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Abstract. Algorithmic versions of the Lovász Local Lemma (ALLLs),
or rather, the Moser-Tardos algorithm and its variants, are impactful in
both theory and practice. In this paper, we take the first step towards
the goal of formally verifying ALLLs by applying programming language
techniques. We propose two proof recipes, called loop truncation and
resampling-table-based coupling, for bridging the gap between Hoare-
style program logics and ALLLs’ original informal proofs. We formally
verify six existing important results related to ALLLs, and propose a new
result which generalizes several existing results. Our proof recipes can
also be used to verify general properties of other probabilistic programs
in addition to ALLLs.

1 Introduction

The Lovász Local Lemma [19, 57] (LLL) is a powerful tool in combinatorics. It
guarantees the existence of a combinatorial object with certain properties in a
probability space. It has also been helpful for proving the existence of solutions
to numerous significant problems in computer science, such as the Boolean Sat-
isfiability Problem and the Graph Coloring Problem, since these problems can
be viewed as instances of the problem of finding some combinatorial objects.

Besides proving the solution’s existence, we also want to efficiently construct
a solution. To this end, people have devised algorithmic versions of the Lovász
Local Lemma (ALLLs). The most notable one is the Moser-Tardos (MT) algo-
rithm proposed by Moser and Tardos in their Gödel Prize-winning paper [50].
The algorithm searches the probability space for the desired combinatorial object
iteratively, bringing us a constructive proof for LLL. It is efficient in that the ex-
pected total number of iterations is bounded. Since then, a huge number of works
have emerged, some explore the power of the MT algorithm [53, 42, 31, 43, 1, 37],
some find variants of the MT algorithm [31, 16, 34, 30, 25, 36, 29, 13], and some
utilize the MT algorithm to solve problems in various areas of computer sci-
ence [31, 43, 33, 9, 26, 55, 15, 14, 27, 23], including applications in real-world
systems [2, 39].

Therefore it is of great importance to formally verify the (total) correctness
of ALLLs, in particular, that the MT algorithm and its variants almost surely
terminate (i.e. terminate with probability 1) and their expected iteration times
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have certain upper bounds. Previous works (e.g. [50]) have given proofs for the
correctness of ALLLs, though these proofs are rather informal. Therefore, a nat-
ural choice is to formally verify ALLLs by formalizing existing informal proofs.

However, we encounter a challenge when verifying ALLLs by following exist-
ing proofs. We propose Proof Recipe 1 to circumvent this challenge, and propose
Proof Recipe 2 for completing the verification after applying Proof Recipe 1.

Challenge: Handling infinite execution traces. It is challenging to formulate some
subgoals in ALLLs’ existing informal proofs using distribution-based semantics,
which is commonly used in the literature of probabilistic program verification.
The reason is that, on the one hand, these subgoals are about complex properties
of the algorithm’s execution traces, and we have to take infinite traces into
account until we prove their absence. On the other hand, distribution-based
semantics can only describe certain simple properties of these infinite traces,
e.g. their overall probability.

Proof Recipe 1. We propose a proof recipe called loop truncation to circumvent
the above challenge. For a loop in an ALLL, we transform it to a set of arbitrarily
truncated loops. Now we have a set of “truncated algorithms”, which can only
generate finite execution traces. Then, instead of directly verifying the original
algorithm, we prove a common bound of the expected iteration times for all the
truncated algorithms. The latter can be proved following existing proofs, and
now we do not have to handle infinite traces when formulating the subgoals.

Proof Recipe 2. A crucial step commonly found in many proofs of ALLLs, is
to prove an inequality between probabilities involving two programs. Specifically,
for the original ALLL program C1 and a property p, one constructs a program
C2 and a property q, and shows that the probability of p holding after C1’s
execution is not greater than the probability of q holding after C2’s execution.

To prove this inequality, existing informal proofs introduce variants of C1
and C2, say C ′

1 and C ′
2, that use a new random source called resampling table.

By assuming that C1 and C2 are respectively equivalent to C ′
1 and C ′

2, they
reduce the original inequality to a similar inequality that involves C ′

1 and C ′
2,

and prove the latter. We elaborate on these proofs in Sec. 2.1.
Following the above proof idea, we propose a proof recipe called resampling-

table-based coupling to formally prove the aforementioned inequality. At the core
of this proof recipe is a new measure-theoretic semantics for probabilistic pro-
grams, which we call a resampling-table-based semantics. This semantics formal-
izes the resampling table in existing proofs as a built-in structure. We formulate
C ′

1 (C ′
2) by giving C1 (C2) this new semantics without changing its syntax, and

express the equivalence between C1 and C ′
1 (C2 and C ′

2) as the equivalence be-
tween a classic probabilistic semantics and the new semantics. We prove the
semantics equivalence once and for all, instead of repeatedly proving the equiv-
alence between every pair of programs. Then it remains to prove the inequality
involving C ′

1 and C ′
2, which is now an inequality on the new semantics.
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Our proof recipe, resampling-table-based coupling, further reduces the prob-
lem to verifying the two programs C ′

1 and C ′
2 individually. The idea is to intro-

duce an intermediate assertion specifying the resampling table as the common
random source to bridge the two programs’ unary verification. The unary veri-
fication can be done using a simple Hoare-style program logic.

Contributions. Using the above two proof recipes, we have successfully verified
several ALLL-related results. In summary, we make the following contributions:

– We verify six important results from [50, 53, 42, 31] for the first time. They
include all the three “probabilistic” results from Moser and Tardos’s Gödel
Prize-winning paper [50].

– We propose a proof recipe called loop truncation, which circumvents the
challenge when verifying ALLLs with classic distribution-based semantics.

– We propose a proof recipe called resampling-table-based coupling. It expresses
the informal proof idea of an important inequality in a formal and concise
way, taking a perspective of semantics equivalence and Hoare-style reasoning.

– We propose a new result related to the Moser-Tardos algorithm, with results
from [50, 53, 42] as its corollaries. The statement and the proof of this result
are formal, and the proof is done by applying our proof recipes.

Our proof recipes can also be used to prove general properties (i.e. total cor-
rectness and inequalities between probabilities) of probabilistic programs beyond
ALLLs (see Ex. 1 and Ex. 2). We also discuss the relationship between our proof
recipes and existing formal proof methods for positive almost sure termination
and asynchronous coupling in Sec. 7.

Outline. We review the original informal proof of the MT algorithm, and intro-
duce the challenge and our main ideas in Sec. 2. We then give the mathematical
preliminaries in Sec. 3, and define the programming language, including our new
semantics, in Sec. 4. Then we introduce our two proof recipes in Sec. 5. By ap-
plying these recipes, we verify six existing important ALLL-related results and
a new result in Sec. 6. We finally discuss related work in Sec. 7.

The technical report [46] contains the full formal details of this work, includ-
ing all the definitions and all the proofs for lemmas, theorems and examples.

2 Informal Development

To formally verify the ALLL-related results, a natural choice is to follow their
original informal proofs. Below we first provide a brief overview of the original
informal proof of Moser and Tardos’s seminal result [50], which serves as an
example for understanding the ideas behind the original proofs of many ALLL-
related results. We then explain the verification challenge and our proof recipes.
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Independently sample X1, . . . , XN

while ∃j ∈ [1, M ]. ηj holds do
Choose such an ηj

for all Xi that ηj depends on do
Resample Xi

Output the current values of X1, . . . , XN

Fig. 1. The MT algorithm

succ := 1
for all ηj ∈ gWT(wt) do

for all Xi that ηj depends on do
Resample Xi

if ηj does not hold then succ := 0
Output succ

Fig. 2. The check(wt) algorithm

2.1 Moser and Tardos’s Proof

The Moser-Tardos (MT) algorithm efficiently constructs a solution for the follow-
ing problem. Given N program variables X1, . . . , XN and M events η1, . . . , ηM ,
where each variable is associated with some random distribution and each event
depends on some of X1, . . . , XN , we would like to construct an assignment of
X1, . . . , XN such that none of the M events occurs. The Lovász Local Lemma [19,
57] provides the Erdős-Lovász condition which sufficiently ensures the existence
of such assignments. The MT algorithm finds such an assignment as shown in
Fig. 1. Here “(re-)sample Xi” means the following: sample from the random
distribution with which Xi is associated, and assign the result to Xi.

Moser and Tardos prove that, under the Erdős-Lovász condition, the expec-
tation of the total iteration number of the algorithm’s outer loop is no more than
a real number rEL, and thus the algorithm almost surely terminates. (Here we
do not expose the definitions of the Erdős-Lovász condition and rEL, which can
be found in Thm. 4.) In the remainder of this subsection, we sketch their proof.

Restatement of the proof goal. Moser and Tardos restate their proof goal using
execution logs. For every execution of the algorithm, its execution log Λ is a
sequence of events ηj , which are dynamically chosen at the beginning of the
outer loop iterations. We write Λ⟨i⟩ for the i-th element of Λ, which is the event
chosen at the i-th iteration. We write |Λ| for the length of Λ, so it specifies the
total number of the outer loop iterations. If the loop does not terminate in an
execution, then |Λ| = ∞. Now, Moser and Tardos restate their proof goal as

E[|Λ|] ≤ rEL. (1)

That is, the expected length of the execution log has an upper bound rEL, where
the randomness of Λ comes from the randomness of the MT algorithm. From
(1), Moser and Tardos conclude that the program almost surely terminates. The
proof of (1) can be divided into three stages, which will be discussed in turn.

Stage 1. In this stage, Moser and Tardos rewrite E[|Λ|] by defining a special
mathematical structure called witness trees. A witness tree wt is a tree with some
special properties, where each node is labeled with an event from η1, . . . , ηM . One
can construct a witness tree wt from an execution log Λ following some specific
procedure, and we write wt = fWT(Λ) for this. From the concrete definitions
and properties of wt and fWT (which we omit here), Moser and Tardos rewrite
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E[|Λ|] as the infinite series in (2). It enumerates all witness trees wt, and sums
the probabilities that wt can be constructed from some prefix of Λ (that is, there
exists a sequence Λ′ such that: Λ′ is a prefix of Λ, and wt = fWT(Λ′) holds).

E[|Λ|] =
∑
wt

Pr[wt = fWT(some prefix of Λ)] (2)

Stage 2. Next, Moser and Tardos give an upper bound of the probability in (2).
That is, for all witness trees wt, they prove that

Pr[wt = fWT(some prefix of Λ)] ≤ p(wt), (3)

where p(wt) is a specific real number related to wt, whose definition we omit. In-
stead of directly proving (3) (which is challenging), Moser and Tardos construct
a program check(wt), which outputs either 0 or 1, and then prove the following:

(a) The check(wt) algorithm outputs 1 with probability p(wt).
(b) Pr[wt=fWT(some prefix of Λ)] ≤ Pr[check(wt) outputs 1].

(3) then follows from the above two properties. The proof of (a) is not difficult.
What is really interesting is the proof of (b). To see this, we present the check(wt)
algorithm in Fig. 2, where gWT(wt) gives us an event sequence collecting the
labels of wt’s nodes in a certain order (in fact, a reversed BFS ordering of wt).

To prove (b), Moser and Tardos observe that whenever wt can be generated
by the MT algorithm and check(wt) is run on the same random source, check(wt)
outputs 1. They capture this observation by specifying the random sources using
resampling tables (RT) and letting the algorithms explicitly use the tables.

Specifically, Moser and Tardos give an RT-MT algorithm1, and assume that
it is “equivalent” to the MT algorithm, i.e., the two algorithms produce the same
distribution of execution logs. The idea of the RT-MT algorithm is to transfer
the lazy samplings in the MT algorithm to eager ones: the RT-MT algorithm
performs all the samplings ahead of time and stores the results in an table (the
RT) so that it can interpret all subsequent samplings as deterministic table
queries.

The RT-MT algorithm is shown in Fig. 3, where we highlight the difference
with Fig. 1 in blue. At the beginning, the RT-MT algorithm randomly generates
a resampling table RT , which has N rows and an infinite number of columns. For
all i ∈ [1, N ], this step independently samples Xi an infinite number of times, and
fills the i-th row of RT with these samples. Subsequently, every sampling step
of the MT algorithm is replaced by a table-query step in the RT-MT algorithm.
For instance, resampling Xi is replaced by reading the leftmost unread element
from the i-th row of RT , and assigning the result to Xi.

Similarly, Moser and Tardos give the RT-check(wt) algorithm as shown in
Fig. 4, and assume that it is “equivalent” to check(wt), i.e., the two algorithms
have the same output distribution.
1 In [50], Moser and Tardos did not explicitly introduce new algorithms (RT-MT and

RT-check). The algorithm here is a possible interpretation of their prose description.
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Randomly generate an RT
Assign the first col. of RT to X1, . . . , XN

while ∃j ∈ [1, M ]. ηj holds do
Choose such an ηj

for all Xi that ηj depends on do
Assign the next number of
the i-th row of RT to Xi

Output the current values of X1, . . . , XN

Fig. 3. The RT-MT algorithm

Randomly generate an RT
succ := 1
for all ηj ∈ gWT(wt) do

for all Xi that ηj depends on do
Assign the next number of
the i-th row of RT to Xi

if ηj does not hold then succ := 0
Output succ

Fig. 4. The RT-check(wt) algorithm

Since the MT algorithm and check(wt) are “equivalent” to their RT-based
counterparts respectively, to prove (b), we only need to show that,

(b’) Pr[wt=fWT(some prefix of Λ of RT-MT)] ≤ Pr[RT-check(wt) outputs 1].

Note that the first lines of the RT-MT algorithm and RT-check(wt) are the same,
and all other parts of these two programs are non-probabilistic. Thus, we couple
the random sources of the RT-MT algorithm and RT-check(wt), or rather, let
the first lines of these two programs generate the same RT . Then it remains to
prove that, for any RT , if wt can be generated from the RT-MT algorithm using
this RT , then RT-check(wt) with the same RT must output 1.

The proof is based on the following observation. If wt can be generated
from the RT-MT algorithm using RT , then in retrospect RT must have some
crucial properties, and these properties will make RT-check(wt) output 1. More
precisely, for all events ηj in wt, at the time ηj is chosen in the execution of the
RT-MT algorithm, it must hold under the current assignment formed by some
of RT ’s entries. Then, during the execution of RT-check(wt), when the program
tests ηj , the test passes because the current assignment must be formed by
(almost) the same entries of RT .

Stage 3. Finally, Moser and Tardos prove that,∑
wt

p(wt) ≤ rEL, if the Erdős-Lovász condition holds. (4)

It can be proved in a purely mathematical (i.e. program-independent) yet simple
way, as pointed out by Srinivasan [58].

Combining all three stages above, Moser and Tardos obtain (1):

E[|Λ|] =
∑
wt

Pr[wt = fWT(some prefix of Λ)] Stage 1, (2)

≤
∑
wt

p(wt) Stage 2, (3)

≤ rEL. Stage 3, (4)
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Two parts in Moser and Tardos’s reasoning that need more careful formalization.
First, Moser and Tardos restate their ultimate proof goal as (1) using |Λ|, the
length of the execution log Λ. However, their restatement is ambiguous, since
without defining the program semantics, it is unclear how programs are exe-
cuted and generate execution logs. Similar ambiguity arises when stating those
subgoals that also involve quantities related to Λ, e.g. (2) and (3).

Second, Moser and Tardos’s original proof of Stage 2 is far from rigorous. To
prove (b), they assume that the MT algorithm and check(wt) are “equivalent”
to their RT-based variants, but they did not strictly define and prove the “equiv-
alences”. Besides, they did not give a rigorous proof of (b’) with these RT-based
variants strictly defined.

In the next subsections, we show how we formally state and verify Moser and
Tardos’s result. We illustrate the proof path in Fig. 5, which is also explained
below.

2.2 Stating Proof Goals Using Distribution-Based Semantics

To formally state Moser and Tardos’s ultimate proof goal, we must formulate the
program semantics and the expected total number of iterations (or equivalently,
the expected length of the execution log Λ).

We use a classic distribution-based semantics as the formal program seman-
tics. This semantics (and other equivalent semantics, e.g. the probabilistic wp-
semantics [45, 48] and Kozen’s “Semantics 2” [44]) is commonly used in the
literature of probabilistic program verification (e.g. [45, 48, 3, 7, 21]). It inter-
prets the execution result of a program C as a sub-distribution µ over states.
For any state σ, this final state sub-distribution µ specifies the probability that
the program C terminates at σ.

For specifying the expected total number of iterations, we introduce a fresh
program variable cnt that records the number of iterations. Our code of the MT
algorithm, CMT(cnt), sets cnt to zero at the beginning, and increments it in each
iteration of the outer loop. Consequently, when CMT(cnt) terminates, the value
of cnt is the total number of iterations.

Now, our proof goal can be stated as the following total correctness Hoare
triple (assuming that the Erdős-Lovász condition holds on the probability space):

⊨ [true] CMT(cnt) [E[cnt] ≤ rEL] . (5)

Informally it says, the execution of CMT(cnt) in the distribution-based semantics
almost surely terminates (i.e., terminates with probability 1), and the expecta-
tion of the value of cnt (represented as E[cnt]) at the final state sub-distribution
is no greater than rEL. The goal is shown on the top of Fig. 5.

For proving (5), we follow the original proof. That is, we formulate the sub-
goals in the three stages in Sec. 2.1 using distribution-based semantics, and then
prove them. However, we encounter a challenge when formulating (2) and (3).



8 R. Lin et al.

⊨ [true] CMT(cnt) [E[cnt] ≤ rEL]
1⃝

∀K ∈ N. ⊨ [true] C′
MT(cnt, K) [E[cnt] ≤ rEL ∧ ⌈cnt ≥ 0⌉]

2⃝

∧· · · ⊨ {true} C′
MT(cnt, K) ≤ check(wt){q1, q2}

RT RT
3⃝

⊨RT {true}C′
MT(cnt, K) ≤ check(wt){q1, q2}

4⃝

∧⊨RT { · · · } C′
MT(cnt, K) {q1 ⇒ R}

⊨RT [ · · · ∧ R] check(wt) [q2]

Recipe 1

Recipe 2

Fig. 5. Our proof path of Moser and Tardos’s result, where q1 = Gen(wt, cnt, K) and
q2 = Succ

Challenge: Handling infinite execution traces. The problem arises when formu-
lating the probability (6), which appears in both (2) and (3).

Pr[wt = fWT(some prefix of Λ)] (6)

Let µ be the final state sub-distribution of CMT(cnt). Then, it is challenging to
formulate (6) using µ. Note that (6) can be positive even when CMT(cnt) never
terminates. But if we simply define (6) as the probability of some event on µ,
this probability must be 0 if CMT(cnt) never terminates, since µ is now a null
sub-distribution (which specifies that CMT(cnt) terminates at σ with probability
0 for any σ). Other definition attempts using µ may also fail.

The difficulty in formulating (6) lies in the following facts. On the one hand,
(6) is the total probability of CMT(cnt)’s possibly infinite execution traces on
which wt = fWT(some prefix of Λ) holds. This is a complex property that may
involve only some of CMT(cnt)’s infinite traces. On the other hand, distribution-
based semantics can only express certain simple properties of infinite traces, and
thus cannot express (6). From µ, all we know about CMT(cnt)’s infinite traces is
their overall probability 1 − |µ|, where |µ| is the weight of µ (see Sec. 3.1).

One should not simply rule out infinite traces by strengthening (2) and (3)
to include almost sure termination of CMT(cnt), since in Sec. 2.1 the termination
has not been derived until the ultimate goal is fully proved (also, it is not easy
to prove the termination alone, as discussed in Sec. 7).

2.3 Proof Recipe 1: Loop Truncation

We circumvent the aforementioned challenge by proposing loop truncation. Our
idea is to do a code transformation on loops, so that the codes after trans-
formation do not generate infinite traces. For the main loop in CMT(cnt), our
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transformation introduces a loop bound K whose value is an arbitrary natural
number, and turns the original loop while (b) do C into a set of truncated
loops { while (b ∧ cnt < K) do C | K ∈ N }. Since we increment cnt in the
loop body C, each truncated loop while (b ∧ cnt < K) do C terminates in at
most K rounds, and thus can only generate finite execution traces.

Soundness of this transformation can be captured by Lem. 1 below (we will
show the more general form in Thm. 2 in Sec. 5.1). It says, the original loop
guarantees almost sure termination and its expected total iteration number is
bounded by r, as long as all the truncated loops terminate and their expected to-
tal iteration numbers have the same upper bound r. Here ⌈cnt ≥ 0⌉ says, cnt, the
number of iterations, is always non-negative after while (b ∧ cnt < K) do C’s
execution. Without this condition the transformation is unsound.

Lemma 1. For all P, b, C, r, if

∀K ∈ N. ⊨ [P ] while (b ∧ cnt < K) do C [E[cnt] ≤ r ∧ ⌈cnt ≥ 0⌉] ,

then ⊨ [P ] while (b) do C [E[cnt] ≤ r].

Using this transformation, we can reduce (5) to proving the total correctness
of C ′

MT(cnt, K) for all K, where C ′
MT(cnt, K) is the resulting code after trans-

forming the main loop of CMT(cnt) to a truncated one. That is, we prove (7) for
all K.

⊨ [true] C ′
MT(cnt, K) [E[cnt] ≤ rEL ∧ ⌈cnt ≥ 0⌉] (7)

We show this as Step 1⃝ in Fig. 5. The double arrow represents logical implica-
tion. Then we can prove (7) following Moser and Tardos’s proof ideas explained
in Sec. 2.1. We formulate subgoals (2) and (3) for C ′

MT(cnt, K); however, we will
not encounter the aforementioned challenge, since C ′

MT(cnt, K) does not have
infinite execution traces.

Serving as a proof method for PAST. Lem. 1 is itself a general proof method
for positive almost sure termination (PAST) [11], whenever we use cnt to record
the number of program steps. The PAST property says, the program terminates
not only almost surely, but also within finite number of steps in expectation. We
give an example in Ex. 1 in Sec. 5.1.

2.4 Proof Recipe 2: Resampling-Table-Based Coupling

Following the ideas in Sec. 2.1, we prove (7) in three stages. The most challeng-
ing part is proving (b) in Stage 2, which is an inequality between probabilities
involving two programs.

We first formally specify the inequality. To this end, we introduce the tuple
⊨ {P}C1 ≤ C2{q1, q2}. Here P is a predicate specifying state distributions µ,
while q1 and q2 are predicates over states σ. The tuple says that, the probability
of q1 holding at the terminating states of C1 is not greater than the probability
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of q2 holding at the terminating states of C2, where C1 and C2’s executions start
from the same µ satisfying P and use the distribution-based semantics. Then,
we can formulate (b) for C ′

MT(cnt, K) and check(wt) as follows.
⊨ {true}C ′

MT(cnt, K) ≤ check(wt){Gen(wt, cnt, K), Succ} (8)
Here Gen(wt, cnt, K) roughly says that wt can be generated and is well-formed
with respect to cnt and K. The predicate Succ says that the output succ is 1.
See Step 2⃝ in Fig. 5.

Following Moser and Tardos’s proof in Sec. 2.1, we introduce the RT-MT
algorithm (now with a truncated loop) and the RT-check(wt) algorithm. We
need to give strict definitions of these variants, and to prove that they are indeed
equivalent to the original C ′

MT(cnt, K) and check(wt) respectively.

Resampling-table-based semantics. Instead of introducing the RT-MT algorithm
and the RT-check(wt) algorithm with explicit statements for generating the RT
and accessing it, our approach is to keep the program syntax unchanged but re-
interpret the code using a new semantics. Our RT is a built-in structure of the
new semantics, and it is randomly generated before programs start execution.

More specifically, we re-interpret (8) using the novel RT-based semantics. In
this semantics, we let a program execute with a resampling table RT , which
stores all sampling results of the program in advance, and serves as an oracle for
the sampling statements in the program. Each sampling statement is interpreted
as a query to RT . So this semantics is deterministic given a specific RT .

Our RT-based semantics is equivalent to the classic distribution-based se-
mantics explained in Sec. 2.2. By specifying and proving the semantics equiva-
lence, we essentially show that all programs (including the MT algorithm and
check(wt) in Sec. 2.1) are “equivalent” to their RT-based variants.

Based on the semantics equivalence, we can show the equivalence between
⊨ {P}C1 ≤ C2{q1, q2} and ⊨RT {P}C1 ≤ C2{q1, q2}. The latter specifies the
same relational property as the former but uses the RT-based semantics for
execution. See Step 3⃝ in Fig. 5.

Resampling-table-based coupling. Our proof recipe reduces the relational verifi-
cation for ⊨RT {P}C1 ≤ C2{q1, q2} to unary verification of each of C1 and C2
in the RT-based semantics.

Specifically, we couple the random sources of C1 and C2, i.e. let them use the
same RT in their executions. We prove: for all RT , if C1 using RT terminates
on a state satisfying q1, then C2 using the same RT must also terminate on a
state satisfying q2.

To prove this, we introduce an intermediate assertion R to describe what
kind of RT can make q1 hold after the execution of C1. Usually R specifies that
“some entries in RT have some properties”. With R, we can split the goal into
the following two subgoals:

– For all RT , if C1 using RT terminates at a state satisfying q1, then in
retrospect RT must satisfy R. This is formulated as the Hoare-triple

⊨RT { · · · } C1 {q1 ⇒ R} . (9)
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The post-condition reflects this retrospective reasoning. We omit the pre-
condition, which usually degenerates to a regular state assertion. Then we
only need classical (non-probabilistic) Hoare-style proofs for the Hoare triple.

– Starting with any RT satisfying R, the execution of C2 must terminate at
a final state satisfying q2, that is,

⊨RT [ · · · ∧ R] C2 [q2] . (10)

Here R is in the precondition. We omit the rest parts of the precondition.

Note that the first subgoal (9) only needs to be partial correctness. It says, for any
execution of C1, if it terminates and the final state satisfies q1, RT must satisfy
R. Then the total correctness of C2 (the second subgoal (10)) says, starting from
the same RT , C2 terminates at a final state satisfying q2. This way we can prove
that the probability of q1 at the end of C1 is not greater than the probability
of q2 at the end of C2. Step 4⃝ in Fig. 5 shows this reduction of the relational
reasoning to unary proofs of the two programs separately.

Our reasoning above benefits from a key novelty of our RT-based semantics
with respect to existing random-source-based semantics (e.g. Kozen’s “Semantics
1” [44] and those in [10, 17]). That is, our RT is an immutable structure that
never changes during program execution. In particular, used samples are not
popped out of RT . Therefore the assertion R derived from the post-condition
of (9) must also hold over the RT at the beginning of the execution. So we can
use it in the precondition in (10).

Finding such an R is not difficult in many cases, especially when verifying
ALLLs. We give another example in Sec. 5.2.

3 Preliminaries

In this section, we review some fundamentals of probability theory in two stages.
We first introduce some basics of discrete probability theory without mentioning
their measure-theoretic extensions, serving as the foundation of our distribution-
based semantics in Sec. 4.1. Then we turn to the measure-theoretic probability
theory, which forms the basis of our RT-based semantics in Sec. 4.2.

3.1 Discrete Probability Theory

We use notations from [21, 3]. A (discrete) sub-distribution over a set A is defined
as a function µ : A → [0, 1] that satisfies the following two conditions: (1) the
support of µ, denoted by supp(µ) = {a ∈ A : µ(a) > 0}, is countable; (2) |µ| ≤ 1,
where |µ| =

∑
a∈A µ(a) is µ’s weight.

A sub-distribution µ is called a distribution if |µ| = 1. We denote by SDA

all of the sub-distributions over A, and by DA all of the distributions over A.
We write Pra∼µ[E(a)], which is defined as

∑
a∈A:E(a) µ(a), for the probability of

E : A → Prop on the sub-distribution µ. We write Ea∼µ[V (a)], which is defined
as

∑
a∈A µ(a) · V (a), for the expected value of V : A → R on µ.
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(Dsts) D ::= (κ1, . . . , κN ) (Evts) E ::= (η1, . . . , ηM )
(Dst) κ ∈ DReal (Evt) η ∈ Real × · · · × Real︸ ︷︷ ︸

N Real’s

→ {true, false}

vbl(η, j) iff ∃r1, . . . , rN , r′. η(r1, . . . , rN ) ̸= η(r1, . . . , rj−1, r′, rj+1, . . . , rN )

P(η) ≜
∑

r1∈supp(D[1]),...,rN ∈supp(D[N])
η(r1,...,rN )=true

∏
i∈[1,N ]

D[i](ri)

Γ (j) ≜ {k : ∃i. vbl(E [j], i) ∧ vbl(E [k], i))} \ {j}

(Expr) e ::= v | x | e1 + e2 | a[e] | e1⟨e2⟩ | len(e) | app(e1, e2) | . . .

(Bexp) b ::= true | false | e1 = e2 | b1 ∧ b1 | hold(e, e1, . . . , eN ) | vbl(e1, e2) | . . .

(Stmt) C ::= skip | x := e | x := Sample(e) | a[e1] := e2
| C1; C2 | if (b) then C1 else C2 | while (b) do C | . . .

Fig. 6. Syntax of the programming language

For an infinite sequence µ⃗, we define lim µ⃗ as the sub-distribution µ such that
limn→∞

∑
a∈A |µ⃗[n](a) − µ(a)| = 0. One can prove that such a µ is unique if it

exists, otherwise we leave lim µ⃗ undefined.
For µ ∈ SDA and function f ∈ A → SDB , we define the expected sub-

distribution Ea∼µ{f(a)} ∈ SDB as λb.
∑

a∈A µ(a) · f(a)(b).

3.2 Measure-Theoretic Probability Theory

A set of subsets of a set Ω, say F , is a σ-algebra on Ω if it contains Ω and is
closed under complement and countable union. A measurable space is defined as
a pair (Ω, F), where F is a σ-algebra on Ω. We call Ω the sample space.

A function M : F → [0, ∞) is called a (finite) measure on measurable space
(Ω, F) if it satisfies M(∅) = 0 and is countably additive. A measure space is
defined as a triple (Ω, F , M), where M is a measure on measurable space (Ω, F).
(Ω, F , M) is called a probability space if M(Ω) = 1.

A discrete distribution µ can be lifted to a measure-theoretic probability
space (Ω, F , M), where Ω = supp(µ), F = P(supp(µ)), and M(A) =

∑
a∈A µ(a)

for all A ⊆ supp(µ).
Let {(Ωi, Fi, Mi) : i ∈ I} be a collection of probability spaces for some

possibly infinite set I. We denote by
∏

i∈I(Ωi, Fi, Mi) the product probability
space of {(Ωi, Fi, Mi) : i ∈ I}, defined as (Ω, F , M), where: (1) Ω =

∏
i∈I Ωi,

(2) F is the smallest σ-algebra containing all
∏

i∈I Ai such that Ai ∈ Fi and
{j : Aj ⊊ Ωj} is finite, and (3) M(

∏
i∈I Ai) =

∏
j∈J Mj(Aj) when Ai ∈ Fi and

J = {j : Aj ⊊ Ωj} is finite. The above (Ω, F , M) exists and is unique (see [54]).

4 Two Semantics of the Language

In this section we define the programming language. We first define the language
syntax, and then give two equivalent semantics in Sec. 4.1 and Sec. 4.2.
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Global parameters. Throughout the paper, we assume four global parameters
for programs: N , M , D and E . They are viewed as meta-variables, and can be
configured differently for different programs.

As defined at the top of Fig. 6, D and E represent the “N distributions” and
“M events” in ALLL’s setting (see Sec. 2.1) respectively. Each event ηj in E takes
N reals as input, and outputs a boolean value. Each κi in D is a distribution
over reals, and is associated with the i-th argument of every ηj in E .

Fig. 6 also gives important notations related to D and E , which are used in
the statements and the formal proofs of ALLL-related results. vbl(η, j) holds iff
the event η depends on its j-th argument.2 P(η) is the probability of the event η
occurring, given that its N arguments are independently distributed according
to D[1], . . . , D[N ] respectively. Γ (j) is the index set of events that depend on
some argument that E [j] also depends on, except E [j] itself.

Syntax of the programming language. As shown at the bottom of Fig. 6, we
use customized program statements, expressions and boolean expressions to for-
mulate ALLLs’ code. We write x := Sample(e) to sample from the distribution
D[e] and store the result in the program variable x. The boolean expression
hold(e, e1, . . . , eN ) tests if the event E [e] holds with arguments e1, . . . , eN . More-
over, vbl(e1, e2) tests if the event E [e1] depends on its e2-th argument.

We use arrays to formulate the N variables X1, . . . , XN in ALLLs. We use
a[e] to represent the element of array a with index e, and use a[e1] := e2 for the
in-place update.

We use lists to formulate the execution logs in ALLLs. To access and manip-
ulate the execution log, we introduce list-related expressions. We use e1⟨e2⟩ for
the e2-th element of list e1, use len(e) for the length of list e, and use app(e1, e2)
for appending an element e2 to list e1.

Using the syntax in Fig. 6, we can formulate the code of the MT algorithm,
CMT(cnt), in Fig. 12 in Sec. 6.

States and state distributions. As defined below, a state σ maps each program
variable in PVar to some value v. For simplicity, we view each array element as
a program variable. A value v is either a real r or a list Λ of natural numbers.

(State) σ ∈ PVar → Val (DState) µ ∈ DState

State distributions µ are used to specify that, with probability µ(σ), the program
state before or after the execution of a program is exactly σ. We write JeKσ and
JbKσ for the evaluation of e and b in a state σ.

Below we give two equivalent probabilistic semantics of our language, a classic
distribution-based semantics and an RT-based semantics. We use n for natural
numbers and p, r for reals. Throughout this paper, we assume that the program’s
execution does not get stuck, and the evaluation of expressions does not abort.
2 The name “vbl” is short for “variables”. Moser and Tardos [50] used vbl(η) as the

minimal set of variables (i.e. arguments of the event) that determine η.
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r10 r11 r12 r13 · · ·
r20 r21 r22 r23 · · ·

Fig. 7. A resampling table RT with N = 2

4.1 Distribution-Based Semantics

Following [21, 3], we first define the semantic function JCK(σ) ∈ SDState. Here
JCK(σ)(σ′) represents the probability of C’s execution from σ finally reaching
σ′. For example, for the sampling operation x := Sample(e) that samples from
the distribution D[i] and gets r as the result, the probability is D[i](r). That is,

Jx := Sample(e)K(σ)(σ′) =
{

D[i](r) if JeKσ = i ∈ [1, N ] and σ′ = σ{x⇝ r}
0 otherwise

.

We give the full definition in [46]. We further define JCK(µ) ∈ SDState (where
µ ∈ DState) by lifting JCK(σ), using the expected sub-distribution in Sec. 3.1:

JCK(µ) ≜ Eσ∼µ{JCK(σ)} .

4.2 Resampling-Table-Based Semantics

Informally, in our new RT-based semantics, a program first randomly generates
a resampling table (RT); with this table, the program then starts its determin-
istic execution. Below we first give the definition of an RT, and specify how the
semantics “generates” an RT. Then we define an RT-based operational seman-
tics, which describes the deterministic execution of the program with a certain
RT. Finally, we combine all the above definitions into the RT-based semantic
functions JCKRT(σ) and JCKRT(µ).

The resampling table is defined as follows.

(RTable) RT ∈ [1, N ] × Nat → Real where generable(RT )
generable(RT ) iff ∀i, j. RT [i][j] ∈ supp(D[i])

A resampling table RT is a matrix with size N × ∞. An example of such table
is shown in Fig. 7, where N = 2 and RT [i][j] = rij for i ∈ [1, 2] and j ∈ Nat.
Intuitively, as described in Sec. 2.1, the i-th row of RT stores the ahead-of-time
samples from the distribution D[i]. Additionally, we require that generable(RT )
holds. That is, every entry in the i-th row of RT must be able to be sampled
from the distribution D[i]. This accords with the intuition of the RT.

We specify how the semantics “generates” an RT. To this end, we define the
probability space of all (generable) RTs as (Ω, F , M), and thus M({RT | · · · })
represents the probability of some RT from set {RT | · · · } being generated. The
definition is shown below:

(Ω, F , M) ≜
∏

(i,j)∈[1,N ]×Nat(Ωi,j , Fi,j , Mi,j),
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JeKσ = v

RT ⊢ (x := e, σ, ι) −→ (skip, σ{x⇝ v}, ι)

JeKσ = i ∈ [1, N ] ι′ = (ι[1], . . . , ι[i − 1], ι[i] + 1, ι[i + 1], . . . , ι[N ])
RT ⊢ (x := Sample(e), σ, ι) −→ (skip, σ{x⇝ RT [i][ι[i]]}, ι′)

Fig. 8. RT-based operational semantics

where (Ωi,j , Fi,j , Mi,j) is lifted from the discrete distribution D[i] (see Sec. 3.2).
Note that Ω = RTable, i.e., the sample space is indeed the set of all RTs.

Below we explain our construction of (Ω, F , M). The probability space of
all RTs is the infinite product of probability spaces of all entries, since an RT
is generated by filling all of its entries by an infinite number of independent
samples. For the entry in row i and (arbitrary) column j, its probability space
is lifted from D[i], from which the entry is sampled.

We then define the RT-based operational semantics, with selected semantics
rules shown in Fig. 8. The definition is almost standard, except that it interprets
sampling operations to table queries. Recall that, when the program performs
a sampling from the distribution D[i], it reads the leftmost unread entry in the
i-th row of RT as the result. To keep track of these entries, we maintain the
heads ι in the program configuration to record their column numbers.

(Heads) ι ::= (n1, . . . , nN )

ι is an N -tuple. Its i-th component, ι[i], represents the column number of the
leftmost unread entry in the i-th row of RT . Now, RT ⊢ (C, σ, ι) −→∗ (C ′, σ′, ι′)
says that, starting from the program state σ, with the leftmost unread entries of
RT initially specified by ι, C deterministically executes to C ′ using RT , where
the result state is σ′ and finally the leftmost unread entries in RT are specified
by ι′. When the program performs a sampling from D[i], it takes RT [i][ι[i]] as
the result and increments ι[i]. In other program steps, ι remains unchanged.

Now the RT-based semantic functions are defined below, where ιinit = (0, . . . , 0)
represents the initial positions of heads.

JCKRT(σ) ≜ λσ′. M({RT | RT ⊢ (C, σ, ιinit) −→∗ (skip, σ′, _)})
JCKRT(µ) ≜ Eσ∼µ{JCKRT(σ)}

Informally, the probability of C’s execution from σ finally reaching σ′, say
JCKRT(σ)(σ′), is the probability of some RT , which satisfies the following prop-
erty, being generated: starting from σ, C’s execution using RT finally reaches
σ′. This property is formally stated as RT ⊢ (C, σ, ιinit) −→∗ (skip, σ′, _), with
the help of the operational semantics.

Lem. 2 shows that the RT-based semantics is indeed well-defined.
Lemma 2. For all C, σ, σ′, ι, {RT | RT ⊢ (C, σ, ι) −→∗ (skip, σ′, _)} ∈ F .

To conclude this subsection, we give the following theorem, which states the
equivalence between the distribution-based semantics defined in Sec. 4.1 and the
RT-based semantics.
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(Assn) p, q, r ::= b | ¬q | q1 ∧ q2 | q1 ∨ q2 | ∀X. q | ∃X. q | . . .

(PExp) ξ ::= r | E[e] | Pr[q] | ξ1 + ξ2 | ξ1 − ξ2 | . . .

(PAssn) P, Q, R ::= ⌈q⌉ | ξ1 = ξ2 | ¬Q | Q1 ∧ Q2 | ∀X. Q | ∃X. Q | . . .

JrKµ ≜ r

JE[e]Kµ ≜ Eσ∼µ[JeKσ]
JPr[q]Kµ ≜ Prσ∼µ[σ ⊨ q]
Jξ1 + ξ2Kµ ≜ Jξ1Kµ + Jξ2Kµ

µ ⊨ ⌈q⌉ iff ∀σ. σ ∈supp(µ) =⇒ σ ⊨ q
µ ⊨ ξ1 = ξ2 iff Jξ1Kµ = Jξ2Kµ

µ{X ⇝ v} ≜ Eσ∼µ{δ(σ{X ⇝ v})}
µ ⊨ ∃X. Q iff ∃v. µ{X ⇝ v} ⊨ Q

Fig. 9. Assertions over states and state distributions

Theorem 1 (Semantics Equivalence). For all C and µ, JCK(µ) = JCKRT(µ).

5 Proof Recipes

Our ultimate proof goals are formulated as total correctness Hoare triples ⊨
[P ]C[Q] using the distribution-based semantics of Sec. 4.1.

Before showing the definition of ⊨ [P ]C[Q], we first define assertions in Fig. 9,
following the assertion language in [21]. We write p, q, r for non-probabilistic
assertions on program states, and P, Q, R for probabilistic assertions on state
distributions. The assertion ⌈q⌉ holds on the distribution µ iff q holds on all
states in the support of µ. We write true as a shorthand for ⌈true⌉. The ex-
pression Pr[q] represents the probability that q holds, and E[e] represents the
expected value of e. The assertion ∃X. Q holds on µ, if Q holds on µ′ obtained
by assigning some constant v to X in all states in µ (here δ gives the Dirac
distribution).

Then, ⊨ [P ]C[Q] says that, starting from a state distribution satisfying P ,
C’s execution terminates with probability 1, and thus the sub-distribution of
the result states is actually a state distribution, which satisfies Q. We show the
definition in Def. 1.

Definition 1 (Total Correctness). For all P, C, Q, ⊨ [P ]C[Q] holds iff

∀µ. µ ⊨ P =⇒ |JCK(µ)| = 1 ∧ JCK(µ) ⊨ Q.

In the following subsections, we formalize our two proof recipes, loop trun-
cation and RT-based coupling.

5.1 Loop Truncation

We have explained a specialized form of loop truncation in Lem. 1 in Sec. 2.3.
Below we show the more general theorem (Thm. 2).

Theorem 2 (Loop Truncation). For all P, b, C, E, Q, e and r, if

∀K ∈ N. ⊨ [P ] E[while (b ∧ e < K) do C] [Q ∧ E[e] ≤ r ∧ ⌈e ≥ 0⌉] ,

modbf(E, e) and t-closed(Q), then ⊨ [P ] E[while (b) do C] [Q].
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Here E is a program context, and E[while (b) do C] fills the hole in E with
the loop while (b) do C.

(Ctx) E ::= [ ] | C; E | E; C | while (b) do E
| if (b) then C else E | if (b) then E else C

Thm. 2 says that, to prove total correctness of E[while (b) do C], we transform
the code to E[while (b ∧ e < K) do C] with a specific e. How to choose e is
application-dependent. Usually we choose as e the loop counter incremented in
the loop body, such as cnt in CMT(cnt) (see Sec. 2.2 and Fig. 12). With an
inappropriate e, the first premise of the theorem may be invalid or still hard to
prove, though how e is chosen does not affect the validity of the theorem.

In addition to e, the first premise also asks users to find a common bound r
(a real number) that can bound E[e] at the end of E[while (b ∧ e < K) do C] for
all K. Usually the postcondition Q can help us find such an r. Besides the upper
bound r, we require that evaluating e at the end of E[while (b ∧ e < K) do C]
must result in a non-negative real number. These two bounds are crucial for
ensuring almost sure termination of E[while (b) do C].

The second premise, modbf(E, e), rules out those contexts E that make
E[e] ≤ r hold at the end of E[while (b ∧ e < K) do C] vacuously, e.g. those that
modify the program variables in e at the end of the context and make e = r
hold. modbf(E, e) syntactically restricts E such that the variables in e can be
modified in E only before the code in the hole of E is executed. For example,
modbf(C ′; [ ], e) holds for any C ′ and e, since only C ′, which is executed before
the hole, can modify the variables in e in the context. Similarly, modbf([ ], e)
holds. We give the definition of modbf(E, e) in [46].

The third premise, t-closed(Q), is for deriving the postcondition Q of
E[while (b) do C] from the same Q of E[while (b ∧ e < K) do C]. We say
an assertion Q is t-closed [3], denoted by t-closed(Q), if for all infinite state
distribution sequences µ⃗, if Q holds on µ⃗[i] for each i and lim µ⃗ = µ, then
Q holds on µ. Many assertions are t-closed. For example, we can prove that
t-closed(E[e] ≤ r ∧ ⌈e ≥ 0⌉) always holds for any e and any r.

Since modbf([ ], e) and t-closed(E[e] ≤ r ∧ ⌈e ≥ 0⌉) both hold, Lem. 1 can
be derived from Thm. 2.

Proof Sketch of Thm. 2. Due to the space limit, below we only show the case of
E = [ ]. We prove 1) almost sure termination and 2) the establishment of the
postcondition Q, respectively.

For 1), assuming that while (b) do C terminates with probability p < 1,
we derive a contradiction. From the premise we know while (b ∧ e < K) do C
almost surely terminates, so it terminates in a state where e ≥ K with probability
at least 1 − p. Thus, by the semantics of E[e] (and since the value of e is non-
negative), we know E[e] ≥ (1−p)K holds at the end of while (b ∧ e < K) do C.
Therefore, we can find a sufficiently large K such that E[e] ≥ (1 − p)K > r,
which contradicts the premise.

For 2), the key is proving that, for all µ |= P ,
Jwhile (b) do CK(µ) = limK→∞Jwhile (b ∧ e < K) do CK(µ).
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Then, we can establish Q for while (b) do C, from t-closed(Q) and that Q is
the postcondition for each while (b ∧ e < K) do C. ⊓⊔

We apply Thm. 2 for the verification of the MT algorithm and its variants in
Sec. 6. Here we show another example beyond ALLLs, which is taken from [41]
(with slight modifications).

Example 1. Let N = 1 and D[1] = {(0, 1
2 ), (1, 1

2 )}. The code Cflip is defined as
while (y = 1) do { y := Sample(1); cnt := cnt + 1; }. We prove:

⊨ [⌈cnt = 0 ∧ y = 1⌉] Cflip [E[cnt] ≤ 2]. (11)

Here Cflip repeatedly flips a fair coin by sampling from D[1], until it gets heads
(y = 0). We use cnt to record the number of coin flips. Then our proof goal (11)
says that Cflip almost surely terminates, and it flips at most twice in expectation.

To prove (11), by Thm. 2 (or Lem. 1), we only need to prove that, for all
K ∈ N, ⊨ [⌈cnt = 0 ∧ y = 1⌉] C ′

flip(K) [E[cnt] ≤ 2 ∧ ⌈cnt ≥ 0⌉], where C ′
flip(K)

is defined as while (y = 1 ∧ cnt < K) do {y := Sample(1); cnt := cnt + 1; }. We
adapt the program logic Ellora [3] to complete the proof.

5.2 Resampling-Table-Based Coupling

As informally explained in Sec. 2.4, our RT-based coupling is for proving the re-
lational tuple ⊨ {P}C1 ≤ C2{q1, q2}, an intermediate proof goal that appears in
ALLLs’ verification. We show the formal definition of ⊨ {P}C1 ≤ C2{q1, q2} in
Def. 2. Note that in this definition we neither require nor assume the termination
of C1 and C2’s executions.

Definition 2 (Inequality between Probabilities). For all P, C1, C2, q1, q2,
⊨ {P}C1 ≤ C2{q1, q2} holds iff

∀µ. µ ⊨ P =⇒ Prσ∼JC1K(µ)[σ ⊨ q1] ≤ Prσ∼JC2K(µ)[σ ⊨ q2].

Our RT-based coupling reduces the verification of the relational tuple to
proving unary properties of C1 and C2’s executions in the RT-based semantics
respectively (i.e. the subgoals (9) and (10) in Sec. 2.4). We show the formal
theorem in Thm. 3.

Theorem 3 (RT-Based Coupling). For all p, C1, C2, q1, R, q2, if

– RTonly(R);
– ⊨RT {p ∧ hdinit}C1{q1 ⇒ R};
– ⊨RT [p ∧ R ∧ hdinit]C2[q2];

then ⊨ {⌈p⌉}C1 ≤ C2{q1, q2}.

We apply Thm. 3 for verifying ALLLs, which we will explain in Sec. 6. Below
we explain Thm. 3 in four aspects: (1) requiring ⌈p⌉ as the precondition in the
relational tuple; (2) the assertions R, hdinit and the requirement RTonly(R);
(3) the RT-based unary triples ⊨RT; and (4) its proof ideas. We also show another
example beyond ALLLs, and briefly discuss an extension of Thm. 3 at the end.
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(RTExpr) E ::= e | RT[E1][E2] | hd1 | . . . | hdN | E1 + E2 | . . .

(RTBexp) B ::= b | E1 = E2 | E1 < E2 | . . .

(RTAssn) P, Q, R ::= q | B | ¬Q | Q1 ∧ Q2 | Q1 ∨ Q2 | ∀X. Q | ∃X. Q | . . .

(σ, RT, ι) ⊨ q iff σ ⊨ q JhdnK(σ,RT,ι) ≜ ι[n]
JRT[E1][E2]K(σ,RT,ι) ≜ RT [i][j], if JE1K(σ,RT,ι) = i, JE2K(σ,RT,ι) = j

hdinit ≜
∧

i∈[1,N ] . hdi = 0
RTonly(R) iff ∀σ, RT, ι. (σ, RT, ι) ⊨ R =⇒ ∀σ′, ι′. (σ′, RT, ι′) ⊨ R

Fig. 10. Non-probabilistic assertions on RT-extended states

Lifting state assertions as preconditions. The relational tuples we prove are in
a restricted form, namely that the precondition P is in the form of ⌈p⌉, where
p is an assertion over states. Recall that ⌈p⌉ holds over µ iff p holds over any σ
such that σ ∈ supp(µ) (see Fig. 9). Therefore the precondition ⌈p⌉ says we are
only interested in the executions of C1 and C2 with the initial states satisfying
p. So we can fill the omitted part of the two subgoals (9) and (10) with p, and
turn them into classical (deterministic) Hoare triples ⊨RT {p} C1 {q1 ⇒ R} and
⊨RT [p ∧ R] C2 [q2] .

Assertions over RT-extended states. Thm. 3 requires us to find an “intermediate
assertion” R that describes (and only describes) the (non-probabilistic) prop-
erties of the resampling table RT . Since we need explicit reasoning about RT ,
the assertions used in the classical reasoning of ⊨RT actually specify RT and the
heads ι as well as the states σ.

In Fig. 10, we define non-probabilistic assertions P, Q, R over the extended
states (σ, RT, ι). Besides using q to describe σ in the extended states, we intro-
duce RT-expressions to specify RT and ι. We use RT[E1][E2] to represent the
entry at row E1 and column E2 of RT , and use hdn to represent the n-th head
ι[n], where n ∈ [1, N ].

The assertion hdinit (defined as a shorthand in Fig. 10) says that all of the
heads ι point to the first column of RT . It specifies the initial heads before
program execution, so it appears in the preconditions of the two ⊨RT triples in
Thm. 3.

The requirement RTonly(R) (defined in Fig. 10) says that changing σ and/or
ι in the extended state does not affect whether R holds. That is, R describes RT
only. One can check that RTonly(R) holds if R does not syntactically contain
any free variables and hdn’s.

RT-based unary triples. Now we can define the RT-based unary triples, ⊨RT
[P]C[Q] and ⊨RT {P}C{Q}. They are standard Hoare triples for total cor-
rectness and partial correctness respectively, using the RT-based operational
semantics (in Fig. 8 of Sec. 4.2) for program execution.

Definition 3 (Total Correctness in RT-Based Operational Semantics).
For all P, C, Q, ⊨RT [P]C[Q] holds iff
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1 L := []; d := 1;
2 bad := 0;
3 while (d ≤ k) do
4 if (¬findkey(L, x[d])) then
5 y := Sample(1);
6 if (findval(L, y)) then bad := 1;
7 L := app(L, (x[d], y));
8 d := d + 1

Fig. 11. The code Cbad
PRF in Ex. 2

∀σ, RT, ι. (σ, RT, ι) ⊨ P =⇒
∃σ′, ι′. RT ⊢ (C, σ, ι) −→∗ (skip, σ′, ι′) ∧ (σ′, RT, ι′) ⊨ Q.

Definition 4 (Partial Correctness in RT-Based Operational Seman-
tics). For all P, C, Q, ⊨RT {P}C{Q} holds iff

∀σ, RT, ι, σ′, ι′. (σ, RT, ι) ⊨ P ∧ RT ⊢ (C, σ, ι) −→∗ (skip, σ′, ι′)
=⇒ (σ′, RT, ι′) ⊨ Q.

For total correctness, Def. 3 says there exists a terminating execution of
(C, σ, ι) under RT . This essentially ensures the absence of non-terminating exe-
cutions, because the RT-based operational semantics is deterministic.

We can use a classical Hoare-style program logic to prove the ⊨RT triples.
We show the logic in [46].

Proof ideas of the theorem. To prove Thm. 3, we need to bridge two gaps between
the ⊨RT triples in the premises and the ⊨ tuple in the conclusion. First, the ⊨RT
triples use the RT-based semantics, while the ⊨ tuple uses the distribution-based
semantics. Second, the ⊨RT triples are unary, while the ⊨ tuple is relational.

The key to bridging the gaps is reduction through the following RT-based
tuple as an intermediate form, which is the counterpart of Def. 2 in the RT-based
semantics.

Definition 5 (Inequality between Pr. in RT-Based Semantics). For all
P, C1, C2, q1, q2, ⊨RT {P}C1 ≤ C2{q1, q2} holds iff

∀µ. µ ⊨ P =⇒ Prσ∼JC1KRT(µ)[σ ⊨ q1] ≤ Prσ∼JC2KRT(µ)[σ ⊨ q2].

Lemma 3 shows the equivalence between the two relational tuples, which
follows from the semantics equivalence (Thm. 1). This lemma bridges the first
gap, and is interesting in its own right.

Lemma 3. For all P, C1, C2, q1, q2,

⊨ {P}C1 ≤ C2{q1, q2} ⇐⇒ ⊨RT {P}C1 ≤ C2{q1, q2}.

Our “intermediate assertion” R allows us to split the ⊨RT relational tuple
into two unary ⊨RT triples, bridging the second gap.
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Example 2. This example is adapted from an intermediate goal in [6]’s proof of
the PRP/PRF switching lemma.3 Let k ≥ 1. For any n1, . . . , nk, we prove that

⊨ {⌈inp⌉} Cbad
PRF ≤ CPRF

{bad = 1, ∃X1, X2, Y. X1 ̸= X2 ∧ find(L, (X1, Y )) ∧ find(L, (X2, Y ))}.
(12)

We show the code of Cbad
PRF in Fig. 11, and the code of CPRF results from

removing lines 2 and 6 from the figure. The assertion inp says that n1, . . . , nk

are the inputs stored in x[1], . . . , x[k], which is defined as
∧

i∈[1,k] . x[i] = ni.
By extending the programming language, we implement a map in the pro-

gram variable L, which stores some key-value pairs. One can insert a pair into
the map by writing app(L, (e1, e2)), and query for the existence of a key, a value
or a pair by writing findkey(L, e), findval(L, e) or find(L, (e1, e2)).

Cbad
PRF and CPRF do the following: for n = x[1], . . . , x[k], the programs check

if n has been inserted in L as a key; if not, they sample a value y from D[1],
and then insert the key-value pair (n, y) into L; if y has been inserted in L as a
value, Cbad

PRF marks bad.
(12) then says that, the probability of Cbad

PRF terminating with bad = 1 is no
more than the probability of CPRF terminating with two key-value pairs with
the same value left in L.

To prove (12), we apply Thm. 3. We take R = coll, where
coll ≜

∨
0≤i<j<|{n1,...,nk}| . RT[1][i] = RT[1][j].

coll says that, there exist two identical entries in the first row of RT , which
are picked as samples in the executions of both Cbad

PRF and CPRF. Therefore coll
specifies the kind of RT that can make bad = 1 hold after the execution of Cbad

PRF.
We can check that RTonly(coll) holds. Then, by applying Thm. 3, it remains

to prove the following two unary ⊨RT triples.
⊨RT {inp ∧ hdinit} Cbad

PRF {bad = 1 ⇒ R}
⊨RT [inp ∧ R ∧ hdinit] CPRF [∃X1, X2, Y. X1 ̸= X2 ∧ find(L, (X1, Y )) ∧ find(L, (X2, Y ))]
We prove them using a simple Hoare-style program logic.

An extension of RT-based coupling. In [46], we give another relational proof
recipe that extends Thm. 3. It asks users to provide two intermediate assertions
R1 and R2 for splitting the ⊨RT relational tuple, and provides more flexibility
for reasoning about inequalities between probabilities.

6 Case Studies

We show the usefulness of our proof recipes (Thm. 2 and Thm. 3) by verifying
several representative existing results about ALLLs and a new result about the
MT algorithm. Below we first give a brief survey of several important research
lines on ALLLs. Then we summarize the existing ALLL-related results that we
have verified, and show how we verify Theorem 1.2 of [50] as an example. Finally,
we explain our new result about the MT algorithm.
3 In [6], Cbad

PRF and CPRF are defined using procedure calls. We adapt the code here.
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1 d := 1; while (d≤N) do {a :=Sample(d); x[d] :=a; d :=d+1; }
2 flag := 0; cnt := 0; lst := [];
3 while (flag = 0) do
4 z := 0; h := 1;
5 while (h ≤ M) do
6 if (hold(h, x[1], . . . , x[N ])) then z := h;
7 h := h + 1;
8 if (z = 0) then flag := 1;
9 else

10 cnt := cnt + 1; lst := app(lst, z); d := 1;
11 while (d ≤ N) do
12 if (vbl(z, d)) then {a := Sample(d); x[d] := a; }
13 d := d + 1;

Fig. 12. The code of the MT algorithm, CMT(cnt)

Research lines of ALLLs. The MT algorithm is first proposed in [50], where the
expected iteration number of the algorithm is bounded under the Erdős-Lovász
condition [19, 57] and the Erdős-Spencer condition [20]. Following [50], some
works [53, 42, 31, 1, 43, 37] further analyze the termination property and the
iteration times of the MT algorithm under other conditions. Besides analyzing
the iteration times of the MT algorithm, a number of works (including [50]) also
analyze other sequential ALLLs [31, 34, 36, 29], explore properties of output
distributions of ALLLs [31, 35, 29, 32], or design parallel and distributed ALLLs
[50, 16, 30, 25, 13]. However, the proofs in all these works are relatively informal.

Existing results we verify. As listed below, we verify six representative results
that cover the aforementioned research lines.

First, we verify the termination and the expected iteration times of the MT
algorithm, under the Erdős-Lovász condition [19, 57], the cluster expansion con-
dition [8], the Shearer’s condition [56], and the Erdős-Spencer condition [20].
These four results are proposed and informally proved in Theorem 1.2 of [50],
Theorem 1.4 of [53], Theorem 4 of [42] and Theorem 6.1 of [50].

Second, we verify (the second part of) Theorem 2.2 of [31] that estimates the
output distribution of the MT algorithm under the Erdős-Lovász condition. This
result can also be viewed as estimating the output distribution of a sequential
ALLL that only executes on core events (see Theorem 3.3 of [31]).

Finally, we verify the termination and a tail bound of the iteration times of
a parallelizable version of the MT algorithm, under the Erdős-Lovász condition
with ϵ-slack. This variant and the tail bound are given in Theorem 1.3 of [50].

It is worth noting that we verify all the three “probabilistic” results from
Moser and Tardos’s Gödel Prize-winning paper [50].4

Verifying Theorem 1.2 of [50]. As an example, we explain in more detail how we
verify Theorem 1.2 of [50], which we informally described in Sec. 2.
4 In [50], Moser and Tardos propose four results, three related to the MT algorithm

and its probabilistic variants, and one related to a deterministic variant.
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Fig. 12 shows CMT(cnt), the code of the MT algorithm that we verify. It
first does independent samplings and stores the results in x[1], . . . , x[N ] (line
1), where d and a are temporal variables. For the main loop (lines 3-13), we
introduce flag to indicate whether a required assignment is found, cnt to record
the number of iteration times, and lst to collect the indexes of the events in the
execution log. They are initialized at line 2. In the main loop (lines 3-13), we use
z to represent the index of the chosen event, which is an event that holds under
the current x[1], . . . , x[N ] (lines 4-7). If no such event exists, the code marks flag
(line 8) and exits the loop (line 3). Otherwise, it resamples from D[d] for every
d such that vbl(z, d) holds, and updates the corresponding x[d] (lines 10-13).

Having defined the code of the MT algorithm, Moser and Tardos’s result
(Theorem 1.2 of [50]) is formally stated in Thm. 4. Note that N, M, D and E are
global parameters and thus not fixed in Thm. 4, and rEL is parametrized by M .

Theorem 4. For all reals α1, . . . , αM ∈ (0, 1), if the Erdős-Lovász condition
[19, 57] holds, i.e. ∀i ∈ [1, M ]. P(E [i]) ≤ αi

∏
j∈Γ (i)(1 − αj), and let rEL =∑

i∈[1,M ] αi(1 − αi)−1, then ⊨ [true] CMT(cnt) [E[cnt] ≤ rEL].

Proof Sketch. Our proof follows the path in Fig. 5. Due to the space limit, here
we only explain our construction of R, used in the two RT-triples at the bottom
of Fig. 5. Let Λ = gWT(wt). Then,

R ≜ ∀l ∈ [1, |Λ|]. ∀V1, . . . VN . RTAssign(V1, . . . VN , l, Λ) ⇒ hold(Λ⟨l⟩, V1, . . . , VN ),
where RTAssign(V1, . . . , VN , l, Λ) ≜ ∀i ∈ [1, N ]. vbl(Λ⟨l⟩, i) ⇒ Vi = RT[i][ve(i, Λ, l − 1)],

ve(i, Λ, l) ≜
∑

l′∈[1,l][vbl(Λ⟨l′⟩, i)].

Informally R says that, every event in wt (denoted by Λ⟨l⟩) must hold under
any assignment of V1, . . . , VN satisfying RTAssign. RTAssign says, the assignment
contains the “relevant” entries of RT which make the event Λ⟨l⟩ hold when it is
chosen in the execution of C ′

MT(cnt, K). For each such entry, its row number i
corresponds to a variable that the event depends on (i.e. vbl(Λ⟨l⟩, i) holds), and
its column number is computed by ve(i, gWT(wt), l − 1). Note our R only talks
about the RT (and the wt), not about the actual execution of C ′

MT(cnt, K).
We prove the remaining intermediate proof goals in Fig. 5 by adapting the

program logic Ellora [3] (for proving |= triples) and using a classical Hoare-
style logic (for proving |=RT triples). ⊓⊔

Our new result. Thm. 4 shows the MT algorithm’s total correctness with rEL as
the upper bound of expected iteration times, under the Erdős-Lovász condition.
There are many works [53, 42, 1, 43, 37] that informally study similar properties
of the MT algorithm under other conditions. Most of these results use similar
ideas with Moser and Tardos to analyze the algorithm, except that they intro-
duce other witness-tree-like structures for analysis and derive various bounds.
Like [50], they generate their witness-tree-like structures ds from prefixes of the
execution log, enumerate the events in ds in some specific order, and bound a
sum over all such structures to get their final upper bounds.
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We unify these results to a general one. Our new result enables that, when
proving the expected iteration number of the MT algorithm, without doing the
complete proof following Moser and Tardos’s idea, one only needs to instantiate
the required witness-tree-like structures and prove some relevant mathematical
side conditions. We show that Theorem 1.2 of [50], Theorem 1.4 of [53] and
Theorem 4 of [42] are corollaries of our new result. We give details of our new
result and proofs in [46].

7 Related Work

(Positive) almost sure termination. Existing proof methods for almost sure ter-
mination (AST) can be roughly classified into the following two categories: “di-
rect” methods [48, 11, 12, 24, 49, 38, 47], which prove termination by constructing
probabilistic ranking functions, and “indirect” methods [41, 52, 51, 40], which
infer finite bounds on the expected runtime and then imply the termination.

However, these methods may not apply to ALLLs’ termination. To construct
the structures (e.g. ranking supermatingales [12, 24] and upper ω-invariants [41])
required by these methods, we need to understand what occurs during each iter-
ation of the algorithm’s outer loop, which is, however, not yet well understood.
For example, [50] only analyzes the properties of the entire MT algorithm (e.g.
(2)), not of each individual iteration.

In Sec. 2.3, we emphasize Lem. 1 as a general proof method for positive almost
sure termination (PAST) [11]. Lem. 1 also serves as a fallback plan for proving
(P-)AST. Informally, a part of existing methods [12, 24, 49, 41] provide stronger
premises than Lem. 1’s. These premises are easier to prove in most scenarios,
except for ALLLs. For most programs, one can still apply these existing methods;
for programs like ALLLs, one should take a step back and apply Lem. 1.

Asynchronous coupling. In Sec. 2.4, we apply the RT-based coupling proof recipe
to (8), which involves C ′

MT(cnt, K) and check(wt). Existing probabilistic rela-
tional program logics [4, 5, 6] support couplings, but none of them can prove
(8). Specifically, these works only provide proof rules for synchronous couplings.
Their rules say that, when the two programs sample from the same distribution
synchronously, we can reason as if the two sampling statements return the same
value. But, it may not be possible to synchronize the sampling statements in
C ′

MT(cnt, K) and check(wt) for the following reason. Given an execution log’s
prefix Λ and the corresponding witness tree wt = fWT(Λ), C ′

MT(cnt, K) resam-
ples the variables that ηj depends on for every event ηj in Λ, and check(wt)
does similar resamplings but its events are taken from the sequence gWT(wt).
However, gWT(wt) can be different from Λ, since the construction of wt (i.e.
fWT(Λ)) may drop some events in Λ and lose some ordering information of Λ,
which gWT(wt) cannot recover.

Recently [28] proposes a probabilistic relational program logic that supports
asynchronous coupling. They introduce presampling tapes, a new kind of ghost
state, which store the sampling results ahead of time. Our work is developed
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independently, with a more focused goal of verifying ALLLs. Technically, our
RTs look similar to their tapes, but there are two key differences as follows.

First, we give an RT-based operational semantics, where all the samples
(which could be infinitely many) are generated at once and stored in the RT
before programs start execution, and the RT is immutable during the program
execution. By contrast, sample values are added into their tapes one at a time
and on demand by ghost operations in the logical reasoning, and are popped out
at sampling statements. We think their approach is more flexible, but ours is
more suitable for complicated examples like ALLLs. In particular, as we explain
at the end of Sec. 2.4, we can use an intermediate assertion R to specify the whole
sampling history. R can be derived as the post-condition of the unary reasoning
of one program, and then used as the pre-condition of the other, thanks to
the immutability of RT . With dynamically changing tapes, they would need
ghost variables to track the popped samples, and write complicated assertions
to describe the correspondence between the tapes used by the two programs. We
give a more detailed comparison in [46].

Second, the two works have different focuses. We mainly focus on verifying
ALLLs, so we verify almost sure termination as well as a restricted form of
relational properties (like (8)). Their work verifies contextual refinement, but
does not verify termination.

Other related works. [22] proposes the guard strengthening proof rule for verifying
lower bounds of expected values at the end of while loops. This rule introduces
a loop with strengthened loop guard, which is similar to the truncated one in
the premise of our loop truncation (Lem. 1 and Thm. 2). However, these two
methods have different focuses. Their rule focuses on proving lower bounds, while
our loop truncation focuses on proving general total correctness and PAST. The
PAST is about an upper bound of the expected runtime.

We have discussed other related works in Sec. 2.2 and Sec. 2.4, including: the
semantics that are equivalent to the distribution-based semantics [45, 48, 44],
and the semantics with explicit random sources [44, 10, 17]. In the future, we
would like to test our proof recipes with more applications, such as the other
ALLL-related results mentioned in Sec. 6. We also plan to mechanize our work
in a proof assistant like Coq, as [18] has mechanized the classical (i.e. non-
constructive) proof of the Lovász Local Lemma in Isabelle/HOL. Mechanizing
our work requires a measure-theoretic library that supports infinite product of
measure spaces, which, to the best of our knowledge, is still lacking for Coq.
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