Towards Certified
Separate Compilation for
Concurrent Programs

Hanru Jiang® Hongjin Liangt
Siyang Xiao* Junpeng Zha* Xinyu Fengf

* University of Science and Technology of China
T Nanjing University



Compilers are NOT Trustworthy

Finding and Understanding Bugs in C Compilers

Xuejun Yang Yang Chen Eric Eidde  John Regehr

University of Utah, School of Computing

{xyang, chenyang, eeide, regehr }@cs.utah.edu [PLD| 201 1]

e 11 open-source/commercial compilers were tested

e Found 325 bugs, in EVERY compiler!



Compilers are NOT Trustworthy

Finding and Understanding Bugs in C Compilers

Xuejun Yang Yang Chen Eric Eidde  John Regehr

University of Utah, School of Computing

{xyang, chenyang, eeide, regehr }@cs.utah.edu [PLD| 201 1]

e 11 open-source/commercial compilers were tested

e Found 325 bugs, in EVERY compiler!

Verification of compiler correctness helps:

“The striking thing about our CompCert results is that the
middle end bugs we found in all other compilers are absent.”



Compilation Correctness

Source Correct(Compiler) :

(e.g. C) _
VS, T.T=Compiler(S) —= TCS

Compiler

Semantic preservation:

T has no more observable behaviors

Target (e.g. I/0 events by print) than S.

(e.g. assembly)




Compiler Verification



Compiler Verification

Leroy’06: Formal certification of a compiler back-end

Lochbihler’10: Verifying a compiler for Java threads

Myreen’10: Verified just-in-time compiler on x86

Sevcik et al.’11: Relaxed-memory concurrency and verified compilation
Zhao et al.’13: Formal verification of SSA-based optimizations for LLVM
Kumar et al.’14: CakeML.: A verified implementation of ML

Stewart et al.’15: Compositional CompCert

Kang et al.’16: Lightweight Verification of Separate Compilation



Compiler Verification

Leroy’06: Formal certification of a compiler back-end

Lochbihler’10: Verifying a compiler for Java threads

Mvreen’10: VVerified ilist-in-time comniler on x86

Limited support of separate compilation and concurrency!

NUIlTidl el dl. 14. UdKEIVIL. A Verlleqa Ilmpierrieriator Ol IVIL
Stewart et al.’15: Compositional CompCert

Kang et al.’16: Lightweight Verification of Separate Compilation



Separate Compilation

Source
(e.g. C)

Real-world programs may consist of multiple components,
which will be compiled independently.



Separate Compilation

Interaction

Source ﬁ
(e.g. C)

// Module S1

extern void g(int *x);

int £ () {
int a

g(éb)  ——— | @}
return a + b, }

// Module S2
void g(int *x) {
*x = 3;

Real-world programs may consist of multiple components,
which will be compiled independently.



Separate Compilation

Interaction

Source ﬁ
(e.g. C)



Separate Compilation

Interaction

Source ﬁ
(e.g. C)

Compiler-1

\4
Target

(e.g. assembly)




Separate Compilation

Interaction

Source ﬁ
(e.g. C)

Compiler-1 lCompiIer-z
V4

(e.g. assembly) .




Separate Compilation

Interaction

Source ﬁ
(e.g. C)

Compiler-2

Compiler-1

\4
Target

(e.g. assembly)

Interaction

<—)




Separate Compilation

Interaction

Source ﬁ
(e.g. C)
Compiler-1 lefer_ent ICompiIer—2
compilers ‘
VvV .
Interaction

<—)

(e.g. assembly) .




Separate Comnilation

Different
languages

Source ﬁ
(e.g. C)

Different I

Compiler-1 Compiler-2

\

(e.g. assembly) .

compilers ‘

Interaction

<—)




Separate Compilation of Concurrent Programs

Interaction

Source ﬁ
(e.g. C)

Compiler-2

Compiler-1

\

(e.g. assembly) .

Interaction

<—)




Separate Compilation of Concurrent Programs

Parallel
Source Composition
(e.g. C) |
Compiler-1 Compiler-2
Parallel
Target

- Composmon -

(e.g. assembly)



Separate Compilation of Concurrent Programs

Parallel
Source Composition
(e.g. C) ||
Compiler-1 Compiler-2
Parallel
Target

Can we reuse existing certified compilers (e.g. CompCert)
for separate compilation of concurrent programs?

(e.g. assembly)



Compositional CompCert’s Argument...
[Stewart et al. POPL’15]

Source

(e.g. C) DRF

Compiler-1 Compiler-2

\4
Target

(e.g. assembly) "

YES, for data-race-free (DRF) concurrent programs



Intuition of the Argument:
Interleaving <=> Non-preemptive for DRF Programs

rl = 1; r2 = 2;
rl =rl1l + 1; r2 =r2 + 1;
lock () ; lock () ;

x = 1; X = 2;

vy =x + 1; vy =x + 1;
unlock () ; /\ unlock () ;

{ iInterleaving ]




Intuition of the Argument:
Interleaving <=> Non-preemptive for DRF Programs

rl = 1; r2 = 2;

rl =rl1l + 1; r2 =r2 + 1;

lock () ; lock () ; No race
x = 1; X = 2;
vy =x + 1; vy =x + 1;

unlock () ; /\ unlock () ;

[ iInterleaving }




Intuition of the Argument:
Interleaving <=> Non-preemptive for DRF Programs

rl = 1; r2 = 2;
rl =rl + 1; r2 =r2 + 1;
lock () ; lock () ; No race
x =1; X = 2;
vy =x + 1; vy =x + 1;
unlock () ; A unlock() ; \

[ iInterleaving }




Intuition of the Argument:
Interleaving <=> Non-preemptive for DRF Programs

rl =1; r2 = 2;
rl =rl + 1; r2 =r2 + 1
lock () ; lock () ; No race Non-preemptive;
x = 1; X = 2; yield control at
y =x + 1; vy =x + 1; _ _
unlock () ; /\ unlock () ; \ \ certain points only ,
[ Interleaving } \/
, rl = 1; r2 = 2;
sequential rl =rl + 1; r2 = xr2 + 1;
ylield; yield;
. x = 1; X = 2;
sequential v =x + 1; v =x + 1;

yield; yield;



Intuition of the Argument:
Interleaving <=> Non-preemptive for DRF Programs

rl = 1; r2 = 2;

rl =rl + 1; r2 =r2 + 1; ‘

lock () ; lock () ; No race Non-preemptive;
x = 1; X = 2; yield control at
v = 4+ 1: v = w 4+ 1: . : -

Plausible, but need to address several key challenges

Ll — LA T 4,y L — L& T4y

yield; yield;
, x = 1; X = 2;
sequential v = x + 1; v = x + 1;

yield; yield;



Challenges



Challenges

 How to formulate DRF in language independent manner?

' " l DRF

Different
languages



Challenges

 How to formulate DRF in language independent manner?

« How to prove DRF-preservation, compositionally?

' " l DRF

N | 3




Challenges

« How to formulate DRF in language independent manner?

 How to prove DRF-preservation, compositionally?




Challenges

« How to formulate DRF in language independent manner?

 How to prove DRF-preservation, compositionally?




Challenges

 How to formulate DRF in language independent manner?

« How to prove DRF-preservation, compositionally?



Challenges

« How to formulate DRF in language independent manner?
« How to prove DRF-preservation, compositionally?

 How to support benign-race and relaxed memory models?



Challenges

 How to formulate DRF in language independent manner?
« How to prove DRF-preservation, compositionally?

 How to support benign-race and relaxed memory models?

“... synchronization primitives are O
commonly implemented with
assembly code that has data races.”

. —— Hans-J. Boehm, HotPar’1 1/




Our Work



Our Work

 Language independent verification framework
- Key semantics components + proof structures
- Supports separate compilation for race-free concurrent programs

- With both external function calls & multi-threaded code



Our Work

 Language independent verification framework
- Key semantics components + proof structures
- Supports separate compilation for race-free concurrent programs
- With both external function calls & multi-threaded code
 Framework extension;

- Supports x86-TSO + confined benign-races



Our Work

 Language independent verification framework
- Key semantics components + proof structures
- Supports separate compilation for race-free concurrent programs
- With both external function calls & multi-threaded code
 Framework extension;
- Supports x86-TSO + confined benign-races
« CASCompCert:
- Extends CompCert with Concurrency + Abstraction + Separate compilation
- Reuses considerable amount of CompCert proofs

- Racy x86-TSO impl. of locks as synchronization library



Outline of this Talk

 Language-independent DRF formulation
 DRF-preservation and key proof structures

e Supporting x86-TSO and confined benign-races in CASCompCert



Outline of this Talk

 Language-independent DRF formulation
 DRF-preservation and key proof structures

e Supporting x86-TSO and confined benign-races in CASCompCert



Language-Independent DRF

Data-race: read-write / write-write conflicts

L

write read/write

wemory [ [N®] [ [ -




Language-Independent DRF

Data-race: read-write / write-write conflicts



Language-Independent DRF

Data-race: read-write / write-write conflicts

Why language-independent?
To support cross-language interaction

Interaction

<=

May In different languages



Language-Independent DRF

Data-race: read-write / write-write conflicts

Why language-independent?
To support cross-language interaction

abstract away lang. details [Stewart et al. POPL’15]
at external
e.d. interaction semantics W4 5

initial core ——» running interference

Interaction ;
> 4 S2 N
halted after external

Semantics (G C' M : Type) : Type =

(initial_core . G — V — list V — option C
. . at_external . (' — option (F x list V)
May In different languages | after.external : option V) — C —» option C
halted . (' — option V
| corestep . G—>C—->M— C — M — Prop




Language-Independent DRF

Data-race: read-write / write-write conflicts

Why language-independent?
To support cross-language interaction

abstract away lang. details [Stewart et al. POPL’15]
at external
e.d. interaction semantics W4 5

in

Interaction NO concrete reads/writes
<) ‘\ ¥ Ny
halted after external

Semantics (G C' M : Type) : Type =

(initial_core . G — V — list V — option C
. . at_external . (' — option (F x list V)
May In different languages | after.external : option V) — C —» option C
halted . (' — option V
| corestep . G—>C—->M— C — M — Prop




Language-Independent DRF

Data-race: read-write / write-write conflicts

Why language-independent?

How to formulate DRF
if we do not even know the concrete reads/writes?

N Y /
in

Interaction NO concrete reads/writes
<) ‘\ ¥ Ny
halted after external

Semantics (G C' M : Type) : Type =

(initial_core . G — V — list V — option C
. . at_external . (' — option (F x list V)
May In different languages | after.external : option V) — C —» option C
halted . (' — option V
| corestep . G—>C—->M— C — M — Prop




Solution: Abstract Footprints

DRF(S1 || S2)



Solution: Abstract Footprints

Defined In terms of
footprint disjointness

/

DRF(S1 || S2)

* footprints o ::?rs, wAs)

[ read-set [ write-set ]




Solution: Abstract Footprints

Defined In terms of
footprint disjointness

/

DRF(S1 || S2)

* footprints o ::= (rs, wAs)
[ read-set [write-set]

 well-defined language
extensional characterization of footprints



Solution: Abstract Footprints

Defined In terms of
footprint disjointness

> rS

DRF(S1 || S2)

* footprints o ::= (rs, wAs)
[ read-set [write-set]

 well-defined language
extensional characterization of footprints



Solution: Abstract Footprints

Defined In terms of
footprint disjointness

> rS

DRF(S1 || S2)

* footprints o ::= (rs, wAs)
[ read-set [write-set] IS

 well-defined language
extensional characterization of footprints



Solution: Abstract Footprints

Defined In terms of
footprint disjointness

> rS

DRF(S1 || S2
( " ) Arbitrarily different

* footprints o ::= (rs, wAs)
[ read-set [write-set] IS

 well-defined language
extensional characterization of footprints



Solution: Abstract Footprints

Defined In terms of
footprint disjointness

> rS

I's

S o,
, il i v y
. ? DX NS
- , i 7. e ECE T g A i e Sy
\ ;e - " AT <y 3
oA T e o W gk M
v .
o

DRF(S1 || S2
( " ) Arbitrarily different

* footprints o ::= (rs, wAs)
[ read-set [write-set] IS

 well-defined language
extensional characterization of footprints

WS



Solution: Abstract Footprints

Defined In terms of

S ..
" ol I )
i , i 7O el oy ‘frﬁtﬂﬂ*"*‘ -y
., (RS y AT Z% 3
oA oy oM men ki ..
w A
%

footprint disjointness/ rs rs WS
DRF(S1 || S2) _——
Arbitrarily different Same
* footprints o ::= (rs, wAs) S .

 well-defined language
extensional characterization of footprints



Solution: Abstract Footprints

Defined In terms of
footprint disjointness

/

DRF(S1 || S2)

* footprints o ::= (rs, wAs)
[ read-set [write-set]

 well-defined language
extensional characterization of footprints



Solution: Abstract Footprints

Defined In terms of
footprint disjointness

/

DRF(S1 || S2)

* footprints o ::= (rs, wAs)
[ read-set [write-set]

 well-defined language

Definition 1 (Well-Defined Languages). wd(tl) iff, for any

execution step F + (k, o) r—;—> (k’,0’) in this language, all of the

following hold (some auxiliary definitions are in Fig. 6):
(1) forward(o, c’);

(2) LEffect(o,d’, 9, F);
(3) For any o1, if LEqPre(o, 01, 4, F), then there exists o

/
1

such that F  (x, o7) r—;—> (x’,0/) and LEqPost(c’, 07,6, F).
(4) Let 8y = {5 | 3x’,0'.F r (x,0) % (x’,o”)}. For any
01, lf LEQPFG(O', 01, 5(), F), then fOI’ any K{, 0'1’, l1, 51,

l l
F+ (k, o1) %5 (k!,0]) = 3o’. F+ (x,0) Eb (k!,07).
1 1

extensional characterization of footprints




Outline of this Talk

 Language-independent DRF formulation
 DRF-preservation and key proof structures

e Supporting x86-TSO and confined benign-races in CASCompCert



Outline of this Talk

 Language-independent DRF formulation
 DRF-preservation and key proof structures

e Supporting x86-TSO and confined benign-races in CASCompCert



Compositional CompCert’s Argument...

?
T1||T2 c S1]|S2

DRF(S1 || S2) T1 = Comp(S1) T2 = Comp(S2)



Compositional CompCert’s Argument...

?
T1||T2 c S1]|S2

T1|T2 c S1|S2

ﬁ Non-preemptive )

DRF(S1 || S2) T1 = Comp(S1) T2 = Comp(S2)



Compositional CompCert’s Argument...

?
T1||T2 c S1]|S2

T1|T2 c S1|S2 '

ﬁ Non-preemptive )

T1 = Comp(S1) T2 = Comp(S2),

DRF(S1 || S2)



DRF(S1 || S2)

Our ldeas

T1 = Comp(S1)

T2 = Comp(S2)



Our ldeas

?
T1||T2 ¢ S1|S2

0 N\ A

T1|T2 c S1]|S2

ﬁ Non-preemptive )

DRF(S1 || S2) T1 = Comp(S1) T2 = Comp(S2)



Our ldeas

?
T1||T2 ¢ S1|S2

N v U Trivial

T1|T2 c S1]|S2

ﬁ Non-preemptive )

DRF(S1 || S2) T1 = Comp(S1) T2 = Comp(S2)



Our ldeas

?
T1||T2 ¢ S1|S2

?n v Ul Trivial

T1|T2 c S1]|S2

ﬁ Non-preemptive )

DRF(S1 || S2) T1 = Comp(S1) T2 = Comp(S2)



Our ldeas

?
T1||T2 ¢ S1|S2

DRF(T1 || T2) ms——) N v Ul Trivial
T1|T2 ¢ S1|S2

ﬁ Non-preemptive )

DRF(S1 || S2) T1 = Comp(S1) T2 = Comp(S2)



Our ldeas

?
n T1||T2 ¢ S1|S2

DRF(T1 || T2) ms——) N v Ul Trivial
T1|T2 ¢ S1|S2

ﬁ Non-preemptive )

DRF(S1 || S2) T1 = Comp(S1) T2 = Comp(S2)



Our ldeas

?
T1||T2 ¢ S1|S2

DRF(T1 || T2) ms——) N v Ul Trivial
T1|T2 ¢ S1|S2

ﬁ Non-preemptive )

DRF(S1 || S2) T1 = Comp(S1) T2 = Comp(S2)



Our ldeas

?
T1||T2 ¢ S1|S2

DRF(T1 || T2) ms——) N v Ul Trivial
T1|T2 ¢ S1|S2

ﬁ Non-preemptive )

How to prove
DRF-preservation?

DRF(S1 || S2) T1 = Comp(S1) T2 = Comp(S2)



Our ldeas

T1||T2 c S1|S2

DRF(T1 || T2) me——) " v Ul Trivial
T1|T2 ¢ S1|S2

DRF(S1 || S2) T1 = Comp(S1) T2 = Comp(S2)



Our ldeas

T1]|T2 c S1|S2

DRF(T1 || T2) s 0 \__A U Ti{ Footprint-
T1|T2 c s1|s2 | Pooeing

/ simulation

T1|T2 = S1|S2

DRF(S1 || S2) T1=Comp(S1) T2 = Comp(S2)



Our ldeas

T1]|T2 c S1|S2

DRF(T1 || T2) s 0 \__A U Ti{ Footprint-
T1|T2 c s1|s2 | Pooeing

/ simulation

T1|T2 = S1|S2

DRF(S1 || S2) T1=Comp(S1) T2 = Comp(S2)



Our ldeas

T1||T2 c S1]S2

DRF(T1 || T2) e—— le i\ Footprint-
T1|T2 c s1|s2 | Pooeing

'/ simulation

DRF eeeeemmmeem T1|T2 = S1|S2

preservation

DRF(S1 || S2) T1 = Comp(S1) T2 = Comp(S2)



Our ldeas

T1||T2 ¢ S1| S2
DRF(T1 || T2) m——) " v U Triy Footprint-

T1|T2 c s1|s2 | Preoerving
I/ simulation
DRF eeeeemmmeem T1|T2 = S1|S2
. ’ ,
preservation I" 1Compositionality

TMTS81 A T25 82

1 1

DRF(S1 || S2) T1=Comp(S1) T2 = Comp(S2)




Our ldeas

T1||T2 c S1]S2

DRF(T1 || T2) me———) N vu Triy Footprint-
T1|T2 c s1|s2 | Preserving

I/ simulation
DRF men T1 | T2 <S1|52
preservation o J" 1Compositionality

Our compiler T1 < S1 = §2
correctness 1

1 : 1
' T1=Comp(S1)1 T2 =Comp(S2)

DRF(S1 || S2)



Solution: Footprint-Preserving Simulation

[Source state%

=

CTarget state i

Target has smaller footprints, so cannot introduce more races




Solution: Footprint-Preserving Simulation

=

Target has smaller footprints, so cannot introduce more races




Solution: Footprint-Preserving Simulation

=

_(T,0) pung (T 0)

Target has smaller footprints, so cannot introduce more races




Solution: Footprint-Preserving Simulation

CZero-or—muItipIe steps)

Target has smaller footprints, so cannot introduce more races



Solution: Footprint-Preserving Simulation

CZero-or—muItipIe steps)

Target has smaller footprints, so cannot introduce more races



Solution: Footprint-Preserving Simulation

Target has smaller footprints, so cannot introduce more races



Solution: Footprint-Preserving Simulation

A, 6: Footprints

Target has smaller footprints, so cannot introduce more races



Solution: Footprint-Preserving Simulation

A, 6: Footprints

Target has smaller footprints, so cannot introduce more races



Outline of this Talk

 Language-independent DRF formulation
 DRF-preservation and key proof structures

e Supporting x86-TSO and confined benign-races in CASCompCert



Outline of this Talk

 [anguage-independent DRF formulation
 DRF-preservation and key proof structures

e Supporting x86-TSO and confined benign-races in CASCompCert



DRF Imposes Strong Restriction on Libraries

Client DRF




DRF Imposes Strong Restriction on Libraries

DRF

lock_:el:

mov S1, %eax
lock =xchg %eax, L




DRF Imposes Strong Restriction on Libraries

DRF ® inefficient

lock_:el:

mov S1, %eax
lock xchg %eax, L

1ock_:el:

mov S1, L

[spin-lock impl. in Linux 2.6]



DRF Imposes Strong Restriction on Libraries

DRF ® inefficient

lock_:el:

mov S1, %eax
lock xchg %eax, L

( Racy 1
AN
1ocﬁﬁ§§::
. c1

mowv

L

[spin-lock impl. in Linux 2.6]



DRF Imposes Strong Restriction on Libraries

DRF

® inefficient

lock_:el:

mov S1, %eax
lock =xchg %eax, L

Chay |

\

Relaxed memory model,
e.g. x86-TSO

At

lOCEﬁ§§::
$1,

_ mov L

J

[spin-lock impl. in Linux 2.6]




DRF Imposes Strong Restriction on Libraries

DRF

® inefficient

lock_:el:

mov S1, %eax
lock =xchg %eax, L

Chay |

\

Relaxed memory model,
e.g. x86-TSO

At

ﬂ’

lOCEﬁ§§:: -
$1,

_ mov L

J

[spin-lock impl. in Linux 2.6]




Our Idea



Our Idea

Client




Our Idea

* Racy libraries and client code run in separate memory regions

* Confined benign-races:

Racy }




Our Idea

* Racy libraries and client code run in separate memory regions
e Client code be well-synchronized

* Confined benign-races:

Well-synchronized ]

Racy }




Our Idea

e Confined benign-races:

* Racy libraries and client code run in separate memory regions
e Client code be well-synchronized
 Racy libraries have race-free abstraction

DRF

Well-synchronized ]

Call Cal

M

Racy } a Ll bRF

Race-free

L abstraction




Supporting Confined Benign-Race & x86-TSO

iIn Our CASCompCert

Call

Source P Ea——




Supporting Confined Benign-Race & x86-TSO

iIn Our CASCompCert

Call

Source P Ea——

|

C Multi-threaded )




Supporting Confined Benign-Race & x86-TSO

iIn Our CASCompCert

race-free abstraction
of spin-locks for
N synchronization y

Call

Source P Eaa——

|

C Multi-threaded )

4 N




Supporting Confined Benign-Race & x86-TSO
iIn Our CASCompCert

DRF
Source P

race-free abstraction h

of spin-locks for
N synchronization y

C Multi-threaded )




Supporting Confined Benign-Race & x86-TSO
iIn Our CASCompCert

DRF
Call

S P
ource > )

Race-free)




Supporting Confined Benign-Race & x86-TSO
in Our CASCompCert

DRF
Call

S P
ource > P ok

CompCert

Race-free)

Target P 56




Supporting Confined Benign-Race & x86-TSO
in Our CASCompCert

DRF
Call

S P
ource > P ok

CompCert

Race-free)
identity

>

386 Call

Target P —
I .




Supporting Confined Benign-Race & x86-TSO
in Our CASCompCert

DRF
Call

S P
ource > P ok

CompCert

Race-free)
identity

>

386 Call

Target P —
I .

x86-SC




Supporting Confined Benign-Race & x86-TSO
in Our CASCompCert

Source P

Target P

CompCert

86

Call

Ea——

Call

Eaa—

x86-SC

DRF

Lock

Race-free)
identity

>

Manually
Impl.

/\

[ with benign-races ]




Supporting Confined Benign-Race & x86-TSO
iIn Our CASCompCert

Source P

Target P

Target Pigo

CompCert

identity

DRF
Call
) ok
Race-free)
identity
Call @
x86-SC ] Manually
Impl.
Call
\ /V A

a

-

x86-TSO semantics

~

J

[ with benign-races ]




Supporting Confined Benign-Race & x86-TSO
iIn Our CASCompCert

Source P

Target P

Target Pigo

CompCert

identity

DRF
Call
) ok
Race-free)
identity
Call @
x86-SC ] Manually
Impl.
Call
\ /V A

a

-

x86-TSO semantics

~

J

[ with benign-races ]




Supporting Confined Benign-Race & x86-TSO
iIn Our CASCompCert

Source P

U

Target P

Target Pigo

CompCert

identity

DRF
Call
) ok
Race-free)
identity
Call @
x86-SC ] Manually
Impl.
Call
\ /V A

a

-

x86-TSO semantics

~

J

[ with benign-races ]




Supporting Confined Benign-Race & x86-TSO
iIn Our CASCompCert

Source P

U

Target P

Target Pigo

CompCert

Call

Ea——

Call

identity

Eaa—

x86-SC

Call

Ea———

X

v

a

-

x86-TSO semantics

~

J

DRF

Lock
Race-free)

identity

/\

[ with benign-races ]




Supporting Confined Benign-Race & x86-TSO
iIn Our CASCompCert

Source P

U

Target P

Target Pigo

CompCert

Call

Ea——

Call

identity

Eaa—

x86-SC

Call

Ea———

X

v

a

-

x86-TSO semantics

~

J

DRF

Lock
Race-free)

identity

/\

[ with benign-races ]




Supporting Confined Benign-Race & x86-TSO
iIn Our CASCompCert

Source P

U

Target P

U

Target Pigo

CompCert

Call

Ea——

Call

identity

Eaa—

x86-SC

Call

Ea———

X

v

a

-

x86-TSO semantics

~

J

DRF

Lock
Race-free)

identity

/\

[ with benign-races ]




Supporting Confined Benign-Race & x86-TSO

' Source P

U
Target P

U

iIn Our CASCompCert

Call

Ea——

Call

Eaa—

x86-SC

Call

Ea———

X

v

a

-

x86-TSO semantics

~

J

DRF

Lock
Race-free)

identity

/\

[ with benign-races ]




Supporting Confined Benign-Race & x86-TSO
iIn Our CASCompCert

— DRF
' Source P ! -
; 5 ) ok
E - Race-free)
N | G€ompCert - - identity
Target P —Ca"
g x86-SC
Target P%., Call )
------------------ I \ / A\

x86-TSO semantics [With benign-races]

- _J




CompCert Passes

~

_

C#minor

~

J

Tailcall, Renumber,
Inlining, Constprop, CSE,
Deadcode,Unusedglob

- R - R
CompCert C Clight
_ Y _ Y
SimplLocals
20 passes
fPower\ o s h
PG X86 Mach
\ y, > g Y,
~ R R
RISC-V| | ARM
\ y, Y

~

&

Linear

~

J

CleanuplLabels

s N
Cminor
_ Y,
- B
CminorSel
_ Y,
- B
RTL
_ Y,
s N
LTL
_ Y,
Tunneling



Verified 12/20 passes

~

X86

\_

Clight

) 4

J \_

C#minor

~

Verified 12/20 Passes in CASCompCert

J

Tailcall, Renumber,

Mach

) 4

/ \_

Linear

~

CminorSel

RTL

CleanuplLabels

W,

LTL

Tunneling




a
\
Verified 1A2/ 20 passes

!

Clight

) 4

J \_

Including all the translation
passes from Clight to x86

;

-

\_

X86

~

J

C#minor

~

Verified 12/20 Passes in CASCompCert

J

Tailcall, Renumber,

~

\_

Mach

) 4

/ \_

Linear

~

CminorSel

RTL

CleanuplLabels

W,

LTL

Tunneling




Reused Considerable Amount of CompCert Proofs.
Framework is Challenging to Implement.

Compilation passes Spec Proof
CompCert | Ours | CompCert | Ours
Cshmgen 515 1021 1071 1503
Cminorgen 753 1556 1152 1251
Selection 336 500 647 783
RTLgen 428 543 821 862
Tailcall 173 328 275 405
Renumber 86 245 117 358
Allocation 704 785 1410 1700
Tunneling 131 339 166 475
Linearize 236 371 349 733
CleanupLabels 126 387 161 388
Stacking 730 1038 1108 2135
Asmgen 208 338 571 1128




Reused Considerable Amount of CompCert Proofs.
Framework is Challenging to Implement.

Compilation passes Spec

CompCert | Ours
Cshmgen 515 1021
Cminorgen 753 1556
Selection 336 500
RT?geﬁn 428 543 Compiler verification:
Tailca 173 328 -
Penerber o 4 100 - 400 more lines of
Allocation 704 785 Coq proof for most passes
Tunneling 131 339
Linearize 236 371

CleanupLabels 126 387
Stacking 730 1038
Asmgen 208 338




Reused Considerable Amount of CompCert Proofs.
Framework is Challenging to Implement.

Compilation passes Spec Proof

CompCert | Ours mpCert | Ours

Cshmeen 515 1021 1071
T1||T2 c S1|S2

DRF(T1 || T2) n—— " v U Trivial
T1|T2 ¢ S1]|S2

1

DRF s 11| T2 = $1| 82

N

preservation

Our compiler1 1+, < g4 N
correctness 1

T

DRF(S1 || S2) : T1=Comp(S1)1 T2 = Comp(S2)

> W M = 4 > D H 0 W M

Compiler verification:
100 - 400 more lines of
Coq proof for most passes

g



Reused Considerable Amount of CompCert Proofs.
Framework is Challenging to Implement.

Compilation passes Spec Proof

CompCert | Ours mpCert | Ours

Cshmeen 515 1021 1071
T1]|T2 c S1]S2

DRF(T1 || T2) m—— " v U Trivial
T1|T2 ¢ S1|S2

1

DRF s 11| T2 = $1| 82

N

preservation

Our compiler1 1+, < g4 N
correctness 1

T

DRF(S1 || S2) : T1=Comp(S1)1 T2 = Comp(S2)

> W M = 4 > D H 0 W M

Compiler verification:
100 - 400 more lines of
Coq proof for most passes

Framework impl.: > 60k LoC, ~ 1 person year



Conclusion



Conclusion

Language independent verification framework
- Key semantics components + proof structures
- Supports separate compilation for race-free concurrent programs
- Well-defined language for language-independent DRF

- Footprint-preserving simulation for DRF preservation



Conclusion

 Language independent verification framework
- Key semantics components + proof structures
- Supports separate compilation for race-free concurrent programs
- Well-defined language for language-independent DRF
- Footprint-preserving simulation for DRF preservation
 Framework extension:

- Support x86-TSO + confined benign-races



Conclusion

 Language independent verification framework
- Key semantics components + proof structures
- Supports separate compilation for race-free concurrent programs
- Well-defined language for language-independent DRF
- Footprint-preserving simulation for DRF preservation
 Framework extension:
- Support x86-TSO + confined benign-races
« CASCompCert:
- Reused considerable amount of CompCert proofs

- Racy x86-TSO impl. of locks as synchronization library



Thank you!



