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Verification of compiler correctness helps:

“The striking thing about our CompCert results is that the
middle end bugs we found in all other compilers are absent.”



Compilation Correctness

Source Correct(Compiler) :

(e.g. C) _
VS, T.T=Compiler(S) —= TCS

Compiler

Semantic preservation:

T has no more observable behaviors

Target (e.g. I/0 events by print) than S.

(e.g. assembly)
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Myreen’10: Verified just-in-time compiler on x86
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Compiler Verification

Leroy’06: Formal certification of a compiler back-end

Lochbihler’10: Verifying a compiler for Java threads

Mvreen’10: VVerified ilist-in-time comniler on x86

Limited support of separate compilation and concurrency!

NUIlTidl el dl. 14. UdKEIVIL. A Verlleqa Ilmpierrieriator Ol IVIL
Stewart et al.’15: Compositional CompCert

Kang et al.’16: Lightweight Verification of Separate Compilation
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Real-world programs may consist of multiple components,
which will be compiled independently.



Separate Compilation

Interaction

Source ﬁ
(e.g. C)

// Module S1

extern void g(int *x);

int £ () {
int a

g(éb)  ——— | @}
return a + b, }

// Module S2
void g(int *x) {
*x = 3;

Real-world programs may consist of multiple components,
which will be compiled independently.
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Separate Comnilation

Different
languages

Source ﬁ
(e.g. C)

Different I

Compiler-1 Compiler-2

\

(e.g. assembly) .

compilers ‘

Interaction

<—)




Separate Compilation of Concurrent Programs

Interaction

Source ﬁ
(e.g. C)

Compiler-2

Compiler-1

\

(e.g. assembly) .
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Separate Compilation of Concurrent Programs

Parallel
Source Composition
(e.g. C) ||
Compiler-1 Compiler-2
Parallel
Target

Can we reuse existing certified compilers (e.g. CompCert)
for separate compilation of concurrent programs?

(e.g. assembly)



Compositional CompCert’s Argument...
[Stewart et al. POPL’15]

Source

(e.g. C) DRF

Compiler-1 Compiler-2

\4
Target

(e.g. assembly) "

YES, for data-race-free (DRF) concurrent programs
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Intuition of the Argument:
Interleaving <=> Non-preemptive for DRF Programs

rl =1; r2 = 2;
rl =rl + 1; r2 =r2 + 1
lock () ; lock () ; No race Non-preemptive;
x = 1; X = 2; yield control at
y =x + 1; vy =x + 1; _ _
unlock () ; /\ unlock () ; \ \ certain points only ,
[ Interleaving } \/
, rl = 1; r2 = 2;
sequential rl =rl + 1; r2 = xr2 + 1;
ylield; yield;
. x = 1; X = 2;
sequential v =x + 1; v =x + 1;

yield; yield;



Intuition of the Argument:
Interleaving <=> Non-preemptive for DRF Programs

rl = 1; r2 = 2;

rl =rl + 1; r2 =r2 + 1; ‘

lock () ; lock () ; No race Non-preemptive;
x = 1; X = 2; yield control at
v = 4+ 1: v = w 4+ 1: . : -

Plausible, but need to address several key challenges

Ll — LA T 4,y L — L& T4y

yield; yield;
, x = 1; X = 2;
sequential v = x + 1; v = x + 1;

yield; yield;
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Challenges

 How to formulate DRF in language independent manner?
« How to prove DRF-preservation, compositionally?

 How to support benign-race and relaxed memory models?

“... synchronization primitives are O
commonly implemented with
assembly code that has data races.”

. —— Hans-J. Boehm, HotPar’1 1/
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Our Work

 Language independent verification framework
- Key semantics components + proof structures
- Supports separate compilation for race-free concurrent programs
- With both external function calls & multi-threaded code
 Framework extension;
- Supports x86-TSO + confined benign-races
« CASCompCert:
- Extends CompCert with Concurrency + Abstraction + Separate compilation
- Reuses considerable amount of CompCert proofs

- Racy x86-TSO impl. of locks as synchronization library
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Why language-independent?
To support cross-language interaction

abstract away lang. details [Stewart et al. POPL’15]
at external
e.d. interaction semantics W4 5

initial core ——» running interference

Interaction ;
> 4 S2 N
halted after external

Semantics (G C' M : Type) : Type =

(initial_core . G — V — list V — option C
. . at_external . (' — option (F x list V)
May In different languages | after.external : option V) — C —» option C
halted . (' — option V
| corestep . G—>C—->M— C — M — Prop
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Language-Independent DRF

Data-race: read-write / write-write conflicts

Why language-independent?

How to formulate DRF
if we do not even know the concrete reads/writes?

N Y /
in

Interaction NO concrete reads/writes
<) ‘\ ¥ Ny
halted after external

Semantics (G C' M : Type) : Type =

(initial_core . G — V — list V — option C
. . at_external . (' — option (F x list V)
May In different languages | after.external : option V) — C —» option C
halted . (' — option V
| corestep . G—>C—->M— C — M — Prop
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Solution: Abstract Footprints

Defined In terms of
footprint disjointness

> rS

I's

S o,
, il i v y
. ? DX NS
- , i 7. e ECE T g A i e Sy
\ ;e - " AT <y 3
oA T e o W gk M
v .
o

DRF(S1 || S2
( " ) Arbitrarily different

* footprints o ::= (rs, wAs)
[ read-set [write-set] IS

 well-defined language
extensional characterization of footprints
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Solution: Abstract Footprints

Defined In terms of
footprint disjointness

/

DRF(S1 || S2)

* footprints o ::= (rs, wAs)
[ read-set [write-set]

 well-defined language

Definition 1 (Well-Defined Languages). wd(tl) iff, for any

execution step F + (k, o) r—;—> (k’,0’) in this language, all of the

following hold (some auxiliary definitions are in Fig. 6):
(1) forward(o, c’);

(2) LEffect(o,d’, 9, F);
(3) For any o1, if LEqPre(o, 01, 4, F), then there exists o

/
1

such that F  (x, o7) r—;—> (x’,0/) and LEqPost(c’, 07,6, F).
(4) Let 8y = {5 | 3x’,0'.F r (x,0) % (x’,o”)}. For any
01, lf LEQPFG(O', 01, 5(), F), then fOI’ any K{, 0'1’, l1, 51,

l l
F+ (k, o1) %5 (k!,0]) = 3o’. F+ (x,0) Eb (k!,07).
1 1

extensional characterization of footprints
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?
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T1||T2 ¢ S1| S2
DRF(T1 || T2) m——) " v U Triy Footprint-

T1|T2 c s1|s2 | Preoerving
I/ simulation
DRF eeeeemmmeem T1|T2 = S1|S2
. ’ ,
preservation I" 1Compositionality
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Our ldeas

T1||T2 c S1]S2

DRF(T1 || T2) me———) N vu Triy Footprint-
T1|T2 c s1|s2 | Preserving

I/ simulation
DRF men T1 | T2 <S1|52
preservation o J" 1Compositionality

Our compiler T1 < S1 = §2
correctness 1

1 : 1
' T1=Comp(S1)1 T2 =Comp(S2)

DRF(S1 || S2)
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A, 6: Footprints

Target has smaller footprints, so cannot introduce more races
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DRF Imposes Strong Restriction on Libraries

DRF

® inefficient

lock_:el:

mov S1, %eax
lock =xchg %eax, L

Chay |

\

Relaxed memory model,
e.g. x86-TSO

At

ﬂ’

lOCEﬁ§§:: -
$1,

_ mov L

J

[spin-lock impl. in Linux 2.6]
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Our Idea

e Confined benign-races:

* Racy libraries and client code run in separate memory regions
e Client code be well-synchronized
 Racy libraries have race-free abstraction

DRF

Well-synchronized ]

Call Cal

M

Racy } a Ll bRF

Race-free

L abstraction
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Reused Considerable Amount of CompCert Proofs.
Framework is Challenging to Implement.

Compilation passes Spec Proof
CompCert | Ours | CompCert | Ours
Cshmgen 515 1021 1071 1503
Cminorgen 753 1556 1152 1251
Selection 336 500 647 783
RTLgen 428 543 821 862
Tailcall 173 328 275 405
Renumber 86 245 117 358
Allocation 704 785 1410 1700
Tunneling 131 339 166 475
Linearize 236 371 349 733
CleanupLabels 126 387 161 388
Stacking 730 1038 1108 2135
Asmgen 208 338 571 1128
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Coq proof for most passes

Framework impl.: > 60k LoC, ~ 1 person year
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 Language independent verification framework
- Key semantics components + proof structures
- Supports separate compilation for race-free concurrent programs
- Well-defined language for language-independent DRF
- Footprint-preserving simulation for DRF preservation
 Framework extension:
- Support x86-TSO + confined benign-races
« CASCompCert:
- Reused considerable amount of CompCert proofs

- Racy x86-TSO impl. of locks as synchronization library



Thank you!



