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Compilers are NOT Trustworthy

[PLDI 2011]

• 11 open-source/commercial compilers were tested


• Found 325 bugs, in EVERY compiler!

Verification of compiler correctness helps: 

“The striking thing about our CompCert results is that the 
middle end bugs we found in all other compilers are absent.”



Compilation Correctness

S

T

Compiler

Source 
(e.g. C)

Target 
(e.g. assembly)

∀S, T . T = Compiler(S) ⟹ T ⊆ S

Correct(Compiler) : 

Semantic preservation: 
T has no more observable behaviors 
(e.g. I/O events by print) than S.
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• Kumar et al.’14: CakeML: A verified implementation of ML


• Stewart et al.’15: Compositional CompCert


• Kang et al.’16: Lightweight Verification of Separate Compilation


• …

Limited support of separate compilation and concurrency!
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Real-world  programs may consist of multiple components, 
which will be compiled independently.

// Module S1 
extern void g(int *x); 
int f(){ 
  int a = 0, b = 0; 
  g(&b); 
  return a + b; }

// Module S2 
void g(int *x){ 
  *x = 3; 
}
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Can we reuse existing certified compilers (e.g. CompCert) 
for separate compilation of concurrent programs? 
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Compiler-1 Compiler-2

Compositional CompCert’s Argument…
[Stewart et al. POPL’15]

DRFS1 S2Source 
(e.g. C)

T1 T2Target 
(e.g. assembly)

||

||

  YES, for data-race-free (DRF) concurrent programs 
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Plausible, but need to address several key challenges 

Intuition of the Argument: 
Interleaving <=> Non-preemptive for DRF Programs
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Challenges
• How to formulate DRF in language independent manner?

• How to prove DRF-preservation, compositionally?

• How to support benign-race and relaxed memory models?

“… synchronization primitives are 
commonly implemented with 
assembly code that has data races.” 

—— Hans-J. Boehm, HotPar’11
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Our Work
• Language independent verification framework 


- Key semantics components + proof structures


- Supports separate compilation for race-free concurrent programs


- With both external function calls & multi-threaded code

• Framework extension: 


- Supports x86-TSO + confined benign-races

• CASCompCert: 


- Extends CompCert with Concurrency + Abstraction + Separate compilation


- Reuses considerable amount of CompCert proofs


- Racy x86-TSO impl. of locks as synchronization library
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Language-Independent DRF

Why language-independent?
To support cross-language interaction
abstract away lang. details

       e.g. interaction semantics
[Stewart et al. POPL’15]

Data-race: read-write / write-write conflicts

S1 S2
Interaction

May in different languagesMay in different languages

NO concrete reads/writes

How to formulate DRF  
if we do not even know the concrete reads/writes? 
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Our Idea
• Confined benign-races:

• Racy libraries and client code run in separate memory regions
• Client code be well-synchronized
• Racy libraries have race-free abstraction

Racy Lib’

z
Call

T1 ||

Call
z

T2

z

Call

T1 ||
Call

z

T2

DRF

Lib
Race-free 

abstraction

⊆

Client Well-synchronized 

Racy RF
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Compilation passes and
framework

Spec Proof
CompCert Ours CompCert Ours

Cshmgen 515 1021 1071 1503
Cminorgen 753 1556 1152 1251
Selection 336 500 647 783
RTLgen 428 543 821 862
Tailcall 173 328 275 405
Renumber 86 245 117 358
Allocation 704 785 1410 1700
Tunneling 131 339 166 475
Linearize 236 371 349 733
CleanupLabels 126 387 161 388
Stacking 730 1038 1108 2135
Asmgen 208 338 571 1128
Compositionality (Lem. 6) 580 2249
DRF preservation (Lem. 8) 358 1142
Semantics equiv. (Lem. 9) 1540 4718
Lifting 813 1795

Figure 13. Lines of code (using coqwc) in Coq

Here the premises 1-3 are similar to those required in
Def. 11. In addition, the premise 4 requires that the x86-TSO
code πo of the object be simulated by γo . The simulation
(tl, geo, πo) !

o (slCImp, geo,γo) is an extension of Liang and
Feng [19] with the support of TSO semantics for the low-
level code. Due to space limit, we omit the definition here.
The refinement relation ⊑′ is a weaker version of ⊑ (see

Sec. 3.2). It does not preserve termination (the formal defini-
tion omitted here). This is because our simulation!o for the
object code does not preserve termination for now, which
we leave as future work.

Theorem 15 can be derived from Thm. 14 (for the compila-
tion from Clight to x86-SC), and from Lem. 16 below, saying
the x86-TSO code refines the x86-SC client code and the
source object code (we use tlsc and tltso as shorter notations
for tlx86-SC and tlx86-TSO respectively).

Lemma 16 (Restore SC semantics for DRF x86 programs).
Let Πsc = {(tlsc, ge1, π1), . . . , (tlsc, gem, πm ), (slCImp, geo,γo )},
and Πtso = {(tltso, ge1, π1), . . . , (tltso, gem, πm ), (tltso, geo, πo )}.
For any f1 . . . fn , if

1. Safe(let Πsc in f1 ∥ . . . ∥ fn ) and DRF(let Πsc in f1 ∥ . . . ∥ fn ),
2. (tltso, geo, πo ) !

o (slCImp, geo,γo ),

then let Πtso in f1 ∥ . . . ∥ fn ⊑′ let Πsc in f1 ∥ . . . ∥ fn .

As explained before, Lem. 16 can be viewed as a strength-
ened DRF-guarantee theorem for x86-TSO in that, if we let
γo contain only skip and geo = ∅, Lem. 16 implies the DRF-
guarantee of x86-TSO.

7.4 Proof Efforts in Coq

In Coq we have mechanized the framework (Fig. 2) and
the extended framework (Fig. 3) and proved all the related
lemmas. We have verified all the CompCert passes in Fig. 11.
Statistics of our Coq implementation and proofs are de-

picted in Fig. 13. Adapting the compilation correctness proofs
from CompCert is relatively lightweight. For most passes

our proofs are within 300 lines of code more than the origi-
nal CompCert proofs. The Stacking pass introduces more
additional proofs, mostly caused by arguments marshalling
for supporting cross-language linking. In our experience,
adapting CompCert’s original compilation proofs to our set-
tings takes less than one person week per translation pass
(except for Stacking). For simpler passes such as Tailcall,
Linearize, Allocation, and RTLgen, it takes less than one
person day per pass.
By contrast, implementing our framework is more chal-

lenging, which took us about 1 person year. In particular,
proving the equivalence between non-preemptive and pre-
emptive semantics for DRF programs took us more time than
expected, although it seems to be a well-known folklore the-
orem. The co-inductive proofs there involve a large number
of non-trivial cases of reordering threads’ executions.

8 Related Work and Conclusion
Compiler verification. Variouswork extends CompCert [16]
to support separate compilation or concurrency. We have
discussed Compositional CompCert [2, 29] in Sec. 1 and 2.
SepCompCert [15] extends CompCert with the support of
syntactical linking. Their approach requires all the compila-
tion units be compiled by CompCert. They do not support
cross-language linking or concurrency as we do.

CompCertTSO [27] compiles ClightTSO programs to the
x86-TSO machine. It does not support cross-language link-
ing, and its proof for the two CompCert passes Stacking
and Cminorgen are not compositional. By contrast, we have
verified these two passes using our compositional simulation.
For the other compositional passes, CompCertTSO relies on
a thread-local simulation, which is stronger than ours. It
requires that the source and the target always generate the
same memory events (excepts for those local variables that
can be stored in registers). As a result, some optimizations
(such as constant propagation and CSE) in CompCertTSO
have to be more restrictive.

As an extension of CompCertTSO, Jagannathan et al. [12]
allow the compiler to inject racy code such as the efficient
spin lock in Fig. 10. They propose a refinement calculus on
the racy code to ensure the compilation correctness. Their
work looks similar to our extended framework in Fig. 3, but
since they use TSO semantics for both the source and target
programs, they do not need to handle the gap between the
SC and TSO semantics, so they do not need the source to be
DRF as in our work.
Podkopaev et al. [24] prove correctness of the compila-

tion from the promising semantics (which is a high-level
operational relaxed model) to the operational ARMv8-POP
machine. They develop whole-program simulations to deal
with the complicated relaxed behaviors. Later on they verify
compilations from the promising semantics to declarative
hardware models such as POWER, ARMv7 and ARMv8 [25].
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- Well-defined language for language-independent DRF


- Footprint-preserving simulation for DRF preservation

• Framework extension: 


- Support x86-TSO + confined benign-races

• CASCompCert: 


- Reused considerable amount of CompCert proofs


- Racy x86-TSO impl. of locks as synchronization library



Thank you!


