
Abstraction for Conflict-Free Replicated Data Types
Hongjin Liang

State Key Laboratory for Novel Software Technology

Nanjing University

Nanjing, Jiangsu, China

hongjin@nju.edu.cn

Xinyu Feng
∗

State Key Laboratory for Novel Software Technology

Nanjing University

Nanjing, Jiangsu, China

xyfeng@nju.edu.cn

Abstract
Strong eventual consistency (SEC) has been used as a classic

notion of correctness for Conflict-Free Replicated Data Types

(CRDTs). However, it does not give proper abstractions of

functionality, thus is not helpful for modular verification of

client programs using CRDTs. We propose a new correctness

formulation for CRDTs, called Abstract Converging Consis-

tency (ACC), to specify both data consistency and functional

correctness. ACC gives abstract atomic specifications (as an

abstraction) to CRDT operations, and establishes consistency

between the concrete execution traces and the execution us-

ing the abstract atomic operations. The abstraction allows us

to verify the CRDT implementation and its client programs

separately, resulting in more modular and elegant proofs

than monolithic approaches for whole program verification.

We give a generic proof method to verify ACC of CRDT

implementations, and a rely-guarantee style program logic

to verify client programs. Our Abstraction theorem shows

that ACC is equivalent to contextual refinement, linking the

verification of CRDT implementations and clients together

to derive functional correctness of whole programs.

CCS Concepts: • Theory of computation → Program
verification; Abstraction; Distributed algorithms; • Soft-
ware and its engineering → Correctness; Semantics.

Keywords: Replicated Data Types, Eventual Consistency,

Contextual Refinement, Program Logic, Modular Verification

ACM Reference Format:
Hongjin Liang and Xinyu Feng. 2021. Abstraction for Conflict-Free

Replicated Data Types. In Proceedings of the 42nd ACM SIGPLAN In-
ternational Conference on Programming Language Design and Imple-
mentation (PLDI ’21), June 20–25, 2021, Virtual, Canada. ACM, New

York, NY, USA, 15 pages. https://doi.org/10.1145/3453483.3454067

∗
Corresponding author.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

PLDI ’21, June 20–25, 2021, Virtual, Canada
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8391-2/21/06. . . $15.00

https://doi.org/10.1145/3453483.3454067

1 Introduction
Replicated data types are distributed implementations of data

types that replicate data in different nodes of geographically

distributed systems to improve availability and performance.

A correct implementation needs to ensure that clients ac-

cessing different replicas have a consistent view of the data.

Unfortunately, the CAP theorem [7] shows that, in the pres-

ence of network partitions, it is impossible to achieve both

availability and strong consistency.

Conflict-Free Replicated Data Types (CRDTs) [20] are re-

cently proposed to address the tensions between availability

and consistency. On the one hand, CRDTs are designed to

have availability. The nodes executing CRDTs can process

client requests without synchronization. Later the updates

are sent to other nodes, asynchronously and possibly in dif-

ferent orders. On the other hand, since concurrent updates

may conflict, CRDTs follow certain carefully-designed strate-

gies to resolve conflicts and provide a weak form of consis-

tency. For instance, the last-writer-wins registers [20] resolve

conflicts between concurrent writes by enforcing a global

total order among the writes using time-stamps. The main

strategy of add-wins sets [20] is to enforce that an add always

wins over a concurrent remove of the same element. Benefit-

ing from the conflict resolution strategies, CRDTs guarantee

strong eventual consistency (SEC) [20], where two nodes are

guaranteed to converge (i.e., having identical states) once

they have received the same set of updates.

Unfortunately, SEC fails to specify the functional correct-

ness of CRDTs. It is unclear to what extent a CRDT algorithm

really implements the desired data type. For instance, can the

last-writer-wins registers ensure that every read receives the

most recent write, and what is the most recent write? Do the

add-wins sets always behave like sequential sets, and what

does “behaving like sequential sets” mean exactly? More

importantly, without proper abstraction about functionality

of CRDTs, it is difficult to verify client programs of CRDTs in
a modular and layered way.

We use “let Π in 𝐶1 ∥ . . . ∥ 𝐶𝑛” to represent a program

consisting of client programs 𝐶1, . . . , 𝐶𝑛 , and the implemen-

tation Π of a CRDT. The clients run on distributed nodes

and access the CRDT by invoking the operations defined in

Π. To reason about the behaviors of the whole program, we

need to verify both the correctness of the CRDT implemen-

tation Π and the behaviors of the client programs. A proper

abstraction Γ for the CRDT would allow us to verify them

https://doi.org/10.1145/3453483.3454067
https://doi.org/10.1145/3453483.3454067

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

separately. As shown in Fig. 1, we only need to verify the

correctness of the CRDT implementation Π with respect to

the abstraction Γ once and for all, no matter in what con-

text (i.e., the collection of clients) it is used. Then we reason

about the clients as if they were using the abstract object

Γ, without worrying about the implementation details in Π
(e.g., time-stamps or various auxiliary data).

However, building a general abstraction mechanism and a

framework for verifying functional correctness of CRDTs and

their clients turns out to be extremely challenging, mostly

because of the diversity of conflict resolution strategies. We

observe that the strategies can be divided into two classes.

Most CRDTs use uniform conflict resolution strategies (UCR),

such as time-stamps, which do not give privilege to particular

operations, while add-wins sets and remove-wins sets use

operation-dependent conflict resolution strategies “𝑋 -wins”.

The latter case relies on the functionality and the semantic

relationship between operations, which makes the reasoning

much more difficult than the former case.

Contributions. In this paper, we try to build abstraction

and verification frameworks for CRDTs of both classes. The

abstraction is in the form of atomic object specifications Γ,
which are traditionally used for sequential data types and

shared-memory concurrent objects. To facilitate the client

reasoning, each Γ is also accompanied with a conflict relation

⊲⊳ which specifies non-commutative abstract operations of

the object (see Sec. 4). Our specifications are simple, allowing

one to easily tell what abstract data type a CRDT algorithm

really implements. They are also abstract enough to hide

low-level implementation details such as time-stamps.

For UCR-CRDTs, Fig. 1 gives an overview of our frame-

work.We proposeAbstract ConvergingConsistency (ACC),
a new formulation of correctness (1 in Fig. 1, also in Sec. 5).

ACC establishes an abstract view of execution based on the

atomic specifications Γ, so reflects the desired functionality.

The abstract views of execution sequences may be different

on different nodes, but they must be coherent on conflicting

abstract operations (related in ⊲⊳) so that SEC is guaranteed.

We prove theAbstraction Theorem (see Sec. 6), showing

that ACC is equivalent to a contextual refinement between

the concrete implementation Π of CRDT operations and the

atomic specification Γ, where the specification is executed in

a novel abstract operational semantics. The Abstraction The-

orem allows one to reason about client programs at a high

abstraction level, by replacing concrete CRDT implementa-

tions with the specifications. It decouples the verification

of clients and CRDTs, as shown in Fig. 1. The contextual

refinement can be viewed as an alternative and more client-

friendly correctness formulation for UCR-CRDTs.

Based on the abstraction, we present a rely-guarantee-
style program logic for verifying client programs at the

high abstraction level (2 in Fig. 1, also in Sec. 7). Together

with the contextual refinement, our logic offers a way to

CRDT Implementations Π

Abstraction: Γ (object spec.) and ACC(Π, (Γ, ⊲⊳))
1

Clients 𝐶1 ∥ . . . ∥𝐶𝑛
Program logic

for clients

2

Proof method

for CRDTs

3

Figure 1. Our abstraction and verification framework.

verify the functional correctness of the whole system. We

have applied our logic to reason about several interesting

client programs (see our technical report [15]).

We also develop a proof method for systematically ver-

ifying ACC (3 in Fig. 1, also in Sec. 8). We have applied it
to verify seven major UCR-CRDT algorithms [20], including
the replicated counter (with both increment and decrement

operations), the grow-only set, the last-writer-wins (LWW)

register, the LWW-element set, the 2P-set, the continuous

sequence, and the replicated growable array (RGA).

To the best of our knowledge, our work gives the first

framework for compositional verification of whole programs,

including both UCR-CRDT implementations and client code,

based on contextual refinement and the abstraction theorem.

We actually show that different implementation algorithms

for the same data type, such as the continuous sequence and

RGA for lists, or the LWW-element set and the 2P-set for

sets, can be verified using the same abstract specification.
Verifying a client program of the data type in our frame-

work guarantees its correctness no matter which specific

implementation algorithm it uses.

For 𝑋 -wins CRDTs, we extend the specification with the

explicit operation-dependent conflict resolution strategy, and

propose XACC as an extension of ACC for correctness defi-

nition. We still establish the Abstraction Theorem, by giving

a more relaxed abstract semantics to clients with object spec-

ifications. We also verify the functional correctness of the

add-wins set and remove-wins set with respect to XACC.

2 Informal Development
Below we discuss the main challenges to formalize the cor-

rectness of CRDTs, and give an overview of our approaches.

2.1 The RGA Example
As amotivating example, Fig. 2 shows a simplified version [1]

of the RGA algorithm [18] which in practice is the core algo-

rithm for collaboratively edited documents. RGA implements

a list object with three operations: addAfter(a,b) adds the

element b after a in the list, remove(a) removes the element

a from the list, and read() returns the whole list. For simplic-

ity, we assume that the elements are unique, an element is

added or removed at most once, and the list always contains

a sentinel element ◦.

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

1 var N := ∅, T := ∅;
2 var ts := (0, cid);

3 operation addAfter(a, b){
4 assume(a = ◦ ∨
5 a ≠ ◦ ∧ (_,_,a) ∈ N ∧ a ∉ T);
6 local i := (ts.fst+1, cid);
7 return;
8 gen_eff AddAft(a, i, b);
9 }

10 effector AddAft(a, i, b){
11 N := N ∪ {(a, i, b)};
12 if (ts < i) ts := i;
13 }

14 operation read(){
15 return trav(N,T);
16 gen_eff IdEff;
17 }

18 operation remove(a){
19 assume((_,_,a) ∈ N
20 ∧ a ∉ T ∧ a ≠ ◦);
21 return;
22 gen_eff Rmv(a);
23 }

24 effector Rmv(a){
25 T := T ∪ {a};
26 }

Figure 2. The Replicated Growable Array (RGA).

For CRDTs, each operation has two phases. In the first
phase, a client on the node issues the operation. We call the

node the origin of the operation. The origin node performs

some initial local computation and responds to the client’s

request using the return command. It also generates an

effector (see gen_eff in lines 8, 16 and 22), which captures

the updates on the shared (replicated) state. The effector is

executed immediately at the origin node, and is broadcast

to all other nodes. In the second phase, each node applies

the effector asynchronously over its local replica. Note that

read-only queries (e.g., the read() operation) generate the

identity effector IdEff (line 16 in Fig. 2). We do not need to

broadcast IdEff since it does not change the state.

(ts0, a)

(ts1, e) (ts2, b) (ts3, c)

(ts4, d)

RGA represents the list

using a time-stamped tree.

Every tree node (𝑎, 𝑖, 𝑏)
consists of a key element𝑏,

a time-stamp 𝑖 associated

with 𝑏, and the key ele-

ment 𝑎 of its parent node. It
is added by the operation

addAfter(a, b). Then a

tree is encoded as a set of triples. For instance, the tree above

can be represented by the set N:

N = {(◦, ts0, a), (a, ts1, e), (a, ts2, b), (a, ts3, c), (c, ts4, d)}

We assume ◦ is the root node of the tree. Besides the tree N,
the algorithm also uses T as a tombstone set recording all the

elements that are removed. Each replica state also contains

ts to record the newest time-stamp at the replica.

The read-only query operation read() calls the function

trav. It first orders the sibling nodes on the tree N in de-

creasing time-stamp order, and then traverses the tree by

depth-first search. From the resulting list, all the elements in

the tombstone set T are removed and the list consisting of

the remaining elements is returned. For instance, suppose

addAfter(a, b);
x := read();

addAfter(a, c);
y := read();

t1

t2

addAfter(a,b)

addAfter(a,c)

x:=read()

y:=read()

(a)

addAfter(a, b);
x := read();

u := read();
if (b ∈ u)

addAfter(a, c);
y := read();

t1

t2

addAfter(a,b)

u:=read() addAfter(a,c)

x:=read()

y:=read()

(b)

Figure 3. Clients of RGA and their executions.

the tombstone set T for the tree N shown above is {e}. The
read() should return acdb if ts0 < ts1 < ts2 < ts3 < ts4.

The addAfter(a,b) operation generates the time-stamp

i for b. Here time-stamps are implemented using pairs (𝑛, t),
where 𝑛 is a natural number and t is a node ID (we write

cid for the current node ID). Every two time-stamps are

comparable: (𝑛1, t1) > (𝑛2, t2) holds if (𝑛1 > 𝑛2) or (𝑛1 =

𝑛2) ∧ (t1 > t2). The effector of addAfter(a,b) simply adds

(a,i,b) into the tree N and refreshes the time-stamp ts at
the recipient node. The effector of remove(a) adds a into T.

Clients. The top of Fig. 3(a) shows a simple client program

of RGA. It consists of two client threads calling the RGA oper-

ations. We represent the whole program as let ΠRGA in 𝐶1 ∥

𝐶2, where ΠRGA denotes the RGA implementation in Fig. 2.

The bottom of Fig. 3(a) shows an execution of the program,

assuming the clients running on two distinct nodes t1 and t2.
The dots denote the client requests at the origin node (and

the blue dots denote read-only queries). An arrow means

sending an effector to a certain node.

We model an execution trace as a sequence E of events

recording the execution of all the operations (both originals

and effectors), and E|t as the subsequence consisting of only
events occurring on the node t. So the execution shown

in Fig. 3(a) is defined as the following trace E (assuming

ts1 < ts2 and the initial list contains a only). We also record

the arguments and return values (if any) of each operation.

(t1, addAfter(a, b), ts1), (t2, addAfter(a, c), ts2),
(t2, AddAft(a, ts1, b)), (t1, AddAft(a, ts2, c)),
(t1, read(), acb), (t2, read(), acb)

The event (t1, addAfter(a, b), ts1) represents the invocation
of an operation on the origin node t1, where the time-stamp

ts1 is generated for the corresponding effector. The event

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

(t2, AddAft(a, ts1, b)) represents the execution of an effector
on t2 (sent from other nodes). Then the local traces E|t1 and
E|t2 are the following:
(t1, addAfter(a, b), ts1), (t1, AddAft(a, ts2, c)), (t1, read(), acb)
(t2, addAfter(a, c), ts2), (t2, AddAft(a, ts1, b)), (t2, read(), acb)

Note that each node only sees its own read-only queries.

2.2 Functional Correctness (FC) of CRDTs
Correctness of CRDTs should capture both SEC and func-

tionality of the data types, so that we can reason about the

behaviors of clients (e.g., those in Fig. 3) without looking into

the code of CRDT implementation (e.g., the RGA algorithm

in Fig. 2), assuming the correctness of CRDT. It is easy to see

that the RGA algorithm guarantees SEC since all the effec-

tors produced by the algorithm are commutative with each

other, but what is the expected functionality? From clients’

point of view, the object is shared by all client threads and

may be updated concurrently through the provided oper-

ations. Ideally we want to allow the client to maintain a

simple atomic view of each object operation, so that we can

interpret the client’s behaviors in terms of executions of a

sequence of these abstract atomic operations. For instance,

the nodes t1 and t2 in Fig. 3(a) may both interpret their local

execution traces as the following sequential execution of

atomic operations:

addAfter-atom(a, b), addAfter-atom(a, c), (read(), acb)
Here addAfter-atom(x, y) represents an abstract atomic

specification of addAfter(x, y). Its effects are applied atomi-

cally to the RGA object. It is abstract and does not generate

any effectors or time-stamps. Note that the result acb of the fi-
nal read determines the order between addAfter-atom(a, b)
and addAfter-atom(a, c). Therefore, for the node t2, the ab-
stract operations have to be executed in a different order

from the order of the effectors in its concrete trace E|t2 .
Unlike SEC, which is about the consistency of data replica

on different nodes, the functional correctness (FC) is defined
from the viewpoint of each individual node (or client). It

specifies the consistency between the execution trace of con-

crete operations on a node and the corresponding abstract

execution trace.

Defining FC. The above example shows that each node t
may interpret an execution E in terms of a sequential exe-

cution of the corresponding atomic operations, which we

describe by a total order art over these operations. Our FC re-

quires, for every prefix E ′
of E, the sub-trace E ′ |t that t sees

locally may correspond to an abstract trace E ′′
following

the total order art, such that performing E ′ |t has the same

effects as performing E ′′
, that is, they generate the same state

(modulo the state abstraction), and the same return value if
E ′ |t ends with a query operation.

In the example both art1 and art2 order addAfter-atom(a, b)
before addAfter-atom(a, c). For t2, we consider its local

traces of all the prefixes of E:

E1 : (t2, addAfter(a, c), ts2)
E2 : (t2, addAfter(a, c), ts2), (t2, AddAft(a, ts1, b))
E3 : (t2, addAfter(a, c), ts2), (t2, AddAft(a, ts1, b)),

(t2, read(), acb)

We can check that E1 generates the same state as the atomic

execution of addAfter-atom(a, c) (since the trace consists
of only one event, it trivially satisfies the total order art2),
and E2 corresponds to

addAfter-atom(a, b), addAfter-atom(a, c)

For E3, we also check the final return value is the same with

such a query in the abstract trace.

2.3 Ordering of Operations and ACC
Both SEC and FC above are defined in a declarative manner

and are not very informative to the clients of CRDTs. For

instance, FC only requires the existence of an order art on
each node t to order the abstract operations, and says nothing
about what the art is like. So the clients still cannot tell the

execution orders between CRDT operations.

To help reason about client programs, we want to specify

the ordering of operations that CRDTs can enforce. More

specifically, for each total order art of abstract operations on
each node t, we want to give more constraints to tell how to

relate it to the concrete execution order, and how to relate

different art on different nodes so that SEC is guaranteed.

For instance, a direct mapping of each concrete step to

the corresponding abstract atomic one following the real-

time order on a node usually does not work. In the example

shown in Fig. 3(a), art2 has to order addAfter-atom(a, b)
before addAfter-atom(a, c), which is different from the real-

time order of concrete operations in E|t2 . Then what are the
appropriate orders of the abstract operations?

Preserving the visibility order. Consider the client of

RGA in Fig. 3(b). In the execution, the first read of t2 is made

after the arrival of the effector of addAfter(a,b) from t1.
In this case we say addAfter(a,b) is visible to u:=read().
In general, an operation 𝑎 is visible to an operation 𝑏 at the

node t if the effector of 𝑎 has been applied at t before t issues
𝑏. The visibility order encodes the “happens-before” relations

between operations for a certain node.

Naturally we expect u, x and y to read out ab, acb and

acb respectively (assuming the initial list contains a only).
This means, when we map the concrete steps at a thread

to a sequence of abstract atomic operations, the abstract

executions should follow the visibility order.

Different nodes may observe different orders. In FC

we require each node t to maintain an order art of abstract
operations. SEC would be obvious if all art are the same.

However, as we would see below, this requirement is overly

restrictive and cannot be satisfied by some CRDTs.

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

addAfter(a, p);
addAfter(c, d);
u := read();

addAfter(c, e);
addAfter(a, q);
v := read();

t1

t2

1 addAfter(a,p) 2 addAfter(c,d)

3 addAfter(c,e) 4 addAfter(a,q)

u:=read()

v:=read()

Figure 4. A client of continuous sequence. Assuming the

initial sequence is ac, is it possible for u and v to read apqced?

Consider the program in Fig. 4. It is also a client of CRDT

sequence, but implemented using the continuous sequence

algorithm [20] instead of RGA. The continuous sequence

tags each addAfter operation with a real number, the value

of which reflects the intended position of the newly added

element (assuming tags of elements on the sequence are in

increasing order). For instance, assuming the initial sequence

is ac, operation 1 will tag p with a real number between the

tags of a and its subsequent element c. The read operation

then orders the elements by their tags and returns the result-

ing sequence. Note that the tags are different from the time

stamps in RGA, and the happens-before order does not imply

the order of tags. For instance, we know the tag generated

by 2 is greater than 1 , but the tag of 4 is smaller than 3 .

In this example it is possible to read apqced at the end,

as long as the tag generated by 1 happens to be smaller

than that of 4 , while the tag of 3 is smaller than that of 2 .

To interpret the final sequence apqced, node t1 has to order

the abstract operation 4 before 1 , and order 2 before 3 .

In addition, it needs to preserve the visibility order, as we

explained before. So it needs to order 1 before 2 . Therefore,

the only acceptable order for t1 is 4 1 2 3 . Similarly, the

only possible order for t2 is 2 3 4 1 . So 1 and 2 (also 3

and 4) must be ordered differently by t1 and t2.
Therefore we should allow different nodes to have differ-

ent local views of the abstract executions. In particular, the
visibility orders of operations originated in other nodes may
not be respected. We can also find similar examples in other

CRDTs such as the add-wins set.

However, the orders cannot be arbitrarily different because

we need to guarantee SEC. They have to be consistent in

some way. What kind of consistency should be enforced then?

Conflicting operations should follow the same order.
CRDTs achieve SEC by turning non-commutative abstract

operations into commutative effectors. Arbitrary orderings

of commutative operations always lead to the same state.

We say two abstract operations 𝑓1 and 𝑓2 are conflicting,
represented as 𝑓1 ⊲⊳ 𝑓2, if they are not commutative. In Fig. 4,

addAfter(a, p) and addAfter(a, q) are conflicting, but
addAfter(a, p) and addAfter(c, d) are not.

Naturally, to reach the same state, we require the abstract

executions on different nodes execute conflicting operations

in the same order. In Fig. 4, the abstract executions 4 1 2 3

and 2 3 4 1 order 4 and 1 (2 and 3) the same way.

Abstract Converging Consistency (ACC). We formalize

our correctness notion of CRDTs as Abstract Converging

Consistency (ACC), which is a relation between the concrete

implementation of a CRDT (represented asΠ) and its abstract
specification (represented as a pair (Γ, ⊲⊳), where Γ is the

abstract atomic specification of the operations, and ⊲⊳ is a

symmetric binary relation between conflicting operations).

ACC requires FC defined in Sec. 2.2, and the order con-

straints over abstract executions described in this section.

More specifically, ACC(Π, (Γ, ⊲⊳)) requires that, for any ex-

ecution trace E of Π, each node t can find a total order art
over abstract atomic operations in Γ, such that:

• For each prefix E ′
, there is a corresponding sequence

E ′′
of abstract operations. E ′′

follows the order art
and generates the same effects with E ′ |t;

• art preserves the local visibility order on t; and
• For any two nodes t1 and t2, art1 and art2 can be differ-

ent, but they must assign the same order for conflicting

operations specified in ⊲⊳.

We can prove that ACC defined above guarantees SEC.

Note that the last point only requires the existence of a
consistent ordering of conflicting operations, with no further

constraints. This is not a problem for UCR-CRDTs that use

uniform operation-independent conflict resolving strategies.

However, for CRDTs like add-wins and remove-wins sets, we

may rely on the specific strategy (𝑋 -wins) to reason about

the behaviors of clients. In this case we need to further refine

the above ACC definition.

2.4 Extended ACC for 𝑋 -Wins CRDTs
We show an execution of add-wins sets in Fig. 5(a). A set pro-

vides three operations: lookup(e), add(e) and remove(e).
The add-wins set algorithm assigns a unique tag to each

element when it is added. In Fig. 5 we highlight the tags by

labeling the dots with effectors rather than originals. We use

0 and 1 to represent the elements in the set, and a and b for

the tags. So an element may be added to the set multiple

times but each time with a different tag. The remove opera-
tion removes all the occurrences of the element in the local

replica. The effector of remove carries the set of element-tag

pairs removed locally. On receiving the effector, the remote

hosts remove only these pairs from their local replicas.

For instance, in Fig. 5(a) when t2 issues a remove(1) re-

quest (operation 6), it sees only (1, b) in the local replica

and sends the effector Rmv((1, b)) to t1. When it arrives

at t1, the pairs (1, b) and (1, c) are both in t1’s replica, but
only (1, b) is removed. Therefore the subsequent lookup(1)

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

t1

t2

1 Add(0,a)

2 Add(1,b)

3 Add(1,c)

4 Add(0,d)

5 Rmv((0,a))

6 Rmv((1,b))

lookup(0)

lookup(0)

lookup(1)

lookup(1)

(a)

t1

t2

1 Add(0,a)

2 Add(0,b)

3 Rmv((0,a))

4 Rmv((0,b))

lookup(0)

lookup(0)

lookup(0)

lookup(0)

(b)

Figure 5. Executions of the add-wins set.

still returns true. This illustrates the add-wins conflict resolv-
ing strategy: for concurrent add (3) and remove (6), the

abstract view is to execute add after remove.
It is interesting to see that the add-wins conflict resolving

strategy is different from the time-stamp-based approaches

since it is tiedwith the functionality of specific operations. As

the dual, there is also the remove-wins set algorithm which

applies the remove-wins strategy. Note that the add-wins set
and the remove-wins set assume causal delivery between

add and remove operations. This is also different from other

CRDTs, which do not need to rely on causal delivery.

The add-wins sets and remove-wins sets may have differ-

ent behaviors, which are observable by clients. If the client

relies on the specific strategy and cares about the difference,

our above ACC definition would be too abstract to distin-

guish them. We solve this problem by introducing a won-by
relation ◀ in the abstract specification to describe the con-

flict resolving strategy. We have remove(e) ◀ add(e) for

add-wins set, and the reverse for remove-wins set. Since we

only need to resolve conflicts for conflicting operations, the

◀ relation is a subset of the conflict relation ⊲⊳. Correspond-

ingly, we refine the third point of ACC in 2.3 with an extra

requirement that all the art respect the ◀ order.

Unfortunately, this simple extension of ACC would not

work. Consider the execution shown in Fig. 5(b). For each

node, we can see the two lookup operations return true and
false respectively. However, we cannot find a total order

ar satisfying ACC. For t1, we have to order 1 before 3 (to

preserve the visibility order), and 3 before 2 (to respect the

◀ order). Therefore 4 has to be the last operation, other-

wise the abstract execution cannot generate the same return

values as the concrete one, failing FC. However, ordering 4

after the concurrent 1 would violate the ◀ order.

This problem is caused by our over-simplified interpre-

tation of the “add-wins” conflict-resolving strategy, which

says we should always order remove(e) before add(e) if

they are concurrent. However, in our example, when 4 ar-

rives at t1, the effect of 1 has already been canceled out by

3 . Therefore at this moment whether 1 has been executed

before or not should make no difference.

To address this problem, we give a more precise descrip-

tion of the strategy, which says concurrent remove(e) should
be ordered before add(e) only if the effect of add(e) is still

reflected in the state (i.e., its effect has not been canceled out

by others). Since the cancellation of effects is functionality

dependent, we introduce another canceled-by relation▷ over

abstract operations in the specification. Informally, we let

the operation 𝑓 be canceled by 𝑓 ′ (𝑓 ▷ 𝑓 ′) if the following
two requirements hold:

• 𝑓 may win others as specified in ◀; and

• for any other abstract operations 𝑓1, . . . , 𝑓𝑛 (𝑛 ≥ 0) in

between, the abstract operation sequence 𝑓 , 𝑓1, . . . , 𝑓𝑛 ,

𝑓 ′ has the same effects as 𝑓1, . . . , 𝑓𝑛 , 𝑓
′
.

Therefore, for add-wins sets, we have add(e) ▷ remove(e)
but not the inverse (which violates the first requirement).

We relax the third point of ACC accordingly, and ignore

the canceled operations when we check the consistency be-

tween the total orders art for different nodes t. This relaxed
ACC allows the total orders art1 and art2 in Fig. 5(b) to be

defined as 1 3 2 4 and 2 4 1 3 , respectively. When 4 is ex-

ecuted at t1, we only need to check that 3 and 4 are ordered

consistently, and ignore 1 and 2 because they have been

canceled (by 3 and 4 respectively) at this moment. Also

because 3 and 4 are not conflicting (they are commutative),

it is okay to order them differently in art1 and art2 .
With the more refined specification, we can redefine the

correctness as XACC(Π, (Γ, ⊲⊳,◀,▷)). It also assumes causal

delivery of messages, as required by add-wins and remove-

wins sets. Note that UCR-CRDTs satisfying ACC(Π, (Γ, ⊲⊳))
in Sec. 2.3 also satisfy XACC(Π, (Γ, ⊲⊳, ∅, ∅)) — Since their

conflict resolving policies are not tied with particular opera-

tions, we can simply set ◀ and ▷ to be empty.

Compositionality. Like linearizability, our definition of

ACC/XACC is compositional. That is, for a set of CRDTs

Π1, . . . , Π𝑛 , if every Π𝑖 satisfies XACC(Π𝑖 , (Γ𝑖 , ⊲⊳𝑖 ,◀𝑖 ,▷𝑖)),
then the clients can use them together and view them as a

single big object satisfying XACC(−→Π , (−→Γ ,−→⊲⊳,−→◀,
−→▷)), where

−→
Π represents the disjoint union of all the operations Π1 ⊎
. . . ⊎ Π𝑛 , and

−→
Γ , −→⊲⊳ , −→◀ and

−→▷ are defined similarly. Note

here we assume the CRDTs do not share data.

2.5 Abstraction and Client Reasoning
It is important to note that the goal of this work is not to give
axiomatic definitions to tell the validity of a single execution

trace, although we use traces above (e.g., those shown in

Figs. 3 and 4) to explain the key ideas. Our goal is to support

static program verification, where we need to consider all

the execution traces that can be possibly generated by the

program, and the reasoning is based on the program text

without actually running it. This is much more challenging

than reasoning about a single trace.

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

t1

t2

add(0)

remove(0)

For instance, if we look at the ex-

ecution of a CRDT set on the right,

it is easy to tell what the final state

is: it must contain 0 for add-wins

sets, but mustn’t for remove-wins sets. Knowing the con-

crete implementation mechanism, the result can be easily

predicted. The deceiving simplicity may make one doubt

the need of abstraction. However, if we consider the simple

client program (add(0); || remove(0);) that generates
the trace, we know it may generate both results (since there

are other possible executions where one operation happens

before the other), no matter which CRDT set we use
1
. This

example shows that we have to consider all possible order-

ing of operations for program reasoning, which can be very

complicated in non-trivial clients. Abstracting away the im-

plementation details and taking an atomic view of operations

can greatly simplify the reasoning.

Remark. Picking the appropriate abstraction level for CRDT
specifications is one of the key challenges we need to address.

On the one hand, the abstractions need to hide as much

implementation detail as possible. On the other hand, they

need to be useful for client reasoning, i.e., it does not abstract

away important functionality properties of the data type.

For 𝑋 -wins CRDTs, we need to decide whether or not

to hide the functionality-dependent “𝑋 -wins” strategies. It

might be possible to have a weaker ACC definition that

unifies UCR and 𝑋 -Wins CRDTs, but it would not support

the reasoning about some special clients whose functionality

depends on the differences between add-wins sets, remove-

wins sets and UCR sets. Consider the following client:

add(0);remove(0);
x := read();

add(0);remove(0);
y := read();

At the end the post-condition 0 ∈ 𝑥 ⇒ 0 ∉ 𝑦 holds when

the client uses the remove-wins set or UCR sets (e.g., the

LWW-element set) but not when it uses the add-wins set.

Abstracting away the differences of these sets would prevent

the verification of the above program.

3 Basic Technical Settings
Figure 6 shows the syntax of the language. The whole pro-

gram 𝑃 consists of 𝑛 clients 𝐶 , each running on different

nodes. They share the object Π, which is replicated on all

the nodes. Each client executes sequentially, accessing the

local client state in the node. It can also access the object state
through the command 𝑥 := 𝑓 (𝐸), which calls the operation

𝑓 of the object with the argument 𝐸.

We model the object Π as a mapping from an operation

name 𝑓 and its argument to the actual operation over the

object state. When a client calls an operation, it executes

in two steps. First the operation is applied over the object

state and generates a return value and an effector 𝛿 . The

1
Note it is indeed possible to construct clients that can distinguish add-wins

sets from remove-wins sets, as discussed in the following remarks.

(OpName) 𝑓 ∈ String
(Effector) 𝛿 ∈ LocalState ⇀ LocalState
(ODecl) Π ∈ OpName×Val ⇀ LocalState ⇀ Val×Effector
(Expr) 𝐸 ::= 𝑥 | 𝑛 | 𝐸+𝐸 | . . .

(CltStmt) 𝐶 ::= 𝑥 := 𝑓 (𝐸) | skip | 𝐶;𝐶 | if (𝐸) 𝐶 else 𝐶 | . . .
(Prog) 𝑃 ::= let Π in 𝐶1 ∥ . . . ∥𝐶𝑛

Figure 6. Syntax of the programming language.

effector 𝛿 captures the operation’s effect over the object

state. It is broadcast to all nodes, including the one where the
client request originates. Then the effector 𝛿 is applied on

the local replica of the object data on each node. Note that

on the origin node of the client request, the generation of the

effector and the execution of it over the local replica are done

atomically. To simplify the presentation we assume each

program uses only one object. As we explained in Sec. 2.4,

our correctness definition ACC is compositional and the

results still hold when there are more objects.

We assume an effector is delivered to a node at most once,

but it may never reach a target node. Also we do not as-
sume FIFO message channels. Most of the CRDTs can work

under these assumptions. When stronger assumptions are

needed (e.g., causal delivery), we can add extra constraints

over execution traces.

Events and event traces. The clients 𝐶𝑖 in the program

let Π in 𝐶1 ∥ . . . ∥𝐶𝑛 are executed following the standard in-

terleaving semantics. The semantics generates events when

CRDT operations are executed. An execution trace is the

sequence of events generated during the interleaving execu-

tion. We define the events 𝑒 and execution traces E below:

(Event) 𝑒 ::= (mid, t, (𝑓 , 𝑛, 𝑛′, 𝛿)) | (mid, t, (𝑓 , 𝑛), 𝛿)
(ETrace) E ::= 𝜖 | 𝑒 ::E

Here 𝜖 represents an empty list. The event (mid, t, (𝑓 , 𝑛, 𝑛′, 𝛿))
is called an origin event. It is generated when the object oper-

ation 𝑓 is called on the node t with the argument 𝑛, and the

return value 𝑛′
and the effector 𝛿 are generated by applying

Π(𝑓 , 𝑛) over the local replica. It also contains a unique ID

mid for the original request of the operation. When the effec-

tor 𝛿 is delivered to and executed at another node t′, the node
t′ generates the event (mid, t′, (𝑓 , 𝑛), 𝛿). It records not only
the local node ID t′ and the effector, but also the information

about the original operation, including the operation name

𝑓 , the argument 𝑛, and the ID mid.
We define T (𝑃,S) as the prefix closure of the event traces

that can be generated by executing 𝑃 from the initial state

S. We also define T (Π,S) as the prefix closure of the event
traces that can be generated by any set of clients accessing

Π with the initial state S.

4 Specifications for CRDTs
The specification of a CRDT object consists of two parts,

the operation specification Γ and the conflict relation ⊲⊳, as

shown in Fig. 7. Γ maps operation names and arguments

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

(OSpec) Γ ∈ OpName × Val ⇀ AbsState → Val × AbsState
(Action) 𝛼 ∈ AbsState → AbsState

⊲⊳ ∈ P (Action × Action)

Figure 7. Object specifications (Γ, ⊲⊳).

to abstract atomic operations of the type AbsState → Val ×
AbsState. That is, each atomic operation applies over an ab-

stract object state and generates the resulting abstract state

and a return value. We assume it is a total function because

as a specification we do not want it to get stuck whenever a

client applies the operation.

We use AbsState to represent the set of object states S
at the abstract level. They may abstract away the implemen-

tation dependent information of the concrete states. For in-

stance, the concrete state of RGA consists of a time-stamped

tree N and a tombstone T, as shown in Sec. 2.1, while the

abstract state is simply a sequence (e.g., acdb).
Since the return value of an operation is meaningful only

to the origin node, while the state transformation needs to be

performed on all replicas, we use opr(Γ(𝑓 , 𝑛)) to represent

the effects of Γ(𝑓 , 𝑛), which does a state transformation. We

call the transformation an action (represented as 𝛼).

The conflict relation ⊲⊳ needs to be a symmetric binary
relation over non-commutative actions. For sets, add(x) and

remove(x) conflict with each other. For RGA,

addAfter(𝑎, 𝑏) ⊲⊳ addAfter(𝑐, 𝑑) iff {𝑎, 𝑏} ∩ {𝑐, 𝑑} ≠ ∅,
addAfter(𝑎, 𝑏) ⊲⊳ remove(𝑐) iff 𝑐 ∈ {𝑎, 𝑏} .

Well-defined specifications must satisfy nonComm(Γ, ⊲⊳),
which requires that all the non-commutative actions in Γ
should be specified in ⊲⊳.

Definition 1. nonComm(Γ, ⊲⊳) iff ∀𝑓1, 𝑛1, 𝑓2, 𝑛2, 𝛼1, 𝛼2,
𝛼1 = opr(Γ(𝑓1, 𝑛1)) ∧ 𝛼2 = opr(Γ(𝑓2, 𝑛2)) ∧ ¬(𝛼1 ⊲⊳ 𝛼2)
=⇒ 𝛼1 # 𝛼2 = 𝛼2 # 𝛼1

where 𝛼 # 𝛼 ′ def

= 𝜆S. 𝛼 ′(𝛼 (S)) .

As we explained in Sec. 2.5, add-wins and remove-wins

sets should be specified with further information about the

conflicting resolving strategies, i.e., the won-by (◀) and

canceled-by (▷) relations over conflicting actions. In the fol-

lowing sections we first present our results for UCR-CRDTs

that do not need ◀ and ▷, and show the extension of them

to support these 𝑋 -wins algorithms in Sec. 9.

We assume ⊲⊳ is symmetric and nonComm(Γ, ⊲⊳) holds
throughout the paper. We overload ⊲⊳ over operations, and

also over events, written as (𝑓 , 𝑛) ⊲⊳Γ (𝑓 ′, 𝑛′) and 𝑒 ⊲⊳Γ 𝑒 ′

respectively (the subscript Γ is used to extract actions corre-

sponding to (𝑓 , 𝑛), (𝑓 ′, 𝑛′), 𝑒 and 𝑒 ′).

5 Abstract Converging Consistency
As shown in Def. 2, ACC𝜑 (Π, (Γ, ⊲⊳)) is parameterized with

an abstraction function 𝜑 , which maps concrete object states

to abstract ones, i.e., 𝜑 ∈ LocalState ⇀ AbsState.

ExecRelated𝜑 (t, (E,S), (Γ, ar)) iff ∀E ′ ⩽ E .
∀(S′

𝑎, 𝑛
′) = aexec(Γ, 𝜑 (S), visible(E ′, t) ⇂ar).

𝜑 (exec_st(S, E ′ |t)) = S′
𝑎 ∧

(∀𝑒 = last(E ′ |t) . is_origt (𝑒) =⇒ rval(𝑒)=𝑛′)
Coh(ar, ar′, (Γ, ⊲⊳)) iff

∀𝑒1, 𝑒2 . (𝑒1 ar 𝑒2) ∧ (𝑒2 ar′ 𝑒1) =⇒ ¬(𝑒1 ⊲⊳Γ 𝑒2)

Figure 8. Auxiliary definitions for ACC.

Definition 2. ACC𝜑 (Π, (Γ, ⊲⊳)) iff
∀S, E . E ∈ T (Π,S) ∧ S ∈ dom(𝜑) =⇒ ACT𝜑 (E,S, (Γ, ⊲⊳))

It requires every event trace E of Π to satisfy ACT shown

in Def. 3, which formalizes the idea in Sec. 2.3.

Definition 3. ACT𝜑 (E,S, (Γ, ⊲⊳)) iff ∃ar1, . . . , ar𝑛 ,

∀t. totalOrdervisible(E,t) (art) ∧ (vis↦−−→
t E ⊆ art) ∧

ExecRelated𝜑 (t, (E,S), (Γ, art)) ∧ ∀t′ ≠ t. Coh(art, art′, (Γ, ⊲⊳))

where we define ExecRelated and Coh in Fig. 8.

Before explaining ACT, we first introduce the notations
for visibility of events. In the execution E an origin event

𝑒 is visible to another event 𝑒 ′ originated from the node t

(i.e., 𝑒
vis↦−−→
t

E 𝑒 ′), if the effector of 𝑒 has reached t before 𝑒 ′ is

issued. We also use visible(E, t) to represent the set of origin
events whose effectors have reached t.

ACT says that each node t may have its own arbitration

order art, which is a total order over the origin events on E
visible to t. Each art must preserve the visibility order on t

(i.e.,

vis↦−−→
t

E ⊆ art).
On functional correctness, ACT requires that the concrete

execution on node t should correspond to the execution

of the abstract events following the arbitration order art
(see ExecRelated𝜑 (t, (E,S), (Γ, art))). As defined in Fig. 8,

ExecRelated says that every state in t’s concrete execution
can be mapped (via 𝜑) to the state in the abstract execution

trace, and that every request issued by t gets the same return

value as the abstract one. The definition checks on every

prefix E ′
of the concrete trace E. We use visible(E ′, t) ⇂ar to

represent a serialization of the set visible(E ′, t) following the
total order ar. Then aexec(Γ,S𝑎, E) executes the sequence
of abstract operations on E, starting from the initial abstract

state S𝑎 . It returns the final state S′
𝑎 and the return value

𝑛′
of the last operation. Similarly, we use exec_st(S, E) to

represent the final state generated by executing the effectors

on E from the initial state S. We omit their definitions here.

The arbitration orders on different nodes can be different,

but must be coherent to guarantee SEC. The coherence re-

quires that conflicting actions are given the same arbitration

order by all the nodes (seeCoh(art, art′, (Γ, ⊲⊳)), as defined in

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

Fig. 8). Combined with (vis↦−−→
t

E ⊆ art) for every t, Coh actu-

ally ensures that art must agree with other nodes’ visibility

orders on conflicting operations.

Properties of ACC. Our ACC guarantees SEC. Below we

first define the convergence of event traces in Def. 4. It is

a property about the concrete level execution only, and it

captures the SEC requirement.

Definition 4. CvT𝜑 (E,S) iff

∀E ′, E ′′, t, t′. E ′⩽E ∧ E ′′⩽E ∧ visible(E ′, t)=visible(E ′′, t′)
=⇒ 𝜑 (exec_st(S, E ′ |t)) = 𝜑 (exec_st(S, E ′′ |t′))

CvT𝜑 (E,S) says, whenever the two nodes t and t′ see
the same set of operations, executing the corresponding

sub-traces on t and t′ results in states corresponding to the

same abstract state. Note we allow t and t′ to pick different

time points in the execution trace E (see E ′⩽E and E ′′⩽
E, which says E ′

and E ′′
can be different prefixes of E),

because there is no global time on the nodes. Besides, the

two resulting states do not have to be identical. Instead, they

only need to be mapped to the same abstract state. This way

we allow the implementation-dependent data in the concrete

states to be different. The convergence of an objectΠ, written
as Cv𝜑 (Π), requires every event trace E of Π to satisfy CvT.

Lemma 5. If ACC𝜑 (Π, (Γ, ⊲⊳)), then Cv𝜑 (Π).
Another important property ofACC𝜑 (Π, (Γ, ⊲⊳)) is its com-

positionality, as we explained in Sec. 2.4.

6 Abstraction Theorem
To simplify the reasoning of clients of CRDTs, we give an

abstract operational semantics of client programs, based on

the abstract specification (Γ, ⊲⊳). The abstract version of the

client program is defined below:

(AProg) P ::= with (Γ, ⊲⊳) do 𝐶1 ∥ . . . ∥𝐶𝑛

It is safe to reason about clients at the abstract level as long

as the CRDT implementation Π contextually refines (Γ, ⊲⊳).
Definition 6. Π ⊑𝜑 (Γ, ⊲⊳) iff, for all clients 𝐶1, . . . ,𝐶𝑛 and

state S ∈ dom(𝜑), for all ⌊E⌋ and 𝜎𝑐 ,
(⌊E⌋, 𝜎𝑐) ∈ Ts (let Π in 𝐶1 ∥ . . . ∥𝐶𝑛,S) =⇒

(obsv𝜑 (⌊E⌋), 𝜎𝑐) ∈ Ts (with (Γ, ⊲⊳) do 𝐶1 ∥ . . . ∥𝐶𝑛, 𝜑 (S))

Informally, Π ⊑𝜑 (Γ, ⊲⊳) says, for any clients and initial

states, executing the clients with Π does not generate more

observable behaviors than the execution using (Γ, ⊲⊳) in the

abstract operational semantics (presented below). Ts (𝑃,S)
and Ts (P,S) are defined similarly as T (𝑃,S) (Sec. 3), but
they additionally record the final client state 𝜎𝑐 . Also in the

extended trace ⌊E⌋ they record all the intermediate object
states together with the events. The function obsv𝜑 (⌊E⌋)
maps the extended trace ⌊E⌋ in the concrete semantics to an

abstract trace. Each concrete event is mapped to an abstract

one, and every recorded object state is mapped through the

state abstraction function 𝜑 to an abstract object state.

Theorem 7 (Abstraction Theorem).
ACC𝜑 (Π, (Γ, ⊲⊳)) ⇐⇒ Π ⊑𝜑 (Γ, ⊲⊳).

Abstract operational semantics describes the execution
of programs in the form of with (Γ, ⊲⊳) do 𝐶1 ∥ . . . ∥ 𝐶𝑛 .

Clients are executed following the interleaving semantics.

On each node, we always keep the initial object state S0.

We also maintain a sequence 𝜉t of the abstract operations

that the node t has received. We can view 𝜉t as a runtime
representation of the arbitration order art used in ACC. Given
S0 and 𝜉t, we can always generate the current object state

on the fly by executing all the operations on 𝜉t from S0.

When a node issues an operation, it puts the operation

at the very end of its local 𝜉 to get a new sequence 𝜉 ′. This
reflects the preservation of the visibility order, as required

in ACC, because at this moment the node has seen all the

operations on 𝜉 and therefore they all need to be ordered

before the new operation. We also start from S0 and execute

all the operations on 𝜉 ′ to get the return value of the last

operation. The node then broadcasts the operation itself

(instead of effectors) to all the other nodes.

When a node receives an operation sent from others, it

can non-deterministically insert the operation into any po-

sition of the local sequence 𝜉 , as long as the resulting 𝜉 ′ is
coherent with every other 𝜉t on node t. The coherence re-
quirement is similar to Coh(art, art′, (Γ, ⊲⊳)) defined in Fig. 8.

It requires that conflicting operations follow the same order

in all sequences (𝜉 ′ and all the other 𝜉t). If we cannot find

an insertion position in the local 𝜉 so that the resulting 𝜉 ′

satisfies the coherence requirement, the execution gets stuck.

The semantics of the program can be viewed as the set of

the stuck-free executions.

Since the operation lists 𝜉 on all nodes must be coherent

during the execution, we can prove that the abstract seman-

tics inherently guarantees the convergence of the abstract

object states. Then, the contextual refinement Π ⊑𝜑 (Γ, ⊲⊳)
can ensure Cv𝜑 (Π), the convergence of the concrete object.
With the Abstraction Theorem (Thm 7), we can derive Lem. 5

again: ACC𝜑 (Π, (Γ, ⊲⊳)) can ensure Cv𝜑 (Π) too.

7 Program Logic for Client Verification
To reason about clients using a CRDT object Π, we apply the
Abstraction Theorem, and verify the clients using the more

abstract object specifications (Γ, ⊲⊳) instead.
We design a Hoare-style program logic to verify functional

correctness of client programs, specified in the form of pre-

and post-conditions. The top level judgment is in the form

of ⊢ {P }with (Γ, ⊲⊳) do 𝐶1 ∥ . . . ∥𝐶𝑛{Q }, where P and Q are

traditional Hoare-logic state assertions over both client and

object states. To enable thread-local reasoning, we borrow

ideas from shared-memory concurrency verification and

base our logic on rely-guarantee reasoning [11]. Each 𝐶t is

verified in the form of 𝑅,𝐺 ; Γ, ⊲⊳ ⊢t {𝑝}𝐶t{𝑞}, where 𝑅 and𝐺

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng{
s = a

}
addAfter(a, b);

u := read();
if (b ∈ u)
addAfter(a, c);

x := read();

v := read();
if (c ∈ v)
addAfter(c, d);

y := read();{
d ∈ x ⇒ (s = x = acdb) ∧ (y = x ∨ y = acd)

}
Figure 9. Correctness of a client program of RGA.

are rely and guarantee assertions, specifying the interactions

between the current thread t and its environment threads.

The key challenge for the logic is to deal with the weak
behaviors produced by the abstract semantics in Sec. 6, where

client threads can reorder actions, which is reminiscent of

weak memory models of languages like C11.

Amotivating example. Figure 9 shows a client program of

RGA and its specification. The precondition says the initial

list s is a. The postcondition shows that x and ymust be equal,

if all the operations have been applied before the reads. It also

tells which values x and y may read. Since we do not assume

causal delivery, when the thread t3 receives addAfter(a,c)
from the thread t2, it may not have received addAfter(a,b)
from the thread t1, though addAfter(a,c) is issued only af-

ter t2 receives addAfter(a,b). As a result, it is possible that
y reads acd. But, when t3 finally receives addAfter(a,b), it
must insert addAfter(a,b) before addAfter(a,c) (in the

abstract semantics) to restore the causality (required by the

coherence check). It is impossible for y to read abcd.

Assertions. It seems difficult to use traditional state asser-

tions to express the insertion of an action into the past exe-

cution. Our idea is to introduce action assertions. We extend

the syntax of Hoare logic assertions, 𝑝 , with several new

assertion forms, to specify the set of actions (originate from

either the current thread t𝑐 or its environment) and their

orders of which t𝑐 has knowledge at each program point.

Figure 10 gives the syntax of our assertion language.

The assertions [𝛼]𝑖t and 𝛼
𝑖

t describe singleton action sets

containing only the action 𝛼 . The former says the action 𝛼

(with ID 𝑖) has been issued from its origin t, but we do not

care whether it’s on the way or it has arrived at the current

node, while the latter says the current node has received

𝛼 . We may omit the superscript action ID in an assertion

when it is clear from the context what the action denotes.

For the motivating example of Fig. 9, after t3 succeeds in the

check c ∈ v, its assertion must contain addAfter(a,c)
t2
,

but only [addAfter(a,b)]t1 .
We write emp for an empty action set. The assertion

𝑝 ⊔ 𝑞 allows us to merge two action sets without enforc-

ing new ordering. It can be used to describe non-conflicting

actions. For instance, [addAfter(a,b)]t1 ⊔ remove(e)
t2

says addAfter(a,b) and remove(e) can be ordered either

way. It can also describe a set of conflicting but concurrently

(StateAssn) P ,Q ::= 𝐵 | ¬P | P ∧ Q | P ∨ Q | . . .

(Assn) 𝑝, 𝑞 ::= P | emp | [𝛼]𝑖t | 𝛼
𝑖

t | 𝑝 ⊔ 𝑞 | 𝑝 ⋉ [𝛼]𝑖t
| 𝑝 ⋉ 𝛼

𝑖

t | (𝑝, ⊲⊳) ⋉ [𝛼]𝑖t | (𝑝, ⊲⊳) ⋉ 𝛼
𝑖

t
| 𝑝 ⇛ 𝑞 | ¬𝑝 | 𝑝 ∧ 𝑞 | 𝑝 ∨ 𝑞 | 𝑝 ⇒ 𝑞 | . . .

(RGAssn) 𝑅,𝐺 ::= Emp | 𝑝 ; [𝛼]𝑖t | 𝑅 ∨ 𝑅 | 𝑅 ⇒ 𝑅 | . . .

Figure 10. Syntax of the assertion language.

issued actions, so that we do not need to enumerate all the

possible execution traces. For instance, when the program

(addAfter(a, b); || addAfter(a, c)) terminates, we

have addAfter(a,b)
t1
⊔ addAfter(a,c)

t2
.

We use 𝑝 ⋉ [𝛼]𝑖t, 𝑝 ⋉ 𝛼
𝑖

t, (𝑝, ⊲⊳)⋉ [𝛼]𝑖t and (𝑝, ⊲⊳)⋉ 𝛼
𝑖

t
to add a new action 𝛼 and some new orders about 𝛼 . The

assertion 𝑝 ⋉ [𝛼]𝑖t requires 𝛼 to be ordered after all the ac-

tions in 𝑝 , while (𝑝, ⊲⊳)⋉ [𝛼]𝑖t enforces the ordering between
𝛼 and only the actions which have arrived (e.g., boxed ac-

tions) in the current view of 𝑝 and conflict (⊲⊳) with 𝛼 . The

assertions 𝑝 ⋉ 𝛼
𝑖

t and (𝑝, ⊲⊳)⋉ 𝛼
𝑖

t have similar meanings,

but they also say that 𝛼 has arrived at the current node. For

the thread t3 of Fig. 9, if the test of c ∈ v is true, it knows

the following 𝑝𝑐 : [addAfter(a,b)]t1 ⋉ addAfter(a,c)
t2
.

It says, t3 can infer that addAfter(a,b) must be inserted

before addAfter(a,c) even though addAfter(a,b) may

not have arrived at t3. After t3 calls addAfter(c,d), the as-
sertion becomes (𝑝𝑐 , ⊲⊳) ⋉ addAfter(c,d)

t3
. Here t3 adds

only the ordering between the conflicting addAfter(a,c)
and addAfter(c,d).
It is always safe to discard some ordering information.

That is, (𝑝 ⋉ [𝛼]𝑖t) ⇒ (𝑝 ⊔ [𝛼]𝑖t) holds. It is also safe to

branch on the ordering of actions:

([𝛼]𝑖t ⊔ [𝛼 ′] 𝑗t′) ⇒ [𝛼]𝑖t ⋉ [𝛼 ′] 𝑗t′ ∨ [𝛼 ′] 𝑗t′ ⋉ [𝛼]𝑖t
Standard state assertions, P , can be lifted to action asser-

tions. A set of partially ordered actions satisfies P if all the

final states resulting from executing these actions satisfy P
(as a state assertion). For instance, the following holds:

(s = a ∧ emp) ⊔ (addAfter(a,b)
t1
⋉ addAfter(a,c)

t2
)

⇒ s = acb

When executing the actions, we only execute the actions

that have arrived in the current view. As a result,

(s = a ∧ emp) ⊔ ([addAfter(a,b)]t1 ⋉ addAfter(a,c)
t2
)

⇒ s = ac ∨ s = acb

The assertion 𝑝 ⇛ 𝑞 specifies that the states satisfying 𝑞

result from receiving and applying all the actions on the way

in 𝑝 . It is used when the whole client program terminates

(see the par rule in Fig. 11, where in Qt all the actions must

have arrived at node t). For instance, the following holds:

(s = a ∧ emp) ⊔ ([addAfter(a,b)]t1 ⋉ addAfter(a,c)
t2
)

⇛ s = acb

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

Rely/guarantee assertions. The assertions 𝑅 and 𝐺 (see

Fig. 10) specify the interface between a thread and its envi-

ronment. The guarantee𝐺 specifies the invocations of object

actions made by the thread itself. The rely 𝑅 specifies the

thread’s expectations of the object actions that originate

from its environment.

The assertion Emp says there is no action issued. The

assertion 𝑝 ; [𝛼]𝑖t says that t invokes the action 𝛼 when 𝑝

holds, i.e., 𝑝 is the prerequisite for t to issue the request 𝛼 .

Threads can cooperate if the rely condition of a thread t
is implied by the guarantee of the other t′. We stabilize the

assertion 𝑝 at each program point of t under its rely 𝑅, so

that it is resistant to interference from the environment. To

stabilize an assertion 𝑝 with respect to 𝑅 = (𝑝 ′ ; [𝛼]𝑖t′), we
do the following steps:

(1) Check that the prerequisite 𝑝 ′
for the invocation of 𝛼

is met at 𝑝 . This requires 𝑝 to contain the knowledge

of all the received actions 𝛼 ′ 𝑗

t′′ in 𝑝 ′
, though it is

possible that some of these actions have not arrived at

the current node yet (i.e. they are in brackets in 𝑝).

(2) If the check in (1) is passed, we add [𝛼]𝑖t′ to the ac-

tion set of the current node. We do not need to know

whether or not 𝛼 has arrived at the current node.

(3) The knowledge of the action ordering at the current

node should also be expanded. For those 𝛼 ′
in 𝑝 ′

that

are prerequisite of 𝛼 and are also in conflict (⊲⊳) with 𝛼 ,

𝛼 ′
should be ordered before 𝛼 on all the nodes, since

we require all the nodes to observe the same ordering

of conflicting actions.

For instance, 𝑝
def

= [addAfter(a,b)]t1 is stabilized to the

following 𝑝1 under 𝑅1, for the RGA object:

𝑅1
def

= addAfter(a,b)
t1
; [addAfter(a,c)]t2

𝑝1
def

= 𝑝 ∨ ([addAfter(a,b)]t1 ⋉ [addAfter(a,c)]t2)
(7.1)

In the inference rules (see the call-r and local rules in

Fig. 11), we use the stability check Sta(𝑝, 𝑅, ⊲⊳). It is passed
by stabilized assertions only. For (7.1), Sta(𝑝1, 𝑅1, ⊲⊳) holds.
Inference rules. Figure 11 presents the key inference rules.

The par rule is almost the standard parallel composition

rule in rely-guarantee reasoning. We let each thread start

its execution from an empty action set (see P ∧ emp). At
the end, we derive the state assertion Qt by receiving all the

actions in 𝑞t (see 𝑞t ⇛ Qt). In the state assertions, we merge

the client state and the object state into one, assuming their

variables are from different name spaces. We also assume

that the rely/guarantee conditions specify object states only.

In the call rule, we first compute the return value 𝑛′
of

the call, using 𝑝
𝜇

↠ 𝑛′
, where 𝜇 ∈ AbsState → Val is the

return value generator of Γ(𝑓 , 𝑛). 𝑝
𝜇

↠ 𝑛′
says, applying 𝜇

over any final state of executing the actions following the

specified order in 𝑝 returns 𝑛′
. We then assign 𝑛′

to 𝑥 . The

assertion 𝑞 holds after the assignment, following the forward

∀t ∈ [1..𝑛] : 𝑅t,𝐺t; Γ, ⊲⊳ ⊢t {P ∧ emp}𝐶t{𝑞t}
(∨t′≠t𝐺t′) ⇒ 𝑅t 𝑞t ⇛ Qt

⊢ {P }with (Γ, ⊲⊳) do 𝐶1 ∥ . . . ∥𝐶𝑛{
∧

t Qt}
(par)

𝑝 ⇒ 𝐸 = 𝑛 split(Γ(𝑓 , 𝑛)) = (𝜇, 𝛼) 𝑝
𝜇
↠ 𝑛′

𝑥 = 𝑛′ ∧ ∃𝑣 . 𝑝 [𝑣/𝑥] ⇒ 𝑞 𝑞 ; [𝛼]𝑖t ⇒ 𝐺

Emp,𝐺 ; Γ, ⊲⊳ ⊢t {𝑝}𝑥 := 𝑓 (𝐸){(𝑞, ⊲⊳) ⋉ 𝛼
𝑖

t}
(call)

Emp,𝐺 ; Γ, ⊲⊳ ⊢t {𝑝}𝑥 := 𝑓 (𝐸){𝑞}
Sta({𝑝, 𝑞}, 𝑅, ⊲⊳) cmt-closed({𝑝, 𝑞})

𝑅,𝐺 ; Γ, ⊲⊳ ⊢t {𝑝}𝑥 := 𝑓 (𝐸){𝑞} (call-r)

𝑅′,𝐺 ′
; Γ, ⊲⊳ ⊢t {𝑝 ′}𝐶{𝑞′}

𝑝 ⇒ 𝑝 ′ 𝑅 ⇒ 𝑅′ 𝑞′ ⇒ 𝑞 𝐺 ′ ⇒ 𝐺

𝑅,𝐺 ; Γ, ⊲⊳ ⊢t {𝑝}𝐶{𝑞}
(csq)

Sta(𝑝, 𝑅, ⊲⊳) cmt-closed(𝑝)
𝑅,𝐺 ; Γ, ⊲⊳ ⊢t {𝑝}𝑥 := 𝐸{∃𝑣 . 𝑥 =𝐸 [𝑣/𝑥] ∧ 𝑝 [𝑣/𝑥]} (local)

Figure 11. Selected inference rules.

assignment rule in Hoare logic. Finally we add the newly

generated action 𝛼 to the action set in𝑞, and use the resulting

assertion (𝑞, ⊲⊳) ⋉ 𝛼
𝑖

t as the postcondition. The invocation

of 𝛼 following 𝑞 (i.e., 𝑞 ; [𝛼]𝑖t) needs to satisfy 𝐺 . The

superscript 𝑖 needs to be the same as specified in 𝐺 .

One may wonder that it is too restrictive for the call rule

to require the argument 𝑛 and return value 𝑛′
to be constant

values. When the precondition 𝑝 cannot determine a unique

argument or return value (i.e., (𝑝 ⇒ 𝐸 = 𝑛) or (𝑝
𝜇

↠ 𝑛′)
does not hold), we can first apply a standard disjunction rule

to branch on 𝑝 , and apply the call rule on each branch.

Note that in this step we only reason about the behavior

of the function call without considering the environment.

Therefore we use an empty rely condition Emp here. To allow
a weaker 𝑅, we can apply the csq rule to stabilize the post-

condition by weakening (𝑞, ⊲⊳)⋉ 𝛼
𝑖

t. Then we apply call-r

rule, which requires the pre- and post-conditions be stable

with respect to 𝑅 and satisfy cmt-closed. Here cmt-closed(𝑝)
iff 𝑝 is preserved after receiving one or more actions that are

already issued in 𝑝 .

The local rule allows us to reason about local computa-

tion of a thread. The pre- and post-conditions are the same

as those in the forward assignment rule in Hoare logic.

Verification of the motivating example. In Fig. 12 we

sketch the proof of t3 in the motivating example of Fig. 9.

More examples are in the technical report [15].

We first define the rely/guarantee conditions of each thread.

𝐺t1 says that the thread t1 guarantees the invocation of 𝛼𝑏
unconditionally. 𝐺t2 says that t2 calls 𝛼𝑐 after it receives 𝛼𝑏 .
Similarly, 𝐺t3 says that t3 calls 𝛼𝑑 after it receives 𝛼𝑐 . Here

we write −♦ 𝛼
𝑖

t for 𝛼
𝑖

t ⊔ true.
By the par rule, we only need to verify each thread in-

dependently. For thread t3, we first stabilize 𝑝𝑎 under 𝑅t3 ,

resulting in the assertion (1) in Fig. 12. After finding c ∈ v, we

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

𝑝𝑎
def

= (s = a) ∧ emp 𝛼𝑏
def

= addAfter(a,b)

𝛼𝑐
def

= addAfter(a,c) 𝛼𝑑
def

= addAfter(c,d)

𝐺t1
def

= true ; [𝛼𝑏]t1 𝑅t1
def

= 𝐺t2 ∨𝐺t3

𝐺t2
def

= (−♦ 𝛼𝑏 t1
) ; [𝛼𝑐]t2 𝑅t2

def

= 𝐺t1 ∨𝐺t3

𝐺t3
def

= (−♦ 𝛼𝑐 t2
) ; [𝛼𝑑]t3 𝑅t3

def

= 𝐺t1 ∨𝐺t2{
𝑝𝑎 ∨ 𝑝𝑎 ⊔ [𝛼𝑏]t1 ∨ 𝑝𝑎 ⊔ ([𝛼𝑏]t1 ⋉ [𝛼𝑐]t2)

}
(1)

v := read();
if (c ∈ v){

𝑝𝑎 ⊔ ([𝛼𝑏]t1 ⋉ 𝛼𝑐 t2
)
}

(2)

addAfter(c, d);{
𝑝𝑎 ⊔ ([𝛼𝑏]t1 ⋉ 𝛼𝑐 t2

⋉ 𝛼𝑑 t3
)
}

(3)

y := read();{
s = acdb ⇒ y = s ∨ y = acd

}
(4)

Figure 12. Verification of the client with RGA.

can discard the branches where 𝛼𝑐 is not arrived. So we get

the assertion (2). Then, t3 calls addAfter(c,d). The immedi-

ate post-condition (𝑝 ⊔ ([𝛼𝑏]t1 ⋉ 𝛼𝑐 t2
), ⊲⊳) ⋉ 𝛼𝑑 t3

can be

derived from the call rule. Using the csq rule, we weaken it

to the assertion (3), which is stable and cmt-closed. Finally
we get the assertion (4). It has the branch y = acd because it

is possible that t3 has not yet received 𝛼𝑏 by the read.

Logic soundness: If ⊢ {P }P{Q }, then |= {P }P{Q }. The
Hoare triple |= {P }P{Q } is defined using the abstract seman-

tics in Sec. 6. The formal model and the soundness proofs

are in our technical report [15].

Invariant-based reasoning. Our logic can be easily ex-

tended to verify object invariants. We can add an extra in-

variant assertion 𝐼 in the judgment, which will be in the form

of 𝐼 , 𝑅,𝐺 ; Γ, ⊲⊳ ⊢t {𝑝}𝐶{𝑞}. Then in the call-r rule in Fig. 11

we add the extra requirements 𝑝 ⇒ 𝐼 and 𝑞 ⇒ 𝐼 .

8 Verifying CRDT Implementations
Our proof method for ACC asks users to first provide speci-

fications ↣ and V about implementations:

↣ ∈ P (Effector × Effector) (the time-stamp order)

V ∈ LocalState → P (Effector) (the view function)

The time-stamp order ↣ is a partial order between effec-
tors. It describes the algorithm’s conflict-resolution strategy,

e.g., the write with a larger time-stamp wins. For the RGA

algorithm, we instantiate ↣ as follows:

𝛿 ↣ 𝛿 ′ iff ∃a, i, b, a’, i’, b’. 𝛿 = AddAft(a,i,b)
∧ (𝛿 ′=AddAft(a’,i’,b’) ∧ i<i’

∨ 𝛿 ′=Rmv(a) ∨ 𝛿 ′=Rmv(b))
Here ↣ orders the AddAft effectors by comparing their

time-stamps. It also orders an AddAft before the conflicting

Rmv effectors (which is not time-stamped). Note that ↣ is

specified at the implementation level. One should not confuse

it with the won-by order ◀ over abstract operations, which

we introduce in Sec. 2.4 and Sec. 9.

The view function V maps each local state S to a set

of effectors that must have been applied before reaching S.
With it, our proof method can be local, in that the reasoning

of each execution step relies on the current local state on the

node only, without referring to the execution traces. For the

RGA algorithm, V is instantiated as follows:

V(S) def

= { 𝛿 | ∃a, i, b. (a, i, b) ∈S(N) ∧ 𝛿 =AddAft(a,i,b)
∨ ∃a. a∈S(T) ∧ 𝛿 =Rmv(a) }

Our proof method, CRDT-TS𝜑 (Π, (Γ, ⊲⊳),↣,V), is a con-
junction of the following proof obligations:

• Commutative effectors: the effectors generated by Π
are all commutative.

• Same return value: the corresponding operations in

Π and Γ have the same return value if executed at

𝜑-related states.

• State correspondence: starting from 𝜑-related states S
and S𝑎 , executing a valid effector 𝛿 (generated from

Π) and the corresponding abstract operation should

lead to 𝜑-related states. 𝛿 is valid if↣ does not order

it before any 𝛿 ′ visible from S, i.e. 𝛿 ′ ∈ V(S).
• Some simple well-formedness checks for ↣ and V to

ensure the user-specified↣ andV make sense.

Theorem 8.
CRDT-TS𝜑 (Π, (Γ, ⊲⊳),↣,V) =⇒ ACC𝜑 (Π, (Γ, ⊲⊳)).
Examples. Using Theorem 8, we have verified seven CRDT

algorithms [20], including the replicated counter (with both

increment and decrement operations), the grow-only set, the

last-writer-wins (LWW) register, the LWW-element set, the

2P-set, the continuous sequence, and the replicated growable

array (RGA). To verify algorithms whose ⊲⊳ is empty (such

as the counter), we let↣ be ∅ andV be 𝜆S. ∅. Proofs of the
examples are in the technical report [15].

Using the verification framework. Our verification frame-

work consists of the program logic (in Sec. 7) and the proof

method (in Sec. 8). As Fig. 1 shows, one needs to do the

following to verify a whole program let Π in 𝐶1 ∥ . . . ∥𝐶𝑛 :

• Provide the specifications for CRDTs. The operation

specification Γ is the same as the one for sequential

data types. It is also easy to come up with the conflict

relation ⊲⊳, which is between all the non-commutative

abstract operations in Γ.
• Apply the program logic for client reasoning. Similar

to standard rely-guarantee reasoning, the user needs

to provide the rely/guarantee conditions, intermediate

assertions, and do the proofs following the logic rules.

• Apply the proof method for CRDT implementations.

All one needs to do is to provide↣ andV , and prove

the set of proof obligations. The proof obligations are

all first-order formulae. They do not universally quan-

tify over execution traces, but only over states and

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

effectors. Thus they can be discharged without induc-

tion, and can potentially be discharged by SMT solvers.

9 𝑋 -Wins CRDTs
Algorithms like add-wins sets and remove-wins sets resolve

conflicts following a specific 𝑋 -wins strategy, while the op-

eration 𝑋 wins only when its effect is not canceled. We

generalize ACC to support these algorithms, by enforcing

the 𝑋 -wins strategy specified using the won-by (◀) and

canceled-by (▷) relations. Like ⊲⊳ (see Fig. 7), they are also

binary relation over actions. The full specification is now a

quadruple (Γ, ⊲⊳,◀,▷).
For add-wins sets, add(x)wins over concurrent remove(x)

(remove(x) ◀ add(x)), but it can also be canceled by subse-

quent remove(x) (add(x) ▷ remove(x)); while for remove-

wins sets, we have the inverse.

◀ and ▷ can only relate conflicting operations, that is,

◀⊆⊲⊳ and ▷⊆⊲⊳. Also ▷ should be valid in that 𝛼 ′
indeed

nullifies the effects of 𝛼 if 𝛼 ▷ 𝛼 ′
. Like ⊲⊳, we also overload

◀ and ▷ over operations and events.

We generalize ACC with the extended specification, and

define XACC𝜑 (Π, (Γ, ⊲⊳,◀,▷)). It requires every trace E of

Π to satisfy XACT if causalDelivery(E). Here we assume

causal delivery of messages, which is required by both add-

wins and remove-wins sets. It says, if an origin event 𝑒1
happens before another origin event 𝑒2, then for any node t
the effector of 𝑒1 reaches t earlier than that of 𝑒2.

Definition 9. XACT𝜑 (E,S, (Γ, ⊲⊳,◀,▷)) iff ∃ar1, . . . , ar𝑛 ,
∀t. totalOrdervisible(E,t) (art) ∧ (vis↦−−→

t E ⊆ art)
∧ PresvCancel(art, t, E, (Γ,▷)) ∧ ExecRelated𝜑 (t, (E,S), (Γ, art))
∧ ∀t′ ≠ t. RCoh(t,t′) ((art, art′), E, (Γ, ⊲⊳,◀,▷))

where we define RCoh in Fig. 13.

XACT (see Def. 9) is similar to ACT, but it enforces the
more relaxed coherence relation RCoh between the arbitra-

tion orders on different nodes. As defined in Fig. 13, RCoh
requires that the arbitration orders art and art′ of the nodes
t and t′ enforce the same ordering for conflicting events

𝑒0 and 𝑒1, if neither 𝑒0 or 𝑒1 are canceled (i.e., {𝑒0, 𝑒1} ⊆
nc-vis(E ′, t, (Γ,▷)) ∩ nc-vis(E ′′, t′, (Γ,▷))). Moreover, the

ordering must follow the won-by order◀ if these two events

are concurrent (i.e., neither one happens before the other). It

is more relaxed than Coh in that, if either 𝑒0 or 𝑒1 is canceled

by others, they can be ordered differently in art and art′ .
XACT also requires PresvCancel(art, t, E, (Γ,▷)). It says,

if 𝑒1 is canceled by 𝑒2 and is also visible to 𝑒2 on certain node,

the arbitration order art must order 𝑒1 before 𝑒2.

Similar to ACC, XACC also ensures SEC, and is composi-

tional. We prove that both the add-wins and remove-wins

sets satisfy XACC.

The Abstraction Theorem. We also revise the abstract

operational semantics in Sec. 6, to give clients an abstract

view of the𝑋 -wins strategy. We then redefine the contextual

RCoh(t,t′) ((art, art′), E, (Γ, ⊲⊳,◀,▷)) iff ∀E ′, E ′′, 𝑒0, 𝑒1 .
E ′ ⩽ E ∧ E ′′ ⩽ E ∧ 𝑒0 ⊲⊳Γ 𝑒1 ∧

{𝑒0, 𝑒1} ⊆ nc-vis(E ′, t, (Γ,▷)) ∩ nc-vis(E ′′, t′, (Γ,▷))
=⇒ ((𝑒0, 𝑒1) ∈ art ∩ art′ ∨ (𝑒1, 𝑒0) ∈ art ∩ art′) ∧

(ConcurrentE (𝑒0, 𝑒1) ∧ (𝑒0 ◀Γ 𝑒1) =⇒ (𝑒0, 𝑒1) ∈ art)
nc-vis(E, t, (Γ,▷)) def

= {𝑒 | 𝑒 ∈ visible(E, t) ∧
¬(∃𝑒 ′. 𝑒 ′ ∈ visible(E, t) ∧ (𝑒 ▷Γ 𝑒 ′) ∧ (𝑒 vis↦−−→ E 𝑒 ′))}

Figure 13. Auxiliary definitions for XACC.

refinement Π ⊑𝜑 (Γ, ⊲⊳,◀,▷). It is similar to Π ⊑𝜑 (Γ, ⊲⊳)
(Def. 6), but uses the new abstract semantics and assumes

causal delivery on concrete executions. Correspondingly, we

have a new abstraction theorem showing its equivalence to

XACC (see the technical report [15]).

10 Related Work
Attiya et al. [1] propose a functional correctness criterion

specifically for the RGA algorithm. They do not use an opera-

tional atomic specification as we do, but instead characterize

the lists’ functionality axiomatically (e.g., by requiring an

element be in the list if it has been inserted but not deleted).

Both our ACC and their work require different nodes to take

the same arbitration order between addAfter events. Our

ACC is more general and can apply to other data types too.

Jagadeesan and Riely [10] propose a correctness criterion

encoding both SEC and functional correctness for CRDTs.

Their “sequential specification” is a set of legal sequential

traces. It is accompanied with a dependency relation be-

tween abstract operations, which plays a similar role as our

⊲⊳ relation. Their correctness definition computes the depen-
dent cuts of an execution of CRDT, which is similar to our

visible(E, t) projected to conflicting actions. They require all
nodes to have the same arbitration orders (i.e., linearizations),

but over dependent actions only. This is in spirit similar to

our approach, which requires the arbitration orders of differ-

ent nodes to be coherent on conflicting actions. To support

add-wins sets, their linearizations view different calls to the

same operation as interchangeable (a.k.a. puns). By contrast,

our XACC encodes the 𝑋 -wins strategy of these algorithms

directly, taking the effects of cancellation into account. Sim-

ilar ideas of cancellation can be found in the earlier work

on checking serializability [4]. Note that Jagadeesan and

Riely [10] do not give a proof method for client reasoning.
Also, they verify the CRDT algorithms case by case without

giving a generic proof method.

Wang et al. [22] propose RA-linearizability for CRDTs.

Their specifications are non-atomic, and often have to ex-

pose some low-level implementation details. For instance,

their specification for RGA needs the tombstone set of re-

moved elements, and their specification for add-wins sets

splits a remove into two abstract operations. By contrast, we
use atomic and implementation-independent specifications.

They also give proof methods for RA-linearizability, which

PLDI ’21, June 20–25, 2021, Virtual, Canada Hongjin Liang and Xinyu Feng

contain some trace-based proof obligations such as commu-

tativity, while our proof obligations for ACC are state-based.

Besides, they do not provide formal solutions for program

logic for client verification.

Gotsman et al. [9] verify data integrity invariants for

clients of replicated data types. They do not prove pre- and

post-conditions as we do, which can be used specify more

interesting functional properties. They introduce a token

system with a conflict relation ⊲⊳ to relate operations that

need to be causally dependent. We use the same symbol ⊲⊳

to relate non-commmutative abstract operations.

Lewchenko et al. [14] propose conflict-aware replicated

data types (CARD), and design a refinement type system that

enables verification of pre- and post-conditions for clients of

CARD. There is also much work about general verification

approaches for distributed systems and their clients (e.g., [19,

24]). Our program logic is customized for clients of CRDTs

only. We can utilize certain properties (e.g., SEC) of CRDTs

in the verification of clients.

Several papers (e.g., [3, 5, 6, 21, 25]) use concurrent speci-

fications for replicated data types. On the one hand, concur-

rent specifications are more general than sequential spec-

ifications, so they can in principle support any replicated

data types. On the other hand, it is unclear how to utilize

the concurrent specifications in client reasoning.

Gomes et al. [8] verify SEC of CRDTs in Isabelle/HOL.

Their method is based on global execution traces. Our proof

method is local and state-based, and verifies functional cor-

rectness as well as SEC. Nagar and Jagannathan [16] verify

SEC of CRDTs automatically. Their verification is parame-

terized with consistency policies offered by the underlying

network (e.g., whether message delivery is causal). Kaki et

al. [12] verify invariants for clients of replicated data types.

Their approach is based on symbolic execution with a bound

on concurrent operations. They also repair the invariant vio-

lations of clients by strengthening the network’s consistency

policies. It would be interesting to also study our ACC and

our client logic with various network consistency policies.

There is alsowork that verifies eventual consistency and/or

causal consistency by model-checking (e.g., [2, 3]), or for

some particular data types such as key-value stores [13].

11 Conclusion and Future Work
We develop a theory of data abstraction for CRDTs, with inde-

pendent proof methods to verify CRDT implementations and

client programs respectively. Our Abstraction Theorem, as

one of the key results in the theory, decomposes the verifica-

tion of the two sides so that they can be done independently

and modularly. It forms a semantic basis for understanding

CRDTs, based on which we believe more proof techniques

and tools can be developed in the future.

Limitations. This paper mostly focuses on UCR-CRDTs.

For 𝑋 -wins CRDTs, we formulate XACC and prove both the

add-wins set and remove-wins set satisfy XACC. It might

be possible to develop a general proof method for verifying

XACC, similar to CRDT-TS for verifying ACC (Sec. 8), but

one needs to be careful to avoid overfitting, since we do not

have many interesting 𝑋 -wins CRDTs to test the generality.

Also, we leave the program logic for clients using 𝑋 -wins

CRDTs as future work. To reason about their clients, one

needs to take into account the 𝑋 -wins strategy specified us-

ing the won-by (◀) and canceled-by (▷) relations, and ensure

soundness of the logic w.r.t. the new abstract operational

semantics discussed in Sec. 9.

Our verification of CRDTs is done at the algorithm level.

To bridge the real code with the operations defined in Π (see

Fig. 6), one only needs refinement proofs for sequential pro-

grams since the real implementation code runs sequentially

on individual hosts.

This paper considers only operation-based CRDTs. Our

results may be adapted to support state-based CRDTs when

assuming causal delivery, but it seems nontrivial to build

abstractions that on the one hand reflect the algorithms’

resistance to unreliable networks, and on the other hand

are still useful for client reasoning. Nair et al. [17] recently

propose a proof method for verifying invariant preservation

of state-based replicated objects. It would be interesting to

incorporate their ideas into our work.

Wewould also like to further test the applicability of our re-

sults by considering new operation-based CRDT algorithms

(e.g., those constructed by semidirect products [23]). It is

also interesting to mechanize our results in proof assistants

and explore the possibility of building tools to automate the

verification process.

Acknowledgments
We thank our shepherd Hongseok Yang and anonymous ref-

erees for their suggestions and comments on earlier versions

of this paper. This work is supported in part by grants from

National Natural Science Foundation of China (NSFC) under

Grant Nos. 61922039 and 61632005.

References
[1] Hagit Attiya, Sebastian Burckhardt, Alexey Gotsman, Adam Morri-

son, Hongseok Yang, and Marek Zawirski. 2016. Specification and

Complexity of Collaborative Text Editing. In PODC 2016. 259–268.
https://doi.org/10.1145/2933057.2933090

[2] Ahmed Bouajjani, Constantin Enea, Rachid Guerraoui, and Jad Hamza.

2017. On Verifying Causal Consistency. In POPL 2017. 626–638. https:
//doi.org/10.1145/3009837.3009888

[3] Ahmed Bouajjani, Constantin Enea, and Jad Hamza. 2014. Verifying

Eventual Consistency of Optimistic Replication Systems. In POPL 2014.
285–296. https://doi.org/10.1145/2535838.2535877

[4] Lucas Brutschy, Dimitar Dimitrov, Peter Müller, and Martin Vechev.

2017. Serializability for Eventual Consistency: Criterion, Analysis, and

Applications. In POPL 2017. 458–472. https://doi.org/10.1145/3009837.
3009895

[5] Sebastian Burckhardt. 2014. Principles of Eventual Consistency. Found.
Trends Program. Lang. 1, 1-2 (Oct. 2014), 1–150. https://doi.org/10.

https://doi.org/10.1145/2933057.2933090
https://doi.org/10.1145/3009837.3009888
https://doi.org/10.1145/3009837.3009888
https://doi.org/10.1145/2535838.2535877
https://doi.org/10.1145/3009837.3009895
https://doi.org/10.1145/3009837.3009895
https://doi.org/10.1561/2500000011
https://doi.org/10.1561/2500000011

Abstraction for Conflict-Free Replicated Data Types PLDI ’21, June 20–25, 2021, Virtual, Canada

1561/2500000011
[6] Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek

Zawirski. 2014. Replicated Data Types: Specification, Verification,

Optimality. In POPL 2014. 271–284. https://doi.org/10.1145/2535838.
2535848

[7] Seth Gilbert and Nancy Lynch. 2002. Brewer’s Conjecture and the

Feasibility of Consistent, Available, Partition-tolerant Web Services.

SIGACT News 33, 2 (June 2002), 51–59. https://doi.org/10.1145/564585.
564601

[8] Victor B. F. Gomes, Martin Kleppmann, Dominic P. Mulligan, and

Alastair R. Beresford. 2017. Verifying strong eventual consistency

in distributed systems. PACMPL 1, OOPSLA (2017), 109:1–109:28.

https://doi.org/10.1145/3133933
[9] Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh,

and Marc Shapiro. 2016. ’Cause I’m Strong Enough: Reasoning About

Consistency Choices in Distributed Systems. In POPL 2016. 371–384.
https://doi.org/10.1145/2837614.2837625

[10] Radha Jagadeesan and James Riely. 2018. Eventual Consistency for

CRDTs. In ESOP 2018. 968–995. https://doi.org/10.1007/978-3-319-
89884-1_34

[11] Cliff B. Jones. 1983. Tentative Steps Toward a Development Method

for Interfering Programs. ACM Trans. Program. Lang. Syst. 5, 4 (1983),
596–619. https://doi.org/10.1145/69575.69577

[12] Gowtham Kaki, Kapil Earanky, KC Sivaramakrishnan, and Suresh

Jagannathan. 2018. Safe Replication through Bounded Concurrency

Verification. Proc. ACM Program. Lang. 2, OOPSLA, Article 164 (2018).
https://doi.org/10.1145/3276534

[13] Mohsen Lesani, Christian J. Bell, and Adam Chlipala. 2016. Chapar:

Certified Causally Consistent Distributed Key-value Stores. In POPL
2016. 357–370. https://doi.org/10.1145/2837614.2837622

[14] Nicholas V. Lewchenko, Arjun Radhakrishna, Akash Gaonkar, and

Pavol Černý. 2019. Sequential Programming for Replicated Data Stores.

Proc. ACM Program. Lang. 3, ICFP, Article 106 (2019). https://doi.org/
10.1145/3341710

[15] Hongjin Liang and Xinyu Feng. 2021. Abstraction for Conflict-Free

Replicated Data Types (Technical Report). https://plax-lab.github.io/

publications/crdt/
[16] Kartik Nagar and Suresh Jagannathan. 2019. Automated Parameterized

Verification of CRDTs. In CAV 2019. 459–477. https://doi.org/10.1007/
978-3-030-25543-5_26

[17] Sreeja S. Nair, Gustavo Petri, and Marc Shapiro. 2020. Proving the

Safety of Highly-Available Distributed Objects. In ESOP 2020. 544–571.
https://doi.org/10.1007/978-3-030-44914-8_20

[18] Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, and Joonwon Lee. 2011.

Replicated abstract data types: Building blocks for collaborative ap-

plications. J. Parallel and Distrib. Comput. 71, 3 (2011), 354 – 368.

https://doi.org/10.1016/j.jpdc.2010.12.006
[19] Ilya Sergey, James R. Wilcox, and Zachary Tatlock. 2017. Programming

and Proving with Distributed Protocols. Proc. ACM Program. Lang. 2,
POPL, Article 28 (2017). https://doi.org/10.1145/3158116

[20] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.

2011. A comprehensive study of Convergent and Commutative Repli-
cated Data Types. Research Report RR-7506. Inria – Centre Paris-

Rocquencourt ; INRIA. https://hal.inria.fr/inria-00555588
[21] Paolo Viotti and Marko Vukolić. 2016. Consistency in Non-

Transactional Distributed Storage Systems. ACM Comput. Surv. 49, 1
(June 2016), 19:1–19:34. https://doi.org/10.1145/2926965

[22] Chao Wang, Constantin Enea, Suha Orhun Mutluergil, and Gustavo

Petri. 2019. Replication-aware Linearizability. In PLDI 2019. 980–993.
https://doi.org/10.1145/3314221.3314617

[23] Matthew Weidner, Heather Miller, and Christopher Meiklejohn. 2020.

Composing and Decomposing Op-Based CRDTs with Semidirect Prod-

ucts. Proc. ACM Program. Lang. 4, ICFP, Article 94 (Aug. 2020).

https://doi.org/10.1145/3408976
[24] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi

Wang, Michael D. Ernst, and Thomas Anderson. 2015. Verdi: A Frame-

work for Implementing and Formally Verifying Distributed Systems.

In PLDI 2015. 357–368. https://doi.org/10.1145/2737924.2737958
[25] Peter Zeller, Annette Bieniusa, and Arnd Poetzsch-Heffter. 2014. For-

mal Specification and Verification of CRDTs. In FORTE 2014. 33–48.
https://doi.org/10.1007/978-3-662-43613-4_3

https://doi.org/10.1561/2500000011
https://doi.org/10.1145/2535838.2535848
https://doi.org/10.1145/2535838.2535848
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/3133933
https://doi.org/10.1145/2837614.2837625
https://doi.org/10.1007/978-3-319-89884-1_34
https://doi.org/10.1007/978-3-319-89884-1_34
https://doi.org/10.1145/69575.69577
https://doi.org/10.1145/3276534
https://doi.org/10.1145/2837614.2837622
https://doi.org/10.1145/3341710
https://doi.org/10.1145/3341710
https://plax-lab.github.io/publications/crdt/
https://plax-lab.github.io/publications/crdt/
https://doi.org/10.1007/978-3-030-25543-5_26
https://doi.org/10.1007/978-3-030-25543-5_26
https://doi.org/10.1007/978-3-030-44914-8_20
https://doi.org/10.1016/j.jpdc.2010.12.006
https://doi.org/10.1145/3158116
https://hal.inria.fr/inria-00555588
https://doi.org/10.1145/2926965
https://doi.org/10.1145/3314221.3314617
https://doi.org/10.1145/3408976
https://doi.org/10.1145/2737924.2737958
https://doi.org/10.1007/978-3-662-43613-4_3

	Abstract
	1 Introduction
	2 Informal Development
	2.1 The RGA Example
	2.2 Functional Correctness (FC) of CRDTs
	2.3 Ordering of Operations and ACC
	2.4 Extended ACC for X-Wins CRDTs
	2.5 Abstraction and Client Reasoning

	3 Basic Technical Settings
	4 Specifications for CRDTs
	5 Abstract Converging Consistency
	6 Abstraction Theorem
	7 Program Logic for Client Verification
	8 Verifying CRDT Implementations
	9 X-Wins CRDTs
	10 Related Work
	11 Conclusion and Future Work
	Acknowledgments
	References

