐶 ′

1
,S′

𝑐), (S,A ′, 𝜂 ′), (Γ, ⊲⊳
)). From (b) and by the induction hypothesis, we are done.

• 𝐶1 = skip. Then 𝐶 ′ = 𝐶2, S′
𝑐 = S𝑐 , A ′ = A and 𝜂 ′ = 𝜂. From (a), we know

∀𝑇 . (A, 𝜂 |= 𝑇) =⇒ ∃𝜂1. (A, 𝜂1 |= 𝑇) ∧ (𝜂 ⊆ 𝜂1) ∧ (S𝑐 ⊎ S,A, 𝜂1) |= 𝑞.

From 𝑅,𝐺 ; Γ, ⊲⊳ |=t {𝑞}𝐶2{𝑞′}, we know
∀𝑇 . (A, 𝜂 |= 𝑇) =⇒ ∃𝜂1. (A, 𝜂1 |= 𝑇) ∧ (𝜂 ⊆ 𝜂1) ∧ ∀𝑚. ((𝐶2,S𝑐), (S,A, 𝜂1), (Γ, ⊲⊳), 𝑅) guarantees𝑚t 𝐺 .

By Lemma 52, we know

((𝐶2,S𝑐), (S,A, 𝜂), (Γ, ⊲⊳), 𝑅) guarantees𝑘t 𝐺 .
Thus we are done. □

Lemma 55 (LOCAL-sound). If

1. Sta(𝑝, 𝑅, ⊲⊳),
2. cmt-closed(𝑝),

then 𝑅,𝐺 ; Γ, ⊲⊳ |=t {𝑝}𝑥 := 𝐸{∃𝑣 . 𝑥 = 𝐸 [𝑣/𝑥] ∧ 𝑝 [𝑣/𝑥]}.

Proof. For any S, A, 𝜂 and S𝑐 , if (S ⊎ S𝑐 ,A, 𝜂) |= 𝑝 , fv(Γ) ⊆ dom(S) and {𝑥} ∪ fv(𝐸) ⊆ dom(S𝑐), we want to prove the

following:

(1) for any 𝑛, if ((𝑥 := 𝐸,S𝑐), (S,A, 𝜂), (Γ, ⊲⊳)) 𝑅
↩−→𝑛

t ((skip,S′
𝑐), (S,A ′, 𝜂 ′), (Γ, ⊲⊳)), then (S′

𝑐 ⊎ S,A ′, 𝜂 ′) |= 𝑞.

(2) for any 𝑛, ((𝑥 := 𝐸,S𝑐), (S,A, 𝜂), (Γ, ⊲⊳), 𝑅) guarantees𝑛t 𝐺 .
For (1), by induction over 𝑛. The base case 𝑛 = 0 is trivial. Suppose 𝑛 = 𝑘 + 1.

Since ((𝑥 := 𝐸,S𝑐), (S,A, 𝜂), (Γ, ⊲⊳)) 𝑅
↩−→𝑛

t ((skip,S′
𝑐), (S,A ′, 𝜂 ′), (Γ, ⊲⊳)), we have three cases:

• ((𝑥 := 𝐸,S𝑐), (S,A, 𝜂), (Γ, ⊲⊳)) ↩lc−→
𝑅

t ((skip,S′
𝑐), (S,A, 𝜂), (Γ, ⊲⊳)) and

((skip,S′
𝑐), (S,A, 𝜂), (Γ, ⊲⊳)) 𝑅

↩−→𝑘
t ((skip,S′

𝑐), (S,A ′, 𝜂 ′), (Γ, ⊲⊳)).
From the semantics, we know

J𝐸KS𝑐
= 𝑛 and S′

𝑐 = S𝑐 {𝑥 ; 𝑛}.
Since (S ⊎ S𝑐 ,A, 𝜂) |= 𝑝 , we know

(S ⊎ S′
𝑐 ,A, 𝜂) |= ∃𝑣 . 𝑥 = 𝐸 [𝑣/𝑥] ∧ 𝑝 [𝑣/𝑥].

Since Sta(𝑝, 𝑅, ⊲⊳) and cmt-closed(𝑝), we know
Sta((∃𝑣 . 𝑥 = 𝐸 [𝑣/𝑥] ∧ 𝑝 [𝑣/𝑥]), 𝑅, ⊲⊳) and cmt-closed(∃𝑣 . 𝑥 = 𝐸 [𝑣/𝑥] ∧ 𝑝 [𝑣/𝑥]).

Thus

(S ⊎ S′
𝑐 ,A ′, 𝜂 ′) |= ∃𝑣 . 𝑥 = 𝐸 [𝑣/𝑥] ∧ 𝑝 [𝑣/𝑥].

• there exist A ′′
and 𝜂 ′′ such that

((𝑥 := 𝐸,S𝑐), (S,A, 𝜂), (Γ, ⊲⊳)) ↩prd−−→
𝑅

t ((𝑥 := 𝐸,S𝑐), (S,A ′′, 𝜂 ′′), (Γ, ⊲⊳)) and

((𝑥 := 𝐸,S𝑐), (S,A ′′, 𝜂 ′′), (Γ, ⊲⊳)) 𝑅
↩−→𝑘

t ((skip,S′
𝑐), (S,A ′, 𝜂 ′), (Γ, ⊲⊳)).

Since Sta(𝑝, 𝑅, ⊲⊳), we know
(S ⊎ S𝑐 ,A ′′, 𝜂 ′′) |= 𝑝 .

By the induction hypothesis, we are done.

• there exist A ′′
and 𝜂 ′′ such that

((𝑥 := 𝐸,S𝑐), (S,A, 𝜂), (Γ, ⊲⊳)) ↩cmt−−−→
𝑅

t ((𝑥 := 𝐸,S𝑐), (S,A ′′, 𝜂 ′′), (Γ, ⊲⊳)) and

((𝑥 := 𝐸,S𝑐), (S,A ′′, 𝜂 ′′), (Γ, ⊲⊳)) 𝑅
↩−→𝑘

t ((skip,S′
𝑐), (S,A ′, 𝜂 ′), (Γ, ⊲⊳)).

Since cmt-closed(𝑝), we know
(S ⊎ S𝑐 ,A ′′, 𝜂 ′′) |= 𝑝 .

By the induction hypothesis, we are done.

(2) is trivial. Thus we are done. □

Lemma 56 (PAR-sound). If for any t ∈ [1..𝑛] we have
1. 𝑅t,𝐺t; Γ, ⊲⊳ ⊢t {P ∧ emp}𝐶t{𝑞t},

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

2. (∨t′≠t𝐺t′) ⇒ 𝑅t,

3. 𝑞t ⇛ Qt,

4. fv({𝐺t, 𝑅t}) ⊆ fv(Γ),
then |=prd {P }with (Γ, ⊲⊳) do 𝐶1 ∥ . . . ∥𝐶𝑛{

∧
t Qt}.

Proof. Let P = with (Γ, ⊲⊳) do 𝐶1 ∥ . . . ∥𝐶𝑛 .

For any S, S′
1
, . . . , S′

𝑛 , S0, A ′
, 𝜂 ′, if S |=hoare P and (P,S) ↦−_ ∗ (end, (S′

1
, . . . ,S′

𝑛), (S0,A ′, 𝜂 ′)), we want to prove

∀S′
0
. (∃𝑇 . (A ′, 𝜂 ′ |= 𝑇) ∧ exec(S0,𝑇) = S′

0
) =⇒ (S′

1
⊎ . . . ⊎ S′

𝑛 ⊎ S′
0
) |=hoare

∧
t Qt.

Since S |=hoare P , we know

(S, ∅, ∅) |= P ∧ emp.

For any t, since 𝑅t,𝐺t; Γ, ⊲⊳ ⊢t {P ∧ emp}𝐶t{𝑞t}, we know

(a) if ((𝐶t, ∅), (S, ∅, ∅), (Γ, ⊲⊳))
𝑅t
↩−→ ∗

t ((skip,S𝑐
t), (S,A ′

t, 𝜂
′
t), (Γ, ⊲⊳)), then

∀𝑇 ′. (A ′
t, 𝜂

′
t |= 𝑇 ′) =⇒ ∃𝜂 ′′t . (A ′

t, 𝜂
′′
t |= 𝑇 ′) ∧ (𝜂 ′t ⊆ 𝜂 ′′t) ∧ (S𝑐

t ⊎ S,A ′
t, 𝜂

′′
t) |= 𝑞t.

(b) for any 𝑘 , ((𝐶t, ∅), (S, ∅, ∅), (Γ, ⊲⊳), 𝑅t) guarantees𝑘t 𝐺t.

Since (P,S) ↦−_ ∗ (end, (S′
1
, . . . ,S′

𝑛), (S0,A ′, 𝜂 ′)), from the semantics, we know there exists𝑚 such that

(P,S) ↦−_ (𝜎𝑐 ,Ω, (Γ, ⊲⊳)), (𝜎𝑐 ,Ω, (Γ, ⊲⊳)) ↦−_𝑚 (𝜎 ′
𝑐 ,Ω

′, (Γ, ⊲⊳))
(𝜎 ′

𝑐 ,Ω
′, (Γ, ⊲⊳)) ↦−_ (end, (S′

1
, . . . ,S′

𝑛), (S,A ′, 𝜂 ′)), S0 = S
fv(Γ) ⊆ dom(S), ∀t ∈ [1..𝑛] . 𝜎𝑐 (t) = (𝐶t, ∅) ∧ Ω(t) = (S, ∅, ∅, ∅)
∀t. 𝜎 ′

𝑐 (t) = (skip,S′
t) ∧ Ω′(t) = (S,A ′, 𝜂 ′,ms′), ∀𝑖 . A ′(𝑖) = (_, _, cmt)

By induction over𝑚.

• 𝑚 = 0. Then we know 𝐶1 = . . . = 𝐶𝑛 = skip. For any t, from (a), we know

∀𝑇 ′. (A ′, 𝜂 ′ |= 𝑇 ′) =⇒ ∃𝜂 ′′. (A ′, 𝜂 ′′ |= 𝑇 ′) ∧ (𝜂 ′ ⊆ 𝜂 ′′) ∧ (S′
t ⊎ S,A ′, 𝜂 ′′) |= 𝑞t.

Since 𝑞t ⇛ Qt and ∀𝑖 . A ′(𝑖) = (_, _, cmt), we know
∀𝑇 ′. (A ′, 𝜂 ′ |= 𝑇 ′) =⇒ ∃𝜂 ′′. (A ′, 𝜂 ′′ |= 𝑇 ′) ∧ (𝜂 ′ ⊆ 𝜂 ′′) ∧ (S′

t ⊎ S,A ′, 𝜂 ′′) |= Qt.

From SLocality(Γ), we know
∀𝑇,S′. (A ′, 𝜂 ′ |= 𝑇) ∧ (S′ = exec(S,𝑇)) =⇒ S′

t ⊎ S′ |=hoare Qt.

Thus we know

∀S′. (∃𝑇 . (A ′, 𝜂 ′ |= 𝑇) ∧ exec(S,𝑇) = S′) =⇒ (S′
1
⊎ . . . ⊎ S′

𝑛 ⊎ S′) |=hoare

∧
t Qt.

• 𝑚 = 𝑘 + 1. Thus there exist 𝜎 ′′
𝑐 and Ω′′

such that

(𝜎𝑐 ,Ω, (Γ, ⊲⊳)) ↦−_ (𝜎 ′′
𝑐 ,Ω

′′, (Γ, ⊲⊳)), (𝜎 ′′
𝑐 ,Ω

′′, (Γ, ⊲⊳)) ↦−_𝑘 (𝜎 ′
𝑐 ,Ω

′, (Γ, ⊲⊳))
By case analysis over (𝜎𝑐 ,Ω, (Γ, ⊲⊳)) ↦−_ (𝜎 ′′

𝑐 ,Ω
′′, (Γ, ⊲⊳)).

1. It is a (call&prd) step. From the semantics, we know there exists t such that

𝜎𝑐 (t) = (𝐶t,St), Ω(t) = (S,At, 𝜂,ms),
𝜎 ′′
𝑐 (t) = (𝐶 ′′

t ,S′′
t), Ω′′(t) = (S,A ′′

t , 𝜂
′′,ms′′),

J𝐸KSt = 𝑛, split(Γ(𝑓 , 𝑛)) = (𝜇, 𝛼), At, 𝜂 |= 𝑇 , S′ = exec(S,𝑇), 𝜇 (S′) = 𝑛′
,

ms′′ = ms ∪ms0, 𝑖 ∉ dom(At), A ′′
t = At ⊎ {𝑖 ; (t, 𝛼, cmt)},

ms0 = { 𝑗 | ∃𝛼 ′. At (𝑗) = (_, 𝛼 ′, cmt) ∧ 𝛼 ⊲⊳ 𝛼 ′}, 𝜂 ′′ = 𝜂 ⊎ {(𝑗, 𝑖) | 𝑗 ∈ ms0},
((𝐶t,St), (S,At, 𝜂), (Γ, ⊲⊳)) ↩

call−−−→
𝑅t

t ((𝐶 ′′
t ,S′′

t), (S,A ′′
t , 𝜂

′′), (Γ, ⊲⊳))
From (b), we know

((S,At, 𝜂), (𝑖, t, 𝛼)) |=′ 𝐺t
For any t′ ≠ t, since 𝐺t ⇒ 𝑅t′ , we know

((S,At, 𝜂), (𝑖, t, 𝛼)) |=′ 𝑅t′
Suppose

𝜎𝑐 (t′) = (𝐶t′,St′), Ω(t′) = (S,At′, 𝜂,ms),
𝜎 ′′
𝑐 (t′) = (𝐶 ′′

t′ ,S′′
t′), Ω′′(t′) = (S,A ′′

t′ , 𝜂
′′,ms′′),

From the semantics, we know

At ⊂∼ At′ .

Thus we know

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

((𝐶t′,St′), (S,At′, 𝜂), (Γ, ⊲⊳)) ↩
prd−−→
𝑅t′

t′ ((𝐶t′,St′), (S,A ′′
t′ , 𝜂

′′), (Γ, ⊲⊳)).
By the induction hypothesis, we are done.

2. It is a (cmt) step. From the semantics we know there exists t such that

Ω(t) = (S,At, 𝜂,ms), At (𝑖) = (t′, 𝛼, prd),
A ′′

t = At{𝑖 ; (t′, 𝛼, cmt)}, Ω′′(t) = (S,A ′′
t , 𝜂,ms)

Also from the semantics and (b) we know ¬(𝑅t ⇒ Emp). Thus
((𝐶t,St), (S,At, 𝜂), (Γ, ⊲⊳)) ↩

cmt−−−→
𝑅t

t ((𝐶t,St), (S,A ′′
t , 𝜂), (Γ, ⊲⊳)).

By the induction hypothesis, we are done.

3. It is a (local) step. Similar to the above case.

Thus we are done. □

E.5 Final Soundness Proofs for Clients with ACC Objects

Proof of Theorem 46(1). Let 𝑃 = let Π in 𝐶1 ∥ . . . ∥𝐶𝑛 and P = with (Γ, ⊲⊳) do 𝐶1 ∥ . . . ∥𝐶𝑛 .

For any S, E and S1, . . . ,S𝑛,S′
1
, . . . ,S′

𝑛 , if S |=hoare P ′
and (𝑃,S) E↦−→ ∗ (end, (S1, . . . ,S𝑛), (S′

1
, . . . ,S′

𝑛)), since P ′ ⇒
𝜑−1 [P], we know there exists S𝑎 such that

(𝜑 (S) = S𝑎) ∧ (S𝑎 |= P).

From Π ⊑𝜑 (Γ, ⊲⊳), we know

(P,S𝑎)
O◦↦−→ ∗ (end, (S1, . . . ,S𝑛), (𝜑 (S′

1
), . . . , 𝜑 (S′

𝑛))).

where O = obsv(E). From Theorem 44(2), we know |= {P }P{Q }. Thus

𝜑 (S′
1
) = . . . = 𝜑 (S′

𝑛) and (S1 ⊎ . . . ⊎ S𝑛 ⊎ 𝜑 (S′
1
)) |=hoare Q .

From the semantics we know dom(𝜑 (S′
1
)) ⊆ fv(Γ). Since ∀𝑖 . fv(Γ) ∩ fv(𝐶𝑖) = ∅, we know dom(𝜑 (S′

1
)) ∩ (⋃t fv(𝐶t)) = ∅.

Since fv(Q) ⊆ ⋃
t fv(𝐶t), we know dom(𝜑 (S′

1
)) ∩ fv(Q) = ∅. Thus

(S1 ⊎ . . . ⊎ S𝑛) |=hoare Q .

Thus (S1 ⊎ . . . ⊎ S𝑛 ⊎ S′
1
) |=hoare Q . Thus we are done. □

Proof of Theorem 44(2). For any S, O and S1, . . . ,S𝑛,S′
1
, . . . ,S′

𝑛 , if S |=hoare P and

(P,S) O◦↦−→ ∗ (end, (S1, . . . ,S𝑛), (S′
1
, . . . ,S′

𝑛)), from Lemma 57, we know there exist S0, A ′
, 𝜂 ′ such that

• (P,S) ↦−_ ∗
t (end, (S1, . . . ,S𝑛), (S0,A ′, 𝜂 ′)), and

• ∀t. ∃𝑇 . (A ′, 𝜂 ′ |= 𝑇) ∧ exec(S0,𝑇) = S′
t .

From Lemma 48, we know |=prd {P }P{Q }. Thus we know

∀S′
0
. (∃𝑇 . (A ′, 𝜂 ′ |= 𝑇) ∧ exec(S0,𝑇) = S′

0
) =⇒ (S1 ⊎ . . . ⊎ S𝑛 ⊎ S′

0
) |=hoare Q .

From Lemma 17, we know CvA(Γ, ⊲⊳). Thus we know

S′
1
= . . . = S′

𝑛 .

As a result we know

(S1 ⊎ . . . ⊎ S𝑛 ⊎ S′
1
) |=hoare Q .

Thus we are done. □

Lemma 57 (◦↦−→ implies ↦−_). If (P,S) O◦↦−→ ∗ (end, (S1, . . . ,S𝑛), (S′
1
, . . . ,S′

𝑛)), then there exist S0, A ′
, 𝜂 ′ such that

• (P,S) ↦−_ ∗
t (end, (S1, . . . ,S𝑛), (S0,A ′, 𝜂 ′)), and

• ∀t. ∃𝑇 . (A ′, 𝜂 ′ |= 𝑇) ∧ exec(S0,𝑇) = S′
t .

Proof. From (P,S) O◦↦−→ ∗ (end, (S1, . . . ,S𝑛), (S′
1
, . . . ,S′

𝑛)), we know there exist 𝜎𝑐 , Σ, 𝜎
′
𝑐 , Σ

′
,M′

such that

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

(P,S) ◦pload−−−→ (𝜎𝑐 , Σ, ∅, ⊲⊳), (𝜎𝑐 , Σ, ∅, ⊲⊳) ◦↦−→ ∗ (𝜎 ′
𝑐 , Σ

′,M′, ⊲⊳),
(𝜎 ′

𝑐 , Σ
′,M′, ⊲⊳) ◦↦−→ (end, (S1, . . . ,S𝑛), (S′

1
, . . . ,S′

𝑛))
∀t ∈ [1..𝑛] . 𝜎 ′

𝑐 (t) = (skip,St) ∀t ∈ [1..𝑛] . Σ′(t) = (Γ,S, 𝜉 ′t)
∀t ∈ [1..𝑛] . dom(M′) = dom(𝜉 ′t) ∀t ∈ [1..𝑛] . S′

t = aexecST(Γ,S, 𝜉 ′t)

Let Ω = 𝜆t ∈ [1..𝑛] . (S, ∅, ∅, ∅). So

(P,S) ↦−_ (𝜎𝑐 ,Ω, (Γ, ⊲⊳)).

By Lemma 58, we know there exist Ω′
, A ′

, 𝜂 ′, ms′ such that

(𝜎𝑐 ,Ω, (Γ, ⊲⊳)) ↦−_ ∗ (𝜎 ′
𝑐 ,Ω

′, (Γ, ⊲⊳)) (𝜎 ′
𝑐 ,Ω

′, (Γ, ⊲⊳)) ↦−_ (end, (S1, . . . ,S𝑛), (S,A ′, 𝜂 ′))
Ω′ = 𝜆t ∈ [1..𝑛] . (S,A ′, 𝜂 ′,ms′) S0 = S

dom(A ′) = dom(M′) ∀𝑖 . A ′(𝑖) = (M′(𝑖) .t, split(Γ(M′(𝑖))) .𝛼, cmt)
∀t ∈ [1..𝑛] . ∀𝑖, 𝑗 . (𝑖, 𝑗) ∈ 𝜂 ′ ∧ {𝑖, 𝑗} ⊆ dom(𝜉 ′t) =⇒ 𝑖 <𝜉′t

𝑗

For any t, let 𝑇t = tr(A ′, 𝜉 ′t). Here we define

tr(A, 𝜉) def

=

𝜖 if 𝜉 = 𝜖

(mid,A(mid)) :: tr(A, 𝜉 ′) if 𝜉 = (mid, (𝑓 , 𝑛)) ::𝜉 ′ ∧mid ∈ dom(A)
tr(A, 𝜉 ′) if 𝜉 = (mid, (𝑓 , 𝑛)) ::𝜉 ′ ∧mid ∉ dom(A)

Since dom(A ′) = dom(M′) = dom(𝜉 ′t), we know ⌊𝑇t⌋ = A ′
. So

(A ′, 𝜂 ′ |= 𝑇t) ∧ exec(S,𝑇t) = S′
t

Thus we are done. □

Lemma 58. If

• (𝜎𝑐 , Σ,M, ⊲⊳) ◦↦−→𝑚 (𝜎 ′
𝑐 , Σ

′,M′, ⊲⊳), (𝜎 ′
𝑐 , Σ

′,M′, ⊲⊳) ◦↦−→ (end, (S1, . . . ,S𝑛), (S′
1
, . . . ,S′

𝑛)),
• Σ = 𝜆t ∈ [1..𝑛] . (Γ,S, 𝜉t), Σ′ = 𝜆t ∈ [1..𝑛] . (Γ,S, 𝜉 ′t),
• Ω = 𝜆t ∈ [1..𝑛] . (S,At, 𝜂,ms),
• for any t: dom(At) = dom(M), ∀𝑖 ∈ dom(𝜉t). At (𝑖) = (M(𝑖).t, split(Γ(M(𝑖))).𝛼, cmt),
∀𝑖 ∈ dom(M) − dom(𝜉t). At (𝑖) = (M(𝑖).t, split(Γ(M(𝑖))).𝛼, prd),

• for any t: ∀𝑖, 𝑗 . (𝑖, 𝑗) ∈ 𝜂 ∧ {𝑖, 𝑗} ⊆ dom(𝜉t) =⇒ 𝑖 <𝜉t 𝑗 ,

∀𝑖, 𝑗 . (𝑖, 𝑗) ∈ 𝜂 ∧ {𝑖, 𝑗} ⊆ dom(𝜉 ′t) =⇒ 𝑖 <𝜉′t
𝑗 ,

• for any t: dom(M′) = dom(𝜉 ′t),
then there exist Ω′

, A ′
1
, . . . ,A ′

𝑛 , 𝜂
′
, ms′ such that

• (𝜎𝑐 ,Ω, (Γ, ⊲⊳)) ↦−_ ∗ (𝜎 ′
𝑐 ,Ω

′, (Γ, ⊲⊳)),
• Ω′ = 𝜆t ∈ [1..𝑛] . (S,A ′

t, 𝜂
′,ms′),

• for any t: dom(A ′
t) = dom(M′), ∀𝑖 ∈ dom(𝜉 ′t). A ′

t (𝑖) = (M′(𝑖).t, split(Γ(M′(𝑖))) .𝛼, cmt),
• for any t: ∀𝑖, 𝑗 . (𝑖, 𝑗) ∈ 𝜂 ′ ∧ {𝑖, 𝑗} ⊆ dom(𝜉 ′t) =⇒ 𝑖 <𝜉′t

𝑗 .

Proof. By induction over𝑚.

• 𝑚 = 0. Let Ω′ = Ω, 𝜂 ′ = 𝜂, ms′ = ms and for any t, let A ′
t = At. We get the conclusion trivially.

• 𝑚 = 𝑘 + 1. So there exist 𝜎 ′′
𝑐 , Σ

′′
,M′′

, 𝜉 ′′
1
, . . . , 𝜉 ′′𝑛 such that

(𝜎𝑐 , Σ,M, ⊲⊳) ◦↦−→ (𝜎 ′′
𝑐 , Σ

′′,M′′, ⊲⊳), (𝜎 ′′
𝑐 , Σ

′′,M′′, ⊲⊳) ◦↦−→𝑘 (𝜎 ′
𝑐 , Σ

′,M′, ⊲⊳),
Σ′′ = 𝜆t ∈ [1..𝑛] . (Γ,S, 𝜉 ′′t).

By the operational semantics of ◦↦−→ , we know there exists t such that

𝜎𝑐 (t) = (𝐶t,St), Σ(t) = (Γ,S, 𝜉t),
((𝐶t,St), (Γ,S, 𝜉t),M) l◦−→ t ((𝐶 ′′

t ,S′′
t), (Γ,S, 𝜉 ′′t),M′′)

𝜎 ′′
𝑐 = 𝜎𝑐 {t ; (𝐶 ′′

t ,S′′
t)}, Σ′′ = Σ{t ; (Γ,S, 𝜉 ′′t)}, ∀t′ ≠ t. 𝜉 ′′t′ = 𝜉t′

∀t′ ≠ t. AbsCoh(𝜉 ′′t , 𝜉 ′′t′ , (Γ, ⊲⊳))

We consider different cases of

l◦−→ t :

1. It is a call step. So

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

𝐶t = (𝑥 := 𝑓 (𝐸)), 𝐶 ′′
t = skip, S′′

t = St{𝑥 ; 𝑛′},
J𝐸KSt =𝑛, mid∉dom(M), M′′ = M ⊎ {mid ; (t, 𝑓 , 𝑛)},

𝜉 ′′t = 𝜉t++[(mid, (t, 𝑓 , 𝑛))], aexecRV(Γ,S, 𝜉 ′′t) = 𝑛′

Suppose split(Γ(𝑓 , 𝑛)) = (𝜇, 𝛼). Let𝑇 = tr(At, 𝜉
′
t) where tr is defined above in the proof of Lemma 57. Thus ⌊𝑇 ⌋ = At.

Also from the semantics, we know dom(At) = dom(M) ⊆ dom(M′) = dom(𝜉 ′t). Since ∀𝑖, 𝑗 . (𝑖, 𝑗) ∈ 𝜂 ∧ {𝑖, 𝑗} ⊆
dom(𝜉 ′t) =⇒ 𝑖 <𝜉′t

𝑗 , we know ∀𝑖, 𝑗 . (𝑖, 𝑗) ∈ 𝜂 ∧ {𝑖, 𝑗} ⊆ dom(At) =⇒ 𝑖 <𝑇 𝑗 . Thus we know

At, 𝜂 |= 𝑇

Since 𝜉 ′′t = 𝜉t++[(mid, (t, 𝑓 , 𝑛))] and aexecRV(Γ,S, 𝜉 ′′t) = 𝑛′
, we know there exists S′

such that

S′ = exec(S,𝑇), 𝜇 (S′) = 𝑛′

Since mid ∉ dom(M), we know
mid ∉ dom(At)

Let

ms′′ = { 𝑗 | ∃𝛼 ′. At (𝑗) = (_, 𝛼 ′, cmt) ∧ 𝛼 ⊲⊳ 𝛼 ′} 𝜂 ′′ = 𝜂 ⊎ {(𝑗,mid) | 𝑗 ∈ ms′′}
A ′′

t = At ⊎ {mid ; (t, 𝛼, cmt)} ∀t′ ≠ t. A ′′
t′ = At′ ⊎ {mid ; (t, 𝛼, prd)}

Ω′′(t) = (S,A ′′
t , 𝜂

′′,ms ∪ms′′) ∀t′ ≠ t. Ω′′(t′) = (S,A ′′
t′ , 𝜂

′′,ms ∪ms′′)
Thus we know

(𝜎𝑐 ,Ω, (Γ, ⊲⊳)) ↦−_ (𝜎 ′′
𝑐 ,Ω

′′, (Γ, ⊲⊳))
Also we know, for any t′:

dom(A ′′
t′) = dom(M′′),

∀𝑖 ∈ dom(𝜉 ′′t′) . A ′′
t′ (𝑖) = (M′′(𝑖).t, split(Γ(M′′(𝑖))).𝛼, cmt),

∀𝑖 ∈ dom(M′′) − dom(𝜉 ′′t′). A ′′
t′ (𝑖) = (M′′(𝑖).t, split(Γ(M′′(𝑖))) .𝛼, prd),

∀𝑖, 𝑗 . (𝑖, 𝑗) ∈ 𝜂 ′′ ∧ {𝑖, 𝑗} ⊆ dom(𝜉 ′′t′) =⇒ 𝑖 <𝜉′′t′
𝑗

Also, by the semantics, we know ∀t′ ≠ t. AbsCoh(𝜉 ′′t , 𝜉 ′t′, (Γ, ⊲⊳)). So
∀t′. ∀𝑗 . 𝑗 ∈ ms′′ =⇒ 𝑗 <𝜉′t′

mid
Thus we know, for any t′:

∀𝑖, 𝑗 . (𝑖, 𝑗) ∈ 𝜂 ′′ ∧ {𝑖, 𝑗} ⊆ dom(𝜉 ′t′) =⇒ 𝑖 <𝜉′t′
𝑗

So, by the induction hypothesis, we are done.

2. It is a receive step. So

M(mid) = (𝑓 , 𝑛), mid ∉ dom(𝜉t), 𝜉t = 𝜉 ′++𝜉 ′′, 𝜉 ′′t = 𝜉 ′++[(mid, (𝑓 , 𝑛))]++𝜉 ′′,
𝐶t = 𝐶 ′′

t , St = S′′
t , M = M′′

Suppose split(Γ(𝑓 , 𝑛)) = (𝜇, 𝛼). SinceM(mid) = (𝑓 , 𝑛) and mid ∉ dom(𝜉t), we know there exists t0 such that

At (mid) = (t0, 𝛼, prd)
Let

A ′′
t = At{mid ; (t0, 𝛼, cmt)} ∀t′ ≠ t. A ′′

t′ = At′ 𝜂 ′′ = 𝜂

Ω′′(t) = (S,A ′′
t , 𝜂,ms) ∀t′ ≠ t. Ω′′(t′) = Ω(t′)

Thus we know

(𝜎𝑐 ,Ω, (Γ, ⊲⊳)) ↦−_ (𝜎 ′′
𝑐 ,Ω

′′, (Γ, ⊲⊳))
Also we know, for any t′:

dom(A ′′
t′) = dom(M′′),

∀𝑖 ∈ dom(𝜉 ′′t′) . A ′′
t′ (𝑖) = (M′′(𝑖).t, split(Γ(M′′(𝑖))).𝛼, cmt),

∀𝑖 ∈ dom(M′′) − dom(𝜉 ′′t′). A ′′
t′ (𝑖) = (M′′(𝑖).t, split(Γ(M′′(𝑖))) .𝛼, prd)

Since ∀𝑖, 𝑗 . (𝑖, 𝑗) ∈ 𝜂 ∧ {𝑖, 𝑗} ⊆ dom(𝜉 ′t) =⇒ 𝑖 <𝜉′t
𝑗 , we know, for any t′:

∀𝑖, 𝑗 . (𝑖, 𝑗) ∈ 𝜂 ′′ ∧ {𝑖, 𝑗} ⊆ dom(𝜉 ′′t′) =⇒ 𝑖 <𝜉′′t′
𝑗

∀𝑖, 𝑗 . (𝑖, 𝑗) ∈ 𝜂 ′′ ∧ {𝑖, 𝑗} ⊆ dom(𝜉 ′t′) =⇒ 𝑖 <𝜉′t′
𝑗

So, by the induction hypothesis, we are done.

3. It is a local step. So

𝐶t = (𝑥 := 𝐸), 𝐶 ′′
t = skip, S′′

t = St{𝑥 ; 𝑛}, J𝐸KSt =𝑛, 𝜉 ′′t = 𝜉t, M′′ = M
Let Ω′′ = Ω, 𝜂 ′′ = 𝜂 and ∀t′. A ′′

t′ = At′ . Thus we know

(𝜎𝑐 ,Ω, (Γ, ⊲⊳)) ↦−_ (𝜎 ′′
𝑐 ,Ω

′′, (Γ, ⊲⊳))
Also we know, for any t′:

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

dom(A ′′
t′) = dom(M′′),

∀𝑖 ∈ dom(𝜉 ′′t′) . A ′′
t′ (𝑖) = (M′′(𝑖).t, split(Γ(M′′(𝑖))).𝛼, cmt),

∀𝑖 ∈ dom(M′′) − dom(𝜉 ′′t′). A ′′
t′ (𝑖) = (M′′(𝑖).t, split(Γ(M′′(𝑖))) .𝛼, prd)

∀𝑖, 𝑗 . (𝑖, 𝑗) ∈ 𝜂 ′′ ∧ {𝑖, 𝑗} ⊆ dom(𝜉 ′′t′) =⇒ 𝑖 <𝜉′′t′
𝑗

∀𝑖, 𝑗 . (𝑖, 𝑗) ∈ 𝜂 ′′ ∧ {𝑖, 𝑗} ⊆ dom(𝜉 ′t′) =⇒ 𝑖 <𝜉′t′
𝑗

So, by the induction hypothesis, we are done.

Thus we are done. □

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

F Examples of Client Verification

We first present the full proof for the client program of RGA in Fig. 12. We also verify more client examples: three clients of

RGA and two clients of registers.

F.1 RGA Client in Fig. 12

𝑝𝑎
def

= (s = a) ∧ Id 𝛼𝑏
def

= addAfter(a,b) 𝛼𝑐
def

= addAfter(a,c) 𝛼𝑑
def

= addAfter(c,d)

𝐺t1
def

= (true ; [𝛼𝑏]1t1) ∨ IId 𝑅t1
def

= 𝐺t2 ∨𝐺t3

𝐺t2
def

= ((−♦ 𝛼𝑏
1

t1
) ; [𝛼𝑐]2t2) ∨ IId 𝑅t2

def

= 𝐺t1 ∨𝐺t3

𝐺t3
def

= ((−♦ 𝛼𝑐
2

t2
) ; [𝛼𝑑]3t3) ∨ IId 𝑅t3

def

= 𝐺t1 ∨𝐺t2{
s = a

}
{
𝑝𝑎

}
addAfter(a, b);
𝑝𝑎 ⊔ 𝛼𝑏

1

t1
∨ 𝑝𝑎 ⊔ (𝛼𝑏

1

t1
⋉ [𝛼𝑐]2t2)

∨ 𝑝𝑎 ⊔ (𝛼𝑏
1

t1
⋉ [𝛼𝑐]2t2 ⋉ [𝛼𝑑]3t3)

{
𝑝𝑎 ∨ 𝑝𝑎 ⊔ [𝛼𝑏]1t1

}
u := read();
if (b ∈ u){

𝑝𝑎 ⊔ 𝛼𝑏
1

t1

}
addAfter(a, c);
𝑝𝑎 ⊔ (𝛼𝑏

1

t1
⋉ 𝛼𝑐

2

t2
)

∨ 𝑝𝑎 ⊔ (𝛼𝑏
1

t1
⋉ 𝛼𝑐

2

t2
⋉ [𝛼𝑑]3t3)

x := read();{
d ∈ x ⇒ s = x = acdb

}

{
𝑝𝑎 ∨ 𝑝𝑎 ⊔ [𝛼𝑏]1t1
∨ 𝑝𝑎 ⊔ ([𝛼𝑏]1t1 ⋉ [𝛼𝑐]2t2)

}
v := read();
if (c ∈ v){

𝑝𝑎 ⊔ ([𝛼𝑏]1t1 ⋉ 𝛼𝑐
2

t2
)
}

addAfter(c, d);{
𝑝𝑎 ⊔ ([𝛼𝑏]1t1 ⋉ 𝛼𝑐

2

t2
⋉ 𝛼𝑑

3

t3
)
}

y := read();{
s = acdb ⇒ y = s ∨ y = acd

}{
d ∈ x ⇒ (s = x = acdb) ∧ (y = x ∨ y = acd)

}
Figure 26. Proof of RGA Client in Fig. 12.

Figure 26 shows the proof sketch of the RGA Client discussed in Fig. 12. By the definition of ⊲⊳ in the RGA specification, we

know both 𝛼𝑏 ⊲⊳ 𝛼𝑐 and 𝛼𝑐 ⊲⊳ 𝛼𝑑 hold, but 𝛼𝑏 ⊲⊳ 𝛼𝑑 does not hold. The proof follows our logic rules.

F.2 RGA Client 1

{
s = a

}{
𝑝𝑎 ∨ (𝑝𝑎 ⊔ [𝛼𝑐]2t2)

}
addAfter(a, b);{
(𝑝𝑎 ⊔ 𝛼𝑏

1

t1
) ∨ (𝑝𝑎 ⊔ 𝛼𝑏

1

t1
⊔ [𝛼𝑐]2t2)

}
x := read();{
x = acb ⇒ s = acb

}
{
𝑝𝑎 ∨ (𝑝𝑎 ⊔ [𝛼𝑏]1t1)

}
addAfter(a, c);{
(𝑝𝑎 ⊔ 𝛼𝑐

2

t2
) ∨ (𝑝𝑎 ⊔ 𝛼𝑐

2

t2
⊔ [𝛼𝑏]1t1)

}
y := read();{
s = acb ⇒ y = ac ∨ y = acb

}{
x = acb ⇒ y = ac ∨ y = acb

}
𝑝𝑎

def

= (s = a) ∧ Id 𝛼𝑏
def

= addAfter(a,b) 𝛼𝑐
def

= addAfter(a,c)

𝐺t1
def

= (true ; [𝛼𝑏]1t1) ∨ IId 𝑅t1
def

= 𝐺t2

𝐺t2
def

= (true ; [𝛼𝑐]2t2) ∨ IId 𝑅t2
def

= 𝐺t1

Figure 27. Proof of RGA Client 1.

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

Figure 27 shows the proof of a client of RGA. Suppose initially the RGA list s is a. We hope to prove a kind of convergence

property of the client threads’ observations. That is, the right thread t2 must agree with the left thread t1 on the order of the

operations. So, when the program terminates, if x reads out acb, then y must read out either acb or ac.
We verify the program using our program logic. We first define the rely/guarantee conditions at the bottom of Figure 27.𝐺t1

says that t1 guarantees the invocation of 𝛼𝑏 unconditionally. 𝐺t2 is similar. Here we use IId to represent the invocation of an

identity action (e.g., read operations). It specifies stuttering steps.

By the par rule, we only need to verify each thread independently. For thread t1, we first stabilize (s = a) under 𝑅t1 , resulting
in the assertion 𝑝𝑎 ∨ (𝑝𝑎 ⊔ [𝛼𝑐]2t2). Here the definition of 𝑝𝑎 allows identity actions only, as specified by Id (defined in Fig. 22

in Sec. 7). After performing addAfter(a,b), the action set must contain 𝛼𝑏
1

t1
. Then, after x:=read(), we know if x reads

out acb, then the list object s must be acb.
The verification of t2 is similar. The only interesting case is the post-condition after y:=read(). If at the end the list object s

is acb, we know 𝛼𝑏 must be ordered before 𝛼𝑐 , so it must be the case 𝑝𝑎 ⋉ [𝛼𝑏]1t1 ⋉ 𝛼𝑐
2

t2
at the time of the read. Thus y must

read out acb or ac.

F.3 RGA Client 2

{
s = a

}
{
𝑝𝑎

}
addAfter(a, b);{
𝑝𝑎 ⊔ 𝛼𝑏

1

t1

}
addAfter(a, c);{
𝑝𝑎 ⊔ (𝛼𝑏

1

t1
⋉ 𝛼𝑐

2

t1
)
}

{
𝑝𝑎 ∨ 𝑝𝑎 ⊔ [𝛼𝑏]1t1 ∨ 𝑝𝑎 ⊔ ([𝛼𝑏]1t1 ⋉ [𝛼𝑐]2t1)

}
x := read();
x ≠ a ⇒
x = ab ∧ (𝑝𝑎 ⊔ 𝛼𝑏

1

t1
∨ 𝑝𝑎 ⊔ (𝛼𝑏

1

t1
⋉ [𝛼𝑐]2t1))

x = ac ∧ 𝑝𝑎 ⊔ ([𝛼𝑏]1t1 ⋉ 𝛼𝑐
2

t1
)

x = acb ∧ 𝑝𝑎 ⊔ (𝛼𝑏
1

t1
⋉ 𝛼𝑐

2

t1
)

y := read();{
x ≠ a ⇒
(x = ab ∨ x = ac ∨ x = acb) ∧ (y = x ∨ y = acb)

}
{
x ≠ a ⇒ (x = ab ∨ x = ac ∨ x = acb) ∧ (y = x ∨ y = acb)

}
𝑝𝑎

def

= (s = a) ∧ Id 𝛼𝑏
def

= addAfter(a,b) 𝛼𝑐
def

= addAfter(a,c)

𝐺t1
def

= (true ; [𝛼𝑏]1t1) ∨ ((−♦ 𝛼𝑏
1

t1
) ; [𝛼𝑐]2t1) ∨ IId 𝑅t1

def

= 𝐺t2

𝐺t2
def

= IId 𝑅t2
def

= 𝐺t1

Figure 28. Proof of RGA Client 2.

Figure 29 shows the proof of a client of RGA. Suppose initially the RGA list s is a. We hope to verify the results of the

two reads are sensible. The post-condition of the whole program says, if x is not a, then x must read among {ab, ac, acb}
and y must be the same as x or get acb. It shows that 1) the right thread t2 cannot observe abc, and 2) the results of the two

consecutive reads must be consistent (i.e., either they are equal, or the latter one observes more operations than the earlier

one). Note it is possible that x get ac because we do not assume causal delivery.

We verify the program using our program logic. We first define the rely/guarantee conditions at the bottom of Figure 29.𝐺t1
says that t1 guarantees the invocation of 𝛼𝑏 unconditionally, and the invocation of 𝛼𝑐 after it invokes 𝛼𝑏 . 𝐺t2 is simply IId
since t2 invokes only read operations.

By the par rule, we only need to verify each thread independently. For thread t1, we first stabilize (s = a) under 𝑅t1 , resulting
in the assertion 𝑝𝑎 which allows identity actions. After performing addAfter(a,b), the action set must contain 𝛼𝑏

1

t1
. Next,

after addAfter(a,c), the action set must contain both 𝛼𝑏
1

t1
and 𝛼𝑐

2

t1
, and 𝛼𝑐

2

t1
is after 𝛼𝑏

1

t1
.

For thread t2, we first stabilize (s = a) under 𝑅t2 , resulting in the assertion which consist of three disjunctive branches: 𝑝𝑎 ,

𝑝𝑎 ⊔ [𝛼𝑏]1t1 and 𝑝𝑎 ⊔ ([𝛼𝑏]1t1 ⋉ [𝛼𝑐]2t1). Note that in the third branch, t2 has the knowledge that 𝛼𝑏 must be ordered before

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

𝑝
def

= (s = ae) ∧ emp 𝛼𝑏
def

= addAfter(a,b) 𝛼𝑐
def

= addAfter(a,c) 𝛼𝑟
def

= remove(e)

𝐺t1
def

= (true ; [𝛼𝑏]1t1) 𝐺t2
def

= ((−♦ 𝛼𝑏
1

t1
) ; [𝛼𝑟]2t2)

𝐺t3
def

= ((−♦ 𝛼𝑟
2

t2
) ; [𝛼𝑐]3t3) 𝑅t2

def

= 𝐺t1 ∨𝐺t3 𝑅t1
def

= 𝐺t2 ∨𝐺t3 𝑅t3
def

= 𝐺t1 ∨𝐺t2{
s = ae

}

{
𝑝
}

addAfter(a, b);{
true

}

{
𝑝 ∨ 𝑝 ⊔ [𝛼𝑏]1t1

}
u := read();
if (b ∈ u){

𝑝 ⊔ 𝛼𝑏
1

t1

}
remove(e);
𝑝 ⊔ 𝛼𝑏

1

t1
⊔ 𝛼𝑟

2

t2
∨ 𝑝 ⊔ 𝛼𝑏

1

t1
⊔ 𝛼𝑟

2

t2
⊔ [𝛼𝑐]3t3

x := read();{
c ∈ x ⇒
s = x = acb ∨ s = x = abc

}

{
𝑝 ∨ 𝑝 ⊔ [𝛼𝑏]1t1
∨ 𝑝 ⊔ [𝛼𝑏]1t1 ⊔ [𝛼𝑟]2t2

}
(1)

v := read();
if (e ∉ v){

𝑝 ⊔ [𝛼𝑏]1t1 ⊔ 𝛼𝑟
2

t2

}
(2)

addAfter(a, c);{
𝑝 ⊔ [𝛼𝑏]1t1 ⊔ 𝛼𝑟

2

t2
⊔ 𝛼𝑐

3

t3

}
(3)

y := read();{
(s = acb ∨ s = abc) ⇒
(y = s ∨ y = ac)

}
(4){

c ∈ x ⇒ (s = x) ∧ (x = abc ∨ x = acb) ∧ (y = x ∨ y = ac)
}

Figure 29. Proof of RGA Client 3.

𝛼𝑐 , because we require all nodes to observe the same ordering of the conflicting operations 𝛼𝑏 and 𝛼𝑐 . After x:=read(), we
analyze each branch and get the value of x. Finally, after y:=read(), we know the post-condition holds.

F.4 RGA Client 3

Fig. 29 gives the proof of the last example of RGA client. We first define the rely/guarantee conditions of each thread. 𝐺t1
says that the thread t1 guarantees the invocation of 𝛼𝑏 unconditionally. 𝐺t2 says that t2 calls 𝛼𝑟 after it receives (commits) 𝛼𝑏 .

Similarly, 𝐺t3 says that t3 calls 𝛼𝑐 after it commits 𝛼𝑟 .

By the par rule, we only need to verify each thread independently. For thread t3, we first stabilize 𝑝 under 𝑅t3 , resulting in the

assertion (1) in Fig. 12. After reading out the removal of e, we can discard the branches where 𝛼𝑟 is not committed. So we get the

assertion (2). Then, t3 calls addAfter(a,c). By the call rule, the immediate post-condition is (𝑝 ⊔ [𝛼𝑏]1t1 ⊔ 𝛼𝑟
2

t2
, ⊲⊳) ⋉ 𝛼𝑐

3

t3
.

Using the csq rule, we weaken it to the assertion (3), which is stable and cmt-closed. Finally we get the assertion (4). It has the

branch y = ac because it is possible that t3 has not yet committed 𝛼𝑏 by the read.

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

F.5 Register Client 1

{
s = 0

}{
𝑝𝑎 ∨ (𝑝𝑎 ⊔ [𝛼2]2t2)

}
write(1);{
(𝑝𝑎 ⊔ 𝛼1

1

t1
) ∨ (𝑝𝑎 ⊔ 𝛼1

1

t1
⊔ [𝛼2]2t2)

}
x := read();{
x = 2 ⇒ 𝑝𝑎 ⊔ (𝛼1 1

t1
⋉ 𝛼2

2

t2
)
}

⇛{
x = 2 ⇒ s = 2

}

{
𝑝𝑎 ∨ (𝑝𝑎 ⊔ [𝛼1]1t1)

}
write(2);{
(𝑝𝑎 ⊔ 𝛼2

2

t2
) ∨ (𝑝𝑎 ⊔ 𝛼2

2

t2
⊔ [𝛼1]1t1)

}
y := read();{
y ≠ 2 ⇒ 𝑝𝑎 ⊔ (𝛼2 2

t2
⋉ 𝛼1

1

t1
)
}

⇛{
s = 2 ⇒ y = 2

}{
x = 2 ⇒ y = 2 ∧ s = 2

}
𝑝𝑎

def

= (s = 0) ∧ Id 𝛼1
def

= write(1) 𝛼2
def

= write(2)

𝐺t1
def

= (true ; [𝛼1]1t1) ∨ IId 𝑅t1
def

= 𝐺t2

𝐺t2
def

= (true ; [𝛼2]2t2) ∨ IId 𝑅t2
def

= 𝐺t1

Figure 30. Proof of Register Client 1.

Figure 30 shows the proof of a client of a register. Suppose initially the register s contains 0. We hope to prove the post-

condition (x = 2 ⇒ y = 2 ∧ s = 2) holds, which shows a kind of convergence property of the client threads’ observations.

Intuitively, if x reads out 2, then the left thread t1 must see write(2) from the right thread after its own write(1). The right
thread t2 must observe the same ordering, so y must read out 2 too and the final register s also contains 2.

To verify the program, we first define the rely/guarantee conditions at the bottom of Figure 30. 𝐺t1 says that t1 guarantees
the invocation of [𝛼1]1t1 unconditionally. 𝐺t2 is similar.

By the par rule, we only need to verify each thread independently. For thread t1, we first stabilize (s = 0) under 𝑅t1 , resulting
in the assertion 𝑝𝑎 ∨ (𝑝𝑎 ⊔ [𝛼2]2t2). After performing write(1), the action set must contain 𝛼1

1

t1
. Then, after x:=read(),

if x = 2, we know t1 must have received (committed) [𝛼2]2t2 and ordered it after its own 𝛼1
1

t1
, which implies s = 2. The

verification of t2 is similar. By conjoining the post-conditions of the two threads, we derive (x = 2 ⇒ y = 2 ∧ s = 2).

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

F.6 Register Client 2

{
s = 0

}

{
true

}
write(1);{
true

}
{
true

}
write(2);{
true

}

{
𝑝𝑎 ∨ 𝑝𝑎 ⊔ [𝛼1]1t1 ∨ 𝑝𝑎 ⊔ [𝛼2]2t2
∨𝑝𝑎 ⊔ [𝛼1]1t1 ⊔ [𝛼2]2t2

}
x := read();{
x = 1 ⇒
𝑝𝑎 ⊔ 𝛼1

1

t1
∨ 𝑝𝑎 ⊔ 𝛼1

1

t1
⊔ [𝛼2]2t2

}
y := read();{
x = 1 ∧ y = 2 ⇒
𝑝𝑎 ⊔ (𝛼1 1

t1
⋉ 𝛼2

2

t2
)

}
z := read();{
x = 1 ∧ y = 2 ⇒ z = 2

}{
x = 1 ∧ y = 2 ⇒ z = 2

}
𝑝𝑎

def

= (s = 0) ∧ Id 𝛼1
def

= write(1) 𝛼2
def

= write(2)

𝐺t1
def

= (true ; [𝛼1]1t1) ∨ IId 𝑅t1
def

= 𝐺t2 ∨𝐺t3

𝐺t2
def

= (true ; [𝛼2]2t2) ∨ IId 𝑅t2
def

= 𝐺t1 ∨𝐺t3

𝐺t3
def

= IId 𝑅t3
def

= 𝐺t1 ∨𝐺t2

Figure 31. Proof of Register Client 2.

Figure 31 shows the proof of a client of a register. We first define the rely/guarantee conditions at the bottom of Figure 31.

𝐺t1 says that t1 guarantees the invocation of [𝛼1]1t1 unconditionally. 𝐺t2 says that t2 guarantees the invocation of [𝛼2]2t2
unconditionally. 𝐺t3 is simply IId since t3 invokes only read operations.

For the right thread t3, if x = 1 ∧ y = 2, we know t3 must have received (committed) [𝛼1]1t1 and [𝛼2]2t2 and ordered [𝛼2]2t2
after [𝛼1]1t1 (as shown in the assertion after y:=read()), so it must get z = 2 after the final z:=read().

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

↣ ∈ P (Effector × Effector) (the time-stamp order)

V ∈ LocalState → P (Effector) (the view function)

followTS(S, 𝛿,↣,V) iff ∀𝛿 ′. 𝛿 ′ ∈ V(S) =⇒ ¬(𝛿 ↣ 𝛿 ′)
validΠ (𝑓 , 𝑛, 𝛿) iff ∃S. Π(𝑓 , 𝑛) (S) = (_, 𝛿)
genAtΠ (S, 𝛿) iff ∃𝑓 , 𝑛. Π(𝑓 , 𝑛) (S) = (_, 𝛿)

Figure 32. Auxiliary Definitions for CRDTs with Time-Stamps.

G Proof Method for ACC and Soundness

G.1 Formalization of the Proof Method

We give a proof method for verifying ACC of CRDT algorithms. As we have explained, ACC captures both SEC and functional

correctness. CRDT algorithms use commutative effectors to achieve SEC. On functional correctness, they usually apply a

specific strategy to resolve conflicts, such as time-stamps, so that executing the effectors in any order can correspond to

the same sequence of abstract operations ordered by the strategy. To guide the verification, we ask users to specify the

conflict-resolution strategy ↣ (called the time-stamp order), which is a partial order between effectors.

Besides, we hope our proof method is local in that the reasoning of each execution step relies on the current local state

on the node only, without referring to the execution traces. To this end, we introduce a “view” function V mapping each

local state S to a set of effectors that must have been applied before reaching S. The function V is application-dependent and

needs to be provided by programmers, just like ↣. For the RGA algorithm, V can be defined as follows:

V(S) def

= {𝛿 | ∃a, i, b. ((a, i, b) ∈ S(N))
∧ (𝛿 = AddAfter(a,i,b)) ∨ ∃a. (a ∈ S(T)) ∧ (𝛿 = Rmv(a))}

The types of↣ andV are given at the top of Fig. 32. The main proof obligations of our method are formulated as effComm,

sameRVal and lockStep-S below. We assume that all the 𝛿-s mentioned in the conditions are generated from some valid

operation calls of Π. In certain cases we need to specify extra well-formedness of initial states. Then we introduce the state

mapping𝜓 for this purpose. It is stronger than 𝜑 and is applied only to the initial state.

The condition sameRVal requires that the corresponding operations in Π and Γ executed at 𝜑-related states should return

the same value. The condition lockStep-TS specifies the state correspondence if the effectors are applied in the order of

their time-stamps. We define followTS (see Fig. 32) to characterize the executions where effectors are applied in ↣ order.

In followTS(S, 𝛿,↣,V), S is supposed to be the state over which 𝛿 applies. It says, 𝛿 does not have a time-stamp smaller

(following the order ↣) than earlier effectors 𝛿 ′ that can be seen at S. In other words, executing 𝛿 at state S does not violate

↣. Fig. 32 also defines validΠ (𝑓 , 𝑛, 𝛿) and genAtΠ (S, 𝛿) used below.

Definition 59 (Commutativity of Effectors). effComm𝜑 iff ∀𝛿, 𝛿 ′. commute𝜑 (𝛿, 𝛿 ′) , where commute𝜑 (𝛿, 𝛿 ′) iff

∀S,S′. 𝛿 (𝛿 ′(S)) = S′ =⇒ 𝜑 (𝛿 ′(𝛿 (S))) = 𝜑 (S′) .
Definition 60 (Same Return Values). sameRVal𝜑 (Π, Γ) iff

∀𝑓 , 𝑛, 𝑛′,S,S𝑎 . 𝜑 (S) = S𝑎 ∧ Π(𝑓 , 𝑛) (S) = (𝑛′, _)
=⇒ Γ(𝑓 , 𝑛) (S𝑎) = (𝑛′, _)

Definition 61 (𝜑-Preservation). lockStep-TS𝜑 (Π, Γ,↣,V) iff ∀𝑓 , 𝑛, 𝛿,S,S′,S𝑎 ,

validΠ (𝑓 , 𝑛, 𝛿) ∧ 𝜑 (S) = S𝑎 ∧ 𝛿 (S) = S′ ∧ followTS(S, 𝛿,↣,V)
=⇒ ∃S′

𝑎 . 𝜑 (S′) = S′
𝑎 ∧ Γ(𝑓 , 𝑛) (S𝑎) = (_,S′

𝑎)

We also need to ensure that the user-specified ↣ and V make sense. We define a set of conditions for well-formedness

check in wfV and wfTS below.

Definition 62 (Well-formedV). wfV𝜓 (V) iff the following hold:

1. No effectors can be seen at the initial state.

∀S. S∈dom(𝜓) =⇒ V(S)=∅
2. V cannot increase arbitrarily:

∀𝛿,S,S′. 𝛿 (S)=S′ =⇒ V(S′) ⊆ (V(S) ∪ {𝛿})

Definition 63 (Well-formed↣). wfTSΠ (↣,V, (Γ, ⊲⊳)) iff the following hold:

1. ↣ is consistent with the visibility order on the current node, in the sense that when 𝛿 is generated for a client request

at state S, it cannot have a smaller time-stamp than earlier effectors seen at S. That is, ∀S, 𝛿 . genAtΠ (S, 𝛿) =⇒
followTS(S, 𝛿,↣,V).

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

𝑒1 ↣ 𝑒2 iff eff(𝑒1) ↣ eff(𝑒2)

conflict-ts(↣, (Γ, ⊲⊳)) iff

∀𝑓1, 𝑛1, 𝛿1, 𝑓2, 𝑛2, 𝛿2 . (Γ |= (𝑓1, 𝑛1) ⊲⊳ (𝑓2, 𝑛2)) ∧ validΠ (𝑓1, 𝑛1, 𝛿1) ∧ validΠ (𝑓2, 𝑛2, 𝛿2)
=⇒ 𝛿1 ↣ 𝛿2 ∨ 𝛿2 ↣ 𝛿1

effGenFollowTSΠ (↣,V) iff ∀S, 𝛿 . genAtΠ (S, 𝛿) =⇒ followTS(S, 𝛿,↣,V)

wfTSV(↣,V) iff

(∀𝛿,S,S′. (𝛿 (S) = S′) =⇒ ∀𝛿 ′. 𝛿 ′ ∈ (V(S) − V(S′)) =⇒ (𝛿 ′ ↣ 𝛿) ∧ (𝛿 ∈ V(S′)))
∧ (∀𝛿,S,S′. (𝛿 (S) = S′) ∧ 𝛿 ∈ image(↣) ∧ 𝛿 ∉ V(S′) =⇒ ∃𝛿 ′. (𝛿 ↣ 𝛿 ′) ∧ (𝛿 ′ ∈ V(S′)))

vts(t, E,↣) def

= (vis↦−−→
t E ∪ TS↣E)+

TS↣E (𝑒, 𝑒 ′) iff 𝑒 ↣ 𝑒 ′ ∧ {𝑒, 𝑒 ′} ⊆ orig(E)

RValRelated(t, E, (Γ,S𝑎, ar)) iff
∀E ′, 𝑒 . E ′ ⩽ E ∧ last(E ′)=𝑒 ∧ is_origt (𝑒) =⇒ rval(𝑒) = aexecRV(Γ,S𝑎, visible(E ′, t) ⇂ar)

StRelated𝜑 (t, (E,S), (Γ,S𝑎, ar)) iff
∀E ′. E ′ ⩽ E =⇒ 𝜑 (exec_st(S, E ′ |t)) = aexecST(Γ,S𝑎, visible(E ′, t) ⇂ar)

execFollowTS(S, E,↣,V) iff

∀E ′.𝑒,S′. (E ′++[𝑒] ⩽ E) ∧ exec_st(S, E ′) = S′ =⇒ followTS(S′, eff(𝑒),↣,V)

cyclic(rel) iff ∃𝑛, 𝑒1, . . . , 𝑒𝑛 . (∀𝑖 ∈ [1..𝑛 − 1] . (𝑒𝑖 , 𝑒𝑖+1) ∈ rel) ∧ (𝑒𝑛, 𝑒1) ∈ rel

Figure 33. Auxiliary Definitions for the Soundness Proof of the Proof Method with Time-Stamps.

2. Any effector 𝛿 ′ which disappears after applying 𝛿 must have a smaller time-stamp than 𝛿 in ↣, and 𝛿 should be seen at

the resulting state. That is,

∀𝛿,S,S′. (𝛿 (S) = S′) ∧ ∀𝛿 ′. 𝛿 ′ ∈ (V(S) − V(S′))
=⇒ (𝛿 ′ ↣ 𝛿) ∧ (𝛿 ∈ V(S′))

3. If a time-stamped effector 𝛿 is not seen after applied, then one must see some 𝛿 ′ with a higher time-stamp. Here

image(↣) def

= {𝛿 | ∃𝛿 ′. 𝛿 ′ ↣ 𝛿} denotes the set of time-stamped effectors.

∀𝛿,S,S′. (𝛿 (S) = S′) ∧ 𝛿 ∈ image(↣) ∧ 𝛿 ∉ V(S′)
=⇒ ∃𝛿 ′. (𝛿 ↣ 𝛿 ′) ∧ (𝛿 ′ ∈ V(S′))

4. Conflicting operations must be ordered by ↣. That is,

∀𝑓1, 𝑛1, 𝛿1, 𝑓2, 𝑛2, 𝛿2 . validΠ (𝑓1, 𝑛1, 𝛿1)∧validΠ (𝑓2, 𝑛2, 𝛿2)∧
((𝑓1, 𝑛1) ⊲⊳Γ (𝑓2, 𝑛2)) =⇒ 𝛿1 ↣ 𝛿2 ∨ 𝛿2 ↣ 𝛿1

Definition 64 (Proof Obligations). CRDT-TS𝜓,𝜑 (Π, (Γ, ⊲⊳)) iff there exist ↣ andV such that

effComm𝜑 ∧ sameRVal𝜑 (Π, Γ) ∧ lockStep-TS𝜑 (Π, Γ,↣,V)
∧ wfV𝜓 (V) ∧ wfTSΠ (↣,V, (Γ, ⊲⊳)).

G.2 Soundness of the Proof Method

Proof of Theorem 8. By applying Lemma 69 and Lemma 68. □

Definition 65 (Eventual Delivery). eventualDelivery(E) iff

∀𝑒, t. 𝑒 ∈E ∧ is_origt (𝑒) =⇒ ∀t′≠ t. ∃𝑒 ′. 𝑒 t′−→E 𝑒 ′

Lemma 66. If eventualDelivery(E), then ∀t. visible(E, t) = orig(E).

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

Definition 67 (E-ACC). E-ACC𝜓,𝜑 (Π, (Γ, ⊲⊳)), iff
∀S,S𝑎, E . E ∈ T (Π,S) ∧ eventualDelivery(E) ∧𝜓 (S) = S𝑎

=⇒ ACT𝜑 (E,S, (Γ, ⊲⊳))

Lemma 68 (E-ACC implies ACC). If E-ACC𝜓,𝜑 (Π, (Γ, ⊲⊳)), then ACC𝜓,𝜑 (Π, (Γ, ⊲⊳)).

Proof. For any S, S𝑎 and E, if E ∈ T (Π,S) and𝜓 (S) = S𝑎 , we know there exist E ′
and E ′′

such that

E ′ = E++E ′′
, ∀𝑒 ∈ E ′′. is_recv(𝑒), E ′ ∈ T (Π,S) and eventualDelivery(E ′).

By E-ACC𝜓,𝜑 (Π, (Γ, ⊲⊳)), we know

ACT𝜑 (E ′,S, (Γ, ⊲⊳)).

From ACT𝜑 (E ′,S, (Γ, ⊲⊳)), we know there exist ar′
1
, . . . , ar′𝑛 such that, for any t, we have

totalOrdervisible(E′,t) (ar′t),
vis↦−−→
t

E′ ⊆ ar′t, ExecRelated𝜑 (t, (E ′,S), (Γ, ar′t)), ∀t′ ≠ t. Coh(ar′t, ar′t′, (Γ, ⊲⊳)).

Since E ′ = E++E ′′
and ∀𝑒 ∈ E ′′. is_recv(𝑒), we know

orig(E ′) = orig(E).

Let art = ar′t |visible(E,t) . From
vis↦−−→
t

E′ ⊆ ar′t, we know

vis↦−−→
t

E ⊆ art.

From ExecRelated𝜑 (t, (E ′,S), (Γ, ar′t)), we know

ExecRelated𝜑 (t, (E,S), (Γ, art)).

For any t′ ≠ t, from Coh(ar′t, ar′t′, (Γ, ⊲⊳)), we know

Coh(art, art′, (Γ, ⊲⊳)).

Thus ACT𝜑 (E,S, (Γ, ⊲⊳)). Thus we are done. □

Lemma 69 (CRDT-TS implies E-ACC).

If CRDT-TS𝜓,𝜑 (Π, (Γ, ⊲⊳)) and𝜓 ⇒ 𝜑 , then E-ACC𝜓,𝜑 (Π, (Γ, ⊲⊳)).

Proof. For any S, S𝑎 and E, suppose E ∈ T (Π,S), eventualDelivery(E) and𝜓 (S) = S𝑎 .

By CRDT-TS𝜓,𝜑 (Π, (Γ, ⊲⊳)), we know there exist↣ and V such that

effComm𝜑 , sameRVal𝜑 (Π, Γ), lockStep-TS𝜑 (Π, Γ,↣,V), wfV𝜓 (V), wfTSΠ (↣,V, (Γ, ⊲⊳)).

Below we prove ACT𝜑 (E,S, ((Γ, ⊲⊳),S𝑎)). For any t, we first define vts(t, E,↣) in Figure 33. By Lemma 71, we know

partialOrder(vts(t, E,↣)).

So there exists art such that totalOrderorig(E) (art) and vts(t, E,↣) ⊆ art. By Lemma 66, we know totalOrdervisible(E,t) (art).
Also,

vis↦−−→
t

E ⊆ art and TS↣E ⊆ art.

• Below we prove ExecRelated𝜑 (t, (E,S), (Γ, art)).
We first prove StRelated𝜑 (t, (E,S), (Γ,S𝑎, art)) by applying Lemma 75. Then, by Lemma 74, we knowRValRelated(t, E, (Γ,S𝑎, art)).
Thus ExecRelated𝜑 (t, (E,S), (Γ, art)).

• We prove ∀t′ ≠ t. Coh(art, art′, (Γ, ⊲⊳)) by Lemma 70.

Thus we are done. □

Lemma 70 (Coherence). For any ar, ar′, t, t′ and E, if
1. E ∈ T (Π,S),
2. conflict-ts(↣, (Γ, ⊲⊳)),
3. totalOrderorig(E) (ar), totalOrderorig(E) (ar′), TS↣E ⊆ ar, TS↣E ⊆ ar′,

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

then Coh(ar, ar′, (Γ, ⊲⊳)).

Proof. For any 𝑒0 and 𝑒1, if 𝑒0 ar 𝑒1 and 𝑒1 ar′ 𝑒0, since totalOrderorig(E) (ar) and totalOrderorig(E) (ar′), we know

{𝑒0, 𝑒1} ⊆ orig(E), (𝑒1, 𝑒0) ∉ ar and (𝑒0, 𝑒1) ∉ ar′.

Since TS↣E ⊆ ar and TS↣E ⊆ ar′, we know

(𝑒1, 𝑒0) ∉ TS↣E and (𝑒0, 𝑒1) ∉ TS↣E .

Thus we know

¬(𝑒1 ↣ 𝑒0) and ¬(𝑒0 ↣ 𝑒1).

Since conflict-ts(↣, (Γ, ⊲⊳)), we know

¬(𝑒0 ⊲⊳Γ 𝑒1).

Thus we are done. □

Lemma 71 (vts is a partial order). If

1. E ∈ T (Π,S), eventualDelivery(E),
2. partialOrder(↣), effGenFollowTSΠ (↣,V), wfTSV(↣,V),

then partialOrder(vts(t, E,↣)).

Proof. By the definition of vts, we know transitive(vts(t, E,↣)).
Below we prove irreflexive(vts(t, E,↣)). So we only need to prove: ¬cyclic(vis↦−−→

t
E ∪ TS↣E).

By contradiction. Suppose there exist𝑛, 𝑒1, . . . , 𝑒𝑛 such that∀𝑖 ∈ [1..𝑛−1] . (𝑒𝑖 , 𝑒𝑖+1) ∈
vis↦−−→
t

E ∪TS↣E and (𝑒𝑛, 𝑒1) ∈
vis↦−−→
t

E ∪TS↣E .

Without loss of generality, we can suppose 𝑛 is the length of the smallest cycle. We analyze the following two cases:

• 𝑛 = 1. We know it is impossible from partialOrder(↣).
• 𝑛 > 1.

Since eventualDelivery(E), we know
{𝑒1, . . . , 𝑒𝑛} ⊆ visible(E, t).

Without loss of generality, we can suppose 𝑒𝑛 is the last event among 𝑒1, . . . , 𝑒𝑛 that t applies, that is, ∀𝑖 ∈ [1..𝑛 −
1] . 𝑒𝑖 ⋐t

E 𝑒𝑛 .

Since (𝑒𝑛, 𝑒1) ∈
vis↦−−→
t

E ∪ TS↣E , we know

(𝑒𝑛, 𝑒1) ∈ TS↣E .

Thus we know

eff(𝑒𝑛) ↣ eff(𝑒1).
Next we do case analysis of (𝑒𝑛−1, 𝑒𝑛) ∈

vis↦−−→
t

E ∪ TS↣E .

• (𝑒𝑛−1, 𝑒𝑛) ∈
vis↦−−→
t

E .

Thus we know is_origt (𝑒). Thus (𝑒1, 𝑒𝑛) ∈
vis↦−−→
t

E . Since effGenFollowTSΠ (↣,V) and wfTSV(↣,V), by Lemma 72,

we know

¬(eff(𝑒𝑛) ↣ eff(𝑒1)).
Then we reach a contradiction.

• (𝑒𝑛−1, 𝑒𝑛) ∈ TS↣E .

Since partialOrder(↣), we know eff(𝑒𝑛−1) ↣ eff(𝑒1). Thus we know (𝑒𝑛−1, 𝑒1) ∈ TS↣E . Thus we have constructed a

cycle of length 𝑛 − 1: 𝑒1, . . . , 𝑒𝑛−1, 𝑒1. It contradicts the assumption that 𝑛 is the length of the smallest cycle.

Thus we are done. □

Lemma 72 (↣ and

vis↦−−→
t

E do not conflict). If

1. E ∈ T (Π,S),
2. partialOrder(↣), effGenFollowTSΠ (↣,V), wfTSV(↣,V),

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

3. 𝑒1
vis↦−−→
t

E 𝑒2,

then ¬(eff(𝑒2) ↣ eff(𝑒1)).

Proof. By contradiction. Suppose eff(𝑒2) ↣ eff(𝑒1).
Suppose eff(𝑒1) = 𝛿1, eff(𝑒2) = 𝛿2 and op(𝑒2) = (𝑓 , 𝑛). By the operational semantics, we know there exist E2 and S2 such

that

Π(𝑓 , 𝑛) (S2) = (_, 𝛿2), exec_st(S, E2) = S2, E2++[𝑒2] ⩽ (E|t).

Since 𝑒1
vis↦−−→
t

E 𝑒2, we know there exist 𝑒 ′
1
, E0, E1, S1 and S′

1
such that

𝑒1
t
=⇒

E
𝑒 ′
1
, E2 = E0++[𝑒 ′1]++E1, exec_st(S, E0) = S1, 𝛿1 (S1) = S′

1
, exec_st(S′

1
, E1) = S2.

We do case analysis on whether 𝛿1 ∈ V(S′
1
).

• 𝛿1 ∈ V(S′
1
). By Lemma 73, we know ¬(𝛿2 ↣ 𝛿1).

• 𝛿1 ∉ V(S′
1
). From wfTSV(↣,V), we know there exist 𝛿 ′ such that

𝛿1 ↣ 𝛿 ′ and 𝛿 ′ ∈ V(S′
1
).

By Lemma 73, we know

¬(𝛿2 ↣ 𝛿 ′).
Since partialOrder(↣), we know ¬(𝛿2 ↣ 𝛿1).

Thus we are done. □

Lemma 73. If

1. 𝛿1 ∈ V(S1), exec_st(S1, E) = S2, genAtΠ (S2, 𝛿2),
2. partialOrder(↣), effGenFollowTSΠ (↣,V), wfTSV(↣,V),

then ¬(𝛿2 ↣ 𝛿1).

Proof. By induction over the length of E.
• |E| = 0. Thus S1 = S2. From effGenFollowTSΠ (↣,V), we know ¬(𝛿2 ↣ 𝛿1).
• |E| > 0. We do case analysis on whether 𝛿1 ∈ V(S2):
• 𝛿1 ∈ V(S2).
From effGenFollowTSΠ (↣,V), we know ¬(𝛿2 ↣ 𝛿1).

• 𝛿1 ∉ V(S2).
Since 𝛿1 ∈ V(S1), we know there exist E3, E ′

3
, 𝑒3, 𝛿3, S3, S′

3
such that

E = E3++[𝑒3]++E ′
3
, exec_st(S1, E3) = S3, eff(𝑒3) = 𝛿3, 𝛿3 (S3) = S′

3
, exec_st(S′

3
, E ′

3
) = S2,

𝛿1 ∈ V(S3), 𝛿1 ∉ V(S′
3
).

From wfTSV(↣,V), we know
𝛿1 ↣ 𝛿3 and 𝛿3 ∈ V(S′

3
).

Since |E ′
3
| < |E |, by the induction hypothesis, we know

¬(𝛿2 ↣ 𝛿3).
Since partialOrder(↣), we know ¬(𝛿2 ↣ 𝛿1).

Thus we are done. □

Lemma 74 (Return Value Related). If

1. E ∈ T (Π,S),
2. StRelated𝜑 (t, (E,S), (Γ,S𝑎, ar)),
3.

vis↦−−→
t

E ⊆ ar,

4. sameRVal𝜑 (Π, Γ),
then RValRelated(t, E, (Γ,S𝑎, ar)).

Proof. For any E ′
and 𝑒 , if (E ′++𝑒) ⩽ E and is_origt (𝑒), we want to prove

rval(𝑒) = aexecRV(Γ,S𝑎, visible(E ′++𝑒, t) ⇂ar).
Suppose 𝑒 = (mid, t, (𝑓 , 𝑛, 𝑛′, 𝛿)). Since E ∈ T (Π,S) and is_origt (𝑒), we know there exists S′

such that

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

exec_st(S, E ′ |t) = S′
and Π(𝑓 , 𝑛) (S′) = (𝑛′, 𝛿).

From StRelated𝜑 (t, (E,S), (Γ,S𝑎, ar)), since E ′ ⩽ E, we know

𝜑 (S′) = 𝜑 (exec_st(S, E ′ |t)) = aexecST(Γ,S𝑎, visible(E ′, t) ⇂ar).

Let S′
𝑎 = 𝜑 (S′). Thus aexecST(Γ,S𝑎, visible(E ′, t) ⇂ar) = S′

𝑎 . From sameRVal𝜑 (Π, Γ), we know

Γ(𝑓 , 𝑛) (S′
𝑎) = (𝑛′, _).

Since is_origt (𝑒), we know visible(E ′++𝑒, t) = visible(E ′, t) ∪ {𝑒}. Since vis↦−−→
t

E ⊆ ar, we know

∀𝑒 ′ ∈ visible(E ′, t). (𝑒 ′, 𝑒) ∈ ar.

Thus

aexecRV(Γ,S𝑎, visible(E ′++𝑒, t) ⇂ar) = 𝑛′
.

Thus rval(𝑒) = aexecRV(Γ,S𝑎, visible(E ′++𝑒, t) ⇂ar). So we are done. □

Lemma 75 (tStRelated). If

1. E ∈ T (Π,S), eventualDelivery(E),𝜓 (S) = S𝑎 ,𝜓 ⇒ 𝜑 ,

2. lockStep-TS𝜑 (Π, Γ,↣,V), effComm𝜑 , wfV𝜓 (V),
3. totalOrderorig(E) (ar), TS↣E ⊆ ar,

then StRelated𝜑 (t, (E,S), (Γ, ar)).

Proof. For any E ′
, if E ′ ⩽ E, from Lemma 76, we know

𝜑 (exec_st(S, E ′ |t)) = 𝜑 (exec_st(S, visible(E ′, t) ⇂ar).

From Lemma 77 and Lemma 78, we know

𝜑 (exec_st(S, visible(E ′, t) ⇂ar) = aexecST(Γ,S𝑎, visible(E ′, t) ⇂ar).

Thus 𝜑 (exec_st(S, E ′ |t)) = aexecST(Γ,S𝑎, visible(E ′, t) ⇂ar). So we are done. □

Lemma 76. If

1. effComm𝜑 ,

2. ⌊E1⌋ = ⌊E2⌋,
3. exec_st(S, E1) = S′

1
,

then 𝜑 (exec_st(S, E1)) = 𝜑 (exec_st(S, E2)).

Proof. By induction over the length of E1.

• The length is 0. Thus E1 = E2 = 𝜖 . The case is trivial.

• The length is 1. Thus E1 = E2. The case is trivial.

• The length is 𝑛 + 1 where 𝑛 ≥ 1. Suppose ∀𝑖 . E1 (𝑖) = 𝑒𝑖 ∧ E2 (𝑖) = 𝑒 ′𝑖 . Since ⌊E1⌋ = ⌊E2⌋, we know there are two cases:

1. 𝑒𝑛+1 = 𝑒 ′𝑛+1.
Suppose E1 = E ′

1
++[𝑒𝑛+1] and E2 = E ′

2
++[𝑒𝑛+1]. Then we know

⌊E ′
1
⌋ = ⌊E ′

2
⌋, |E ′

1
| = |E ′

2
| = 𝑛.

By the induction hypothesis, we know

𝜑 (exec_st(S, E ′
1
)) = 𝜑 (exec_st(S, E ′

2
)).

Thus we know 𝜑 (exec_st(S, E1)) = 𝜑 (exec_st(S, E2)).
2. There exists 𝑖 such that 1 ≤ 𝑖 ≤ 𝑛 and 𝑒𝑛+1 = 𝑒 ′𝑖 .

Let E3 = 𝑒 ′
1
. . . 𝑒 ′𝑖−1𝑒

′
𝑖+1 . . . 𝑒

′
𝑛+1𝑒

′
𝑖 = E ′

3
++[𝑒 ′𝑖]. Then we know

⌊E ′
1
⌋ = ⌊E ′

3
⌋, |E ′

1
| = |E ′

3
| = 𝑛.

By the induction hypothesis, we know

𝜑 (exec_st(S, E ′
1
)) = 𝜑 (exec_st(S, E ′

3
)).

Thus we know 𝜑 (exec_st(S, E1)) = 𝜑 (exec_st(S, E3)).
Below we prove 𝜑 (exec_st(S, E3)) = 𝜑 (exec_st(S, E2)). Let

E ′′
3
= 𝑒 ′

1
. . . 𝑒 ′𝑖−1, E ′′′

3
= 𝑒 ′𝑖+1 . . . 𝑒

′
𝑛+1𝑒

′
𝑖 and E ′′′

2
= 𝑒 ′𝑖𝑒

′
𝑖+1 . . . 𝑒

′
𝑛+1.

Then

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

E3 = E ′′
3
++E ′′′

3
and E2 = E ′′

3
++E ′′′

2
.

Suppose

exec_st(S, E ′′
3
) = S′

.

Thus we only need to prove 𝜑 (exec_st(S′, E ′′′
3
)) = 𝜑 (exec_st(S′, E ′′′

2
)).

Let 𝑘 = |E ′′′
3
|. We know 𝑘 = 𝑛 + 2 − 𝑖 ≥ 2. By induction over 𝑘 .

• 𝑘 = 2. So our goal is to prove 𝜑 (exec_st(S′, 𝑒 ′𝑛+1𝑒
′
𝑖)) = 𝜑 (exec_st(S′, 𝑒 ′𝑖𝑒

′
𝑛+1)).

From effComm𝜑 , we know

commute𝜑 (eff(𝑒 ′𝑖), eff(𝑒 ′𝑛+1)).
Thus 𝜑 (exec_st(S′, 𝑒 ′𝑛+1𝑒

′
𝑖)) = 𝜑 (exec_st(S′, 𝑒 ′𝑖𝑒

′
𝑛+1)).

• 𝑘 = 𝑘 ′ + 1.

First, as the 𝑘 = 2 case, from effComm𝜑 , we know

∀S′′. 𝜑 (exec_st(S′′, 𝑒 ′𝑛+1𝑒
′
𝑖)) = 𝜑 (exec_st(S′′, 𝑒 ′𝑖𝑒

′
𝑛+1)).

Then we know

𝜑 (exec_st(S′, 𝑒 ′𝑖+1 . . . 𝑒
′
𝑛𝑒

′
𝑛+1𝑒

′
𝑖)) = 𝜑 (exec_st(S′, 𝑒 ′𝑖+1 . . . 𝑒

′
𝑛𝑒

′
𝑖𝑒

′
𝑛+1)) . (G.1)

Next, by the induction hypothesis, we know

𝜑 (exec_st(S′, 𝑒 ′𝑖+1 . . . 𝑒
′
𝑛𝑒

′
𝑖)) = 𝜑 (exec_st(S′, 𝑒 ′𝑖𝑒

′
𝑖+1 . . . 𝑒

′
𝑛)).

Then we know

𝜑 (exec_st(S′, 𝑒 ′𝑖+1 . . . 𝑒
′
𝑛𝑒

′
𝑖𝑒

′
𝑛+1)) = 𝜑 (exec_st(S′, 𝑒 ′𝑖𝑒

′
𝑖+1 . . . 𝑒

′
𝑛𝑒

′
𝑛+1)) . (G.2)

By (G.1) and (G.2), we know

𝜑 (exec_st(S′, 𝑒 ′𝑖+1 . . . 𝑒
′
𝑛𝑒

′
𝑛+1𝑒

′
𝑖)) = 𝜑 (exec_st(S′, 𝑒 ′𝑖𝑒

′
𝑖+1 . . . 𝑒

′
𝑛𝑒

′
𝑛+1)).

Thus we are done. □

Lemma 77. If

1. E ∈ T (Π,S), S ∈ dom(𝜓), E ′ ⩽ E,
2. totalOrderorig(E) (ar), TS↣E ⊆ ar,
3. wfV𝜓 (V),

then execFollowTS(S, visible(E ′, t) ⇂ar,↣,V).

Proof. By unfolding the definition of execFollowTS in Figure 33, we want to prove:

∀E ′′.𝑒,S′. (E ′′++[𝑒] ⩽ (visible(E ′, t) ⇂ar)) ∧ exec_st(S, E ′′) = S′

=⇒ followTS(S′, eff(𝑒),↣,V)

Suppose eff(𝑒) = 𝛿 . By unfolding followTS, we want to prove:

∀𝛿 ′. 𝛿 ′ ∈ V(S′) =⇒ ¬(𝛿 ↣ 𝛿 ′)

By contradiction. Suppose there exists 𝛿 ′ such that 𝛿 ′ ∈ V(S′) and 𝛿 ↣ 𝛿 ′.
From wfV𝜓 (V), we can prove:

∃𝑒 ′. (𝑒 ′ ∈ E ′′) ∧ eff(𝑒 ′) = 𝛿 ′.

Thus we know (𝑒 ′, 𝑒) ∈ ar. Also we know

{𝑒, 𝑒 ′} ⊆ orig(E).

Since TS↣E ⊆ ar, we know

(𝑒, 𝑒 ′) ∈ ar.

So we get a contradiction. □

Lemma 78. If

1. E0 ∈ T (Π,S0), ⌊E⌋ ⊆ orig(E0), exec_st(S, E) = S′
,

2. execFollowTS(S, E,↣,V),𝜓 (S) = S𝑎 ,

3. 𝜓 ⇒ 𝜑 , lockStep-TS𝜑 (Π, Γ,↣,V),
then 𝜑 (S′) = aexecST(Γ,S𝑎, E).

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

Proof. By induction over the length 𝑛 of E.
• 𝑛 = 0. Trivial.

• 𝑛 =𝑚 + 1. Suppose E = E ′++[𝑒]. Since E0 ∈ T (Π,S0) and ⌊E⌋ ⊆ orig(E0), we can suppose 𝑒 = (mid, t, (𝑓 , 𝑛, 𝑛′, 𝛿)). So
validΠ (𝑓 , 𝑛, 𝛿).
Since execFollowTS(S, E,↣,V), we know execFollowTS(S, E ′,↣,V). By the induction hypothesis, we know

𝜑 (exec_st(S, E ′)) = aexecST(Γ,S𝑎, E ′).
Suppose S′′ = exec_st(S, E ′) and S′′

𝑎 = aexecST(Γ,S𝑎, E ′). So 𝜑 (S′′) = S′′
𝑎 .

Since exec_st(S, E) = S′
, we know

𝛿 (S′′) = S′
.

Since execFollowTS(S, E,↣,V), we know
followTS(S′′, 𝛿,↣,V).

From lockStep-TS𝜑 (Π, Γ,↣,V), we know there exists S′
𝑎 such that

𝜑 (S′) = S′
𝑎 and Γ(𝑓 , 𝑛) (S′′

𝑎) = (_,S′
𝑎).

Thus 𝜑 (S′) = aexecST(Γ,S𝑎, E).
Thus we are done. □

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

1 var current;

2 operation read(){
3 return current;
4 gen_eff IdEff;
5 }

6 operation inc(){
7 return;
8 gen_eff Inc();
9 }

10 effector Inc(){
11 current := current + 1;
12 }

13 operation dec(){
14 return;
15 gen_eff Dec();
16 }

17 effector Dec(){
18 current := current - 1;
19 }

Figure 34. The Replicated Counters

H Examples of CRDT Verification

By applying our proof method, we have verified nine CRDT algorithms taken from [19]. They are the replicated counter, the

grow-only set, the last-writer-wins (LWW) register, the LWW-element set, the 2P set, the replicated growable array (RGA), the

continuous sequence, the add-wins set and the remove-wins set. The first seven are verified using CRDT-TS. The add-wins set
and the remove-wins set are verified in Section I.

Before giving the proofs of these algorithms, we first present a specific instantiation of CRDT-TS, called CRDT-S. With

CRDT-S we can already verify replicated counter and the grow-only set.

CRDT-S: a special case of CRDT-TS. When no operations are conflicting, we can verify the CRDT algorithms by letting ↣
be ∅ and lettingV be 𝜆S. ∅. Then CRDT-TS is reduced to the following CRDT-S.

no-conflict(Γ, ⊲⊳) iff

∀𝑓1, 𝑛1, 𝑓2, 𝑛2. (𝑓1, 𝑛1) ∈ dom(Γ) ∧ (𝑓2, 𝑛2) ∈ dom(Γ) =⇒ ¬(Γ |= (𝑓1, 𝑛1) ⊲⊳ (𝑓2, 𝑛2))

Definition 79 (Simple Lock-Step 𝜑-Preservation). lockStep-S𝜑 (Π, Γ) iff
∀𝑓 , 𝑛, 𝛿 . validΠ (𝑓 , 𝑛, 𝛿)
=⇒ ∀S,S′,S𝑎 . 𝜑 (S) = S𝑎 ∧ 𝛿 (S) = S′

=⇒ ∃S′
𝑎 . 𝜑 (S′) = S′

𝑎 ∧ Γ(𝑓 , 𝑛) (S𝑎) = (_,S′
𝑎)

Definition 80 (Simple CRDTs). CRDT-S𝜓,𝜑 (Π, Γ) iff

(𝜓 ⇒ 𝜑) ∧ effComm𝜑 ∧ sameRVal𝜑 (Π, Γ) ∧ lockStep-S𝜑 (Π, Γ)

Theorem 81. If CRDT-S𝜓,𝜑 (Π, Γ) and no-conflict(Γ, ⊲⊳), then ACC𝜓,𝜑 (Π, (Γ, ⊲⊳)).

Proof. We first prove CRDT-TS𝜓,𝜑 (Π, Γ) by letting ↣ be ∅ and lettingV be 𝜆S. ∅. By Theorem 8, we are done. □

H.1 The Replicated Counters

Fig. 34 shows the implementation Πcounter of the replicated counter with both inc and dec operations. The specification Γcounter
is the same as the one for sequential counters, i.e.,

INC(){x:=x+1} and DEC(){x:=x-1}.

The conflicting relation ⊲⊳ for counters is empty, so no-conflict(Γcounter, ⊲⊳) holds. We also let both 𝜑 and 𝜓 relate S and S𝑎

when S(current) = S𝑎 (x) holds.
We can prove all the conditions in CRDT-S𝜓,𝜑 (Πcounter, Γcounter). Then, by Theorem 81, we get ACC𝜓,𝜑 (Πcounter, (Γcounter, ⊲⊳)).

H.2 The Grow-Only Sets

Fig. 35 shows the implementation Πadd of the grow-only set with add and lookup operations. The specification Γadd is the
same as the one for sequential sets in Fig. 36:

LOOKUP(e){ return e ∈ S; } ADD(e){ S:=S ∪ {e}; }

The conflicting relation ⊲⊳ for Γadd is empty, so no-conflict(Γadd, ⊲⊳) holds. We also let both 𝜑 and 𝜓 relate S and S𝑎 when

S(A) = S𝑎 (S) holds.
We can prove all the conditions in CRDT-S𝜓,𝜑 (Πadd, Γadd). Then, we get ACC𝜓,𝜑 (Πadd, (Γadd, ⊲⊳)) by Theorem 81.

H.3 The Last-Writer-Wins (LWW) Register

Fig. 37 shows the LWW register implementation Πreg. The specification Γreg is the same as the one for sequential registers:

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

1 var A := ∅;

2 operation lookup(e){
3 return (e ∈ A);
4 gen_eff IdEff;
5 }

6 operation add(e){
7 return;
8 gen_eff Add(e);
9 }

10 effector Add(e){
11 A := A ∪ {e};
12 }

Figure 35. The Grow-Only Sets

LOOKUP(e){
return (e ∈ S);

}

ADD(e){
S := S ∪ {e};

}

REMOVE(e){
S := S - {e};

}

𝛼 ⊲⊳ 𝛼 ′
iff ∃a. 𝛼 = add(a) ∧ 𝛼 ′ = rmv(a) ∨ 𝛼 = rmv(a) ∧ 𝛼 ′ = add(a)

Figure 36. The Specification for Sets

1 var x := 0, ts := (0,cid);

2 operation read(){
3 return x;
4 gen_eff IdEff;
5 }

6 operation write(v){
7 local i;
8 i := (ts.fst+1, cid);
9 return;
10 gen_eff Write(v, i);
11 }

12 effector Write(v, i){
13 if (i > ts) {
14 x := v;
15 ts := i;
16 }
17 }

Figure 37. The Last-Writer-Wins Registers

READ(){ return x; } WRITE(v){ x := v; }

The conflicting relation ⊲⊳ for Γreg relates write operations:

𝛼 ⊲⊳ 𝛼 ′
iff ∃v, v’. 𝛼 = write(v) ∧ 𝛼 ′ = write(v’)

We let 𝜑 relate states S and S𝑎 where the values of x are the same. The initial state mapping𝜓 is stronger than 𝜑 . It additionally

requires that ts in S contains the initial (smallest) time-stamp (0, cid).
𝜑 (S) = S𝑎 iff S(x) = S𝑎 (x)
𝜓 (S) = S𝑎 iff (S(x) = S𝑎 (x)) ∧ (S(ts) = (0, cid))

To verify the algorithm, we ask users to provide ↣ andV . They can be defined as follows.

𝛿 ↣ 𝛿 ′ iff ∃v, i, v’, i’. (𝛿 = Write(v,i)) ∧ (𝛿 ′ = Write(v',i')) ∧ (i < i’)
V(S) def

= {𝛿 | ∃v, i. (S(x) = v) ∧ (S(ts) = i > (0, 0)) ∧ (𝛿 = Write(v,i))}
Here↣ orders two Write effectors using their time-stamps, andV(S) returns the most recent Write which leads to S. We

can prove all the conditions in CRDT-TS𝜓,𝜑 (Πreg, (Γreg, ⊲⊳)). By Theorem 8, we get ACC𝜓,𝜑 (Πreg, (Γreg, ⊲⊳)).

H.4 The LWW-Element Sets

Fig. 38 shows the implementation ΠLWWES of the LWW-element set with add, remove and lookup operations. Its specification

Γset is shown in Fig. 36, which is the same for the sequential sets. The conflicting relation ⊲⊳ for Γset is shown at the bottom

of Fig. 36, which relates add and rmv on the same element. We let 𝜑 relate states S and S𝑎 such that S𝑎 (S) contains all the
elements that can be looked up in S. We let𝜓 relate the initial states S and S𝑎 where A, R and S at the two levels are all empty.

𝜑 (S) = S𝑎 iff S𝑎 (S) = {e | ∃𝑖 . (e, 𝑖) ∈ S(A) ∧ ∀𝑖 ′ > 𝑖 . (e, 𝑖 ′) ∉ S(R)}
𝜓 (S) = S𝑎 iff S(A) = S(R) = S𝑎 (S) = ∅

To verify the algorithm, we ask users to provide ↣ andV . They can be defined as follows.

𝛿 ↣ 𝛿 ′ iff ∃i, i’. (𝛿 = _(_,i)) ∧ (𝛿 ′ = _(_,i')) ∧ (i < i’)
V(S) def

= {𝛿 | ∃e, i. ((e, i) ∈ S(A)) ∧ (𝛿 = Add(e,i)) ∨ ((e, i) ∈ S(R)) ∧ (𝛿 = Rmv(e,i))}

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

1 var A := ∅, R := ∅;
2 var ts := (0, cid);

3 operation lookup(e){
4 return (∃𝑖 . (e, 𝑖) ∈ A ∧ ∀𝑖 ′ > 𝑖 . (e, 𝑖 ′) ∉ R);
5 gen_eff IdEff;
6 }

7 operation add(e){
8 local i;
9 i := (ts.fst + 1, cid);
10 return;
11 gen_eff Add(e, i);
12 }

13 effector Add(e, i){
14 A := A ∪ {(e, i)};
15 if (ts < i) ts := i;
16 }

17 operation remove(e){
18 assume (lookup(e));
19 local i;
20 i := (ts.fst + 1, cid);
21 return;
22 gen_eff Rmv(e, ts);
23 }

24 effector Rmv(e, i){
25 R := R ∪ {(e, i)};
26 if (ts < i) ts := i;
27 }

Figure 38. The LWW-Element Sets

1 var A := ∅, R := ∅;

2 operation lookup(e){
3 return (e ∈ A && e ∉ R);
4 gen_eff IdEff;
5 }

6 operation add(e){
7 assume (e ∉ R);
8 return;
9 gen_eff Add(e);

10 }

11 effector Add(e){
12 A := A ∪ {e};
13 }

14 operation remove(e){
15 assume (lookup(e));
16 return;
17 gen_eff Rmv(e);
18 }

19 effector Rmv(e){
20 R := R ∪ {e};
21 }

Figure 39. The 2P-Set

Here ↣ orders two effectors (Add or Rmv) using their time-stamps, and V(S) returns all the applied Add and Rmv which leads

to S. We can prove all the conditions in CRDT-TS𝜓,𝜑 (ΠLWWES, (Γset, ⊲⊳)). By Theorem 8, we get ACC𝜓,𝜑 (ΠLWWES, (Γset, ⊲⊳)).

H.5 The 2P-Set

Fig. 39 shows the implementation Π2PSet of the 2P set with add, remove and lookup operations. The specification Γset and the

conflicting relation ⊲⊳ are shown in Fig. 36. We let 𝜑 relate states S and S𝑎 such that S𝑎 (S) contains all the elements that can

be looked up in S. We let𝜓 relate the initial states S and S𝑎 where A, R and S at the two levels are all empty.

𝜑 (S) = S𝑎 iff S(A) − S(R) = S𝑎 (S)
𝜓 (S) = S𝑎 iff S(A) = S(R) = S𝑎 (S) = ∅

The 2P-set algorithm assumes that an element is never added again after it is removed [19]. So at line 7 in Fig. 39, we assume

that an add(e) can only happen if remove(e) has not been applied. Then we can follow the time-stamp pattern of CRDTs to

verify the algorithm.

To verify the algorithm, we ask users to provide ↣ andV . They can be defined as follows.

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

1 var N := ∅, T := ∅;

2 operation read(){
3 return orderedSeq(N,T);
4 gen_eff IdEff;
5 }

6 operation addAfter(a, b){
7 assume(a = ◦ ∨
8 a ≠ ◦ ∧ (_,_,a) ∈ N ∧ a ∉ T);
9 local i, j, k;
10 i := getTagReal(a, N);
11 k := getNextTagReal(i, N);
12 j := allocateRealBetween(i, k);
13 return;
14 gen_eff AddAfter(a, (j, cid), b);
15 }

16 effector AddAfter(a, tag, b){
17 N := N ∪ {(a, tag, b)};
18 }

19 operation remove(a){
20 assume((_,_,a) ∈ N
21 ∧ a ∉ T ∧ a ≠ ◦);
22 return;
23 gen_eff Rmv(a);
24 }

25 effector Rmv(a){
26 T := T ∪ {a};
27 }

Figure 40. The Continuous Sequence

𝛿 ↣ 𝛿 ′ iff ∃e. (𝛿 = Add(e)) ∧ (𝛿 ′ = Rmv(e))
V(S) def

= {𝛿 | ∃e. (e ∈ S(A)) ∧ (𝛿 = Add(e)) ∨ (e ∈ S(R)) ∧ (𝛿 = Rmv(e))}
Here↣ orders Add before the corresponding Rmv, andV(S) returns all the applied Add and Rmv which leads to S. We can

prove all the conditions in CRDT-TS𝜓,𝜑 (Π2PSet, (Γset, ⊲⊳)). By Theorem 8, we get ACC𝜓,𝜑 (Π2PSet, (Γset, ⊲⊳)).

H.6 The Replicated Growable Array (RGA)

We verify the RGA algorithm ΠRGA in Fig. 2
2
. We prove that the RGA algorithm ΠRGA is ACC with respect to the following list

specification Γlist, which uses L for the list:

Γlist (READ) (S𝑎)
def

= S𝑎 (L)

Γlist (ADDAFTER, (a, b)) (S𝑎)
def

=

{
S𝑎{L ; 𝑙 ′++[a]++[b]++𝑙 ′′} , if S𝑎 (L) = 𝑙 ′++[a]++𝑙 ′′
S𝑎 , if a ∉ S𝑎 (L)

Γlist (RMV, a) (S𝑎)
def

=

{
S𝑎{L ; 𝑙 ′++𝑙 ′′} , if S𝑎 (L) = 𝑙 ′++[a]++𝑙 ′′
S𝑎 , if a ∉ S𝑎 (L)

The conflicting relation ⊲⊳ for Γlist is shown in Sec. 4.

The initial state relation𝜓 relates empty lists:

𝜓 (S) = S𝑎 iff S(N) = ∅ ∧ S(T) = ∅ ∧ S(ts) = (0, _) ∧ S𝑎 (L) = 𝜖

𝜑 (S) = S𝑎 iff (traverse(S(N),S(T)) = S𝑎 (L)) ∧ (S(ts) = max_ts(S(N)))
Here we max_ts to get the maximal time-stamp associated with a node in N. Then, 𝜑 not only maps the concrete time-stamped

tree to the abstract list, but also ensures that ts is always the newest time-stamp. The latter is the key to proving that a newly

generated AddAfter effector always has the greatest time-stamp, and hence satisfies followTS (see the first item in Def. 63).

We instantiateV and↣ as follows.

𝛿 ↣ 𝛿 ′ iff ∃a, i, b, a’, i’, b’. (𝛿 = AddAfter(a,i,b))
∧ ((𝛿 ′ = AddAfter(a',i',b')) ∧ (i < i’) ∨ (𝛿 ′ = Rmv(a)) ∨ (𝛿 ′ = Rmv(b)))

V(S) def

= {𝛿 | ∃a, i, b. ((a, i, b) ∈ S(N)) ∧ (𝛿 = AddAfter(a,i,b))
∨ ∃a. (a ∈ S(T)) ∧ (𝛿 = Rmv(a))}

Here𝛿↣𝛿 ′ holds between AddAfter effectorswhich have time-stamps. Note Rmv(a) (or Rmv(b)) conflicts with AddAfter(a,_,b),
so we also let 𝛿 ↣ 𝛿 ′ hold between an AddAfter and a Rmv.

We prove all the conditions in CRDT-TS𝜓,𝜑 (ΠRGA, (Γlist, ⊲⊳)). Then we get ACC𝜓,𝜑 (ΠRGA, (Γlist, ⊲⊳)) by Theorem 8.

H.7 The Continuous Sequence

The idea of the continuous sequence algorithm [19] is to assign elements unique identifiers in a dense identifier space such as

the reals. So a unique identifier can always be allocated between any two given identifiers.

Our code is shown in Figure 40. We revise the original code in [19] in the following way:

2
The assume statement uses blocking semantics.

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

• We provide the operation addAfter instead of the operation addBetween, so that we can use the same specification as

RGA.

• Our remove operation does not directly remove the element from the set N. Instead, we use a tombstone set T to record

the elements that are removed. We do this change for two reasons.

• First, the algorithm requires that the identifiers allocated for elements should be unique. To ensure the uniqueness,

we should find some way to remember the identifiers that have been allocated (no matter whether the elements are

removed or not). A natural way might be using a tombstone set T for remove, and keeping all the elements (and their

identifiers) in the set N.
• Second, the original algorithm assumes causal delivery. By using the tombstone set T for remove, we no longer need

to assume causal delivery.

The read operation calls the function orderedSeq(N, T) (line 3 in Figure 40). It uses the unique identifiers to order the

elements in N but not in T, and returns the ordered sequence of elements.

The algorithm requires an addAfter(a, b) operation to generate a unique identifier tag for b, and the effector should add

(b, tag) to N. In our implementation in Figure 40, we allocate the appropriate real number j and let the identifier tag be a
pair (j, cid) to ensure its uniqueness. Here getTagReal(a, N) (line 10) returns the real number in the identifier of a in N,
getNextTagReal(i, N) (line 11) returns the smallest real number that is greater than i in N, and allocateRealBetween(i, k)
(line 12) returns an arbitrary real number between i and k.

Our effector AddAfter actually adds (a, tag, b) to N (see line 17). That is, each added element b is also associated with

the element a after which the client calls addAfter to add b. (We call this element a the “intended preceding” element of b.)
This information is not useful in the algorithm itself, but helps us specify V . It can be viewed as ghost state and is introduced

for verification purpose only.

We prove that the continuous sequence algorithm Πcont is ACC with respect to the following list specification Γlist, which
uses L for the list. It is the same specification as for RGA.

Γlist (READ) (S𝑎)
def

= S𝑎 (L)
Γlist (ADDAFTER, (a, b)) (S𝑎)

def

= S𝑎{L ; 𝑙 ′++[a]++[b]++𝑙 ′′} , if S𝑎 (L) = 𝑙 ′++[a]++𝑙 ′′

Γlist (RMV, a) (S𝑎)
def

= S𝑎{L ; 𝑙 ′++𝑙 ′′} , if S𝑎 (L) = 𝑙 ′++[a]++𝑙 ′′
The conflicting relation ⊲⊳ for Γlist is shown in Sec. 4.

The initial state relation𝜓 relates empty lists:

𝜓 (S) = S𝑎 iff S(N) = ∅ ∧ S(T) = ∅ ∧ S𝑎 (L) = 𝜖

𝜑 (S) = S𝑎 iff (orderedSeq(S(N),S(T)) = S𝑎 (L))
To verify the algorithm, we ask users to provide ↣ andV . They can be defined as follows.

𝛿 ↣ 𝛿 ′ iff ∃a, tag, b. (𝛿 = AddAfter(a,tag,b))
∧ (∃tag’, b’. (𝛿 ′ = AddAfter(a,tag',b')) ∧ (tag > tag’) ∨ (𝛿 ′ = Rmv(b)))

V(S) def

= {𝛿 | ∃a, tag, b. ((a, tag, b) ∈ S(N)) ∧ (𝛿 = AddAfter(a,tag,b))
∨ ∃a. (a ∈ S(T)) ∧ (𝛿 = Rmv(a))}

The definition of 𝛿 ↣ 𝛿 ′ may be interesting. It holds between any two AddAfter effectors 𝛿 and 𝛿 ′, which have the same

“intended preceding” element a. Then AddAfter(a,tag,b) ↣ AddAfter(a,tag',b'), (which means addAfter(a,b) should
be applied before addAfter(a,b') in abstract executions), if the unique identifier tag for b is greater than tag’ for b’.

We can prove that a newly generated AddAfter(a, tag, b) effector always has a smaller real number identifier than any

other AddAfter(a, tag', b') that has been applied before, i.e., tag < tag' must hold, and hence satisfies followTS.
We also let 𝛿 ↣ 𝛿 ′ hold between an AddAfter and a Rmv, as for the RGA algorithm.

We prove all the conditions in CRDT-TS𝜓,𝜑 (Πcont, (Γlist, ⊲⊳)). So we get ACC𝜓,𝜑 (Πcont, (Γlist, ⊲⊳)) by Theorem 8.

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

✂ ∈ P (Effector × Effector) (the canceled-by order)

+ ∈ P (Effector) (the winner set)

− ∈ P (Effector) (the loser set)

𝛿 ′ ⊲⊳Π,Γ 𝛿 iff ∀𝑓 , 𝑛, 𝑓 ′, 𝑛′. validΠ (𝑓 , 𝑛, 𝛿) ∧ validΠ (𝑓 ′, 𝑛′, 𝛿 ′) =⇒ (𝑓 , 𝑛) ⊲⊳Γ (𝑓 ′, 𝑛′)
𝛿 ′ ◀Π,Γ 𝛿 iff ∀𝑓 , 𝑛, 𝑓 ′, 𝑛′. validΠ (𝑓 , 𝑛, 𝛿) ∧ validΠ (𝑓 ′, 𝑛′, 𝛿 ′) =⇒ (𝑓 , 𝑛) ◀Γ (𝑓 ′, 𝑛′)
𝛿 ′ ▷Π,Γ 𝛿 iff ∀𝑓 , 𝑛, 𝑓 ′, 𝑛′. validΠ (𝑓 , 𝑛, 𝛿) ∧ validΠ (𝑓 ′, 𝑛′, 𝛿 ′) =⇒ (𝑓 , 𝑛) ▷Γ (𝑓 ′, 𝑛′)
loseAtΠ (𝛿,S,V, +,−, ✂, (Γ, ⊲⊳)) iff 𝛿 ∈ − ∧ ∃𝛿 ′. 𝛿 ′ ∈ V(S) ∧ 𝛿 ′ ∈ + ∧ (𝛿 ′ ⊲⊳Π,Γ 𝛿) ∧ ¬(𝛿 ′ ✂𝛿)

Figure 41. Auxiliary Definitions for CRDTs with the Cancel-Win Pattern.

I Verifying Add-Wins Sets and Remove-Wins Sets

As we explained, algorithms like add-wins sets and remove-wins sets have more relaxed behaviors and cannot satisfy ACC.
Their correctness XACC relies on causal delivery and the cancellation property of abstract operations. In this section we

explain our proof method for XACC, and apply the proof method to verify add-wins sets and remove-wins sets.

Our proof method is based on the following properties of the add-wins sets and remove-wins sets: (⊲⊳ = (▷ ∪ ▷−1)) and
cancel(▷−1).

I.1 Proof Method

We ask users to provide ✂,V , + and − to facilitate the proofs. Fig. 41 shows the types of ✂, + and −.

We introduce ✂as the concrete implementation of ▷. It also specifies the particular order between non-commutative

effectors in add-wins sets and remove-wins sets. Unlike RGA, not all effectors are commutative now. If (e,i) ∈ R holds,

Add(e,i) (1) and Rmv(R) (2) are not commutative. But in this case, 1 must happen before 2 . Under causal delivery, all the

nodes execute the two effectors in the same order 1 2 , so the algorithm can still ensure SEC. Intuitively, when we map the

concrete executions to the abstract level, we should execute the corresponding abstract operations in the same particular order.

We introduce ✂(a partial order between effectors) to specify the particular order between non-commutative effectors.

As in CRDT-TS in Sec. 8, we ask users to provide the view function V . In the add-wins sets, we let an add win over a

concurrent remove only if the add can be “seen” (V) from the state at which the remove applies.

As the concrete implementation of the strategy “𝑋 wins 𝑌 ”, we ask users to provide two disjoint sets + and − of effectors,

where the effectors in + could win over the effectors in −, but not the other way round. For the add-wins set, + includes all the

Add effectors, while − includes all the Rmv effectors. For the remove-wins set, + is the set of Rmv effectors, while − is the set of

Add effectors.

Our main proof obligations are sameRVal𝜑 (Π, Γ) and step-CW𝜑 (Π, (Γ, ⊲⊳),V, +,−, ✂), formulated below (except that

sameRVal is in Sec. 8). We also need a set of conditions, uniqView, wfC and wfWL, to check well-formedness of the user-

specifiedV , ✂, + and −.

Definition 82 (𝜑-Preservation for CRDT-CW). step-CW𝜑 (Π, (Γ, ⊲⊳),V, +,−, ✂) iff
1. If 𝛿 loses at S, then it has no effect at the abstract level.

∀𝑓 , 𝑛, 𝛿,S,S′,S𝑎 . validΠ (𝑓 , 𝑛, 𝛿) ∧ 𝜑 (S) = S𝑎 ∧ 𝛿 (S) = S′ ∧ loseAtΠ (𝛿,S,V, +,−, ✂, (Γ, ⊲⊳))
=⇒ 𝜑 (S′) = S𝑎

2. If 𝛿 does not lose at S, then it corresponds to executing the related abstract operation.

∀𝑓 , 𝑛, 𝛿,S,S′,S𝑎 . validΠ (𝑓 , 𝑛, 𝛿) ∧ 𝜑 (S) = S𝑎 ∧ 𝛿 (S) = S′ ∧ ¬loseAtΠ (𝛿,S,V, +,−, ✂, (Γ, ⊲⊳))
=⇒ ∃S′

𝑎 . 𝜑 (S′) = S′
𝑎 ∧ Γ(𝑓 , 𝑛) (S𝑎) = (_,S′

𝑎)
Here loseAtΠ (𝛿,S,V, +,−, ✂, (Γ, ⊲⊳)) is defined in Fig. 41, which says 𝛿 is won by some effector at state S. In the definition,

we lift ⊲⊳ to effectors.

Definition 83 (Unique V). uniqView𝜓,Π (V) iff (here we write 𝛿 ∈ V for ∃S. 𝛿 ∈ V(S))
1. wfV𝜓 (V) (see Def. 62) holds.
2. A “seeable” effector is generated at a unique state. That is,

∀𝛿,S,S′. (𝛿 ∈ V) ∧ genAtΠ (S, 𝛿) ∧ genAtΠ (S′, 𝛿) =⇒ S = S′

3. The state generating a “seeable” effector cannot appear twice. That is, there exist an irreflexive relation ≺ over states,

such that

∀𝛿,S,S′. (𝛿 ∈ V) ∧ genAtΠ (S, 𝛿) ∧ (𝛿 (S) = S′) =⇒ S ≺ S′

∀S,S′,S′′, 𝛿 . (S ≺ S′) ∧ (𝛿 (S′) = S′′) =⇒ S ≺ S′′

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

1 var S := ∅;
2 var u := (0,cid);

3 operation lookup(e){
4 return (∃w. (e,w) ∈ S);
5 gen_eff IdEff;
6 }

7 operation add(e){
8 return;
9 gen_eff Add(e, u);

10 }

11 effector Add(e, i){
12 S := S ∪ {(e, i)};
13 if (i.snd = cid)
14 u:=(i.fst+1,cid);
15 }

16 operation remove(e){
17 assume (lookup(e));
18 local R;
19 R := {(e,w)|(e,w) ∈ S};
20 return;
21 gen_eff Rmv(R);
22 }

23 effector Rmv(R){
24 S := S - R;
25 }

Figure 42. The Add-Wins Set

LOOKUP(e){
return (e ∈ S);

}

ADD(e){
S := S ∪ {e};

}

REMOVE(e){
S := S - {e};

}

𝛼 ⊲⊳ 𝛼 ′
iff ∃a. 𝛼 = add(a) ∧ 𝛼 ′ = rmv(a) ∨ 𝛼 = rmv(a) ∧ 𝛼 ′ = add(a)

𝛼 ◀ 𝛼 ′
iff ∃a. 𝛼 = rmv(a) ∧ 𝛼 ′ = add(a)

𝛼 ▷ 𝛼 ′
iff ∃a. 𝛼 = add(a) ∧ 𝛼 ′ = rmv(a)

Figure 43. The Specification for Add-Wins Sets

For add-wins sets, this condition captures the fact that the tags for add operations are uniquely generated.

Definition 84 (Well-Formed ✂). wfCΠ (✂,V, (Γ,▷)) iff the following hold:

1. If 𝛿 ′ ✂𝛿 , then 𝛿 ′ must be seen at the state generating 𝛿 .

∀S, 𝛿 . genAtΠ (S, 𝛿) =⇒ ∀𝛿 ′. (𝛿 ′ ✂𝛿) =⇒ 𝛿 ′ ∈ V(S)
2. 𝛿 ′ ✂𝛿 if and only if 𝛿 ′ disappears after a step of 𝛿 .

∀𝛿, 𝛿 ′,S,S′. (𝛿 (S) = S′) ∧ (𝛿 ′ ∈ V(S)) =⇒ (𝛿 ′ ✂𝛿 ⇐⇒ 𝛿 ′ ∉ V(S′))
3. ✂corresponds to the abstract canceled-by relation: ∀𝛿1, 𝛿2. (𝛿1 ✂𝛿2) =⇒ (𝛿1 ▷Π,Γ 𝛿2).

Definition 85 (Well-Formed + and −). wfWLΠ (+,−,V, (Γ, ⊲⊳,◀,▷)) iff the following hold:

1. Conflicts are between + and −: ∀𝛿1, 𝛿2. (𝛿1 ⊲⊳Π,Γ 𝛿2) =⇒ (𝛿1 ∈ + ∧ 𝛿2 ∈ −) ∨ (𝛿2 ∈ + ∧ 𝛿1 ∈ −).
2. The won-by relation ◀ is between − and +: ∀𝛿1, 𝛿2. (𝛿1 ◀Π,Γ 𝛿2) =⇒ (𝛿1 ∈ − ∧ 𝛿2 ∈ +).
3. The canceled-by relation ▷ is between + and −: ∀𝛿1, 𝛿2 . (𝛿1 ▷Π,Γ 𝛿2) =⇒ (𝛿1 ∈ + ∧ 𝛿2 ∈ −).
4. A + effector is canceled by a − effector on the same element. That is,

∀𝛿1, 𝛿2 . (𝛿1 (⊲⊳Π,Γ)+ 𝛿2) ∧ (𝛿1 ∈ +) ∧ (𝛿2 ∈ −) =⇒ (𝛿1 ▷Π,Γ 𝛿2)
5. Winners can always be seen after applied: ∀𝛿,S,S′. (𝛿 ∈ +) ∧ (𝛿 (S) = S′) =⇒ 𝛿 ∈ V(S′).
6. If 𝛿 is generated at S, then 𝛿 does not lose at S. That is,

∀𝛿,S. genAtΠ (S, 𝛿) =⇒ ¬loseAtΠ (𝛿,S,V, +,−, ✂, (Γ, ⊲⊳))
7. + and − are disjoint: + ∩ − = ∅.

Definition 86 (CRDTs with Cancel-Win). CRDT-CW𝜓,𝜑 (Π, (Γ, ⊲⊳,◀,▷)) iff

∃+,−, ✂,V . sameRVal𝜑 (Π, Γ) ∧ step-CW𝜑 (Π, (Γ, ⊲⊳),V, +,−, ✂)
∧ uniqView𝜓,Π (V) ∧ wfCΠ (✂,V, (Γ,▷)) ∧ wfWLΠ (+,−,V, (Γ, ⊲⊳,◀,▷))

Theorem 87. Suppose nonComm(Γ, ⊲⊳), (⊲⊳ = (▷ ∪ ▷−1)), cancel(▷) and cancel(▷−1). Then,
CRDT-CW𝜓,𝜑 (Π, (Γ, ⊲⊳,◀,▷)) =⇒ XACC𝜓,𝜑 (Π, (Γ, ⊲⊳,◀,▷)).

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

I.2 Applying the Proof Method to Add-Wins Sets and Remove-Wins Sets

I.2.1 The Add-Wins Set Below we verify the add-wins sets [19] Πawset in Fig. 42. Its specification (Γset, ⊲⊳,◀,▷) is shown in

Fig. 43. We let𝜓 relate the initial states S and S𝑎 where the sets at the two levels are both empty.

𝜓 (S) = S𝑎 iff S(S) = ∅ ∧ S𝑎 (S) = ∅
𝜑 (S) = S𝑎 iff ⌊S(S)⌋ = S𝑎 (S)

Here ⌊S⌋ returns a set consisting of elements which are projected from the tagged elements in the add-wins set S.
To verify the algorithm, we first define ✂,V , + and − as follows.

𝛿 ✂𝛿 ′ iff ∃e, i, R. (𝛿 = Add(e,i)) ∧ (𝛿 ′ = Rmv(R)) ∧ ((e, i) ∈ R) ∧ (⌊R⌋ = {e})
V(S) def

= {𝛿 | ∃e, i. ((e, i) ∈ S(S)) ∧ (𝛿 = Add(e,i))}
+

def

= {𝛿 | ∃e, i. 𝛿 = Add(e,i)}
−

def

= {𝛿 | ∃R. 𝛿 = Rmv(R)}
The effector 𝛿 ′ cancels 𝛿 , i.e., 𝛿 ✂𝛿 ′, if 𝛿 and 𝛿 ′ are Add and Rmv of the same element respectively, and 𝛿 is visible to 𝛿 ′. An
effector 𝛿 can be seen byV at the state S, i.e., 𝛿 ∈ V(S), if 𝛿 is an Add(e, i) and (e, i) is in the set in S. The sets + and −

contain Add and Rmv effectors respectively.

We can prove all the conditions in CRDT-CW𝜓,𝜑 (Π, (Γ, ⊲⊳,◀,▷)). By Theorem 87, we get XACC𝜓,𝜑 (Πawset, (Γset, ⊲⊳,◀,▷)).

1 var S := ∅;
2 var u := (0, cid);

3 operation lookup(e){
4 return (∃w. (e, true, w) ∈ S ∧ ¬(∃w’. (e, false, w’) ∈ S));
5 gen_eff IdEff;
6 }

7 operation add(e){
8 local R;
9 R := {elem | elem = (e, _, _) ∧ elem ∈ S};
10 return;
11 gen_eff Add(e, u, R);
12 }

13 effector Add(e, i, R){ // Assume causal delivery
14 S := S - R;
15 if (¬(∃w’. (e, false, w’) ∈ S))
16 S := S ∪ {(e, true, i)};
17 if (i.snd = cid) u := (i.fst + 1, cid); // set to the next fresh tag
18 }

19 operation remove(e){
20 assume (lookup(e));
21 return;
22 gen_eff Rmv(e, u);
23 }

24 effector Rmv(e, i){ // Assume causal delivery
25 S := S ∪ {(e, false, i)};
26 if (i.snd = cid) u := (i.fst + 1, cid); // set to the next fresh tag
27 }

Figure 44. The Remove-Wins Set

I.2.2 The Remove-Wins Set Figure 44 shows the remove-wins set implementation Πrwset. Every element elem is in the

form of (e, b, u), where b is boolean.

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

Its specification Γset and conflicting relation ⊲⊳ are the same as the ones for the add-wins set (see Fig. 43), but its ◀ and ▷ are

the reverse:

𝛼 ◀ 𝛼 ′
iff ∃a. 𝛼 = add(a) ∧ 𝛼 ′ = rmv(a)

𝛼 ▷ 𝛼 ′
iff ∃a. 𝛼 = rmv(a) ∧ 𝛼 ′ = add(a)

We let 𝜑 relates S and S𝑎 such that S𝑎 (S) contains all the elements that can be looked up from S. And𝜓 still relates the initial

states S and S𝑎 where the sets at the two levels are both empty.

𝜓 (S) = S𝑎 iff S(S) = ∅ ∧ S𝑎 (S) = ∅
𝜑 (S) = S𝑎 iff S𝑎 (S) = {e | ∃w. (e, true, w) ∈ S(S) ∧ ¬(∃w’. (e, false, w’) ∈ S(S))}

To verify the algorithm, we first define ✂,V , + and − as follows.

𝛿 ✂𝛿 ′ iff ∃e, i, i’, R’. (𝛿 = Rmv(e, i)) ∧ (𝛿 ′ = Add(e, i', R'))
∧ ((e, false, i) ∈ R’)

V(S) def

= {𝛿 | ∃e, i. (e, false, i) ∈ S(S) ∧ 𝛿 = Rmv(e, i)}

+
def

= {𝛿 | ∃e, i. 𝛿 = Rmv(e, i)}
−

def

= {𝛿 | ∃e, i, R. 𝛿 = Add(e, i, R)}
For the remove-wins set, we let an Add effector cancels a Rmv effector, andV gives the Rmv effectors visible in the state. The

sets + and − contain Rmv and Add effectors respectively.

We can prove all the conditions in CRDT-CW𝜓,𝜑 (Πrwset, (Γ, ⊲⊳,◀,▷)). By Theorem 87, we get XACC𝜓,𝜑 (Πrwset, (Γ, ⊲⊳,◀,▷)).

I.3 Soundness of the Proof Method

Proof of Theorem 87. By applying Lemma 89 and Lemma 90. □

Definition 88. E-XACC𝜓,𝜑 (Π, (Γ, ⊲⊳,◀,▷)), iff
∀S,S𝑎, E . E ∈ T (Π,S) ∧ eventualDelivery(E) ∧ causalDelivery(E) ∧𝜓 (S) = S𝑎

=⇒ XACT𝜑 (E,S, (Γ, ⊲⊳,◀,▷))

Lemma 89 (E-XACC implies XACC). If E-XACC𝜓,𝜑 (Π, (Γ, ⊲⊳,◀,▷)), then XACC𝜓,𝜑 (Π, (Γ, ⊲⊳,◀,▷)).

Proof. For any S, S𝑎 and E, if E ∈ T (Π,S), causalDelivery(E) and𝜓 (S) = S𝑎 , we know there exist E ′
and E ′′

such that

E ′ = E++E ′′
, ∀𝑒 ∈ E ′′. is_recv(𝑒),

E ′ ∈ T (Π,S), causalDelivery(E ′) and eventualDelivery(E ′).

By E-XACC𝜓,𝜑 (Π, (Γ, ⊲⊳,◀,▷)), we know

XACT𝜑 (E ′,S, (Γ, ⊲⊳,◀,▷)).

From XACT𝜑 (E ′,S, (Γ, ⊲⊳,◀,▷)), we know there exist ar′
1
, . . . , ar′𝑛 such that, for any t, we have

totalOrdervisible(E′,t) (ar′t),
vis↦−−→
t

E′ ⊆ ar′t, PresvCancel(ar′t, t, E ′, (Γ,▷)), ExecRelated𝜑 (t, (E ′,S), (Γ, ar′t)),
∀t′ ≠ t. RCoh(t,t′) ((ar′t, ar′t′), E ′, (Γ, ⊲⊳,◀,▷)).

Since E ′ = E++E ′′
and ∀𝑒 ∈ E ′′. is_recv(𝑒), we know

visible(E, t) ⊆ visible(E ′, t).

Let art = ar′t |visible(E,t) . From
vis↦−−→
t

E′ ⊆ ar′t, we know

vis↦−−→
t

E ⊆ art.

From PresvCancel(ar′t, t, E ′, (Γ,▷)), we know

PresvCancel(art, t, E, (Γ,▷)).

From ExecRelated𝜑 (t, (E ′,S), (Γ, ar′t)), we know

ExecRelated𝜑 (t, (E,S), (Γ, art)).

For any t′ ≠ t, from RCoh(t,t′) ((ar′t, ar′t′), E ′, (Γ, ⊲⊳,◀,▷)), we know

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

𝑒1 ✂𝑒2 iff eff(𝑒1) ✂eff(𝑒2) 𝑒 ∈ + iff eff(𝑒) ∈ + 𝑒 ∈ − iff eff(𝑒) ∈ −

wfCGenΠ (✂,V) iff ∀S, 𝛿 . genAtΠ (S, 𝛿) =⇒ ∀𝛿 ′. (𝛿 ′ ✂𝛿) =⇒ 𝛿 ′ ∈ V(S)

uniqSeeTΠ,𝜓 (V) iff

∀S, E . E ∈ T (Π,S) ∧ (S |= 𝜓)
=⇒ ∀𝑒1, 𝑒2 . (𝑒1 ∈ E) ∧ (𝑒2 ∈ E) ∧ (eff(𝑒1) = eff(𝑒2)) ∧ (eff(𝑒1) ∈ V)
=⇒ msgid(𝑒1) = msgid(𝑒2)

loserWinnerDisj(+,−) iff + ∩− = ∅

conflictWL(+,−, (Π, Γ, ⊲⊳)) iff

∀𝛿1, 𝛿2 . (𝛿1 ⊲⊳Π,Γ 𝛿2) =⇒ (𝛿1 ∈ + ∧ 𝛿2 ∈ −) ∨ (𝛿2 ∈ + ∧ 𝛿1 ∈ −)

wlConflict(+,−, (Π, Γ, ⊲⊳,▷)) iff ∀𝛿1, 𝛿2 . (𝛿1 (⊲⊳Π,Γ)+ 𝛿2) ∧ (𝛿1 ∈ +) ∧ (𝛿2 ∈ −) =⇒ (𝛿1 ▷Π,Γ 𝛿2)

genNotLose(+,−,V, ✂, (Π, Γ, ⊲⊳)) iff

∀𝛿,S. genAtΠ (S, 𝛿) =⇒ ¬loseAtΠ (𝛿,S,V, +,−, ✂, (Γ, ⊲⊳))

notVCancelee(✂,V) iff ∀𝛿,S,S′. (𝛿 (S) = S′) =⇒ ∀𝛿 ′ ∈ (V(S) − V(S′)) =⇒ 𝛿 ′ ✂𝛿

canceleeNotV(✂,V) iff ∀𝛿, 𝛿 ′,S,S′. (𝛿 (S) = S′) ∧ 𝛿 ′ ∈ V(S) ∧ 𝛿 ′ ✂𝛿 =⇒ 𝛿 ′ ∉ V(S′)

loserGenCancelWinner(✂, +,−,V, (Π, Γ, ⊲⊳)) iff

∀𝛿, 𝛿 ′,S,S′. 𝛿 ∈− ∧ genAtΠ (S, 𝛿) ∧ 𝛿 ′ ∈V(S) ∧ 𝛿 ′ ∈+ ∧ (𝛿 ′ ⊲⊳Π,Γ 𝛿) =⇒ 𝛿 ′ ✂𝛿

winnerSee(+,V) iff ∀𝛿,S,S′. (𝛿 ∈ +) ∧ (𝛿 (S) = S′) =⇒ 𝛿 ∈ V(S′)

cancelAbsCancel(✂, (Π, Γ,▷)) iff ∀𝛿1, 𝛿2 . (𝛿1 ✂𝛿2) =⇒ (𝛿1 ▷Π,Γ 𝛿2)

abswonbyWL(+,−, (Π, Γ,◀)) iff ∀𝛿1, 𝛿2 . (𝛿1 ◀Π,Γ 𝛿2) =⇒ (𝛿1 ∈ −) ∧ (𝛿2 ∈ +)

ccCoh(E, E ′, (Γ, ⊲⊳,▷)) iff

∀𝑒0, 𝑒1 . (𝑒0 <E 𝑒1) ∧ (𝑒1 <E′ 𝑒0)
=⇒ ¬(Γ |= 𝑒0 ⊲⊳ 𝑒1) ∨ ∃𝑖 ∈ {0, 1}. ∃𝑒. (Γ |= 𝑒𝑖 ▷ 𝑒) ∧ (𝑒𝑖 <E 𝑒) ∧ (𝑒𝑖 <E′ 𝑒)

vpa(t, E, ✂, +,−, (Γ, ⊲⊳,▷)) def

= (vis↦−−→
t E ∪ (vis↦−−→ E ∩ ▷Γ) ∪Win+,−t,E,Γ,⊲⊳,▷)+

Win+,−t,E,Γ,⊲⊳,▷ (𝑒, 𝑒 ′) iff

(Γ |= 𝑒 ⊲⊳ 𝑒 ′) ∧ {𝑒, 𝑒 ′} ⊆ orig(E) ∧ 𝑒 ∈ − ∧ 𝑒 ′ ∈ +

∧ ¬canceled-bef-or-byt,E,Γ,▷ (𝑒, 𝑒 ′) ∧ ¬canceled-bef-or-byt,E,Γ,▷ (𝑒 ′, 𝑒)

canceled-bef-or-byt,E,Γ,▷ (𝑒, 𝑒 ′) iff ∃𝑒 ′′. (Γ |= 𝑒 ▷ 𝑒 ′′) ∧ (𝑒 vis↦−−→ E 𝑒 ′′) ∧ (𝑒 ′′ ≺t
E 𝑒 ′ ∨ 𝑒 ′′ = 𝑒 ′)

Figure 45. Auxiliary Definitions for the Soundness Proof of the Proof Method with Cancel-Win.

RCoh(t,t′) ((art, art′), E, (Γ, ⊲⊳,◀,▷)).

Thus XACT𝜑 (E,S, (Γ, ⊲⊳,◀,▷)). Thus we are done. □

Lemma 90 (CRDT-CW implies E-XACC). Suppose nonComm(Γ, ⊲⊳), (⊲⊳ = (▷ ∪ ▷−1)), cancel(▷) and cancel(▷−1). Then,
CRDT-CW𝜓,𝜑 (Π, (Γ, ⊲⊳,◀,▷)) =⇒ E-XACC𝜓,𝜑 (Π, (Γ, ⊲⊳,◀,▷)).

Proof. For any S, S𝑎 and E, suppose E ∈ T (Π,S), eventualDelivery(E), causalDelivery(E) and𝜓 (S) = S𝑎 .

Since eventualDelivery(E), we know

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

∀t. visible(E, t) = orig(E).

By CRDT-CW𝜓 (Π, (Γ, ⊲⊳,◀,▷)), we know there exist +, −, ✂andV such that

sameRVal𝜑 (Π, Γ), step-CW𝜑 (Π, (Γ, ⊲⊳),V, +,−, ✂), uniqView𝜓,Π (V), wfCΠ (✂,V, (Γ, ⊲⊳)), wfWLΠ (+,−,V, (Γ, ⊲⊳,◀,▷)).

Below we prove XACT𝜑 (E,S, (Γ, ⊲⊳,◀,▷)). For any t, we first define vpa(t, E, ✂, +,−, (Γ, ⊲⊳,▷)) in Figure 45. By Lemma 91,

we know

partialOrder(vpa(t, E, ✂, +,−, (Γ, ⊲⊳,▷))).

So there exists art such that totalOrderorig(E) (art) and vpa(t, E, ✂, +,−, (Γ, ⊲⊳,▷)) ⊆ art. Thus

vis↦−−→
t

E ⊆ art and PresvCancel(art, t, E, (Γ,▷)).

• Below we prove ExecRelated𝜑 (t, (E,S), (Γ, art)).
We first prove StRelated𝜑 (t, (E,S), (Γ,S𝑎, art)) by applying Lemma 92.

Then, by Lemma 74, we know RValRelated(t, E, (Γ,S𝑎, art)).
Thus ExecRelated𝜑 (t, (E,S), (Γ, art)).

• We prove ∀t′ ≠ t. RCoh(t,t′) ((art, art′), E, (Γ, ⊲⊳,◀,▷)) by Lemma 98.

Thus we are done. □

Lemma 91 (vpa is partial order). If

1. E ∈ T (Π,S), S ∈ dom(𝜓), eventualDelivery(E), causalDelivery(E),
2. loserWinnerDisj(+,−), wlConflict(+,−, (Π, Γ, ⊲⊳,▷)), conflictWL(+,−, (Π, Γ, ⊲⊳)),
3. ▷⊆⊲⊳,

then partialOrder(vpa(t, E, ✂, +,−, (Γ, ⊲⊳,▷))).

Proof. Let rel = (vis↦−−→
t

E ∪ (vis↦−−→ E ∩ ▷Γ) ∪Win+,−t,E,Γ,⊲⊳,▷). We only need to prove ¬cyclic(rel).
By contradiction. Suppose there exist 𝑛, 𝑒1, . . . , 𝑒𝑛 such that ∀𝑖 ∈ [1..𝑛 − 1] . (𝑒𝑖 , 𝑒𝑖+1) ∈ rel and (𝑒𝑛, 𝑒1) ∈ rel. Without loss of

generality, we can suppose 𝑛 is the length of the smallest cycle. We analyze the following two cases:

• 𝑛 = 1. We know it is impossible from loserWinnerDisj(+,−) and the definition of rel.
• 𝑛 > 1.

Since eventualDelivery(E), we know
{𝑒1, . . . , 𝑒𝑛} ⊆ visible(E, t).

Without loss of generality, we can suppose 𝑒𝑛 is the last event among 𝑒1, . . . , 𝑒𝑛 that t applies, that is, ∀𝑖 ∈ [1..𝑛−1] . 𝑒𝑖 ≺t
E

𝑒𝑛 .

By the definition of rel, we know
(𝑒𝑛, 𝑒1) ∈ Win+,−t,E,Γ,⊲⊳,▷.

Thus

Γ |= 𝑒𝑛 ⊲⊳ 𝑒1, 𝑒𝑛 ∈ −, 𝑒1 ∈ +,

¬canceled-bef-or-byt,E,Γ,▷(𝑒𝑛, 𝑒1), ¬canceled-bef-or-byt,E,Γ,▷ (𝑒1, 𝑒𝑛).
Since loserWinnerDisj(+,−), we know

(𝑒1, 𝑒2) ∉ Win+,−t,E,Γ,⊲⊳,▷ and (𝑒𝑛−1, 𝑒𝑛) ∉ Win+,−t,E,Γ,⊲⊳,▷.

Since (𝑒1, 𝑒2) ∈ ar, we know

(𝑒1, 𝑒2) ∈
vis↦−−→
t

E ∪ (vis↦−−→ E ∩ ▷Γ).

1. (𝑒1, 𝑒2) ∈ (vis↦−−→ E ∩ ▷Γ). Thus we know
canceled-bef-or-byt,E,Γ,▷ (𝑒1, 𝑒𝑛).

So we get a contradiction.

2. (𝑒1, 𝑒2) ∈
vis↦−−→
t

E and ¬(Γ |= 𝑒1 ▷ 𝑒2).
We have two cases:

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

a. ¬(Γ |= 𝑒1 (⊲⊳)+𝑒2).
Thus ¬(Γ |= 𝑒2 (⊲⊳)+𝑒𝑛). Since ∀𝑖 ∈ [1..𝑛 − 1] . (𝑒𝑖 , 𝑒𝑖+1) ∈ rel, we know there exists 𝑖 such that 2 ≤ 𝑖 < 𝑛 and

¬(Γ |= 𝑒𝑖 ⊲⊳ 𝑒𝑖+1).
Since ▷⊆⊲⊳, we know

(𝑒𝑖 , 𝑒𝑖+1) ∈
vis↦−−→
t

E .

• If 𝑒1 ≺
t
E 𝑒𝑖+1, then 𝑒1

vis↦−−→
t

E 𝑒𝑖+1. So we can construct a smaller cycle 𝑒1, 𝑒𝑖+1, . . . , 𝑒𝑛, 𝑒1. Thus we get a contradiction.

• If 𝑒𝑖+1 ≺t
E 𝑒1, then 𝑒𝑖 ≺

t
E 𝑒2. Thus 𝑒𝑖

vis↦−−→
t

E 𝑒2. So we can construct a smaller cycle 𝑒2, . . . , 𝑒𝑖 , 𝑒2. Thus we get a

contradiction.

b. (Γ |= 𝑒1 (⊲⊳)+𝑒2).
Since ¬(Γ |= 𝑒1 ▷ 𝑒2) and 𝑒1 ∈ +, from wlConflict(+,−, (Π, Γ, ⊲⊳,▷)), we know

𝑒2 ∉ −.

Since Γ |= 𝑒𝑛 ⊲⊳ 𝑒1, we know Γ |= 𝑒𝑛 (⊲⊳)+𝑒2. Since conflictWL(+,−, (Π, Γ, ⊲⊳)), we know 𝑒2 ∈ + ∨ 𝑒2 ∈ −. Thus

𝑒2 ∈ +.

Since wlConflict(+,−, (Π, Γ, ⊲⊳,▷)), we know
Γ |= 𝑒𝑛 ▷ 𝑒2.

Since ▷⊆⊲⊳, we know
Γ |= 𝑒𝑛 ⊲⊳ 𝑒2.

Since 𝑒2 ≺
t
E 𝑒𝑛 and causalDelivery(E), we know

¬canceled-bef-or-byt,E,Γ,▷ (𝑒𝑛, 𝑒2).
• Below we prove ¬canceled-bef-or-byt,E,Γ,▷(𝑒2, 𝑒𝑛).
By contradiction. Suppose canceled-bef-or-byt,E,Γ,▷ (𝑒2, 𝑒𝑛). That is, there exists 𝑒 ′′ such that (Γ |= 𝑒2 ▷ 𝑒 ′′) ∧
(𝑒2

vis↦−−→ E 𝑒 ′′) ∧ (𝑒 ′′ ≺t
E 𝑒𝑛 ∨ 𝑒 ′′ = 𝑒𝑛). Since (𝑒1, 𝑒2) ∈

vis↦−−→
t

E and 𝑒2
vis↦−−→ E 𝑒 ′′, from causalDelivery(E), we know

𝑒1
vis↦−−→ E 𝑒 ′′.

Since Γ |= 𝑒2 ▷ 𝑒 ′′, from ▷⊆⊲⊳, we know
Γ |= 𝑒2 ⊲⊳ 𝑒

′′
.

From conflictWL(+,−, (Π, Γ, ⊲⊳)), we know
𝑒 ′′ ∈ −.

Since Γ |= 𝑒1 (⊲⊳)+𝑒2 and Γ |= 𝑒2 ⊲⊳ 𝑒
′′
, we know

Γ |= 𝑒1 (⊲⊳)+𝑒 ′′.
Since 𝑒1 ∈ + and 𝑒 ′′ ∈ −, from wlConflict(+,−, (Π, Γ, ⊲⊳,▷)), we know

Γ |= 𝑒1 ▷ 𝑒 ′′.
Thus we have

canceled-bef-or-byt,E,Γ,▷ (𝑒1, 𝑒𝑛).
So we get a contradiction. Thus ¬canceled-bef-or-byt,E,Γ,▷ (𝑒2, 𝑒𝑛).

As a result, we know

(𝑒𝑛, 𝑒2) ∈ Win+,−t,E,Γ,⊲⊳,▷.
So we can construct a smaller cycle 𝑒2, . . . , 𝑒𝑛, 𝑒2. Thus we get a contradiction.

Thus we are done. □

Lemma 92 (tStRelated). If

1. E ∈ T (Π,S), eventualDelivery(E), causalDelivery(E),𝜓 (S) = S𝑎 ,𝜓 ⇒ 𝜑 ,

2. step-CW𝜑 (Π, (Γ, ⊲⊳),V, +,−, ✂),
3. genNotLose(+,−,V, ✂, (Π, Γ, ⊲⊳)), notVCancelee(✂,V), wfCGenΠ (✂,V), wfV𝜓 (V), uniqViewΠ (V),

winnerSee(+,V), cancelAbsCancel(✂, (Π, Γ,▷)), conflictWL(+,−, (Π, Γ, ⊲⊳)), canceleeNotV(✂,V),
4. totalOrderorig(E) (ar), vpa(t, E, ✂, +,−, (Γ, ⊲⊳,▷)) ⊆ ar, partialOrder(vpa(t, E, ✂, +,−, (Γ, ⊲⊳,▷))),
5. nonComm(Γ, ⊲⊳), (⊲⊳ = (▷ ∪ ▷−1)), cancel(▷), cancel(▷−1),

then StRelated𝜑 (t, (E,S), (Γ,S𝑎, ar)).
Proof. For any E ′

if E ′ ⩽ E, we want to prove 𝜑 (exec_st(S, E ′ |t)) = aexecST(Γ,S𝑎, visible(E ′, t) ⇂ar). Suppose |E ′ | = 𝑛. By

induction over 𝑛.

1. 𝑛 = 0. Trivial.

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

2. 𝑛 =𝑚 + 1. Suppose E ′ = E ′′++[𝑒]. By the induction hypothesis, we know

𝜑 (exec_st(S, E ′′ |t)) = aexecST(Γ,S𝑎, visible(E ′′, t) ⇂ar).
Let S′′ = exec_st(S, E ′′ |t) and S′′

𝑎 = 𝜑 (S′′). We do case analysis over 𝑒 .

a. 𝑒 = (mid, t, (𝑓 , 𝑛, 𝑛′, 𝛿)). From the semantics we know there exists S′
such that

genAtΠ (S′′, 𝛿) and 𝛿 (S′′) = S′
.

From genNotLose(+,−,V, ✂, (Π, Γ, ⊲⊳)), we know
¬loseAtΠ (𝛿,S′′,V, +,−, ✂, (Γ, ⊲⊳)).

From step-CW𝜑 (Π, (Γ, ⊲⊳),V, +,−, ✂), we know there exists S′
𝑎 such that

𝜑 (S′) = S′
𝑎 and Γ(𝑓 , 𝑛) (S′′

𝑎) = (_,S′
𝑎).

Also, since vpa(t, E, ✂, +,−, (Γ, ⊲⊳,▷)) ⊆ ar, we know
∀𝑒 ′ ∈ visible(E ′′, t). (𝑒 ′, 𝑒) ∈ ar.

Thus we know

𝜑 (exec_st(S, E ′ |t)) = aexecST(Γ,S𝑎, visible(E ′, t) ⇂ar).
b. 𝑒 = (mid, t, (𝑓 , 𝑛), 𝛿).

i. ¬loseAtΠ (𝛿,S′′,V, +,−, ✂, (Γ, ⊲⊳)).
Let rel = {(𝑒 ′, 𝑒) | 𝑒 ′ ∈ visible(E ′′, t)} and rel′ = (vpa(t, E ′, ✂, +,−, (Γ, ⊲⊳,▷)) ∪ rel)+. By Lemma 97, we know

partialOrder(rel′).
Thus there exists ar′ such that totalOrderorig(E) (ar′) and rel′ ⊆ ar′.
Also, since E ′ ⩽ E and vpa(t, E, ✂, +,−, (Γ, ⊲⊳,▷)) ⊆ ar, we know vpa(t, E ′, ✂, +,−, (Γ, ⊲⊳,▷)) ⊆ ar. From
Lemma 94, we know

aexecST(Γ,S𝑎, visible(E ′, t) ⇂ar) = aexecST(Γ,S𝑎, visible(E ′, t) ⇂ar′).
From step-CW𝜑 (Π, (Γ, ⊲⊳),V, +,−, ✂), we know there exists S′

𝑎 such that

𝜑 (S′) = S′
𝑎 and Γ(𝑓 , 𝑛) (S′′

𝑎) = (_,S′
𝑎).

Also, since rel ⊆ ar′, we know
∀𝑒 ′ ∈ visible(E ′′, t). (𝑒 ′, 𝑒) ∈ ar′.

Thus we know

𝜑 (exec_st(S, E ′ |t)) = aexecST(Γ,S𝑎, visible(E ′, t) ⇂ar′).
Thus

𝜑 (exec_st(S, E ′ |t)) = aexecST(Γ,S𝑎, visible(E ′, t) ⇂ar).
ii. loseAtΠ (𝛿,S′′,V, +,−, ✂, (Γ, ⊲⊳)).

Thus

𝛿 ∈ − ∧ ∃𝛿 ′. 𝛿 ′ ∈ V(S′′) ∧ 𝛿 ′ ∈ + ∧ (𝛿 ′ ⊲⊳Π,Γ 𝛿) ∧ ¬(𝛿 ′ ✂𝛿).
From wfV𝜓 (V), we know there exists 𝑒 ′ such that eff(𝑒 ′) = 𝛿 ′ and 𝑒 ′ ∈ visible(E ′′, t). Since causalDelivery(E), we
know

¬canceled-bef-or-byt,E,Γ,▷ (𝑒, 𝑒 ′).
Also, by Lemma 93, we know

¬canceled-bef-or-byt,E,Γ,▷ (𝑒 ′, 𝑒).
From 𝛿 ′ ⊲⊳Π,Γ 𝛿 , we know Γ |= 𝑒 ⊲⊳ 𝑒 ′. Thus

Win+,−t,E,Γ,⊲⊳,▷ (𝑒, 𝑒 ′).
Since vpa(t, E, ✂, +,−, (Γ, ⊲⊳,▷)) ⊆ ar, we know

(𝑒, 𝑒 ′) ∈ ar.
Since Γ |= 𝑒 ⊲⊳ 𝑒 ′, from (⊲⊳ = (▷ ∪ ▷−1)), cancel(▷) and cancel(▷−1), we know

aexecST(Γ,S𝑎, visible(E ′, t) ⇂ar) = aexecST(Γ,S𝑎, visible(E ′′, t) ⇂ar) = S′′
𝑎 .

From step-CW𝜑 (Π, (Γ, ⊲⊳),V, +,−, ✂), we know
𝜑 (S′) = S′′

𝑎 .

Thus

𝜑 (exec_st(S, E ′ |t)) = aexecST(Γ,S𝑎, visible(E ′, t) ⇂ar).
c. tid(𝑒) ≠ t. ThusE ′ |t = E ′′ |t and visible(E ′, t) = visible(E ′′, t). Thus𝜑 (exec_st(S, E ′ |t)) = aexecST(Γ,S𝑎, visible(E ′, t) ⇂

ar).
Thus we are done. □

Lemma 93. If

1. E ∈ T (Π,S), S ∈ dom(𝜓), causalDelivery(E),

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

2. (E ′++[𝑒]) ⩽ E, S = exec_st(S, E ′ |t), 𝑒 ′ ∈ visible(E ′, t),
3. eff(𝑒) = 𝛿 , eff(𝑒 ′) = 𝛿 ′, 𝛿 ′ ∈ +, 𝛿 ′ ∈ V(S), ¬(𝛿 ′ ✂𝛿),
4. conflictWL(+,−, (Π, Γ, ⊲⊳)), genNotLose(+,−,V, ✂, (Π, Γ, ⊲⊳)), notVCancelee(✂,V), canceleeNotV(✂,V),

winnerSee(+,V), wfCGenΠ (✂,V), wfV𝜓 (V), uniqViewΠ (V),
5. ▷⊆⊲⊳,

then ¬canceled-bef-or-byt,E,Γ,▷ (𝑒 ′, 𝑒).

Proof. By contradiction. Suppose there exists 𝑒 ′′ such that (Γ |= 𝑒 ′ ▷ 𝑒 ′′), (𝑒 ′ vis↦−−→ E 𝑒 ′′) and (𝑒 ′′ ≺t
E 𝑒 ∨ 𝑒 ′′ = 𝑒).

Let t′ = tid(𝑒 ′′) and 𝛿 ′′ = eff(𝑒 ′′). Thus 𝑒 ′ vis↦−−→
t′

E 𝑒 ′′ and there exists S′′
such that genAtΠ (S′′, 𝛿 ′′). Since ▷⊆⊲⊳, we know

𝛿 ′ ⊲⊳Π,Γ 𝛿 ′′. From conflictWL(+,−, (Π, Γ, ⊲⊳)), since 𝛿 ′ ∈ +, we know

𝛿 ′′ ∈ −.

From genNotLose(+,−,V, ✂, (Π, Γ, ⊲⊳)), we know

¬loseAtΠ (𝛿 ′′,S′′,V, +,−, ✂, (Γ, ⊲⊳)).

Thus

𝛿 ′ ∉ V(S′′) or 𝛿 ′ ✂𝛿 ′′.

For the case 𝛿 ′ ∉ V(S′′), from winnerSee(+,V) and notVCancelee(✂,V), we know there exists 𝑒 ′′′ such that

𝑒 ′ ✂𝑒 ′′′ and 𝑒 ′′′ ≺t′
E 𝑒 ′′.

Thus, for both cases, we know there exists 𝑒0 such that

𝑒 ′ ✂𝑒0 and 𝑒0
vis↦−−→
t′

E 𝑒 ′′ ∨ 𝑒0 = 𝑒 ′′.

Since wfCGenΠ (✂,V), wfV𝜓 (V) and uniqViewΠ (V), from Lemma 99, we know

𝑒 ′
vis↦−−→ E 𝑒0.

Since causalDelivery(E), we know

𝑒 ′ ≺t
E 𝑒0 and 𝑒0 ≺

t
E 𝑒 ′′ ∨ 𝑒0 = 𝑒 ′′.

Since (𝑒 ′′ ≺t
E 𝑒 ∨ 𝑒 ′′ = 𝑒), we know

𝑒0 ≺
t
E 𝑒 ∨ 𝑒0 = 𝑒 .

Since ¬(𝛿 ′ ✂𝛿), we know the case 𝑒0 = 𝑒 is impossible. Thus

𝑒0 ≺
t
E 𝑒 .

Since 𝑒 ′ ✂𝑒0, from winnerSee(+,V), canceleeNotV(✂,V) and uniqViewΠ (V), we know

𝛿 ′ ∉ V(S).

This contradicts with 𝛿 ′ ∈ V(S). So we are done. □

Lemma 94. If

1. E ∈ T (Π,S), E ′ ⩽ E, E1 = (visible(E ′, t) ⇂ar), E2 = (visible(E ′, t) ⇂ar′),
2. nonComm(Γ, ⊲⊳), cancel(▷), conflictWL(+,−, (Π, Γ, ⊲⊳)),
3. totalOrderorig(E) (ar), totalOrderorig(E) (ar′), vpa(t, E ′, ✂, +,−, (Γ, ⊲⊳,▷)) ⊆ ar ∩ ar′,
4. aexecST(Γ,S𝑎, E1) = S′

𝑎 ,

then aexecST(Γ,S𝑎, E2) = S′
𝑎 .

Proof. Below we first prove ccCoh(E1, E2, (Γ, ⊲⊳,▷)) which is defined in Fig. 45. For any 𝑒0 and 𝑒1 such that 𝑒0 <E1
𝑒1, 𝑒1 <E2

𝑒0
and Γ |= 𝑒0 ⊲⊳ 𝑒1, we want to prove ∃𝑖 ∈ {0, 1}. ∃𝑒. (Γ |= 𝑒𝑖 ▷ 𝑒) ∧ (𝑒𝑖 <E1

𝑒) ∧ (𝑒𝑖 <E2
𝑒). Since 𝑒0 <E1

𝑒1 and 𝑒1 <E2
𝑒0, we

know

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

{𝑒0, 𝑒1} ⊆ visible(E ′, t), 𝑒0 ar 𝑒1 and 𝑒1 ar′ 𝑒0.

Since vpa(t, E ′, ✂, +,−, (Γ, ⊲⊳,▷)) ⊆ ar ∩ ar′, we know

Win+,−t,E′,Γ,⊲⊳,▷ ⊆ ar ∩ ar′.

Thus

(𝑒0, 𝑒1) ∉ Win+,−t,E′,Γ,⊲⊳,▷ and (𝑒1, 𝑒0) ∉ Win+,−t,E′,Γ,⊲⊳,▷.

Since Γ |= 𝑒0 ⊲⊳ 𝑒1 and E ∈ T (Π,S), by conflictWL(+,−, (Π, Γ, ⊲⊳)), we know

𝑒0 ∈ + ∧ 𝑒1 ∈ − or 𝑒0 ∈ − ∧ 𝑒1 ∈ +

Thus we know there exists 𝑖 ∈ {0, 1} such that

canceled-bef-or-byt,E′,Γ,⊲⊳ (𝑒𝑖 , 𝑒1−𝑖).

Thus there exists 𝑒 such that

(Γ |= 𝑒𝑖 ▷ 𝑒) ∧ (𝑒𝑖
vis↦−−→ E′ 𝑒) ∧ (𝑒 ≺t

E′ 𝑒1−𝑖 ∨ 𝑒 = 𝑒1−𝑖)

Since vpa(t, E ′, ✂, +,−, (Γ, ⊲⊳,▷)) ⊆ ar ∩ ar′, we know

(vis↦−−→ E′ ∩ ▷Γ) ⊆ ar ∩ ar′.

Thus

(𝑒𝑖 , 𝑒) ∈ ar ∩ ar′.

Since (𝑒 ≺t
E′ 𝑒1−𝑖 ∨ 𝑒 = 𝑒1−𝑖) and 𝑒1−𝑖 ∈ visible(E ′, t), we know

𝑒 ∈ visible(E ′, t).

Since E1 = (visible(E ′, t) ⇂ar) and E2 = (visible(E ′, t) ⇂ar′), we know

𝑒𝑖 <E1
𝑒 and 𝑒𝑖 <E2

𝑒 .

Thus we know ccCoh(E1, E2, (Γ, ⊲⊳,▷)).
Finally by Lemma 95, we know aexecST(Γ,S𝑎, E2) = S′

. Thus we are done. □

Lemma 95. If

1. ⌊E1⌋ = ⌊E2⌋, aexecST(Γ,S, E1) = S′
,

2. nonComm(Γ, ⊲⊳), cancel(▷),
3. ccCoh(E1, E2, (Γ, ⊲⊳,▷)),

then aexecST(Γ,S, E2) = S′
.

Proof. Suppose the length of E1 is 𝑛. By induction over 𝑛.

• 𝑛 = 0. Trivial.

• 𝑛 =𝑚 + 1. Suppose E1 = 𝑒1 ::E ′
1
and E2 = 𝑒 ′

1
::E ′

2
.

• 𝑒1 = 𝑒 ′
1
. Let S′′ = aexecST(Γ,S, [𝑒1]). Then we know

⌊E ′
1
⌋ = ⌊E ′

2
⌋, aexecST(Γ,S′′, E ′

1
) = S′

and ccCoh(E ′
1
, E ′

2
, (Γ, ⊲⊳,▷)).

Then, by the induction hypothesis, we know

S′ = aexecST(Γ,S′′, E ′
2
).

Thus S′ = aexecST(Γ,S, E2).
• 𝑒1 ≠ 𝑒 ′

1
. Suppose E1 = 𝑒1 ::𝑒2 :: . . . ::𝑒𝑛 and E2 = 𝑒 ′

1
::𝑒 ′

2
:: . . . ::𝑒 ′𝑛 .

Since ⌊E1⌋ = ⌊E2⌋, we know there exists 𝑖 > 1 such that 𝑒1 = 𝑒 ′𝑖 .
Let E3 = 𝑒 ′𝑖 ::E ′

3
and E ′

3
= 𝑒 ′

1
:: . . . ::𝑒 ′𝑖−1 ::𝑒

′
𝑖+1 :: . . . ::𝑒

′
𝑛 .

Below we first prove aexecST(Γ,S, E3) = S′
.

Since ⌊E1⌋ = ⌊E2⌋ and ccCoh(E1, E2, (Γ, ⊲⊳,▷)), we know
⌊E ′

1
⌋ = ⌊E ′

3
⌋ and ccCoh(E ′

1
, E ′

3
, (Γ, ⊲⊳,▷)).

Let S′′ = aexecST(Γ,S, [𝑒1]). Thus aexecST(Γ,S′′, E ′
1
) = S′

. Then, by the induction hypothesis, we know

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

S′ = aexecST(Γ,S′′, E ′
3
).

Thus S′ = aexecST(Γ,S, E3).
Next, we prove S′ = aexecST(Γ,S, E2).
Since ccCoh(E1, E2, (Γ, ⊲⊳,▷)), we know

ccCoh(E3, E2, (Γ, ⊲⊳,▷)).
By Lemma 96, we know S′ = aexecST(Γ,S, E2).

Thus we are done. □

Lemma 96. If

1. E1 = [𝑒1]++E ′
1
++E ′′

1
, E2 = E ′

1
++[𝑒1]++E ′′

1
, aexecST(Γ,S, E1) = S′

,

2. nonComm(Γ, ⊲⊳), cancel(▷),
3. ccCoh(E1, E2, (Γ, ⊲⊳,▷)),

then aexecST(Γ,S, E2) = S′
.

Proof. Suppose the length of E ′
1
is 𝑛. By induction over 𝑛.

• 𝑛 = 0. Trivial.

• 𝑛 =𝑚 + 1. Suppose E ′
1
= E ′

2
++[𝑒2]. Thus

E1 = [𝑒1]++E ′
2
++[𝑒2]++E ′′

1
and E2 = E ′

2
++[𝑒2]++[𝑒1]++E ′′

1
.

Let E3 = E ′
2
++[𝑒1]++[𝑒2]++E ′′

1
.

Below we first prove aexecST(Γ,S, E3) = S′
.

Since ccCoh(E1, E2, (Γ, ⊲⊳,▷)), we know
ccCoh(E1, E3, (Γ, ⊲⊳,▷)).

Then, by the induction hypothesis, we know

S′ = aexecST(Γ,S, E3).
Next, we prove aexecST(Γ,S, E3) = aexecST(Γ,S, E2).
LetS2 = aexecST(Γ,S, E ′

2
). Sowe only need to prove aexecST(Γ,S2, [𝑒1]++[𝑒2]++E ′′

1
) = aexecST(Γ,S2, [𝑒2]++[𝑒1]++E ′′

1
).

Since 𝑒1 <E1
𝑒2 and 𝑒2 <E2

𝑒1, by ccCoh(E1, E2, (Γ, ⊲⊳,▷)), we know
¬(Γ |= 𝑒1 ⊲⊳ 𝑒2)
∨ ∃𝑖 ∈ {1, 2}. ∃𝑒. (Γ |= 𝑒1 ▷ 𝑒) ∧ (𝑒𝑖 <E1

𝑒) ∧ (𝑒𝑖 <E2
𝑒)

• ¬(Γ |= 𝑒1 ⊲⊳ 𝑒2).
Since nonComm(Γ, ⊲⊳), we know

aexecST(Γ,S2, [𝑒2]++[𝑒1]) = aexecST(Γ,S2, [𝑒1]++[𝑒2]).
Thus aexecST(Γ,S2, [𝑒1]++[𝑒2]++E ′′

1
) = aexecST(Γ,S2, [𝑒2]++[𝑒1]++E ′′

1
).

• ∃𝑖 ∈ {1, 2}. ∃𝑒. (Γ |= 𝑒1 ▷ 𝑒) ∧ (𝑒𝑖 <E1
𝑒) ∧ (𝑒𝑖 <E2

𝑒).
Thus we know 𝑒 ∈ E ′′

1
.

Since nonComm(Γ, ⊲⊳) and cancel(▷), we know
aexecST(Γ,S2, [𝑒1]++[𝑒2]++E ′′

1
)

= aexecST(Γ,S2, [𝑒2]++E ′′
1
)

= aexecST(Γ,S2, [𝑒2]++[𝑒1]++E ′′
1
)

Thus we are done. □

Lemma 97. If

1. E ∈ T (Π,S), S ∈ dom(𝜓), eventualDelivery(E),
2. E = E ′++[𝑒], S = exec_st(S, E ′ |t), 𝑒 = (mid, t, (𝑓 , 𝑛), 𝛿),
3. ¬loseAtΠ (𝛿,S,V, +,−, ✂, (Γ, ⊲⊳)),
4. partialOrder(vpa(t, E, ✂, +,−, (Γ, ⊲⊳,▷))), wfCGenΠ (✂,V), wfV𝜓 (V), uniqViewΠ (V),

winnerSee(+,V), notVCancelee(✂,V), cancelAbsCancel(✂, (Π, Γ,▷)),
5. rel = {(𝑒 ′, 𝑒) | 𝑒 ′ ∈ visible(E ′, t)}, rel′ = (vpa(t, E, ✂, +,−, (Γ, ⊲⊳,▷)) ∪ rel)+,

then partialOrder(rel′).

Proof. Let rel′′ = (vis↦−−→
t

E ∪ (vis↦−−→ E ∩ ▷Γ) ∪Win+,−t,E,Γ,⊲⊳,▷ ∪ rel). We only need to prove ¬cyclic(rel′′).
By contradiction. Suppose there exist 𝑛, 𝑒1, . . . , 𝑒𝑛 such that ∀𝑖 ∈ [1..𝑛 − 1] . (𝑒𝑖 , 𝑒𝑖+1) ∈ rel′′ and (𝑒𝑛, 𝑒1) ∈ rel′′. Without loss

of generality, we can suppose 𝑛 is the length of the smallest cycle. We analyze the following two cases:

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

• 𝑛 = 1. We know it is impossible from partialOrder(vpa(t, E, ✂, +,−, (Γ, ⊲⊳,▷))) and the definition of rel′′.
• 𝑛 > 1.

Since eventualDelivery(E), we know
{𝑒1, . . . , 𝑒𝑛} ⊆ visible(E, t).

Without loss of generality, we can suppose 𝑒𝑛 is the last event among 𝑒1, . . . , 𝑒𝑛 that t applies, that is, ∀𝑖 ∈ [1..𝑛−1] . 𝑒𝑖 ≺t
E

𝑒𝑛 .

By the definition of rel′′, we know
(𝑒𝑛, 𝑒1) ∈ Win+,−t,E,Γ,⊲⊳,▷.

Since partialOrder(vpa(t, E, ✂, +,−, (Γ, ⊲⊳,▷))), we know

¬cyclic(vis↦−−→
t

E ∪ (vis↦−−→ E ∩ ▷Γ) ∪Win+,−t,E,Γ,⊲⊳,▷).

Thus ∃𝑖 . (𝑒𝑖 , 𝑒𝑖+1) ∈ rel. Since E = E ′++[𝑒] and ∀𝑖 ∈ [1..𝑛 − 1] . 𝑒𝑖 ≺t
E 𝑒𝑛 , we know

(𝑒𝑛−1, 𝑒𝑛) ∈ rel.
Thus

𝑒𝑛 = 𝑒 and (𝑒1, 𝑒) ∈ rel.
From (𝑒, 𝑒1) ∈ Win+,−t,E,Γ,⊲⊳,▷, we know

Γ |= 𝑒 ⊲⊳ 𝑒1, 𝑒 ∈ −, 𝑒1 ∈ +,

¬canceled-bef-or-byt,E,Γ,▷ (𝑒, 𝑒1), ¬canceled-bef-or-byt,E,Γ,▷ (𝑒1, 𝑒).
Since ¬loseAtΠ (𝛿,S,V, +,−, ✂, (Γ, ⊲⊳)), we know

∀𝛿 ′. 𝛿 ′ ∈ + ∧ (𝛿 ′ ⊲⊳Π,Γ 𝛿) =⇒ (𝛿 ′ ✂𝛿) ∨ (𝛿 ′ ∉ V(S)).
Let eff(𝑒1) = 𝛿1. Thus (𝛿1 ✂𝛿) ∨ (𝛿1 ∉ V(S)).
• 𝛿1 ✂𝛿 . Since wfCGenΠ (✂,V), wfV𝜓 (V) and uniqViewΠ (V), from Lemma 99, we know

𝑒1
vis↦−−→ E 𝑒 .

Since cancelAbsCancel(✂, (Π, Γ,▷)) and 𝑒1 ✂𝑒 , we know
Γ |= 𝑒1 ▷ 𝑒 .

This contradicts with ¬canceled-bef-or-byt,E,Γ,⊲⊳ (𝑒1, 𝑒).
• 𝛿1 ∉ V(S). From winnerSee(+,V) and notVCancelee(✂,V), we know there exists 𝑒 ′′ such that

𝑒1 ✂𝑒 ′′ and 𝑒 ′′ ≺t
E 𝑒 .

Since wfCGenΠ (✂,V), wfV𝜓 (V) and uniqViewΠ (V), from Lemma 99, we know

𝑒1
vis↦−−→ E 𝑒 ′′.

Since cancelAbsCancel(✂, (Π, Γ,▷)) and 𝑒1 ✂𝑒 ′′, we know
Γ |= 𝑒1 ▷ 𝑒 ′′.

This contradicts with ¬canceled-bef-or-byt,E,Γ,⊲⊳ (𝑒1, 𝑒).
Thus we are done. □

Lemma 98 (Coherence). For any pa, pa′, ar, ar′, t, t′ and E, if
1. E ∈ T (Π,S),
2. conflictWL(+,−, (Π, Γ, ⊲⊳)), abswonbyWL(+,−, (Π, Γ,◀)),
3. totalOrderorig(E) (art), totalOrderorig(E) (art′),
4. vpa(t, E, ✂, +,−, (Γ, ⊲⊳,▷)) ⊆ art, vpa(t′, E, ✂, +,−, (Γ, ⊲⊳,▷)) ⊆ art′ ,

then RCoh(t,t′) ((art, art′), E, (Γ, ⊲⊳,◀,▷)).

Proof. For any E ′
, E ′′

, 𝑒0 and 𝑒1, suppose E ′ ⩽ E, E ′′ ⩽ E, 𝑒0 ⊲⊳Γ 𝑒1 and {𝑒0, 𝑒1} ⊆ nc-vis(E ′, t, (Γ,▷)) ∩ nc-vis(E ′′, t′, (Γ,▷)).
We want to prove:

(1) (𝑒0, 𝑒1) ∈ art ∩ art′ ∨ (𝑒1, 𝑒0) ∈ art ∩ art′ ;
(2) ConcurrentE (𝑒0, 𝑒1) ∧ (𝑒0 ◀Γ 𝑒1) =⇒ (𝑒0, 𝑒1) ∈ art.

We consider three cases:

1. 𝑒0
vis↦−−→ E 𝑒1. We know

(𝑒0, 𝑒1) ∈ vpa(t, E, ✂, +,−, (Γ, ⊲⊳)) and (𝑒0, 𝑒1) ∈ vpa(t′, E, ✂, +,−, (Γ, ⊲⊳))

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

Since vpa(t, E, ✂, +,−, (Γ, ⊲⊳)) ⊆ art and vpa(t′, E, ✂, +,−, (Γ, ⊲⊳)) ⊆ art′ , we know
(𝑒0, 𝑒1) ∈ art ∩ art′ .

So (1) holds.

Since 𝑒0
vis↦−−→ E 𝑒1, we know ¬ConcurrentE (𝑒0, 𝑒1). So (2) holds.

2. 𝑒1
vis↦−−→ E 𝑒0. Similar to the first case.

3. ¬(𝑒0
vis↦−−→ E 𝑒1) and ¬(𝑒1

vis↦−−→ E 𝑒0). Since conflictWL(+,−, (Π, Γ, ⊲⊳)), we know
(𝑒0 ∈ + ∧ 𝑒1 ∈ −) ∨ (𝑒1 ∈ + ∧ 𝑒0 ∈ −)

Since {𝑒0, 𝑒1} ⊆ nc-vis(E ′, t, (Γ,▷)) ∩ nc-vis(E ′′, t′, (Γ,▷)), we know
¬canceled-bef-or-byt,E,Γ,▷ (𝑒0, 𝑒1), ¬canceled-bef-or-byt,E,Γ,▷ (𝑒1, 𝑒0),
¬canceled-bef-or-byt′,E,Γ,▷ (𝑒0, 𝑒1), ¬canceled-bef-or-byt′,E,Γ,▷ (𝑒1, 𝑒0).

a. If (𝑒0 ∈ − ∧ 𝑒1 ∈ +), then
(𝑒0, 𝑒1) ∈ Win+,−t,E,Γ,⊲⊳,▷ and (𝑒0, 𝑒1) ∈ Win+,−t′,E,Γ,⊲⊳,▷.

We know

(𝑒0, 𝑒1) ∈ vpa(t, E, ✂, +,−, (Γ, ⊲⊳,▷)) and (𝑒0, 𝑒1) ∈ vpa(t′, E, ✂, +,−, (Γ, ⊲⊳,▷))
Since vpa(t, E, ✂, +,−, (Γ, ⊲⊳,▷)) ⊆ art and vpa(t′, E, ✂, +,−, (Γ, ⊲⊳,▷)) ⊆ art′ , we know

(𝑒0, 𝑒1) ∈ art ∩ art′ .
b. If (𝑒1 ∈ − ∧ 𝑒0 ∈ +), then

(𝑒1, 𝑒0) ∈ Win+,−t,E,Γ,⊲⊳,▷ and (𝑒1, 𝑒0) ∈ Win+,−t′,E,Γ,⊲⊳,▷.
We know

(𝑒1, 𝑒0) ∈ vpa(t, E, ✂, +,−, (Γ, ⊲⊳,▷)) and (𝑒1, 𝑒0) ∈ vpa(t′, E, ✂, +,−, (Γ, ⊲⊳,▷))
Since vpa(t, E, ✂, +,−, (Γ, ⊲⊳,▷)) ⊆ art and vpa(t′, E, ✂, +,−, (Γ, ⊲⊳,▷)) ⊆ art′ , we know

(𝑒1, 𝑒0) ∈ art ∩ art′ .
So (1) holds.

If ConcurrentE (𝑒0, 𝑒1) ∧ (𝑒0 ◀Γ 𝑒1), from abswonbyWL(+,−, (Π, Γ,◀)), we know
𝑒0 ∈ − ∧ 𝑒1 ∈ +.

Thus (𝑒0, 𝑒1) ∈ art ∩ art′ . So (2) holds.

Thus we are done. □

Lemma 99 (Canceled-by implies vis-relation). For any S, E, 𝑒1 and 𝑒2, if
1. E ∈ T (Π,S) and S ∈ dom(𝜓),
2. 𝑒1 ✂𝑒2 and {𝑒1, 𝑒2} ⊆ orig(E),
3. wfCGenΠ (✂,V), wfV𝜓 (V) and uniqViewΠ (V),

then 𝑒1
vis↦−−→ E 𝑒2.

Proof. Since {𝑒1, 𝑒2} ⊆ orig(E), we can suppose

𝑒1 = (mid1, t1, (𝑓1, 𝑛1, 𝑛′
1
, 𝛿1)) and 𝑒2 = (mid2, t2, (𝑓2, 𝑛2, 𝑛′

2
, 𝛿2)).

Since E ∈ T (Π,S), by the operational semantics, we know there exist S2 and E2 such that

exec_st(S, E2) = S2, E2++[𝑒2] ⩽ (E|t2) and Π(𝑓2, 𝑛2) (S2) = (𝑛′
2
, 𝛿2).

Since wfCGenΠ (✂,V) and 𝛿1 ✂𝛿2, we know

𝛿1 ∈ V(S2).

Since wfV𝜓 (V), we know there exists 𝑒 such that

𝑒 ∈ E2 ∧ eff(𝑒) = 𝛿1.

From uniqViewΠ (V), by Lemma 100, we know uniqSeeTΠ,𝜓 (V). Thus we know

msgid(𝑒) = msgid(𝑒1).

By the operational semantics, we know

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

𝑒1
t2
==⇒

E
𝑒 .

Thus we know 𝑒1
vis↦−−→ E 𝑒2. So we are done. □

Lemma 100. If uniqViewΠ (V), then uniqSeeTΠ,𝜓 (V).

Proof. By contradiction. Suppose uniqSeeTΠ,𝜓 (V) does not hold. So there exist S0, E, 𝑒1, 𝑒2 and 𝛿 such that

E ∈ T (Π,S0), S0 |= 𝜓 , 𝑒1 ∈ E, 𝑒2 ∈ E, eff(𝑒1) = eff(𝑒2) = 𝛿 , 𝛿 ∈ V , msgid(𝑒1) ≠ msgid(𝑒2).

Then we know there exist 𝐶1, . . . ,𝐶𝑛 ,𝑊 and𝑊 ′
such that

((let Π in 𝐶1 ∥ . . . ∥𝐶𝑛,S0) pload−−−→𝑊) ∧ (𝑊 E−→ ∗𝑊 ′)

Also we know there exist 𝑓 , 𝑛, 𝑓 ′, 𝑛′
, S, S′

, E1, E ′
1
,𝑊1,𝑊

′
1
, 𝑒 ′

1
, 𝑒 ′

2
, t and t′ such that

Π(𝑓 , 𝑛) (S) = (_, 𝛿), Π(𝑓 ′, 𝑛′) (S′) = (_, 𝛿),
E1++[𝑒 ′1] ⩽ E, 𝑒 ′

1

tid(𝑒1)
======⇒

E
𝑒1, 𝑊

E1−→ ∗𝑊1, 𝑊1 .𝜎𝑜 (t) = (Π,S, _),

E ′
1
++[𝑒 ′

2
] ⩽ E, 𝑒 ′

2

tid(𝑒2)
======⇒

E
𝑒2, 𝑊

E′
1−→ ∗𝑊 ′

1
, 𝑊 ′

1
.𝜎𝑜 (t′) = (Π,S′, _).

From uniqViewΠ (V), since Π(𝑓 , 𝑛) (S) = (_, 𝛿), Π(𝑓 ′, 𝑛′) (S′) = (_, 𝛿) and 𝛿 ∈ V , we know

S = S′
.

By the operational semantics, we know

t = t′.

Without loss of generality, we can assume that E1++[𝑒 ′1] ⩽ E ′
1
. Suppose E ′

1
= E1++[𝑒 ′1]++E ′′

1
. Then we know there exists𝑊 ′′

1

such that

𝑊
E1−→ ∗𝑊1

𝑒′
1−→𝑊 ′′

1

E′′
1−→ ∗𝑊 ′

1
.

Let S1 =𝑊 ′′
1
.𝜎𝑜 (t). From uniqViewΠ (V), we know

S ≺ S1 and S ≺ S′
.

Since ≺ is irreflexive, we know S ≠ S′
. So we get a contradiction. □

	Abstract
	1 Introduction
	2 Informal Development
	2.1 The RGA Example
	2.2 Functional Correctness (FC) of CRDTs
	2.3 Ordering of Operations and ACC
	2.4 Extended ACC for X-Wins CRDTs
	2.5 Abstraction and Client Reasoning

	3 Basic Technical Settings
	4 Specifications for CRDTs
	5 Abstract Converging Consistency
	6 Abstraction Theorem
	7 Program Logic for Client Verification
	8 Verifying CRDT Implementations
	9 X-Wins CRDTs
	10 Related Work
	11 Conclusion and Future Work
	Acknowledgments
	References
	A The Basic Technical Settings
	B Proofs of the Abstraction Theorems
	B.1 For ACC
	B.2 For XACC

	C Proofs of the Convergence Lemmas
	C.1 For ACC (Lemma 5)
	C.2 For XACC

	D Compositionality of ACC/XACC
	E Program Logic for Client Verification: Assertion Semantics and Logic Soundness Proofs
	E.1 Semantics of Assertions
	E.2 Judgment Semantics and Soundness Theorems
	E.3 Proof Structure
	E.4 Soundness Proofs for Local Rules and par Rule
	E.5 Final Soundness Proofs for Clients with ACC Objects

	F Examples of Client Verification
	F.1 RGA Client in Fig. 12
	F.2 RGA Client 1
	F.3 RGA Client 2
	F.4 RGA Client 3
	F.5 Register Client 1
	F.6 Register Client 2

	G Proof Method for ACC and Soundness
	G.1 Formalization of the Proof Method
	G.2 Soundness of the Proof Method

	H Examples of CRDT Verification
	H.1 The Replicated Counters
	H.2 The Grow-Only Sets
	H.3 The Last-Writer-Wins (LWW) Register
	H.4 The LWW-Element Sets
	H.5 The 2P-Set
	H.6 The Replicated Growable Array (RGA)
	H.7 The Continuous Sequence

	I Verifying Add-Wins Sets and Remove-Wins Sets
	I.1 Proof Method
	I.2 Applying the Proof Method to Add-Wins Sets and Remove-Wins Sets
	I.3 Soundness of the Proof Method

