
Towards Certified
Separate Compilation for

Concurrent Programs
Hanru Jiang* Hongjin Liang†

Siyang Xiao* Junpeng Zha* Xinyu Feng†

* University of Science and Technology of China

† Nanjing University

Compilers are NOT Trustworthy

[PLDI 2011]

• 11 open-source/commercial compilers were tested

• Found 325 bugs, in EVERY compiler!

Compilers are NOT Trustworthy

[PLDI 2011]

• 11 open-source/commercial compilers were tested

• Found 325 bugs, in EVERY compiler!

Verification of compiler correctness helps:

“The striking thing about our CompCert results is that the
middle end bugs we found in all other compilers are absent.”

Compilation Correctness

S

T

Compiler

Source
(e.g. C)

Target
(e.g. assembly)

∀S, T . T = Compiler(S) ⟹ T ⊆ S

Correct(Compiler) :

Semantic preservation:
T has no more observable behaviors
(e.g. I/O events by print) than S.

Compiler Verification

Compiler Verification
• Leroy’06: Formal certification of a compiler back-end

• Lochbihler’10: Verifying a compiler for Java threads

• Myreen’10: Verified just-in-time compiler on x86

• Sevcik et al.’11: Relaxed-memory concurrency and verified compilation

• Zhao et al.’13: Formal verification of SSA-based optimizations for LLVM

• Kumar et al.’14: CakeML: A verified implementation of ML

• Stewart et al.’15: Compositional CompCert

• Kang et al.’16: Lightweight Verification of Separate Compilation

• …

Compiler Verification
• Leroy’06: Formal certification of a compiler back-end

• Lochbihler’10: Verifying a compiler for Java threads

• Myreen’10: Verified just-in-time compiler on x86

• Sevcik et al.’11: Relaxed-memory concurrency and verified compilation

• Zhao et al.’13: Formal verification of SSA-based optimizations for LLVM

• Kumar et al.’14: CakeML: A verified implementation of ML

• Stewart et al.’15: Compositional CompCert

• Kang et al.’16: Lightweight Verification of Separate Compilation

• …

Limited support of separate compilation and concurrency!

Separate Compilation

S1 S2Source
(e.g. C)

Real-world programs may consist of multiple components,
which will be compiled independently.

Separate Compilation

S1 S2Source
(e.g. C)

Interaction

Real-world programs may consist of multiple components,
which will be compiled independently.

// Module S1
extern void g(int *x);
int f(){
 int a = 0, b = 0;
 g(&b);
 return a + b; }

// Module S2
void g(int *x){
 *x = 3;
}

Separate Compilation

S1 S2Source
(e.g. C)

Interaction

Separate Compilation

S1 S2Source
(e.g. C)

Interaction

T1Target
(e.g. assembly)

Compiler-1

Separate Compilation

S1 S2Source
(e.g. C)

Interaction

T1 T2Target
(e.g. assembly)

Compiler-1 Compiler-2

Separate Compilation

S1 S2Source
(e.g. C)

Interaction

T1 T2Target
(e.g. assembly)

Compiler-1 Compiler-2

Interaction

Separate Compilation

S1 S2Source
(e.g. C)

Interaction

T1 T2Target
(e.g. assembly)

Compiler-1 Compiler-2

Interaction

Different
 compilers
Different

 compilers

Separate Compilation

S1 S2Source
(e.g. C)

Interaction

T1 T2Target
(e.g. assembly)

Compiler-1 Compiler-2

Interaction

Different
 compilers
Different

 compilers

Different
 Languages

Different
 languages

Separate Compilation of Concurrent Programs

S1 S2Source
(e.g. C)

T1 T2Target
(e.g. assembly)

Compiler-1 Compiler-2

Interaction

Interaction

Separate Compilation of Concurrent Programs

S1 S2Source
(e.g. C)

Parallel
Composition

T1 T2Target
(e.g. assembly)

Parallel
Composition

||

||

Compiler-1 Compiler-2

Separate Compilation of Concurrent Programs

S1 S2Source
(e.g. C)

Parallel
Composition

T1 T2Target
(e.g. assembly)

Parallel
Composition

||

||

Can we reuse existing certified compilers (e.g. CompCert)
for separate compilation of concurrent programs?

Compiler-1 Compiler-2

Compiler-1 Compiler-2

Compositional CompCert’s Argument…
[Stewart et al. POPL’15]

DRFS1 S2Source
(e.g. C)

T1 T2Target
(e.g. assembly)

||

||

 YES, for data-race-free (DRF) concurrent programs

r1 = 1;
r1 = r1 + 1;
lock();
 x = 1;
 y = x + 1;
unlock();

r2 = 2;
r2 = r2 + 1;
lock();
 x = 2;
 y = x + 1;
unlock();

interleaving

Intuition of the Argument:
Interleaving <=> Non-preemptive for DRF Programs

r1 = 1;
r1 = r1 + 1;
lock();
 x = 1;
 y = x + 1;
unlock();

r2 = 2;
r2 = r2 + 1;
lock();
 x = 2;
 y = x + 1;
unlock();

interleaving

No race

Intuition of the Argument:
Interleaving <=> Non-preemptive for DRF Programs

r1 = 1;
r1 = r1 + 1;
lock();
 x = 1;
 y = x + 1;
unlock();

r2 = 2;
r2 = r2 + 1;
lock();
 x = 2;
 y = x + 1;
unlock();

interleaving

No race

Intuition of the Argument:
Interleaving <=> Non-preemptive for DRF Programs

r1 = 1;
r1 = r1 + 1;
lock();
 x = 1;
 y = x + 1;
unlock();

r2 = 2;
r2 = r2 + 1;
lock();
 x = 2;
 y = x + 1;
unlock();

interleaving

No race Non-preemptive:
yield control at

certain points only

sequential

sequential
r1 = 1;
r1 = r1 + 1;
yield;
 x = 1;
 y = x + 1;
yield;

r2 = 2;
r2 = r2 + 1;
yield;
 x = 2;
 y = x + 1;
yield;

Intuition of the Argument:
Interleaving <=> Non-preemptive for DRF Programs

r1 = 1;
r1 = r1 + 1;
lock();
 x = 1;
 y = x + 1;
unlock();

r2 = 2;
r2 = r2 + 1;
lock();
 x = 2;
 y = x + 1;
unlock();

interleaving

No race Non-preemptive:
yield control at

certain points only

sequential

sequential
r1 = 1;
r1 = r1 + 1;
yield;
 x = 1;
 y = x + 1;
yield;

r2 = 2;
r2 = r2 + 1;
yield;
 x = 2;
 y = x + 1;
yield;

Plausible, but need to address several key challenges

Intuition of the Argument:
Interleaving <=> Non-preemptive for DRF Programs

Challenges

Challenges
• How to formulate DRF in language independent manner?

DRFS1 S2||

Different
 Languages

Different
 languages

Challenges
• How to formulate DRF in language independent manner?

• How to prove DRF-preservation, compositionally?

DRF

||

S1 S2

T1 T2

||

Challenges
• How to formulate DRF in language independent manner?

• How to prove DRF-preservation, compositionally?

DRF

||

S1 S2

T1 T2

||

||T1’ T2’

… …

Challenges
• How to formulate DRF in language independent manner?

• How to prove DRF-preservation, compositionally?

DRF

||

S1 S2

T1 T2

||

||T1’ T2’

… …

DRF?

Challenges
• How to formulate DRF in language independent manner?

• How to prove DRF-preservation, compositionally?

Challenges
• How to formulate DRF in language independent manner?

• How to prove DRF-preservation, compositionally?

• How to support benign-race and relaxed memory models?

Challenges
• How to formulate DRF in language independent manner?

• How to prove DRF-preservation, compositionally?

• How to support benign-race and relaxed memory models?

“… synchronization primitives are
commonly implemented with
assembly code that has data races.”

—— Hans-J. Boehm, HotPar’11

Our Work

Our Work
• Language independent verification framework

- Key semantics components + proof structures

- Supports separate compilation for race-free concurrent programs

- With both external function calls & multi-threaded code

Our Work
• Language independent verification framework

- Key semantics components + proof structures

- Supports separate compilation for race-free concurrent programs

- With both external function calls & multi-threaded code

• Framework extension:

- Supports x86-TSO + confined benign-races

Our Work
• Language independent verification framework

- Key semantics components + proof structures

- Supports separate compilation for race-free concurrent programs

- With both external function calls & multi-threaded code

• Framework extension:

- Supports x86-TSO + confined benign-races

• CASCompCert:

- Extends CompCert with Concurrency + Abstraction + Separate compilation

- Reuses considerable amount of CompCert proofs

- Racy x86-TSO impl. of locks as synchronization library

Outline of this Talk

• Language-independent DRF formulation

• DRF-preservation and key proof structures

• Supporting x86-TSO and confined benign-races in CASCompCert

Outline of this Talk

• Language-independent DRF formulation

• DRF-preservation and key proof structures

• Supporting x86-TSO and confined benign-races in CASCompCert

Language-Independent DRF
Data-race: read-write / write-write conflicts

Memory …

write read/write

Language-Independent DRF
Data-race: read-write / write-write conflicts

Language-Independent DRF

Why language-independent?
To support cross-language interaction

Data-race: read-write / write-write conflicts

S1 S2
Interaction

May in different languagesMay in different languages

Language-Independent DRF

Why language-independent?
To support cross-language interaction
abstract away lang. details

 e.g. interaction semantics
[Stewart et al. POPL’15]

Data-race: read-write / write-write conflicts

S1 S2
Interaction

May in different languagesMay in different languages

Language-Independent DRF

Why language-independent?
To support cross-language interaction
abstract away lang. details

 e.g. interaction semantics
[Stewart et al. POPL’15]

Data-race: read-write / write-write conflicts

S1 S2
Interaction

May in different languagesMay in different languages

NO concrete reads/writes

Language-Independent DRF

Why language-independent?
To support cross-language interaction
abstract away lang. details

 e.g. interaction semantics
[Stewart et al. POPL’15]

Data-race: read-write / write-write conflicts

S1 S2
Interaction

May in different languagesMay in different languages

NO concrete reads/writes

How to formulate DRF
if we do not even know the concrete reads/writes?

Solution: Abstract Footprints

DRF(S1 || S2)

Solution: Abstract Footprints

DRF(S1 || S2)

Defined in terms of
footprint disjointness

• footprints δ ::= (rs, ws)
read-set write-set

Solution: Abstract Footprints

DRF(S1 || S2)

Defined in terms of
footprint disjointness

• footprints δ ::= (rs, ws)

• well-defined language
extensional characterization of footprints

read-set write-set

Solution: Abstract Footprints

DRF(S1 || S2)

Defined in terms of
footprint disjointness

• footprints δ ::= (rs, ws)

• well-defined language
extensional characterization of footprints

read-set write-set

rs

Solution: Abstract Footprints

DRF(S1 || S2)

Defined in terms of
footprint disjointness

• footprints δ ::= (rs, ws)

• well-defined language
extensional characterization of footprints

read-set write-set

rs

rs

Solution: Abstract Footprints

DRF(S1 || S2)

Defined in terms of
footprint disjointness

• footprints δ ::= (rs, ws)

• well-defined language
extensional characterization of footprints

read-set write-set

rs

rs

Arbitrarily differentArbitrarily different

rs

Solution: Abstract Footprints

DRF(S1 || S2)

Defined in terms of
footprint disjointness

• footprints δ ::= (rs, ws)

• well-defined language
extensional characterization of footprints

read-set write-set

rs
S

rs

ws

Arbitrarily differentArbitrarily different

rs

Solution: Abstract Footprints

DRF(S1 || S2)

Defined in terms of
footprint disjointness

• footprints δ ::= (rs, ws)

• well-defined language
extensional characterization of footprints

read-set write-set

rs
S

rs rs
S

ws

ws

Arbitrarily differentArbitrarily different Same

Solution: Abstract Footprints

DRF(S1 || S2)

Defined in terms of
footprint disjointness

• footprints δ ::= (rs, ws)
read-set write-set

• well-defined language
extensional characterization of footprints

Solution: Abstract Footprints

DRF(S1 || S2)

Defined in terms of
footprint disjointness

• footprints δ ::= (rs, ws)
read-set write-set

• well-defined language
extensional characterization of footprints

Outline of this Talk

• Language-independent DRF formulation

• DRF-preservation and key proof structures

• Supporting x86-TSO and confined benign-races in CASCompCert

Outline of this Talk

• Language-independent DRF formulation

• DRF-preservation and key proof structures

• Supporting x86-TSO and confined benign-races in CASCompCert

Compositional CompCert’s Argument…

T1 || T2 ⊆ S1 || S2

DRF(S1 || S2) T1 = Comp(S1) T2 = Comp(S2)

?

Compositional CompCert’s Argument…

T1 | T2 ⊆ S1 | S2

T1 || T2 ⊆ S1 || S2

DRF(S1 || S2) T1 = Comp(S1) T2 = Comp(S2)

?

Non-preemptive

Compositional CompCert’s Argument…

T1 | T2 ⊆ S1 | S2

T1 || T2 ⊆ S1 || S2

DRF(S1 || S2) T1 = Comp(S1) T2 = Comp(S2)

?

?

Non-preemptive

Our Ideas

T1 | T2 ⊆ S1 | S2

T1 || T2 ⊆ S1 || S2

DRF(S1 || S2) T1 = Comp(S1) T2 = Comp(S2)

?

Non-preemptive

?

Our Ideas

T1 | T2 ⊆ S1 | S2

⊆

⊆

T1 || T2 ⊆ S1 || S2

DRF(S1 || S2) T1 = Comp(S1) T2 = Comp(S2)

?

Non-preemptive

Our Ideas

T1 | T2 ⊆ S1 | S2

⊆

⊆

Trivial

T1 || T2 ⊆ S1 || S2

DRF(S1 || S2) T1 = Comp(S1) T2 = Comp(S2)

?

Non-preemptive

Our Ideas

T1 | T2 ⊆ S1 | S2

⊆

⊆

Trivial

T1 || T2 ⊆ S1 || S2

DRF(S1 || S2) T1 = Comp(S1) T2 = Comp(S2)

?

Non-preemptive

?

Our Ideas

T1 | T2 ⊆ S1 | S2

⊆

⊆

TrivialDRF(T1 || T2)

T1 || T2 ⊆ S1 || S2

DRF(S1 || S2) T1 = Comp(S1) T2 = Comp(S2)

?

Non-preemptive

Our Ideas

T1 | T2 ⊆ S1 | S2

⊆

⊆

TrivialDRF(T1 || T2)

T1 || T2 ⊆ S1 || S2

DRF(S1 || S2) T1 = Comp(S1) T2 = Comp(S2)

?

Non-preemptive

?

Our Ideas

T1 | T2 ⊆ S1 | S2

⊆

⊆

TrivialDRF(T1 || T2)

?

T1 || T2 ⊆ S1 || S2

DRF(S1 || S2) T1 = Comp(S1) T2 = Comp(S2)

?

Non-preemptive

Our Ideas

T1 | T2 ⊆ S1 | S2

⊆

⊆

TrivialDRF(T1 || T2)

?

T1 || T2 ⊆ S1 || S2

DRF(S1 || S2) T1 = Comp(S1) T2 = Comp(S2)

?

Non-preemptive

How to prove
DRF-preservation?

Our Ideas

T1 | T2 ⊆ S1 | S2

⊆

⊆

TrivialDRF(T1 || T2)

T1 || T2 ⊆ S1 || S2

DRF(S1 || S2) T1 = Comp(S1) T2 = Comp(S2)

?

Our Ideas

T1 | T2 ⊆ S1 | S2

⊆

⊆

TrivialDRF(T1 || T2)

T1 || T2 ⊆ S1 || S2

DRF(S1 || S2) T1 = Comp(S1) T2 = Comp(S2)

T1 | T2 ≤ S1 | S2 ≲

Footprint-
preserving
simulation

?

Our Ideas

T1 | T2 ⊆ S1 | S2

⊆

⊆

TrivialDRF(T1 || T2)

T1 || T2 ⊆ S1 || S2

DRF(S1 || S2) T1 = Comp(S1) T2 = Comp(S2)

T1 | T2 ≤ S1 | S2 ≲

Footprint-
preserving
simulation

?

Our Ideas

T1 | T2 ⊆ S1 | S2

⊆

⊆

TrivialDRF(T1 || T2)

T1 || T2 ⊆ S1 || S2

DRF(S1 || S2) T1 = Comp(S1) T2 = Comp(S2)

T1 | T2 ≤ S1 | S2 ≲

Footprint-
preserving
simulation

DRF
preservation

Our Ideas

T1 | T2 ⊆ S1 | S2

T1 ≤ S1 /\ T2 ≤ S2

⊆

⊆

TrivialDRF(T1 || T2)

T1 || T2 ⊆ S1 || S2

DRF(S1 || S2) T1 = Comp(S1) T2 = Comp(S2)

≲ ≲

T1 | T2 ≤ S1 | S2 ≲

Footprint-
preserving
simulation

DRF
preservation Compositionality

Our Ideas

T1 | T2 ⊆ S1 | S2

T1 ≤ S1 /\ T2 ≤ S2

⊆

⊆

TrivialDRF(T1 || T2)

T1 || T2 ⊆ S1 || S2

DRF(S1 || S2) T1 = Comp(S1) T2 = Comp(S2)

≲ ≲

T1 | T2 ≤ S1 | S2 ≲

Footprint-
preserving
simulation

DRF
preservation Compositionality

Our compiler
correctness

(T, σ)

(S, Σ)

≤

Solution: Footprint-Preserving Simulation

Source state

Target state
≲

Target has smaller footprints, so cannot introduce more races

(T, σ)

(S, Σ)

≤

Solution: Footprint-Preserving Simulation

≲

Target has smaller footprints, so cannot introduce more races

(T, σ)

(S, Σ)

≤

(T’, σ’)

Solution: Footprint-Preserving Simulation

≲

Target has smaller footprints, so cannot introduce more races

(T, σ)

(S, Σ)

≤

(S’, Σ’)*

(T’, σ’)

Solution: Footprint-Preserving Simulation

Zero-or-multiple steps

≲

Target has smaller footprints, so cannot introduce more races

(T, σ)

(S, Σ)

≤ ≤

(S’, Σ’)*

(T’, σ’)

Solution: Footprint-Preserving Simulation

Zero-or-multiple steps

≲ ≲

Target has smaller footprints, so cannot introduce more races

(T, σ)

(S, Σ) …

…

≤ ≤

(S’, Σ’)*

(T’, σ’)

Solution: Footprint-Preserving Simulation

≲ ≲

Target has smaller footprints, so cannot introduce more races

(T, σ)

(S, Σ) …

…

≤ ≤

(S’, Σ’)*

(T’, σ’)

Solution: Footprint-Preserving Simulation

≲ ≲

Δ

δ

Δ, δ: Footprints

Target has smaller footprints, so cannot introduce more races

(T, σ)

(S, Σ) …

…

≤ ≤

(S’, Σ’)*

(T’, σ’)

Solution: Footprint-Preserving Simulation

≲ ≲

Δ

δ

Δ, δ: Footprints ⊆

Target has smaller footprints, so cannot introduce more races

Outline of this Talk

• Language-independent DRF formulation

• DRF-preservation and key proof structures

• Supporting x86-TSO and confined benign-races in CASCompCert

Outline of this Talk

• Language-independent DRF formulation

• DRF-preservation and key proof structures

• Supporting x86-TSO and confined benign-races in CASCompCert

DRF Imposes Strong Restriction on Libraries

Lib

zCall

T1 ||

Callz

T2

DRFClient

DRF Imposes Strong Restriction on Libraries

lock_rel:
 …
 mov $1, %eax
 lock xchg %eax, L
 …

Lib

zCall

T1 ||

Callz

T2

DRFClient

DRF Imposes Strong Restriction on Libraries

lock_rel:
 …
 mov $1, %eax
 lock xchg %eax, L
 …

Lib

zCall

T1 ||

Callz

T2

DRF ! inefficient

lock_rel:
 …
 mov $1, L
 …

[spin-lock impl. in Linux 2.6]

Client

DRF Imposes Strong Restriction on Libraries

lock_rel:
 …
 mov $1, %eax
 lock xchg %eax, L
 …

Lib

zCall

T1 ||

Callz

T2

DRF ! inefficient

lock_rel:
 …
 mov $1, L
 …

[spin-lock impl. in Linux 2.6]

Client

Racy

DRF Imposes Strong Restriction on Libraries

lock_rel:
 …
 mov $1, %eax
 lock xchg %eax, L
 …

Lib

zCall

T1 ||

Callz

T2

DRF ! inefficient

lock_rel:
 …
 mov $1, L
 …

[spin-lock impl. in Linux 2.6]

Client

Relaxed memory model,
e.g. x86-TSO

Racy

DRF Imposes Strong Restriction on Libraries

lock_rel:
 …
 mov $1, %eax
 lock xchg %eax, L
 …

Lib

zCall

T1 ||

Callz

T2

DRF ! inefficient

lock_rel:
 …
 mov $1, L
 …

[spin-lock impl. in Linux 2.6]

?

Client

Relaxed memory model,
e.g. x86-TSO

Racy

Our Idea

Racy RF

Our Idea

Racy Lib’

z
Call

T1 ||

Call
z

T2

Client

Racy RF

Our Idea
• Confined benign-races:

• Racy libraries and client code run in separate memory regions

Racy Lib’

z
Call

T1 ||

Call
z

T2

Client

Racy RF

Our Idea
• Confined benign-races:

• Racy libraries and client code run in separate memory regions
• Client code be well-synchronized

Racy Lib’

z
Call

T1 ||

Call
z

T2

Client Well-synchronized

Racy RF

Our Idea
• Confined benign-races:

• Racy libraries and client code run in separate memory regions
• Client code be well-synchronized
• Racy libraries have race-free abstraction

Racy Lib’

z
Call

T1 ||

Call
z

T2

z

Call

T1 ||
Call

z

T2

DRF

Lib
Race-free

abstraction

⊆

Client Well-synchronized

Racy RF

Source P Clight Call
Lock…

Supporting Confined Benign-Race & x86-TSO
in Our CASCompCert

Source P Clight Call
Lock…

Multi-threaded

Supporting Confined Benign-Race & x86-TSO
in Our CASCompCert

Source P Clight Call
Lock…

Multi-threaded race-free abstraction
 of spin-locks for
synchronization

Supporting Confined Benign-Race & x86-TSO
in Our CASCompCert

Source P Clight Call
Lock…

Multi-threaded race-free abstraction
 of spin-locks for
synchronization

DRF

Supporting Confined Benign-Race & x86-TSO
in Our CASCompCert

 Clight

Supporting Confined Benign-Race & x86-TSO
in Our CASCompCert

Source P
DRF

Call
Lock…

Race-free

 Clight

Supporting Confined Benign-Race & x86-TSO
in Our CASCompCert

Target P

CompCert …

Source P
DRF

Call
Lock…

x86
…

Race-free

 Clight

Supporting Confined Benign-Race & x86-TSO
in Our CASCompCert

Target P

CompCert … identity

Source P
DRF

Call

Call

Lock

Lock

…

x86
…

Race-free

 Clight

Supporting Confined Benign-Race & x86-TSO
in Our CASCompCert

Target P

CompCert … identity

Source P
DRF

Call

Call

Lock

Lock

…

x86
…

Race-free

x86-SC

 Clight

Supporting Confined Benign-Race & x86-TSO
in Our CASCompCert

Target P

CompCert … identity

Source P

Manually
impl.

Lock-Impl

DRF

with benign-races

Call

Call

Lock

Lock

…

x86
…

Race-free

x86-SC

 Clight

Supporting Confined Benign-Race & x86-TSO
in Our CASCompCert

Target P

CompCert … identity

Source P

Manually
impl.

identity …

Lock-ImplTarget P’TSO

DRF

with benign-races

Call

Call

Call

Lock

Lock

…

x86
…

x86-TSO
…

Race-free

x86-SC

x86-TSO semantics

 Clight

Supporting Confined Benign-Race & x86-TSO
in Our CASCompCert

Target P

CompCert … identity

Source P

Manually
impl.

identity …

Lock-ImplTarget P’TSO

DRF

with benign-races

Call

Call

Call

Lock

Lock

…

x86
…

x86-TSO
…

Race-free

x86-SC

x86-TSO semantics

 Clight

Supporting Confined Benign-Race & x86-TSO
in Our CASCompCert

Target P

CompCert … identity

Source P

Manually
impl.

identity …

Lock-Impl

⊆

Target P’TSO

DRF

with benign-races

Call

Call

Call

Lock

Lock

…

x86
…

x86-TSO
…

Race-free

x86-SC

x86-TSO semantics

 Clight

Supporting Confined Benign-Race & x86-TSO
in Our CASCompCert

Target P

CompCert … identity

Source P

≤oidentity …

Lock-Impl

⊆

Target P’TSO

DRF

with benign-races

Call

Call

Call

Lock

Lock

…

x86
…

x86-TSO
…

Race-free

x86-SC

x86-TSO semantics

 Clight

Supporting Confined Benign-Race & x86-TSO
in Our CASCompCert

Target P

CompCert … identity

Source P

≤oidentity …

Lock-Impl

⊆

Target P’TSO

DRF

with benign-races

Call

Call

Call

Lock

Lock

…

x86
…

x86-TSO
…

Race-free

x86-SC

x86-TSO semantics

 Clight

Supporting Confined Benign-Race & x86-TSO
in Our CASCompCert

Target P

CompCert … identity

Source P

≤oidentity …

Lock-Impl

⊆

Target P’TSO

⊆
DRF

with benign-races

Call

Call

Call

Lock

Lock

…

x86
…

x86-TSO
…

Race-free

x86-SC

x86-TSO semantics

 Clight

Supporting Confined Benign-Race & x86-TSO
in Our CASCompCert

Target P

CompCert … identity

Source P

≤oidentity …

Lock-Impl

⊆

Target P’TSO

⊆
DRF

with benign-races

Call

Call

Call

Lock

Lock

…

x86
…

x86-TSO
…

Race-free

x86-SC

x86-TSO semantics

 Clight

Supporting Confined Benign-Race & x86-TSO
in Our CASCompCert

Target P

CompCert … identity

Source P

≤oidentity …

Lock-Impl

⊆

Target P’TSO

⊆
DRF

with benign-races

Call

Call

Call

Lock

Lock

…

x86
…

x86-TSO
…

Race-free

x86-SC

x86-TSO semantics

CompCert Passes
CompCert C Clight C#minor Cminor

CminorSel

RTL

LTLLinearMachPower
PC

RISC-V

x86

ARM

SimplLocals

TunnelingCleanupLabels

Tailcall, Renumber,
Inlining, Constprop, CSE,

Deadcode,Unusedglob

20 passes

Verified 12/20 Passes in CASCompCert

CompCert C Clight C#minor Cminor

CminorSel

RTL

LTLLinearMach

SimplLocals

TunnelingCleanupLabels

Tailcall, Renumber,
Inlining, Constprop, CSE,

Deadcode,Unusedglob

20 passesVerified 12/

Power
PC

RISC-V

x86

ARM

Verified 12/20 Passes in CASCompCert

CompCert C Clight C#minor Cminor

CminorSel

RTL

LTLLinearMach

SimplLocals

TunnelingCleanupLabels

Tailcall, Renumber,
Inlining, Constprop, CSE,

Deadcode,Unusedglob

20 passesVerified 12/

Power
PC

RISC-V

x86

ARM

Including all the translation
passes from Clight to x86

Reused Considerable Amount of CompCert Proofs.
Framework is Challenging to Implement.Towards Certified Separate Compilation for Concurrent Programs PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Compilation passes and
framework

Spec Proof
CompCert Ours CompCert Ours

Cshmgen 515 1021 1071 1503
Cminorgen 753 1556 1152 1251
Selection 336 500 647 783
RTLgen 428 543 821 862
Tailcall 173 328 275 405
Renumber 86 245 117 358
Allocation 704 785 1410 1700
Tunneling 131 339 166 475
Linearize 236 371 349 733
CleanupLabels 126 387 161 388
Stacking 730 1038 1108 2135
Asmgen 208 338 571 1128
Compositionality (Lem. 6) 580 2249
DRF preservation (Lem. 8) 358 1142
Semantics equiv. (Lem. 9) 1540 4718
Lifting 813 1795

Figure 13. Lines of code (using coqwc) in Coq

Here the premises 1-3 are similar to those required in
Def. 11. In addition, the premise 4 requires that the x86-TSO
code πo of the object be simulated by γo . The simulation
(tl, geo, πo) !

o (slCImp, geo,γo) is an extension of Liang and
Feng [19] with the support of TSO semantics for the low-
level code. Due to space limit, we omit the definition here.
The refinement relation ⊑′ is a weaker version of ⊑ (see

Sec. 3.2). It does not preserve termination (the formal defini-
tion omitted here). This is because our simulation!o for the
object code does not preserve termination for now, which
we leave as future work.

Theorem 15 can be derived from Thm. 14 (for the compila-
tion from Clight to x86-SC), and from Lem. 16 below, saying
the x86-TSO code refines the x86-SC client code and the
source object code (we use tlsc and tltso as shorter notations
for tlx86-SC and tlx86-TSO respectively).

Lemma 16 (Restore SC semantics for DRF x86 programs).
Let Πsc = {(tlsc, ge1, π1), . . . , (tlsc, gem, πm), (slCImp, geo,γo)},
and Πtso = {(tltso, ge1, π1), . . . , (tltso, gem, πm), (tltso, geo, πo)}.
For any f1 . . . fn , if

1. Safe(let Πsc in f1 ∥ . . . ∥ fn) and DRF(let Πsc in f1 ∥ . . . ∥ fn),
2. (tltso, geo, πo) !

o (slCImp, geo,γo),

then let Πtso in f1 ∥ . . . ∥ fn ⊑′ let Πsc in f1 ∥ . . . ∥ fn .

As explained before, Lem. 16 can be viewed as a strength-
ened DRF-guarantee theorem for x86-TSO in that, if we let
γo contain only skip and geo = ∅, Lem. 16 implies the DRF-
guarantee of x86-TSO.

7.4 Proof Efforts in Coq

In Coq we have mechanized the framework (Fig. 2) and
the extended framework (Fig. 3) and proved all the related
lemmas. We have verified all the CompCert passes in Fig. 11.
Statistics of our Coq implementation and proofs are de-

picted in Fig. 13. Adapting the compilation correctness proofs
from CompCert is relatively lightweight. For most passes

our proofs are within 300 lines of code more than the origi-
nal CompCert proofs. The Stacking pass introduces more
additional proofs, mostly caused by arguments marshalling
for supporting cross-language linking. In our experience,
adapting CompCert’s original compilation proofs to our set-
tings takes less than one person week per translation pass
(except for Stacking). For simpler passes such as Tailcall,
Linearize, Allocation, and RTLgen, it takes less than one
person day per pass.
By contrast, implementing our framework is more chal-

lenging, which took us about 1 person year. In particular,
proving the equivalence between non-preemptive and pre-
emptive semantics for DRF programs took us more time than
expected, although it seems to be a well-known folklore the-
orem. The co-inductive proofs there involve a large number
of non-trivial cases of reordering threads’ executions.

8 Related Work and Conclusion
Compiler verification. Variouswork extends CompCert [16]
to support separate compilation or concurrency. We have
discussed Compositional CompCert [2, 29] in Sec. 1 and 2.
SepCompCert [15] extends CompCert with the support of
syntactical linking. Their approach requires all the compila-
tion units be compiled by CompCert. They do not support
cross-language linking or concurrency as we do.

CompCertTSO [27] compiles ClightTSO programs to the
x86-TSO machine. It does not support cross-language link-
ing, and its proof for the two CompCert passes Stacking
and Cminorgen are not compositional. By contrast, we have
verified these two passes using our compositional simulation.
For the other compositional passes, CompCertTSO relies on
a thread-local simulation, which is stronger than ours. It
requires that the source and the target always generate the
same memory events (excepts for those local variables that
can be stored in registers). As a result, some optimizations
(such as constant propagation and CSE) in CompCertTSO
have to be more restrictive.

As an extension of CompCertTSO, Jagannathan et al. [12]
allow the compiler to inject racy code such as the efficient
spin lock in Fig. 10. They propose a refinement calculus on
the racy code to ensure the compilation correctness. Their
work looks similar to our extended framework in Fig. 3, but
since they use TSO semantics for both the source and target
programs, they do not need to handle the gap between the
SC and TSO semantics, so they do not need the source to be
DRF as in our work.
Podkopaev et al. [24] prove correctness of the compila-

tion from the promising semantics (which is a high-level
operational relaxed model) to the operational ARMv8-POP
machine. They develop whole-program simulations to deal
with the complicated relaxed behaviors. Later on they verify
compilations from the promising semantics to declarative
hardware models such as POWER, ARMv7 and ARMv8 [25].

156

Reused Considerable Amount of CompCert Proofs.
Framework is Challenging to Implement.

Compiler verification:
100 - 400 more lines of
Coq proof for most passes

Towards Certified Separate Compilation for Concurrent Programs PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Compilation passes and
framework

Spec Proof
CompCert Ours CompCert Ours

Cshmgen 515 1021 1071 1503
Cminorgen 753 1556 1152 1251
Selection 336 500 647 783
RTLgen 428 543 821 862
Tailcall 173 328 275 405
Renumber 86 245 117 358
Allocation 704 785 1410 1700
Tunneling 131 339 166 475
Linearize 236 371 349 733
CleanupLabels 126 387 161 388
Stacking 730 1038 1108 2135
Asmgen 208 338 571 1128
Compositionality (Lem. 6) 580 2249
DRF preservation (Lem. 8) 358 1142
Semantics equiv. (Lem. 9) 1540 4718
Lifting 813 1795

Figure 13. Lines of code (using coqwc) in Coq

Here the premises 1-3 are similar to those required in
Def. 11. In addition, the premise 4 requires that the x86-TSO
code πo of the object be simulated by γo . The simulation
(tl, geo, πo) !

o (slCImp, geo,γo) is an extension of Liang and
Feng [19] with the support of TSO semantics for the low-
level code. Due to space limit, we omit the definition here.
The refinement relation ⊑′ is a weaker version of ⊑ (see

Sec. 3.2). It does not preserve termination (the formal defini-
tion omitted here). This is because our simulation!o for the
object code does not preserve termination for now, which
we leave as future work.

Theorem 15 can be derived from Thm. 14 (for the compila-
tion from Clight to x86-SC), and from Lem. 16 below, saying
the x86-TSO code refines the x86-SC client code and the
source object code (we use tlsc and tltso as shorter notations
for tlx86-SC and tlx86-TSO respectively).

Lemma 16 (Restore SC semantics for DRF x86 programs).
Let Πsc = {(tlsc, ge1, π1), . . . , (tlsc, gem, πm), (slCImp, geo,γo)},
and Πtso = {(tltso, ge1, π1), . . . , (tltso, gem, πm), (tltso, geo, πo)}.
For any f1 . . . fn , if

1. Safe(let Πsc in f1 ∥ . . . ∥ fn) and DRF(let Πsc in f1 ∥ . . . ∥ fn),
2. (tltso, geo, πo) !

o (slCImp, geo,γo),

then let Πtso in f1 ∥ . . . ∥ fn ⊑′ let Πsc in f1 ∥ . . . ∥ fn .

As explained before, Lem. 16 can be viewed as a strength-
ened DRF-guarantee theorem for x86-TSO in that, if we let
γo contain only skip and geo = ∅, Lem. 16 implies the DRF-
guarantee of x86-TSO.

7.4 Proof Efforts in Coq

In Coq we have mechanized the framework (Fig. 2) and
the extended framework (Fig. 3) and proved all the related
lemmas. We have verified all the CompCert passes in Fig. 11.
Statistics of our Coq implementation and proofs are de-

picted in Fig. 13. Adapting the compilation correctness proofs
from CompCert is relatively lightweight. For most passes

our proofs are within 300 lines of code more than the origi-
nal CompCert proofs. The Stacking pass introduces more
additional proofs, mostly caused by arguments marshalling
for supporting cross-language linking. In our experience,
adapting CompCert’s original compilation proofs to our set-
tings takes less than one person week per translation pass
(except for Stacking). For simpler passes such as Tailcall,
Linearize, Allocation, and RTLgen, it takes less than one
person day per pass.
By contrast, implementing our framework is more chal-

lenging, which took us about 1 person year. In particular,
proving the equivalence between non-preemptive and pre-
emptive semantics for DRF programs took us more time than
expected, although it seems to be a well-known folklore the-
orem. The co-inductive proofs there involve a large number
of non-trivial cases of reordering threads’ executions.

8 Related Work and Conclusion
Compiler verification. Variouswork extends CompCert [16]
to support separate compilation or concurrency. We have
discussed Compositional CompCert [2, 29] in Sec. 1 and 2.
SepCompCert [15] extends CompCert with the support of
syntactical linking. Their approach requires all the compila-
tion units be compiled by CompCert. They do not support
cross-language linking or concurrency as we do.

CompCertTSO [27] compiles ClightTSO programs to the
x86-TSO machine. It does not support cross-language link-
ing, and its proof for the two CompCert passes Stacking
and Cminorgen are not compositional. By contrast, we have
verified these two passes using our compositional simulation.
For the other compositional passes, CompCertTSO relies on
a thread-local simulation, which is stronger than ours. It
requires that the source and the target always generate the
same memory events (excepts for those local variables that
can be stored in registers). As a result, some optimizations
(such as constant propagation and CSE) in CompCertTSO
have to be more restrictive.

As an extension of CompCertTSO, Jagannathan et al. [12]
allow the compiler to inject racy code such as the efficient
spin lock in Fig. 10. They propose a refinement calculus on
the racy code to ensure the compilation correctness. Their
work looks similar to our extended framework in Fig. 3, but
since they use TSO semantics for both the source and target
programs, they do not need to handle the gap between the
SC and TSO semantics, so they do not need the source to be
DRF as in our work.
Podkopaev et al. [24] prove correctness of the compila-

tion from the promising semantics (which is a high-level
operational relaxed model) to the operational ARMv8-POP
machine. They develop whole-program simulations to deal
with the complicated relaxed behaviors. Later on they verify
compilations from the promising semantics to declarative
hardware models such as POWER, ARMv7 and ARMv8 [25].

156

Reused Considerable Amount of CompCert Proofs.
Framework is Challenging to Implement.

Compiler verification:
100 - 400 more lines of
Coq proof for most passes

Towards Certified Separate Compilation for Concurrent Programs PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Compilation passes and
framework

Spec Proof
CompCert Ours CompCert Ours

Cshmgen 515 1021 1071 1503
Cminorgen 753 1556 1152 1251
Selection 336 500 647 783
RTLgen 428 543 821 862
Tailcall 173 328 275 405
Renumber 86 245 117 358
Allocation 704 785 1410 1700
Tunneling 131 339 166 475
Linearize 236 371 349 733
CleanupLabels 126 387 161 388
Stacking 730 1038 1108 2135
Asmgen 208 338 571 1128
Compositionality (Lem. 6) 580 2249
DRF preservation (Lem. 8) 358 1142
Semantics equiv. (Lem. 9) 1540 4718
Lifting 813 1795

Figure 13. Lines of code (using coqwc) in Coq

Here the premises 1-3 are similar to those required in
Def. 11. In addition, the premise 4 requires that the x86-TSO
code πo of the object be simulated by γo . The simulation
(tl, geo, πo) !

o (slCImp, geo,γo) is an extension of Liang and
Feng [19] with the support of TSO semantics for the low-
level code. Due to space limit, we omit the definition here.
The refinement relation ⊑′ is a weaker version of ⊑ (see

Sec. 3.2). It does not preserve termination (the formal defini-
tion omitted here). This is because our simulation!o for the
object code does not preserve termination for now, which
we leave as future work.

Theorem 15 can be derived from Thm. 14 (for the compila-
tion from Clight to x86-SC), and from Lem. 16 below, saying
the x86-TSO code refines the x86-SC client code and the
source object code (we use tlsc and tltso as shorter notations
for tlx86-SC and tlx86-TSO respectively).

Lemma 16 (Restore SC semantics for DRF x86 programs).
Let Πsc = {(tlsc, ge1, π1), . . . , (tlsc, gem, πm), (slCImp, geo,γo)},
and Πtso = {(tltso, ge1, π1), . . . , (tltso, gem, πm), (tltso, geo, πo)}.
For any f1 . . . fn , if

1. Safe(let Πsc in f1 ∥ . . . ∥ fn) and DRF(let Πsc in f1 ∥ . . . ∥ fn),
2. (tltso, geo, πo) !

o (slCImp, geo,γo),

then let Πtso in f1 ∥ . . . ∥ fn ⊑′ let Πsc in f1 ∥ . . . ∥ fn .

As explained before, Lem. 16 can be viewed as a strength-
ened DRF-guarantee theorem for x86-TSO in that, if we let
γo contain only skip and geo = ∅, Lem. 16 implies the DRF-
guarantee of x86-TSO.

7.4 Proof Efforts in Coq

In Coq we have mechanized the framework (Fig. 2) and
the extended framework (Fig. 3) and proved all the related
lemmas. We have verified all the CompCert passes in Fig. 11.
Statistics of our Coq implementation and proofs are de-

picted in Fig. 13. Adapting the compilation correctness proofs
from CompCert is relatively lightweight. For most passes

our proofs are within 300 lines of code more than the origi-
nal CompCert proofs. The Stacking pass introduces more
additional proofs, mostly caused by arguments marshalling
for supporting cross-language linking. In our experience,
adapting CompCert’s original compilation proofs to our set-
tings takes less than one person week per translation pass
(except for Stacking). For simpler passes such as Tailcall,
Linearize, Allocation, and RTLgen, it takes less than one
person day per pass.
By contrast, implementing our framework is more chal-

lenging, which took us about 1 person year. In particular,
proving the equivalence between non-preemptive and pre-
emptive semantics for DRF programs took us more time than
expected, although it seems to be a well-known folklore the-
orem. The co-inductive proofs there involve a large number
of non-trivial cases of reordering threads’ executions.

8 Related Work and Conclusion
Compiler verification. Variouswork extends CompCert [16]
to support separate compilation or concurrency. We have
discussed Compositional CompCert [2, 29] in Sec. 1 and 2.
SepCompCert [15] extends CompCert with the support of
syntactical linking. Their approach requires all the compila-
tion units be compiled by CompCert. They do not support
cross-language linking or concurrency as we do.

CompCertTSO [27] compiles ClightTSO programs to the
x86-TSO machine. It does not support cross-language link-
ing, and its proof for the two CompCert passes Stacking
and Cminorgen are not compositional. By contrast, we have
verified these two passes using our compositional simulation.
For the other compositional passes, CompCertTSO relies on
a thread-local simulation, which is stronger than ours. It
requires that the source and the target always generate the
same memory events (excepts for those local variables that
can be stored in registers). As a result, some optimizations
(such as constant propagation and CSE) in CompCertTSO
have to be more restrictive.

As an extension of CompCertTSO, Jagannathan et al. [12]
allow the compiler to inject racy code such as the efficient
spin lock in Fig. 10. They propose a refinement calculus on
the racy code to ensure the compilation correctness. Their
work looks similar to our extended framework in Fig. 3, but
since they use TSO semantics for both the source and target
programs, they do not need to handle the gap between the
SC and TSO semantics, so they do not need the source to be
DRF as in our work.
Podkopaev et al. [24] prove correctness of the compila-

tion from the promising semantics (which is a high-level
operational relaxed model) to the operational ARMv8-POP
machine. They develop whole-program simulations to deal
with the complicated relaxed behaviors. Later on they verify
compilations from the promising semantics to declarative
hardware models such as POWER, ARMv7 and ARMv8 [25].

156

Reused Considerable Amount of CompCert Proofs.
Framework is Challenging to Implement.

Compiler verification:
100 - 400 more lines of
Coq proof for most passes

Towards Certified Separate Compilation for Concurrent Programs PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Compilation passes and
framework

Spec Proof
CompCert Ours CompCert Ours

Cshmgen 515 1021 1071 1503
Cminorgen 753 1556 1152 1251
Selection 336 500 647 783
RTLgen 428 543 821 862
Tailcall 173 328 275 405
Renumber 86 245 117 358
Allocation 704 785 1410 1700
Tunneling 131 339 166 475
Linearize 236 371 349 733
CleanupLabels 126 387 161 388
Stacking 730 1038 1108 2135
Asmgen 208 338 571 1128
Compositionality (Lem. 6) 580 2249
DRF preservation (Lem. 8) 358 1142
Semantics equiv. (Lem. 9) 1540 4718
Lifting 813 1795

Figure 13. Lines of code (using coqwc) in Coq

Here the premises 1-3 are similar to those required in
Def. 11. In addition, the premise 4 requires that the x86-TSO
code πo of the object be simulated by γo . The simulation
(tl, geo, πo) !

o (slCImp, geo,γo) is an extension of Liang and
Feng [19] with the support of TSO semantics for the low-
level code. Due to space limit, we omit the definition here.
The refinement relation ⊑′ is a weaker version of ⊑ (see

Sec. 3.2). It does not preserve termination (the formal defini-
tion omitted here). This is because our simulation!o for the
object code does not preserve termination for now, which
we leave as future work.

Theorem 15 can be derived from Thm. 14 (for the compila-
tion from Clight to x86-SC), and from Lem. 16 below, saying
the x86-TSO code refines the x86-SC client code and the
source object code (we use tlsc and tltso as shorter notations
for tlx86-SC and tlx86-TSO respectively).

Lemma 16 (Restore SC semantics for DRF x86 programs).
Let Πsc = {(tlsc, ge1, π1), . . . , (tlsc, gem, πm), (slCImp, geo,γo)},
and Πtso = {(tltso, ge1, π1), . . . , (tltso, gem, πm), (tltso, geo, πo)}.
For any f1 . . . fn , if

1. Safe(let Πsc in f1 ∥ . . . ∥ fn) and DRF(let Πsc in f1 ∥ . . . ∥ fn),
2. (tltso, geo, πo) !

o (slCImp, geo,γo),

then let Πtso in f1 ∥ . . . ∥ fn ⊑′ let Πsc in f1 ∥ . . . ∥ fn .

As explained before, Lem. 16 can be viewed as a strength-
ened DRF-guarantee theorem for x86-TSO in that, if we let
γo contain only skip and geo = ∅, Lem. 16 implies the DRF-
guarantee of x86-TSO.

7.4 Proof Efforts in Coq

In Coq we have mechanized the framework (Fig. 2) and
the extended framework (Fig. 3) and proved all the related
lemmas. We have verified all the CompCert passes in Fig. 11.
Statistics of our Coq implementation and proofs are de-

picted in Fig. 13. Adapting the compilation correctness proofs
from CompCert is relatively lightweight. For most passes

our proofs are within 300 lines of code more than the origi-
nal CompCert proofs. The Stacking pass introduces more
additional proofs, mostly caused by arguments marshalling
for supporting cross-language linking. In our experience,
adapting CompCert’s original compilation proofs to our set-
tings takes less than one person week per translation pass
(except for Stacking). For simpler passes such as Tailcall,
Linearize, Allocation, and RTLgen, it takes less than one
person day per pass.
By contrast, implementing our framework is more chal-

lenging, which took us about 1 person year. In particular,
proving the equivalence between non-preemptive and pre-
emptive semantics for DRF programs took us more time than
expected, although it seems to be a well-known folklore the-
orem. The co-inductive proofs there involve a large number
of non-trivial cases of reordering threads’ executions.

8 Related Work and Conclusion
Compiler verification. Variouswork extends CompCert [16]
to support separate compilation or concurrency. We have
discussed Compositional CompCert [2, 29] in Sec. 1 and 2.
SepCompCert [15] extends CompCert with the support of
syntactical linking. Their approach requires all the compila-
tion units be compiled by CompCert. They do not support
cross-language linking or concurrency as we do.

CompCertTSO [27] compiles ClightTSO programs to the
x86-TSO machine. It does not support cross-language link-
ing, and its proof for the two CompCert passes Stacking
and Cminorgen are not compositional. By contrast, we have
verified these two passes using our compositional simulation.
For the other compositional passes, CompCertTSO relies on
a thread-local simulation, which is stronger than ours. It
requires that the source and the target always generate the
same memory events (excepts for those local variables that
can be stored in registers). As a result, some optimizations
(such as constant propagation and CSE) in CompCertTSO
have to be more restrictive.

As an extension of CompCertTSO, Jagannathan et al. [12]
allow the compiler to inject racy code such as the efficient
spin lock in Fig. 10. They propose a refinement calculus on
the racy code to ensure the compilation correctness. Their
work looks similar to our extended framework in Fig. 3, but
since they use TSO semantics for both the source and target
programs, they do not need to handle the gap between the
SC and TSO semantics, so they do not need the source to be
DRF as in our work.
Podkopaev et al. [24] prove correctness of the compila-

tion from the promising semantics (which is a high-level
operational relaxed model) to the operational ARMv8-POP
machine. They develop whole-program simulations to deal
with the complicated relaxed behaviors. Later on they verify
compilations from the promising semantics to declarative
hardware models such as POWER, ARMv7 and ARMv8 [25].

156

Framework impl.: > 60k LoC, ~ 1 person year

Conclusion

Conclusion
• Language independent verification framework

- Key semantics components + proof structures

- Supports separate compilation for race-free concurrent programs

- Well-defined language for language-independent DRF

- Footprint-preserving simulation for DRF preservation

Conclusion
• Language independent verification framework

- Key semantics components + proof structures

- Supports separate compilation for race-free concurrent programs

- Well-defined language for language-independent DRF

- Footprint-preserving simulation for DRF preservation

• Framework extension:

- Support x86-TSO + confined benign-races

Conclusion
• Language independent verification framework

- Key semantics components + proof structures

- Supports separate compilation for race-free concurrent programs

- Well-defined language for language-independent DRF

- Footprint-preserving simulation for DRF preservation

• Framework extension:

- Support x86-TSO + confined benign-races

• CASCompCert:

- Reused considerable amount of CompCert proofs

- Racy x86-TSO impl. of locks as synchronization library

Thank you!

