
Verifying Algorithmic Versions of the Lovász
Local Lemma

Abstract. Algorithmic versions of the Lovász Local Lemma (ALLLs),
or rather, the Moser-Tardos algorithm and its variants, are impactful in
both theory and practice. In this paper, we take the first step towards
the goal of formally verifying ALLLs by applying programming language
techniques. We propose two proof recipes, called loop truncation and
resampling-table-based coupling, for bridging the gap between Hoare-
style program logics and ALLLs’ original informal proofs. We formally
verify six existing important results related to ALLLs, and propose a new
result which generalizes several existing results. Our proof recipes can
also be used to verify general properties of other probabilistic programs
in addition to ALLLs.

1 Introduction

The Lovász Local Lemma [21, 58] (LLL) is a powerful tool in combinatorics. It
guarantees the existence of a combinatorial object with certain properties in a
probability space. It has also been helpful for proving the existence of solutions
to numerous significant problems in computer science, such as the Boolean Sat-
isfiability Problem and the Graph Coloring Problem, since these problems can
be viewed as instances of the problem of finding some combinatorial objects.

Besides proving the solution’s existence, we also want to efficiently construct
a solution. To this end, people have devised algorithmic versions of the Lovász
Local Lemma (ALLLs). The most notable one is the Moser-Tardos (MT) algo-
rithm proposed by Moser and Tardos in their Gödel Prize-winning paper [51].
The algorithm searches the probability space for the desired combinatorial object
iteratively, bringing us a constructive proof for LLL. It is efficient in that the ex-
pected total number of iterations is bounded. Since then, a huge number of works
have emerged, some explore the power of the MT algorithm [54, 44, 32, 43, 1, 38],
some find variants of the MT algorithm [32, 18, 35, 31, 26, 37, 30, 15], and some
utilize the MT algorithm to solve problems in various areas of computer sci-
ence [32, 43, 34, 11, 27, 56, 17, 16, 28, 24], including applications in real-world
systems [2, 40].

Therefore it is of great importance to formally verify the (total) correctness
of ALLLs, in particular, that the MT algorithm and its variants almost surely
terminate (i.e. terminate with probability 1) and their expected iteration times
have certain upper bounds. Previous works (e.g. [51]) have given proofs for the
correctness of ALLLs, though these proofs are rather informal. Therefore, a nat-
ural choice is to formally verify ALLLs by formalizing existing informal proofs.
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However, we encounter a challenge when verifying ALLLs by following exist-
ing proofs. We propose Proof Recipe 1 to circumvent this challenge, and propose
Proof Recipe 2 for completing the verification after applying Proof Recipe 1.

Challenge: Handling infinite execution traces. It is challenging to formulate some
subgoals in ALLLs’ existing informal proofs using distribution-based semantics,
which is commonly used in the literature of probabilistic program verification.
The reason is that, on the one hand, these subgoals are about complex properties
of the algorithm’s execution traces, and we have to take infinite traces into
account until we prove their absence. On the other hand, distribution-based
semantics can only describe certain simple properties of these infinite traces,
e.g. their overall probability.

Proof Recipe 1. We propose a proof recipe called loop truncation to circumvent
the above challenge. For a loop in an ALLL, we transform it to a set of arbitrarily
truncated loops. Now we have a set of “truncated algorithms”, which can only
generate finite execution traces. Then, instead of directly verifying the original
algorithm, we prove a common bound of the expected iteration times for all the
truncated algorithms. The latter can be proved following existing proofs, and
now we do not have to handle infinite traces when formulating the subgoals.

Proof Recipe 2. A crucial step commonly found in many proofs of ALLLs, is
to prove an inequality between probabilities involving two programs. Specifically,
for the original ALLL program C1 and a property p, one constructs a program
C2 and a property q, and shows that the probability of p holding after C1’s
execution is not greater than the probability of q holding after C2’s execution.

To prove this inequality, existing informal proofs introduce variants of C1
and C2, say C ′

1 and C ′
2, that use a new random source called resampling table.

By assuming that C1 and C2 are respectively equivalent to C ′
1 and C ′

2, they
reduce the original inequality to a similar inequality that involves C ′

1 and C ′
2,

and prove the latter. We elaborate on these proofs in Sec. 2.1.
Following the above proof idea, we propose a proof recipe called resampling-

table-based coupling to formally prove the aforementioned inequality. At the core
of this proof recipe is a new measure-theoretic semantics for probabilistic pro-
grams, which we call a resampling-table-based semantics. This semantics formal-
izes the resampling table in existing proofs as a built-in structure. We formulate
C ′

1 (C ′
2) by giving C1 (C2) this new semantics without changing its syntax, and

express the equivalence between C1 and C ′
1 (C2 and C ′

2) as the equivalence be-
tween a classic probabilistic semantics and the new semantics. We prove the
semantics equivalence once and for all, instead of repeatedly proving the equiv-
alence between every pair of programs. Then it remains to prove the inequality
involving C ′

1 and C ′
2, which is now an inequality on the new semantics.

Our proof recipe, resampling-table-based coupling, further reduces the prob-
lem to verifying the two programs C ′

1 and C ′
2 individually. The idea is to intro-

duce an intermediate assertion specifying the resampling table as the common



Verifying Algorithmic Versions of the Lovász Local Lemma 3

random source to bridge the two programs’ unary verification. The unary veri-
fication can be done using a simple Hoare-style program logic.

Contributions. Using the above two proof recipes, we have successfully verified
several ALLL-related results. In summary, we make the following contributions:

– We verify six important results from [51, 54, 44, 32] for the first time. They
include all the three “probabilistic” results from Moser and Tardos’s Gödel
Prize-winning paper [51].

– We propose a proof recipe called loop truncation, which circumvents the
challenge when verifying ALLLs with classic distribution-based semantics.

– We propose a proof recipe called resampling-table-based coupling. It expresses
the informal proof idea of an important inequality in a formal and concise
way, taking a perspective of semantics equivalence and Hoare-style reasoning.

– We propose a new result related to the Moser-Tardos algorithm, with results
from [51, 54, 44] as its corollaries. The statement and the proof of this result
are formal, and the proof is done by applying our proof recipes.

Our proof recipes can also be used to prove general properties (i.e. total cor-
rectness and inequalities between probabilities) of probabilistic programs beyond
ALLLs (see Ex. 1 and Ex. 2). We also discuss the relationship between our proof
recipes and existing formal proof methods for positive almost sure termination
and asynchronous coupling in Sec. 7.

Outline. We review the original informal proof of the MT algorithm, and intro-
duce the challenge and our main ideas in Sec. 2. We then give the mathematical
preliminaries in Sec. 3, and define the programming language, including our new
semantics, in Sec. 4. Then we introduce our two proof recipes in Sec. 5. By ap-
plying these recipes, we verify six existing important ALLL-related results and
a new result in Sec. 6. We finally discuss related work in Sec. 7.

The appendix contains the full formal details of this work, including all the
definitions and all the proofs for lemmas, theorems and examples.

2 Informal Development

To formally verify the ALLL-related results, a natural choice is to follow their
original informal proofs. Below we first provide a brief overview of the original
informal proof of Moser and Tardos’s seminal result [51], which serves as an
example for understanding the ideas behind the original proofs of many ALLL-
related results. We then explain the verification challenge and our proof recipes.

2.1 Moser and Tardos’s Proof

The Moser-Tardos (MT) algorithm efficiently constructs a solution for the fol-
lowing problem. Given N mutually independent random variables X1, . . . , XN

and M events η1, . . . , ηM , where each variable is associated with some random
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Algorithm 1 The MT algorithm
Independently sample X1, . . . , XN

while ∃j ∈ [1, M ]. ηj holds do
Choose such an ηj

for all Xi that ηj depends on do
Resample Xi

Output the current values of X1, . . . , XN

Program 2 check(wt)
succ := 1
for all ηj ∈ gWT(wt) do

for all Xi that ηj depends on do
Resample Xi

if ηj does not hold then
succ := 0

Output succ

Fig. 1. The Moser-Tardos algorithm and the check(wt) program.

distribution and each event depends on some of X1, . . . , XN , we would like to
construct an assignment of X1, . . . , XN such that none of the M events occurs.
The Lovász Local Lemma [21, 58] provides the Erdős-Lovász condition which
specifies the probability space, and sufficiently ensures the existence of such as-
signments. The MT algorithm finds such an assignment as shown in Fig. 1.

Moser and Tardos prove that, under the Erdős-Lovász condition, the expec-
tation of the total iteration number of the algorithm’s outer loop is no more than
a real number rEL, and thus the algorithm almost surely terminates. (Here we
do not expose the definitions of the Erdős-Lovász condition and rEL, which can
be found in Thm. 4.) In the remainder of this subsection, we sketch their proof.

Restatement of the proof goal. Moser and Tardos restate their proof goal using
execution logs. For every execution of the algorithm, its execution log Λ is a
sequence of events ηj , which are dynamically chosen at the beginning of the
outer loop iterations. We write Λ⟨i⟩ for the i-th element of Λ, which is the event
chosen at the i-th iteration. We write |Λ| for the length of Λ, so it specifies the
total number of the outer loop iterations. If the loop does not terminate in an
execution, then |Λ| = ∞. Now, Moser and Tardos restate their proof goal as

E[|Λ|] ≤ rEL. (1)

That is, the expected length of the execution log has an upper bound rEL, where
the randomness of Λ comes from the randomness of the MT algorithm. From
(1), Moser and Tardos conclude that the program almost surely terminates. The
proof of (1) can be divided into three stages, which will be discussed in turn.

Stage 1. In this stage, Moser and Tardos rewrite E[|Λ|] by defining a special
mathematical structure called witness trees. A witness tree wt is a tree with some
special properties, where each node is labeled with an event from η1, . . . , ηM . One
can construct a witness tree wt from an execution log Λ following some specific
procedure, and we write wt = fWT(Λ) for this. From the concrete definitions
and properties of wt and fWT (which we omit here), Moser and Tardos rewrite
E[|Λ|] as the infinite series in (2). It enumerates all witness trees wt, and sums
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Algorithm 3 The RT-MT algorithm
Randomly generate an RT
Assign the first col. of RT to X1, . . . , XN

while ∃j ∈ [1, M ]. ηj holds do
Choose such an ηj

for all Xi that ηj depends on do
Assign the next number of
the i-th row of RT to Xi

Output the current values of X1, . . . , XN

Program 4 RT-check(wt)
Randomly generate an RT
succ := 1
for all ηj ∈ gWT(wt) do

for all Xi that ηj depends on do
Assign the next number of
the i-th row of RT to Xi

if ηj does not hold then
succ := 0

Output succ

Fig. 2. The RT-MT algorithm and the RT-check(wt) program.

the probabilities that wt can be constructed from some prefix of Λ.

E[|Λ|] =
∑
wt

Pr[wt = fWT(some prefix of Λ)]. (2)

Stage 2. Next, Moser and Tardos give an upper bound of the probability in (2).
That is, for all witness trees wt, they prove that

Pr[wt = fWT(some prefix of Λ)] ≤ p(wt), (3)

where p(wt) is a specific real number related to wt and we omit its definition. In-
stead of directly proving (3) (which is challenging), Moser and Tardos construct
a program check(wt), which outputs either 0 or 1, and then prove the following:

(a) The check(wt) program outputs 1 with probability p(wt).
(b) Pr[wt=fWT(some prefix of Λ)] ≤ Pr[check(wt) outputs 1].

(3) then follows from the above two properties. The proof of (a) is not difficult.
What is really interesting is the proof of (b). To see this, we present the check(wt)
program in Fig. 1, where gWT(wt) gives us an event sequence collecting the labels
of wt’s nodes in a certain order (in fact, a reversed BFS ordering of wt).

To prove (b), Moser and Tardos observe that whenever wt can be generated
by the MT algorithm and check(wt) is run on the same random source, check(wt)
outputs 1. They capture this observation by specifying the random sources using
resampling tables (RT) and letting the algorithms explicitly use the tables.

Specifically, Moser and Tardos give the RT-MT algorithm1 as shown in Fig. 2,
and assume that it is “equivalent” to the MT algorithm, i.e., the two algorithms
produce the same distribution of execution logs.

At the beginning, the RT-MT algorithm randomly generates a resampling
table RT , which has N rows and infinite number of columns. For all i ∈ [1, N ],
this step independently samples Xi for an infinite number of times, and fills the
1 In [51], Moser and Tardos did not explicitly introduce new algorithms (RT-MT and

RT-check). The code we show here is a possible interpretation of their English texts.
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i-th row of RT with these samples. Subsequently, every sampling step of the
MT algorithm is replaced by a table-query step in the RT-MT algorithm. For
instance, resampling Xi is replaced by reading the leftmost unread element from
the i-th row of RT , and assigning the result to Xi. The idea here is to transfer
the lazy samplings in the MT algorithm to eager ones: the RT-MT algorithm
performs all the samplings ahead of time and stores the results in RT so that it
can interpret all subsequent samplings to deterministic table queries.

Similarly, Moser and Tardos give the RT-check(wt) program as shown in
Fig. 2, and assume that it is “equivalent” to check(wt), i.e., the two programs
have the same output distribution.

Since the MT algorithm and check(wt) are “equivalent” to their RT-based
counterparts respectively, to prove (b), we only need to show that,

(b’) Pr[wt=fWT(some prefix of Λ of the RT-MT algorithm)]
≤ Pr[RT-check(wt) outputs 1].

Note that the first lines of the RT-MT algorithm and RT-check(wt) are the same,
and all other parts of these two programs are non-probabilistic. Thus, we couple
the random sources of the RT-MT algorithm and RT-check(wt), or rather, let
the first lines of these two programs generate the same RT . Then it remains to
prove that, for any RT , if wt can be generated from the RT-MT algorithm using
this RT , then RT-check(wt) with the same RT must output 1.

The proof is based on the following observation. If wt can be generated
from the RT-MT algorithm using RT , then in retrospect RT must have some
crucial properties, and these properties will make RT-check(wt) output 1. More
precisely, for all events ηj in wt, at the time ηj is chosen in the execution of the
RT-MT algorithm, it must hold under the current assignment formed by some
of RT ’s entries. Then, during the execution of RT-check(wt), when the program
tests ηj , the test passes because the current assignment must be formed by
(almost) the same entries of RT .

Stage 3. Finally, Moser and Tardos prove that,∑
wt

p(wt) ≤ rEL, if the Erdős-Lovász condition holds. (4)

It can be proved in a purely mathematical (i.e. program-independent) yet simple
way, as pointed out by Srinivasan [59].

Combining all three stages above, Moser and Tardos obtain (1):

E[|Λ|] =
∑
wt

Pr[wt = fWT(some prefix of Λ)] Stage 1, (2)

≤
∑
wt

p(wt) Stage 2, (3)

≤ rEL. Stage 3, (4)
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Holes in Moser and Tardos’s reasoning. There are at least two issues in the
above Moser and Tardos’s proof.

First, Moser and Tardos restate their ultimate proof goal as (1) using |Λ|,
the length of the execution log Λ. However, their restatement is ambiguous,
since without defining the program semantics, it is unclear how programs are
executed and generate execution logs. Similar ambiguity arises when stating
those subgoals that also involve quantities related to Λ, e.g. (2) and (3).

Second, Moser and Tardos’s original proof of Stage 2 is far from rigorous. To
prove (b), they assume that the MT algorithm and check(wt) are “equivalent”
to their RT-based variants, but they did not strictly define and prove the “equiv-
alences”. Besides, they did not give a rigorous proof of (b’) with these RT-based
variants strictly defined.

In the next subsections, we show how we address these issues, and formally
state and verify Moser and Tardos’s result. We illustrate the proof path in Fig. 3,
which is also explained below.

2.2 Stating Proof Goals Using Distribution-Based Semantics

To formally state Moser and Tardos’s ultimate proof goal, we must formulate the
program semantics and the expected total number of iterations (or equivalently,
the expected length of the execution log Λ).

We use a classic distribution-based semantics as the formal program seman-
tics. This semantics (and other equivalent semantics, e.g. the probabilistic wp-
semantics [46, 49] and Kozen’s “Semantics 2” [45]) is commonly used in the
literature of probabilistic program verification (e.g. [46, 49, 5, 9, 3]). It inter-
prets the execution result of a program C as a sub-distribution µ over states.
For any state σ, this final state sub-distribution µ specifies the probability that
the program C terminates at σ.

For specifying the expected total number of iterations, we introduce a fresh
program variable cnt that records the number of iterations. Our code of the MT
algorithm, CMT(cnt), sets cnt to zero at the beginning, and increments it in each
iteration of the outer loop. Consequently, when CMT(cnt) terminates, the value
of cnt is the total number of iterations.

Now, our proof goal can be stated as the following total correctness Hoare
triple (assuming that the Erdős-Lovász condition holds on the probability space):

⊨ [true] CMT(cnt) [E[cnt] ≤ rEL] . (5)

Informally it says, the execution of CMT(cnt) in the distribution-based semantics
almost surely terminates (i.e., terminates with probability 1), and the expecta-
tion of the value of cnt (represented as E[cnt]) at the final state sub-distribution
is no greater than rEL. The goal is shown on the top of Fig. 3.

For proving (5), we follow the original proof. That is, we formulate the sub-
goals in the three stages in Sec. 2.1 using distribution-based semantics, and then
prove them. However, we encounter a challenge when formulating (2) and (3).
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⊨ [true] CMT(cnt) [E[cnt] ≤ rEL]
1⃝

∀K ∈ N. ⊨ [true] C′
MT(cnt, K) [E[cnt] ≤ rEL ∧ ⌈cnt ≥ 0⌉]

2⃝

∧· · · ⊨ {true} C′
MT(cnt, K) ≤ check(wt){q1, q2}

RT RT
3⃝

⊨RT {true}C′
MT(cnt, K) ≤ check(wt){q1, q2}

4⃝

∧⊨RT { · · · } C′
MT(cnt, K) {q1 ⇒ R}

⊨RT [ · · · ∧ R] check(wt) [q2]

Recipe 1

Recipe 2

Fig. 3. Our proof path of Moser and Tardos’s result, where q1 = Gen(wt, cnt, K) and
q2 = Succ.

Challenge: Handling infinite execution traces. The problem arises when formu-
lating the probability (6), which appears in both (2) and (3).

Pr[wt = fWT(some prefix of Λ)] (6)

Let µ be the final state sub-distribution of CMT(cnt). Then, it is challenging to
formulate (6) using µ. Note that (6) can be positive even when CMT(cnt) never
terminates. But if we simply define (6) as the probability of some event on µ,
this probability must be 0 if CMT(cnt) never terminates, since µ is now a null
sub-distribution (which specifies that CMT(cnt) terminates at σ with probability
0 for any σ). Other definition attempts using µ may also fail.

The difficulty in formulating (6) lies in the following facts. On the one hand,
(6) is the total probability of CMT(cnt)’s possibly infinite execution traces on
which wt = fWT(some prefix of Λ) holds. This is a complex property that may
involve only some of CMT(cnt)’s infinite traces. On the other hand, distribution-
based semantics can only express certain simple properties of infinite traces, and
thus cannot express (6). From µ, all we know about CMT(cnt)’s infinite traces is
their overall probability 1 − |µ|, where |µ| is the weight of µ (see Sec. 3.1).

One should not simply rule out infinite traces by strengthening (2) and (3)
to include almost sure termination of CMT(cnt), since in Sec. 2.1 the termination
has not been derived until the ultimate goal is fully proved (also, it is not easy
to prove the termination alone, as discussed in Sec. 7).

2.3 Proof Recipe 1: Loop Truncation

We circumvent the aforementioned challenge by proposing loop truncation. Our
idea is to do a code transformation on loops, so that the codes after trans-
formation do not generate infinite traces. For the main loop in CMT(cnt), our
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transformation introduces a loop bound K whose value is an arbitrary natural
number, and turns the original loop while (b) do C into a set of truncated
loops { while (b ∧ cnt < K) do C | K ∈ N }. Since we increment cnt in the
loop body C, each truncated loop while (b ∧ cnt < K) do C terminates in at
most K rounds, and thus can only generate finite execution traces.

Soundness of this transformation can be captured by Lem. 1 below (we will
show the more general form in Thm. 2 in Sec. 5.1). It says, the original loop
guarantees almost sure termination and its expected total iteration number is
bounded by r, as long as all the truncated loops terminate and their expected to-
tal iteration numbers have the same upper bound r. Here ⌈cnt ≥ 0⌉ says, cnt, the
number of iterations, is always non-negative after while (b ∧ cnt < K) do C’s
execution. Without this condition the transformation is unsound.

Lemma 1. For all P, b, C, r, if

∀K ∈ N. ⊨ [P ] while (b ∧ cnt < K) do C [E[cnt] ≤ r ∧ ⌈cnt ≥ 0⌉] ,

then ⊨ [P ] while (b) do C [E[cnt] ≤ r].

Using this transformation, we can reduce (5) to proving the total correctness
of C ′

MT(cnt, K) for all K, where C ′
MT(cnt, K) is the resulting code after trans-

forming the main loop of CMT(cnt) to a truncated one. That is, we prove (7) for
all K.

⊨ [true] C ′
MT(cnt, K) [E[cnt] ≤ rEL ∧ ⌈cnt ≥ 0⌉] (7)

We show this as Step 1⃝ in Fig. 3. The double arrow represents logical implica-
tion. Then we can prove (7) following Moser and Tardos’s proof ideas explained
in Sec. 2.1. We formulate subgoals (2) and (3) for C ′

MT(cnt, K); however, we will
not encounter the aforementioned challenge, since C ′

MT(cnt, K) does not have
infinite execution traces.

Serving as a proof method for PAST. Lem. 1 is itself a general proof method
for positive almost sure termination (PAST) [13], whenever we use cnt to record
the number of program steps. The PAST property says, the program terminates
not only almost surely, but also within finite number of steps in expectation. We
give an example in Ex. 1 in Sec. 5.1.

2.4 Proof Recipe 2: Resampling-Table-Based Coupling

Following the ideas in Sec. 2.1, we prove (7) in three stages. The most challeng-
ing part is proving (b) in Stage 2, which is an inequality between probabilities
involving two programs.

We first formally specify the inequality. To this end, we introduce the tuple
⊨ {P}C1 ≤ C2{q1, q2}. Here P is a predicate specifying state distributions µ,
while q1 and q2 are predicates over states σ. The tuple says that, the probability
of q1 holding at the terminating states of C1 is not greater than the probability
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of q2 holding at the terminating states of C2, where C1 and C2’s executions start
from the same µ satisfying P and use the distribution-based semantics. Then,
we can formulate (b) for C ′

MT(cnt, K) and check(wt) as follows.
⊨ {true}C ′

MT(cnt, K) ≤ check(wt){Gen(wt, cnt, K), Succ}. (8)
Here Gen(wt, cnt, K) roughly says that wt can be generated and is well-formed
with respect to cnt and K. The predicate Succ says that the output succ is 1.
See Step 2⃝ in Fig. 3.

Following Moser and Tardos’s proof in Sec. 2.1, we introduce the RT-MT
algorithm (now with a truncated loop) and the RT-check(wt) program. We need
to give strict definitions of these variants, and to prove that they are indeed
equivalent to the original C ′

MT(cnt, K) and check(wt) respectively.

Resampling-table-based semantics. Instead of introducing the RT-MT algorithm
and the RT-check(wt) program with explicit statements for generating the RT
and accessing it, our approach is to keep the program syntax unchanged but re-
interpret the code using a new semantics. Our RT is a built-in structure of the
new semantics, and it is randomly generated before programs start execution.

More specifically, we re-interpret (8) using the novel RT-based semantics. In
this semantics, we let a program execute with a resampling table RT , which
stores all sampling results of the program in advance, and serves as an oracle for
the sampling statements in the program. Each sampling statement is interpreted
as a query to RT . So this semantics is deterministic given a specific RT .

Our RT-based semantics is equivalent to the classic distribution-based se-
mantics explained in Sec. 2.2. By specifying and proving the semantics equiva-
lence, we essentially show that all programs (including the MT algorithm and
check(wt) in Sec. 2.1) are “equivalent” to their RT-based variants.

Based on the semantics equivalence, we can show the equivalence between
⊨ {P}C1 ≤ C2{q1, q2} and ⊨RT {P}C1 ≤ C2{q1, q2}. The latter specifies the
same relational property as the former but uses the RT-based semantics for
execution. See Step 3⃝ in Fig. 3.

Resampling-table-based coupling. Our proof recipe reduces the relational verifi-
cation for ⊨RT {P}C1 ≤ C2{q1, q2} to unary verification of each of C1 and C2
in the RT-based semantics.

Specifically, we couple the random sources of C1 and C2, i.e. let them use the
same RT in their executions. We prove: for all RT , if C1 using RT terminates
on a state satisfying q1, then C2 using the same RT must also terminate on a
state satisfying q2.

To prove this, we introduce an intermediate assertion R to describe what
kind of RT can make q1 hold after the execution of C1. Usually R specifies that
“some entries in RT have some properties”. With R, we can split the goal into
the following two subgoals:

– For all RT , if C1 using RT terminates at a state satisfying q1, then in
retrospect RT must satisfy R. This is formulated as the Hoare-triple

⊨RT { · · · } C1 {q1 ⇒ R} . (9)
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The post-condition reflects this retrospective reasoning. We omit the pre-
condition, which usually degenerates to a regular state assertion. Then we
only need classical (non-probabilistic) Hoare-style proofs for the Hoare triple.

– Starting with any RT satisfying R, the execution of C2 must terminate at
a final state satisfying q2, that is,

⊨RT [ · · · ∧ R] C2 [q2] . (10)

Here R is in the precondition. We omit the rest parts of the precondition.

Note that the first subgoal (9) only needs to be partial correctness. It says, for any
execution of C1, if it terminates and the final state satisfies q1, RT must satisfy
R. Then the total correctness of C2 (the second subgoal (10)) says, starting from
the same RT , C2 terminates at a final state satisfying q2. This way we can prove
that the probability of q1 at the end of C1 is not greater than the probability
of q2 at the end of C2. Step 4⃝ in Fig. 3 shows this reduction of the relational
reasoning to unary proofs of the two programs separately.

Our reasoning above benefits from a key novelty of our RT-based semantics
with respect to existing random-source-based semantics (e.g. Kozen’s “Semantics
1” [45] and those in [12, 19]). That is, our RT is an immutable structure that
never changes during program execution. In particular, used samples are not
popped out of RT . Therefore the assertion R derived from the post-condition
of (9) must also hold over the RT at the beginning of the execution. So we can
use it in the precondition in (10).

Finding such an R is not difficult in many cases, especially when verifying
ALLLs. We give another example in Sec. 5.2.

3 Preliminaries

In this section, we review some fundamentals of probability theory in two stages.
We first introduce some basics of discrete probability theory without mentioning
their measure-theoretic extensions, serving as the foundation of our distribution-
based semantics in Sec. 4.1. Then we turn to the measure-theoretic probability
theory, which forms the basis of our RT-based semantics in Sec. 4.2.

3.1 Discrete Probability Theory

We use notations from [3, 5]. A (discrete) sub-distribution over a set A is defined
as a function µ : A → [0, 1] that satisfies the following conditions:

– The support of µ, denoted by supp(µ) = {a ∈ A : µ(a) > 0}, is countable;
– |µ| ≤ 1, where |µ| =

∑
a∈A µ(a) is µ’s weight. Since supp(µ) is countable,

the above possibly infinite series is well-defined.

Intuitively, for a ∈ A, µ(a) is the probability of drawing a from µ, and supp(µ)
is the set of all elements that can be drawn from µ with positive probability. A
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sub-distribution µ is called a distribution if |µ| = 1. We denote by SDA all of the
sub-distributions over A, and by DA all of the distributions over A.

An event2 is a function E : A → Prop, and a random variable is a function
V : A → R. We write Pra∼µ[E(a)] for the probability of E on the sub-distribution
µ, and Ea∼µ[V (a)] for the expected value of V on µ. They are defined as follows.

Pra∼µ[E(a)] ≜
∑

a∈A:E(a) µ(a) Ea∼µ[V (a)] ≜
∑

a∈A µ(a) · V (a)

For an infinite sequence µ⃗, we define the limit of µ⃗ as follows:

lim µ⃗ ≜ µ, if limn→∞
∑

a∈A |µ⃗[n](a) − µ(a)| = 0.

One can prove that such a µ is unique if it exists, otherwise we say µ⃗ diverges
and leave lim µ⃗ undefined.

For µ ∈ SDA and function f ∈ A → SDB , we define the expected sub-
distribution Ea∼µ{f(a)} ∈ SDB as follows:

Ea∼µ{f(a)} ≜ λb.
∑

a∈A µ(a) · f(a)(b).

3.2 Measure-Theoretic Probability Theory

To define the RT-based semantics (Sec. 4.2), we need tools from measure theory.
A set of subsets of a set Ω, say F , is a σ-algebra on Ω if it contains Ω and

is closed under complement and countable union. A measurable space is defined
as a pair (Ω, F), where F is a σ-algebra on Ω. We call Ω the sample space.

A function M : F → [0, ∞) is called a (finite) measure on measurable space
(Ω, F) if it satisfies M(∅) = 0 and is countably additive. A measure space is
defined as a triple (Ω, F , M), where M is a measure on measurable space (Ω, F).
(Ω, F , M) is called a probability space if M(Ω) = 1.

A discrete distribution µ can be lifted to a measure-theoretic probability
space (Ω, F , M), where Ω = supp(µ), F = P(supp(µ)), and M(A) =

∑
a∈A µ(a)

for all A ⊆ supp(µ). Thus, for a ∈ supp(µ), M({a}) is exactly µ(a), the proba-
bility of drawing a from the distribution µ.

Let {(Ωi, Fi, Mi) : i ∈ I} be a collection of probability spaces for some
possibly infinite set I. We denote by

∏
i∈I(Ωi, Fi, Mi) the product probability

space of {(Ωi, Fi, Mi) : i ∈ I}, defined as (Ω, F , M), where

– Ω =
∏

i∈I Ωi;
– F is the smallest σ-algebra containing all

∏
i∈I Ai, where Ai ∈ Fi for each

i ∈ I and {j : Aj ⊊ Ωj} is finite;
– M(

∏
i∈I Ai) =

∏
j∈J Mj(Aj), where Ai ∈ Fi for each i ∈ I and J = {j :

Aj ⊊ Ωj} is finite.

The above (Ω, F , M) exists and is unique (see [55]).
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(Dsts) D ::= (κ1, . . . , κN ) (Evts) E ::= (η1, . . . , ηM )
(Dst) κ ∈ DReal (Evt) η ∈ Real × · · · × Real︸ ︷︷ ︸

N Real’s

→ {true, false}

vbl(η, j) iff ∃r1, . . . , rN , r′. η(r1, . . . , rN ) ̸= η(r1, . . . , rj−1, r′, rj+1, . . . , rN )

P(η) ≜
∑

r1∈supp(D[1]),...,rN ∈supp(D[N])
η(r1,...,rN )=true

∏
i∈[1,N ]

D[i](ri)

Γ (j) ≜ {k : ∃i. vbl(E [j], i) ∧ vbl(E [k], i))} \ {j}

(Expr) e ::= v | x | e1 + e2 | a[e] | e1⟨e2⟩ | len(e) | app(e1, e2) | . . .

(Bexp) b ::= true | false | e1 = e2 | b1 ∧ b1 | hold(e, e1, . . . , eN ) | vbl(e1, e2) | . . .

(Stmt) C ::= skip | x := e | x := Sample(e) | a[e1] := e2
| C1; C2 | if (b) then C1 else C2 | while (b) do C | . . .

Fig. 4. Syntax of the programming language.

4 Two Semantics of the Language

In this section we define the programming language. We first define the language
syntax, and then give two equivalent semantics in Sec. 4.1 and Sec. 4.2. We give
a detailed definition of the language in App. A.

Global parameters. Throughout the paper, we assume four global parameters
for programs: N , M , D and E . They are viewed as meta-variables, and can be
configured differently for different programs.

As defined at the top of Fig. 4, D and E represent the “N distributions” and
“M events” in ALLL’s setting (see Sec. 2.1) respectively. Each event ηj in E takes
N reals as input, and outputs a boolean value. Each κi in D is a distribution
over reals, and is associated with the i-th argument of every ηj in E .

Fig. 4 also gives important notations related to D and E , which are used in
the statements and the formal proofs of ALLL-related results. vbl(η, j) holds iff
the event η depends on its j-th argument.3 P(η) is the probability of the event η
occurring, given that its N arguments are independently distributed according
to D[1], . . . , D[N ] respectively. Γ (j) is the index set of events that depend on
some argument that E [j] also depends on, except E [j] itself.

Syntax of the programming language. As shown at the bottom of Fig. 4, we
use customized program statements, expressions and boolean expressions to for-
mulate ALLLs’ code. We write x := Sample(e) to sample from the distribution
D[e] and store the result in the program variable x. The boolean expression
hold(e, e1, . . . , eN ) tests if the event E [e] holds with arguments e1, . . . , eN . More-
over, vbl(e1, e2) tests if the event E [e1] depends on its e2-th argument.
2 Note that the “event” here is different from the “event” in the “M events” in the

Moser-Tardos algorithm (see Sec. 2.1), though they have the same name.
3 The name “vbl” is short for “variables”. Moser and Tardos [51] used vbl(η) as the

minimal set of variables (i.e. arguments of the event) that determine η.
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We use arrays to formulate the N variables X1, . . . , XN in ALLLs. We use
a[e] to represent the element of array a with index e, and use a[e1] := e2 for the
in-place update.

We use lists to formulate the execution logs in ALLLs. To access and manip-
ulate the execution log, we introduce list-related expressions. We use e1⟨e2⟩ for
the e2-th element of list e1, use len(e) for the length of list e, and use app(e1, e2)
for appending an element e2 to list e1.

Using the syntax in Fig. 4, we can formulate the code of the MT algorithm,
CMT(cnt), in Fig. 10 in Sec. 6.

States and state distributions. As defined below, a state σ maps each program
variable in PVar to some value v. For simplicity, we view each array element as
a program variable. A value v is either a real r or a list Λ of natural numbers.

(State) σ ∈ PVar → Val (DState) µ ∈ DState

State distributions µ are used to specify that, with probability µ(σ), the program
state before or after the execution of a program is exactly σ. We write JeKσ and
JbKσ for the evaluation of e and b in a state σ.

Below we give two equivalent probabilistic semantics of our language, a classic
distribution-based semantics and an RT-based semantics. We use n for natural
numbers and p, r for reals. Throughout this paper, we assume that the program’s
execution does not get stuck, and the evaluation of expressions does not abort.

4.1 Distribution-Based Semantics

Following [3, 5], we first define the semantic function JCK(σ) ∈ SDState. Here
JCK(σ)(σ′) represents the probability of C’s execution from σ finally reaching
σ′. For example, for the sampling operation x := Sample(e) that samples from
the distribution D[i] and gets r as the result, the probability is D[i](r). That is,

Jx := Sample(e)K(σ)(σ′) =
{

D[i](r) if JeKσ = i ∈ [1, N ] and σ′ = σ{x⇝ r}
0 otherwise

.

We give the full definition of JCK(σ) in App. A. We further define JCK(µ) ∈
SDState (where µ ∈ DState) by lifting JCK(σ), using the expected sub-distribution
in Sec. 3.1:

JCK(µ) ≜ Eσ∼µ{JCK(σ)}

4.2 Resampling-Table-Based Semantics

Informally, in our new RT-based semantics, a program first randomly generates
a resampling table (RT); with this table, the program then starts its determin-
istic execution. Below we first give the definition of an RT, and specify how the
semantics “generates” an RT. Then we define an RT-based operational seman-
tics, which describes the deterministic execution of the program with a certain
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r10 r11 r12 r13 · · ·
r20 r21 r22 r23 · · ·

Fig. 5. A resampling table RT with N = 2.

RT. Finally, we combine all the above definitions into the RT-based semantic
functions JCKRT(σ) and JCKRT(µ).

The resampling table is defined as follows.

(RTable) RT ∈ [1, N ] × Nat → Real where generable(RT )
generable(RT ) iff ∀i, j. RT [i][j] ∈ supp(D[i])

A resampling table RT is a matrix with size N × ∞. An example of such table
is shown in Fig. 5, where N = 2 and RT [i][j] = rij for i ∈ [1, 2] and j ∈ Nat.
Intuitively, as described in Sec. 2.1, the i-th row of RT stores the ahead-of-time
samples from the distribution D[i]. Additionally, we require that generable(RT )
holds. That is, every entry in the i-th row of RT must be able to be sampled
from the distribution D[i]. This accords with the intuition of the RT.

We specify how the semantics “generates” an RT. To this end, we define the
probability space of all (generable) RTs as (Ω, F , M), and thus M({RT | · · · })
represents the probability of some RT from set {RT | · · · } being generated. The
definition is shown below:

(Ω, F , M) ≜
∏

(i,j)∈[1,N ]×Nat

(Ωi,j , Fi,j , Mi,j),

where the collection of probability spaces {(Ωi,j , Fi,j , Mi,j) : (i, j) ∈ [1, N ] ×
Nat} extends D such that

– Ωi,j = supp(D[i]);
– Fi,j = P(supp(D[i]));
– Mi,j(A) =

∑
r∈A D[i](r) for A ⊆ supp(D[i]).

Note that Ω = RTable, that is, the sample space of the probability space is
indeed the set of all RTs, since by definition we have

Ω =
∏

(i,j)∈[1,N ]×Nat

Ωi,j =
∏

(i,j)∈[1,N ]×Nat

supp(D[i]) = RTable.

As we describe below, the sample space Ωi,j is the set of all possible values of the
table entry with row number i and column number j. Thus, the infinite product
of these sets, Ω, is exactly the set of all RTs.

Below we explain our construction of (Ω, F , M). Recall that an RT is gen-
erated by filling its entries by infinite number of independent samples from
D[1], . . . , D[N ]. Hence, the probability space of all RTs is the infinite product
of probability spaces of all entries. For the probability space of the entry in row i
and (arbitrary) column j, say (Ωi,j , Fi,j , Mi,j), we lift the discrete distribution
D[i] to a measure-theoretic probability space. Since that entry is generated by
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JeKσ = v

RT ⊢ (x := e, σ, ι) −→ (skip, σ{x⇝ v}, ι)

JeKσ = i ∈ [1, N ] ι′ = (ι[1], . . . , ι[i − 1], ι[i] + 1, ι[i + 1], . . . , ι[N ])
RT ⊢ (x := Sample(e), σ, ι) −→ (skip, σ{x⇝ RT [i][ι[i]]}, ι′)

Fig. 6. RT-based operational semantics.

sampling from D[i], we have Ωi,j = supp(D[i]). Fi,j is the set of all subsets of
Ωi,j , and the measure of a set A ∈ Fi,j is given by Mi,j(A) =

∑
r∈A D[i](r),

which represents the probability of some element from A being generated as the
value of the entry by sampling from D[i].

We then define the RT-based operational semantics, with selected semantics
rules shown in Fig. 6. The definition is almost standard, except that it interprets
sampling operations to table queries. Recall that, when the program performs
a sampling from the distribution D[i], it reads the leftmost unread entry in the
i-th row of RT as the result. To keep track of these entries, we maintain the
heads ι in the program configuration to record their column numbers.

(Heads) ι ::= (n1, . . . , nN )

ι is an N -tuple. Its i-th component, ι[i], represents the column number of the
leftmost unread entry in the i-th row of RT . Now, RT ⊢ (C, σ, ι) −→∗ (C ′, σ′, ι′)
says that, starting from the program state σ, with the leftmost unread entries of
RT initially specified by ι, C deterministically executes to C ′ using RT , where
the result state is σ′ and finally the leftmost unread entries in RT are specified
by ι′. When the program performs a sampling from D[i], it takes RT [i][ι[i]] as
the result and increments ι[i]. In other program steps, ι remains unchanged.

Now the RT-based semantic functions are defined below, where ιinit = (0, . . . , 0)
represents the initial positions of heads.

JCKRT(σ) ≜ λσ′. M({RT | RT ⊢ (C, σ, ιinit) −→∗ (skip, σ′, _)})
JCKRT(µ) ≜ Eσ∼µ{JCKRT(σ)}

Informally, the probability of C’s execution from σ finally reaching σ′, say
JCKRT(σ)(σ′), is the probability of some RT , which satisfies the following prop-
erty, being generated: starting from σ, C’s execution using RT finally reaches
σ′. This property is formally stated as RT ⊢ (C, σ, ιinit) −→∗ (skip, σ′, _), with
the help of the operational semantics.

Lem. 2 shows that the RT-based semantics is indeed well-defined. We give
the proof in App. A.1.

Lemma 2. For all C, σ, σ′, ι, {RT | RT ⊢ (C, σ, ι) −→∗ (skip, σ′, _)} ∈ F .

To conclude this subsection, we give the following theorem, which states the
equivalence between the distribution-based semantics defined in Sec. 4.1 and the
RT-based semantics. We give the proof in App. A.2.

Theorem 1 (Semantics Equivalence). For all C and µ, JCK(µ) = JCKRT(µ).
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(Assn) p, q, r ::= b | ¬q | q1 ∧ q2 | q1 ∨ q2 | ∀X. q | ∃X. q | . . .

(PExp) ξ ::= r | E[e] | Pr[q] | ξ1 + ξ2 | ξ1 − ξ2 | . . .

(PAssn) P, Q, R ::= ⌈q⌉ | ξ1 = ξ2 | ¬Q | Q1 ∧ Q2 | ∀X. Q | ∃X. Q | . . .

JrKµ ≜ r

JE[e]Kµ ≜ Eσ∼µ[JeKσ]
JPr[q]Kµ ≜ Prσ∼µ[σ ⊨ q]
Jξ1 + ξ2Kµ ≜ Jξ1Kµ + Jξ2Kµ

µ ⊨ ⌈q⌉ iff ∀σ. σ ∈supp(µ) =⇒ σ ⊨ q
µ ⊨ ξ1 = ξ2 iff Jξ1Kµ = Jξ2Kµ

µ{X ⇝ v} ≜ Eσ∼µ{δ(σ{X ⇝ v})}
µ ⊨ ∃X. Q iff ∃v. µ{X ⇝ v} ⊨ Q

Fig. 7. Assertions over states and state distributions.

5 Proof Recipes

Our ultimate proof goals are formulated as total correctness Hoare triples ⊨
[P ]C[Q] using the distribution-based semantics of Sec. 4.1.

Before showing the definition of ⊨ [P ]C[Q], we first define assertions in Fig. 7,
following the assertion language in [3]. We write p, q, r for non-probabilistic as-
sertions on program states, and P, Q, R for probabilistic assertions on state dis-
tributions. The assertion ⌈q⌉ holds on the distribution µ iff q holds on all states
in the support of µ. We write true as a shorthand for ⌈true⌉. The expression
Pr[q] represents the probability that q holds, and E[e] represents the expected
value of e. The assertion ∃X. Q holds on µ, if Q holds on µ′ obtained by assigning
some constant v to X in all states in µ (here δ gives the Dirac distribution). We
give a detailed definition of this assertion language in App. B.1.

Then, ⊨ [P ]C[Q] says that, starting from a state distribution satisfying P ,
C’s execution terminates with probability 1, and thus the sub-distribution of
the result states is actually a state distribution, which satisfies Q. We show the
definition in Def. 1.

Definition 1 (Total Correctness). For all P, C, Q, ⊨ [P ]C[Q] holds iff

∀µ. µ ⊨ P =⇒ |JCK(µ)| = 1 ∧ JCK(µ) ⊨ Q.

In the following subsections, we formalize our two proof recipes, loop trun-
cation and RT-based coupling.

5.1 Loop Truncation

We have explained a specialized form of loop truncation in Lem. 1 in Sec. 2.3.
Below we show the more general theorem (Thm. 2). We give the proof in App. C.

Theorem 2 (Loop Truncation). For all P, b, C, E, Q, e and r, if

∀K ∈ N. ⊨ [P ] E[while (b ∧ e < K) do C] [Q ∧ E[e] ≤ r ∧ ⌈e ≥ 0⌉] ,

modbf(E, e) and t-closed(Q), then ⊨ [P ] E[while (b) do C] [Q].
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Here E is a program context, and E[while (b) do C] fills the hole in E with
the loop while (b) do C.

(Ctx) E ::= [ ] | C; E | E; C | while (b) do E
| if (b) then C else E | if (b) then E else C

Thm. 2 says that, to prove total correctness of E[while (b) do C], we transform
the code to E[while (b ∧ e < K) do C] with a specific e. How to choose e is
application-dependent. Usually we choose as e the loop counter incremented in
the loop body, such as cnt in CMT(cnt) (see Sec. 2.2 and Fig. 10). With an
inappropriate e, the first premise of the theorem may be invalid or still hard to
prove, though how e is chosen does not affect the validity of the theorem.

In addition to e, the first premise also asks users to find a common bound r
(a real number) that can bound E[e] at the end of E[while (b ∧ e < K) do C] for
all K. Usually the postcondition Q can help us find such an r. Besides the upper
bound r, we require that evaluating e at the end of E[while (b ∧ e < K) do C]
must result in a non-negative real number. These two bounds are crucial for
ensuring almost sure termination of E[while (b) do C].

The second premise, modbf(E, e), rules out those contexts E that make
E[e] ≤ r hold at the end of E[while (b ∧ e < K) do C] vacuously, e.g. those that
modify the program variables in e at the end of the context and make e = r
hold. modbf(E, e) syntactically restricts E such that the variables in e can be
modified in E only before the code in the hole of E is executed. For example,
modbf(C ′; [ ], e) holds for any C ′ and e, since only C ′, which is executed before
the hole, can modify the variables in e in the context. Similarly, modbf([ ], e)
holds. We give the definition of modbf(E, e) in App. C.

The third premise, t-closed(Q), is for deriving the postcondition Q of
E[while (b) do C] from the same Q of E[while (b ∧ e < K) do C]. We say
an assertion Q is t-closed [5], denoted by t-closed(Q), if for all infinite state
distribution sequences µ⃗, if Q holds on µ⃗[i] for each i and lim µ⃗ = µ, then
Q holds on µ. Many assertions are t-closed. For example, we can prove that
t-closed(E[e] ≤ r ∧ ⌈e ≥ 0⌉) always holds for any e and any r.

Since modbf([ ], e) and t-closed(E[e] ≤ r ∧ ⌈e ≥ 0⌉) both hold, Lem. 1 can
be derived from Thm. 2.
Proof Sketch of Thm. 2. Due to the space limit, below we only show the case of
E = [ ]. We prove 1) almost sure termination and 2) the establishment of the
postcondition Q, respectively.

For 1), assuming that while (b) do C terminates with probability p < 1,
we derive a contradiction. From the premise we know while (b ∧ e < K) do C
almost surely terminates, so it terminates in a state where e ≥ K with probability
at least 1 − p. Thus, by the semantics of E[e] (and since the value of e is non-
negative), we know E[e] ≥ (1−p)K holds at the end of while (b ∧ e < K) do C.
Therefore, we can find a sufficiently large K such that E[e] ≥ (1 − p)K > r,
which contradicts the premise.

For 2), the key is proving that, for all µ |= P ,

Jwhile (b) do CK(µ) = lim
K→∞

Jwhile (b ∧ e < K) do CK(µ).
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Then, we can establish Q for while (b) do C, from t-closed(Q) and that Q is
the postcondition for each while (b ∧ e < K) do C. ⊓⊔

We apply Thm. 2 for the verification of the MT algorithm and its variants in
Sec. 6. Here we show another example beyond ALLLs, which is taken from [42]
(with slight modifications).
Example 1. Let N = 1 and D[1] = {(0, 1

2 ), (1, 1
2 )}. The code Cflip is defined as

while (y = 1) do { y := Sample(1); cnt := cnt + 1; }. We prove:

⊨ [⌈cnt = 0 ∧ y = 1⌉] Cflip [E[cnt] ≤ 2] (11)

Here Cflip repeatedly flips a fair coin by sampling from D[1], until it gets heads
(y = 0). We use cnt to record the number of coin flips. Then our proof goal (11)
says that Cflip almost surely terminates, and it flips at most twice in expectation.

To prove (11), by Thm. 2 (or Lem. 1), we only need to prove that, for all
K ∈ N, ⊨ [⌈cnt = 0 ∧ y = 1⌉] C ′

flip(K) [E[cnt] ≤ 2 ∧ ⌈cnt ≥ 0⌉], where C ′
flip(K)

is defined as while (y = 1 ∧ cnt < K) do {y := Sample(1); cnt := cnt + 1; }. We
adapt the program logic Ellora [5] to complete the proof. We give the proof
in App. H.1.

5.2 Resampling-Table-Based Coupling

As informally explained in Sec. 2.4, our RT-based coupling is for proving the re-
lational tuple ⊨ {P}C1 ≤ C2{q1, q2}, an intermediate proof goal that appears in
ALLLs’ verification. We show the formal definition of ⊨ {P}C1 ≤ C2{q1, q2} in
Def. 2. Note that in this definition we neither require nor assume the termination
of C1 and C2’s executions.

Definition 2 (Inequality between Probabilities). For all P, C1, C2, q1, q2,
⊨ {P}C1 ≤ C2{q1, q2} holds iff

∀µ. µ ⊨ P =⇒ Prσ∼JC1K(µ)[σ ⊨ q1] ≤ Prσ∼JC2K(µ)[σ ⊨ q2].

Our RT-based coupling reduces the verification of the relational tuple to
proving unary properties of C1 and C2’s executions in the RT-based semantics
respectively (i.e. the subgoals (9) and (10) in Sec. 2.4). We show the formal
theorem in Thm. 3. We give the proof of Thm. 3 in App. D.

Theorem 3 (RT-Based Coupling). For all p, C1, C2, q1, R, q2, if
– RTonly(R);
– ⊨RT {p ∧ hdinit}C1{q1 ⇒ R};
– ⊨RT [p ∧ R ∧ hdinit]C2[q2];

then ⊨ {⌈p⌉}C1 ≤ C2{q1, q2}.

We apply Thm. 3 for verifying ALLLs, which we will explain in Sec. 6. Below
we explain Thm. 3 in four aspects: (1) requiring ⌈p⌉ as the precondition in the
relational tuple; (2) the assertions R, hdinit and the requirement RTonly(R);
(3) the RT-based unary triples ⊨RT; and (4) its proof ideas. We also show another
example beyond ALLLs, and briefly discuss an extension of Thm. 3 at the end.
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(RTExpr) E ::= e | RT[E1][E2] | hd1 | . . . | hdN | E1 + E2 | . . .

(RTBexp) B ::= b | E1 = E2 | E1 < E2 | . . .

(RTAssn) P, Q, R ::= q | B | ¬Q | Q1 ∧ Q2 | Q1 ∨ Q2 | ∀X. Q | ∃X. Q | . . .

(σ, RT, ι) ⊨ q iff σ ⊨ q JhdnK(σ,RT,ι) ≜ ι[n]
JRT[E1][E2]K(σ,RT,ι) ≜ RT [i][j], if JE1K(σ,RT,ι) = i, JE2K(σ,RT,ι) = j

hdinit ≜
∧

i∈[1,N ] . hdi = 0
RTonly(R) iff ∀σ, RT, ι. (σ, RT, ι) ⊨ R =⇒ ∀σ′, ι′. (σ′, RT, ι′) ⊨ R

Fig. 8. Non-probabilistic assertions on RT-extended states.

Lifting state assertions as preconditions. The relational tuples we prove are in
a restricted form, namely that the precondition P is in the form of ⌈p⌉, where
p is an assertion over states. Recall that ⌈p⌉ holds over µ iff p holds over any σ
such that σ ∈ supp(µ) (see Fig. 7). Therefore the precondition ⌈p⌉ says we are
only interested in the executions of C1 and C2 with the initial states satisfying
p. So we can fill the omitted part of the two subgoals (9) and (10) with p, and
turn them into classical (deterministic) Hoare triples ⊨RT {p} C1 {q1 ⇒ R} and
⊨RT [p ∧ R] C2 [q2] .

Assertions over RT-extended states. Thm. 3 requires us to find an “intermediate
assertion” R that describes (and only describes) the (non-probabilistic) prop-
erties of the resampling table RT . Since we need explicit reasoning about RT ,
the assertions used in the classical reasoning of ⊨RT actually specify RT and the
heads ι as well as the states σ.

In Fig. 8, we define non-probabilistic assertions P, Q, R over the extended
states (σ, RT, ι). Besides using q to describe σ in the extended states, we intro-
duce RT-expressions to specify RT and ι. We use RT[E1][E2] to represent the
entry at row E1 and column E2 of RT , and use hdn to represent the n-th head
ι[n], where n ∈ [1, N ].

The assertion hdinit (defined as a shorthand in Fig. 8) says that all of the
heads ι point to the first column of RT . It specifies the initial heads before
program execution, so it appears in the preconditions of the two ⊨RT triples in
Thm. 3.

The requirement RTonly(R) (defined in Fig. 8) says that changing σ and/or
ι in the extended state does not affect whether R holds. That is, R describes RT
only. One can check that RTonly(R) holds if R does not syntactically contain
any free variables and hdn’s.

We give a detailed definition of this assertion language in App. B.2.

RT-based unary triples. Now we can define the RT-based unary triples, ⊨RT
[P]C[Q] and ⊨RT {P}C{Q}. They are standard Hoare triples for total cor-
rectness and partial correctness respectively, using the RT-based operational
semantics (in Fig. 6 of Sec. 4.2) for program execution.
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Definition 3 (Total Correctness in RT-Based Operational Semantics).
For all P, C, Q, ⊨RT [P]C[Q] holds iff

∀σ, RT, ι. (σ, RT, ι) ⊨ P =⇒
∃σ′, ι′. RT ⊢ (C, σ, ι) −→∗ (skip, σ′, ι′) ∧ (σ′, RT, ι′) ⊨ Q.

Definition 4 (Partial Correctness in RT-Based Operational Seman-
tics). For all P, C, Q, ⊨RT {P}C{Q} holds iff

∀σ, RT, ι, σ′, ι′. (σ, RT, ι) ⊨ P ∧ RT ⊢ (C, σ, ι) −→∗ (skip, σ′, ι′)
=⇒ (σ′, RT, ι′) ⊨ Q.

For total correctness, Def. 3 says there exists a terminating execution of
(C, σ, ι) under RT . This essentially ensures the absence of non-terminating exe-
cutions, because the RT-based operational semantics is deterministic.

We can use a classical Hoare-style program logic to prove the ⊨RT triples.
We give such a logic in App. F.

Proof ideas of the theorem. To prove Thm. 3, we need to bridge two gaps between
the ⊨RT triples in the premises and the ⊨ tuple in the conclusion. First, the ⊨RT
triples use the RT-based semantics, while the ⊨ tuple uses the distribution-based
semantics. Second, the ⊨RT triples are unary, while the ⊨ tuple is relational.

The key to bridging the gaps is reduction through the following RT-based
tuple as an intermediate form, which is the counterpart of Def. 2 in the RT-based
semantics.

Definition 5 (Inequality between Pr. in RT-Based Semantics). For all
P, C1, C2, q1, q2, ⊨RT {P}C1 ≤ C2{q1, q2} holds iff

∀µ. µ ⊨ P =⇒ Prσ∼JC1KRT(µ)[σ ⊨ q1] ≤ Prσ∼JC2KRT(µ)[σ ⊨ q2].

Lemma 3 shows the equivalence between the two relational tuples, which
follows from the semantics equivalence (Thm. 1). This lemma bridges the first
gap, and is interesting in its own right.

Lemma 3. For all P, C1, C2, q1, q2,

⊨ {P}C1 ≤ C2{q1, q2} ⇐⇒ ⊨RT {P}C1 ≤ C2{q1, q2}.

Our “intermediate assertion” R allows us to split the ⊨RT relational tuple
into two unary ⊨RT triples, bridging the second gap.

Example 2. This example is adapted from an intermediate goal in [8]’s proof of
the PRP/PRF switching lemma4. Let k ≥ 1. For any n1, . . . , nk, we prove that

⊨ {⌈inp⌉} Cbad
PRF ≤ CPRF

{bad = 1, ∃X1, X2, Y. X1 ̸= X2 ∧ find(L, (X1, Y )) ∧ find(L, (X2, Y ))}.
(12)

4 In [8], Cbad
PRF and CPRF are defined using procedure calls. We adapt the code here.
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1 L := []; d := 1;
2 bad := 0;
3 while (d ≤ k) do
4 if (¬findkey(L, x[d])) then
5 y := Sample(1);
6 if (findval(L, y)) then bad := 1;
7 L := app(L, (x[d], y));
8 d := d + 1

Fig. 9. The code Cbad
PRF in Ex. 2.

We show the code of Cbad
PRF in Fig. 9, and the code of CPRF results from

removing lines 2 and 6 from the figure. The assertion inp says that n1, . . . , nk

are the inputs stored in x[1], . . . , x[k], which is defined as
∧

i∈[1,k] . x[i] = ni.
By extending the programming language, we implement a map in the pro-

gram variable L, which stores some key-value pairs. One can insert a pair into
the map by writing app(L, (e1, e2)), and query for the existence of a key, a value
or a pair by writing findkey(L, e), findval(L, e) or find(L, (e1, e2)).

Cbad
PRF and CPRF do the following: for n = x[1], . . . , x[k], the programs check

if n has been inserted in L as a key; if not, they sample a value y from D[1],
and then insert the key-value pair (n, y) into L; if y has been inserted in L as a
value, Cbad

PRF marks bad.
(12) then says that, the probability of Cbad

PRF terminating with bad = 1 is no
more than the probability of CPRF terminating with two key-value pairs with
the same value left in L.

To prove (12), we apply Thm. 3. We take R = coll, where
coll ≜

∨
0≤i<j<|{n1,...,nk}| . RT[1][i] = RT[1][j].

coll says that, there exist two identical entries in the first row of RT , which
are picked as samples in the executions of both Cbad

PRF and CPRF. Therefore coll
specifies the kind of RT that can make bad = 1 hold after the execution of Cbad

PRF.
We can check that RTonly(coll) holds. Then, by applying Thm. 3, it remains

to prove the following two unary ⊨RT triples:
⊨RT {inp ∧ hdinit} Cbad

PRF {bad = 1 ⇒ R}
⊨RT [inp ∧ R ∧ hdinit] CPRF [∃X1, X2, Y. X1 ̸= X2 ∧ find(L, (X1, Y )) ∧ find(L, (X2, Y ))]
We prove them using a simple Hoare-style program logic. We give the full proof
of this example in App. H.2.

An extension of RT-based coupling. In Thm. 5 in App. D, we give another rela-
tional proof recipe that extends Thm. 3. It asks users to provide two intermediate
assertions R1 and R2 for splitting the ⊨RT relational tuple, and provides more
flexibility for reasoning about inequalities between probabilities.

6 Case Studies

We show the usefulness of our proof recipes (Thm. 2 and Thm. 3) by verifying
several representative existing results about ALLLs and a new result about the
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MT algorithm. Below we first give a brief survey of several important research
lines on ALLLs. Then we summarize the existing ALLL-related results that we
have verified, and show how we verify Theorem 1.2 of [51] as an example. Finally,
we explain our new result about the MT algorithm.

Research lines of ALLLs. The MT algorithm is first proposed in [51], where the
expected iteration number of the algorithm is bounded under the Erdős-Lovász
condition [21, 58] and the Erdős-Spencer condition [22]. Following [51], some
works [54, 44, 32, 1, 43, 38] further analyze the termination property and the
iteration times of the MT algorithm under other conditions. Besides analyzing
the iteration times of the MT algorithm, a number of works (including [51]) also
analyze other sequential ALLLs [32, 35, 37, 30], explore properties of output
distributions of ALLLs [32, 36, 30, 33], or design parallel and distributed ALLLs
[51, 18, 31, 26, 15]. However, the proofs in all these works are relatively informal.

Existing results we verify. As listed below, we verify six representative results
that cover the aforementioned research lines.

First, we verify the termination and the expected iteration times of the MT
algorithm, under the Erdős-Lovász condition [21, 58], the cluster expansion con-
dition [10], the Shearer’s condition [57], and the Erdős-Spencer condition [22].
These four results are proposed and informally proved in Theorem 1.2 of [51],
Theorem 1.4 of [54], Theorem 4 of [44] and Theorem 6.1 of [51].

Second, we verify (the second part of) Theorem 2.2 of [32] that estimates the
output distribution of the MT algorithm under the Erdős-Lovász condition. This
result can also be viewed as estimating the output distribution of a sequential
ALLL that only executes on core events (see Theorem 3.3 of [32]).

Finally, we verify the termination and a tail bound of the iteration times of
a parallelizable version of the MT algorithm, under the Erdős-Lovász condition
with ϵ-slack. This variant and the tail bound are given in Theorem 1.3 of [51].

It is worth noting that we verify all the three “probabilistic” results from
Moser and Tardos’s Gödel Prize-winning paper [51]5.

We give the statements and formal proofs of these six results in App. J.

Verifying Theorem 1.2 of [51]. As an example, we explain in more detail how we
verify Theorem 1.2 of [51], which we informally described in Sec. 2.

Fig. 10 shows CMT(cnt), the code of the MT algorithm that we verify. It
first does independent samplings and stores the results in x[1], . . . , x[N ] (line
1), where d and a are temporal variables. For the main loop (lines 3-13), we
introduce flag to indicate whether a required assignment is found, cnt to record
the number of iteration times, and lst to collect the indexes of the events in the
execution log. They are initialized at line 2. In the main loop (lines 3-13), we use
z to represent the index of the chosen event, which is an event that holds under
the current x[1], . . . , x[N ] (lines 4-7). If no such event exists, the code marks flag
5 In [51], Moser and Tardos propose four results, three related to the MT algorithm

and its probabilistic variants, and one related to a deterministic variant.
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1 d := 1; while (d≤N) do {a :=Sample(d); x[d] :=a; d :=d+1; }
2 flag := 0; cnt := 0; lst := [];
3 while (flag = 0) do
4 z := 0; h := 1;
5 while (h ≤ M) do
6 if (hold(h, x[1], . . . , x[N ])) then z := h;
7 h := h + 1;
8 if (z = 0) then flag := 1;
9 else

10 cnt := cnt + 1; lst := app(lst, z); d := 1;
11 while (d ≤ N) do
12 if (vbl(z, d)) then {a := Sample(d); x[d] := a; }
13 d := d + 1;

Fig. 10. The code of the MT algorithm, CMT(cnt).

(line 8) and exits the loop (line 3). Otherwise, it resamples from D[d] for every
d such that vbl(z, d) holds, and updates the corresponding x[d] (lines 10-13).

Having defined the code of the MT algorithm, Moser and Tardos’s result
(Theorem 1.2 of [51]) is formally stated in Thm. 4. Note that N, M, D and E are
global parameters and thus not fixed in Thm. 4, and rEL is parametrized by M .

Theorem 4. For all reals α1, . . . , αM ∈ (0, 1), if the Erdős-Lovász condition
[21, 58] holds, i.e. ∀i ∈ [1, M ]. P(E [i]) ≤ αi

∏
j∈Γ (i)(1 − αj), and let rEL =∑

i∈[1,M ] αi(1 − αi)−1, then ⊨ [true] CMT(cnt) [E[cnt] ≤ rEL].

Proof Sketch. Our proof follows the path in Fig. 3. Due to the space limit, here
we only explain our construction of R, used in the two RT-triples at the bottom
of Fig. 3. Let Λ = gWT(wt). Then,

R ≜ ∀l ∈ [1, |Λ|]. ∀V1, . . . VN . RTAssign(V1, . . . VN , l, Λ) ⇒ hold(Λ⟨l⟩, V1, . . . , VN )
where RTAssign(V1, . . . , VN , l, Λ) ≜ ∀i ∈ [1, N ]. vbl(Λ⟨l⟩, i) ⇒ Vi = RT[i][ve(i, Λ, l − 1)]

ve(i, Λ, l) ≜
∑

l′∈[1,l][vbl(Λ⟨l′⟩, i)]

Informally R says that, every event in wt (denoted by Λ⟨l⟩) must hold under
any assignment of V1, . . . , VN satisfying RTAssign. RTAssign says, the assignment
contains the “relevant” entries of RT which make the event Λ⟨l⟩ hold when it is
chosen in the execution of C ′

MT(cnt, K). For each such entry, its row number i
corresponds to a variable that the event depends on (i.e. vbl(Λ⟨l⟩, i) holds), and
its column number is computed by ve(i, gWT(wt), l − 1). Note our R only talks
about the RT (and the wt), not about the actual execution of C ′

MT(cnt, K).
We prove the remaining intermediate proof goals in Fig. 3 by adapting the

program logic Ellora [5] (for proving |= triples) and using a classical Hoare-
style logic (for proving |=RT triples). ⊓⊔

Our new result. Thm. 4 shows the MT algorithm’s total correctness with rEL as
the upper bound of expected iteration times, under the Erdős-Lovász condition.
There are many works [54, 44, 1, 43, 38] that informally study similar properties
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of the MT algorithm under other conditions. Most of these results use similar
ideas with Moser and Tardos to analyze the algorithm, except that they intro-
duce other witness-tree-like structures for analysis and derive various bounds.
Like [51], they generate their witness-tree-like structures ds from prefixes of the
execution log, enumerate the events in ds in some specific order, and bound a
sum over all such structures to get their final upper bounds.

We unify these results to a general one. Our new result enables that, when
proving the expected iteration number of the MT algorithm, without doing the
complete proof following Moser and Tardos’s idea, one only needs to instantiate
the required witness-tree-like structures and prove some relevant mathematical
side conditions.

Specifically, we ask users to provide: (a) the set DS of all instances of such
witness-tree-like structures, (b) a function f for generating a structure ds ∈ DS
from a prefix of the execution log Λ, (c) a function g for specifying the enumer-
ation order of ds, and (d) a function DSMap mapping each natural number K
to a subset of DS, such that each ds ∈ DSMap(K) has “size” no more than K.

The function f , like fWT used in Sec. 2.1, maps prefixes of the execution log
(an event sequence) Λ of the MT algorithm to the witness-tree-like structures ds,
and feeds them to the “check” program (see Sec. 2.1). In check(ds), the function
g, like gWT used in check(wt), decides the enumeration order of ds and maps it
back to another event sequence Λ′. As an important side condition over f and
g, we require that, for any Λ′ = g(f(Λ)), the event ordering in Λ and Λ′ satisfy
certain crucial constraints. The enumeration generated by g determines the order
of samplings in check(ds), which would further affect the coupling reasoning that
relates the samplings in the MT algorithm and check(ds).

We show that Theorem 1.2 of [51], Theorem 1.4 of [54] and Theorem 4 of [44]
are corollaries of our new result. When proving Theorem 1.2 of [51] as a corollary
of our new result, we simply take DS as the set of all witness trees, f = fWT,
and g = gWT. We give details of our new result and proofs in App. J.2.

7 Related Work

(Positive) almost sure termination. Existing proof methods for almost sure ter-
mination (AST) can be roughly classified into the following two categories: “di-
rect” methods [49, 13, 14, 25, 50, 39, 48], which prove termination by constructing
probabilistic ranking functions, and “indirect” methods [42, 53, 52, 41], which
infer finite bounds on the expected runtime and then imply the termination.

However, these methods may not apply to ALLLs’ termination. To construct
the structures (e.g. ranking supermatingales [14, 25] and upper ω-invariants [42])
required by these methods, we need to understand what occurs during each iter-
ation of the algorithm’s outer loop, which is, however, not yet well understood.
For example, [51] only analyzes the properties of the entire MT algorithm (e.g.
(2)), not of each individual iteration.

In Sec. 2.3, we emphasize Lem. 1 as a general proof method for positive almost
sure termination (PAST) [13]. Lem. 1 also serves as a fallback plan for proving
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(P-)AST. Informally, a part of existing methods [14, 25, 50, 42] provide stronger
premises than Lem. 1’s. These premises are easier to prove in most scenarios,
except for ALLLs. For most programs, one can still apply these existing methods;
for programs like ALLLs, one should take a step back and apply Lem. 1.

Asynchronous coupling. In Sec. 2.4, we apply the RT-based coupling proof recipe
to (8), which involves C ′

MT(cnt, K) and check(wt). Existing probabilistic rela-
tional program logics [6, 7, 8] support couplings, but none of them can prove
(8). Specifically, these works only provide proof rules for synchronous couplings.
Their rules say that, when the two programs sample from the same distribution
synchronously, we can reason as if the two sampling statements return the same
value. But, it may not be possible to synchronize the sampling statements in
C ′

MT(cnt, K) and check(wt) for the following reason. Given an execution log’s
prefix Λ and the corresponding witness tree wt = fWT(Λ), C ′

MT(cnt, K) resam-
ples the variables that ηj depends on for every event ηj in Λ, and check(wt)
does similar resamplings but its events are taken from the sequence gWT(wt).
However, gWT(wt) can be different from Λ, since the construction of wt (i.e.
fWT(Λ)) may drop some events in Λ and lose some ordering information of Λ,
which gWT(wt) cannot recover.

Recently [29] proposes a probabilistic relational program logic that supports
asynchronous coupling. They introduce presampling tapes, a new kind of ghost
state, which store the sampling results ahead of time. Our work is developed
independently, with a more focused goal of verifying ALLLs. Technically, our
RTs look similar to their tapes, but there are several key differences as follows.

First, we give an RT-based operational semantics, where all the samples
(which could be infinitely many) are generated at once and stored in the RT
before programs start execution, and the RT is immutable during the program
execution. By contrast, sample values are added into their tapes one at a time
and on demand by ghost operations in the logical reasoning, and are popped out
at sampling statements. We think their approach is more flexible, but ours is
more suitable for complicated examples like ALLLs. In particular, as we explain
at the end of Sec. 2.4, we can use an intermediate assertion R to specify the whole
sampling history. R can be derived as the post-condition of the unary reasoning
of one program, and then used as the pre-condition of the other, thanks to
the immutability of RT . With dynamically changing tapes, they would need
ghost variables to track the popped samples, and write complicated assertions
to describe the correspondence between the tapes used by the two programs. We
give a more detailed comparison in App. K.

Second, the two works have different focuses. We mainly focus on verifying
ALLLs, so we verify almost sure termination as well as a restricted form of
relational properties (like (8)). Their work verifies contextual refinement, but
does not verify termination.

Finally, in addition to the above differences in the formal verification tech-
niques, verifying ALLLs itself is a challenging task, and is one of the major
contributions of this work.
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Other related works. [23] proposes the guard strengthening proof rule for verifying
lower bounds of expected values at the end of while loops. This rule introduces
a loop with strengthened loop guard, which is similar to the truncated one in
the premise of our loop truncation (Lem. 1 and Thm. 2). However, these two
methods have different focuses. Their rule focuses on proving lower bounds, while
our loop truncation focuses on proving general total correctness and PAST. The
PAST is about an upper bound of the expected runtime.

We have discussed other related works in Sec. 2.2 and Sec. 2.4, including: the
semantics that are equivalent to the distribution-based semantics [46, 49, 45],
and the semantics with explicit random sources [45, 12, 19]. In the future, we
would like to test our proof recipes with more applications, such as the other
ALLL-related results mentioned in Sec. 6. We also plan to mechanize our work
in a proof assistant, as [20] have mechanized the classical (i.e. non-constructive)
proof of the Lovász Local Lemma in Isabelle/HOL.
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(PVar) x, an ::= . . . (Nat) n, N, M ∈ N (Real) p, q, r ∈ R
(Val) v ::= r | Λ (Seq) Λ ∈ [] | n :: Λ

(Dsts) D ::= (κ1, . . . , κN ) (Dst) κ ∈ DReal

(Evts) E ::= (η1, . . . , ηM ) (Evt) η ∈ Real × · · · × Real︸ ︷︷ ︸
N Real’s

→ {true, false}

(Expr) e ::= v | x | e1 + e2 | e1 − e2 | a[e] | e1⟨e2⟩
| len(e) | app(e1, e2) | concat(e1, e2) | pf(e1, e2) | . . .

(Bexp) b ::= true | false | e1 = e2 | e1 < e2 | ¬b | b ∧ b | b ∨ b
| hold(e, e1, . . . , eN ) | vbl(e1, e2) | . . .

(Stmt) C ::= skip | x := e | x := Sample(e) | a[e1] := e2
| C1; C2 | if (b) then C1 else C2 | while (b) do C | . . .

Fig. 11. Syntax of the programming language.

A The Programming Language

We give the definitions of the syntax, the semantics rules and some important
definitions of our programming language in Fig. 11, Fig. 12, Fig. 13, Fig. 14,
Fig. 15 and Fig. 16.

We show the semantics rules of the distribution-based operational semantics
in Fig. 13. Informally, (C, σ) p−→ (C ′, σ′) says that (C, σ) steps to (C ′, σ′) with
probability p. For the step which samples from the distribution D[i] and gets r as
the result, the probability is D[i](r). The probabilities of other execution steps
are simply 1. Moreover, (C, σ) p−→n(C ′, σ′) holds if p is the sum of the probabilities
of all n-step paths from (C, σ) to (C ′, σ′), where each path’s probability is the
product of all steps’ probabilities in the path. Then, for (C, σ) p−→n(skip, σ′),
since we allow skip to stutter (see the first rule in Fig. 13), the probability p
is actually the sum of the probabilities of all execution paths which start from
(C, σ) and terminate on σ′ in no more than n steps.

Now we define the semantic functions, JCK(σ) ∈ SDState and JCK(µ) ∈ SDState
(where µ ∈ DState), as follows:

JCK(σ) ≜ λσ′. lim p⃗, where ∀n. (C, σ) p⃗[n]−−→n(skip, σ′)
JCK(µ) ≜ Eσ∼µ{JCK(σ)}

The probability of C’s execution from σ finally reaching σ′, say JCK(σ)(σ′), is
the sum of probabilities of all execution paths from (C, σ) to (skip, σ′). This is
defined by letting n approach infinity in (C, σ) p−→n(skip, σ′). We further define
JCK(µ) by lifting JCK(σ), using the expected sub-distribution in Sec. 3.1.

A.1 Measurability

Below we prove that our resampling-table-based semantics is indeed well-defined
(Lem. 2).
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vbl(η, j) iff ∃r1, . . . , rN , r′. η(r1, . . . , rN ) ̸= η(r1, . . . , rj−1, r′, rj+1, . . . , rN )

P(η) ≜
∑

r1∈supp(D[1]),...,rN ∈supp(D[N ]) : η(r1,...,rN )=true

∏
i∈[1,N ]

D[i](ri)

Γ (j) ≜ {k ∈ [1, M ] : ∃i ∈ [1, N ]. vbl(E [j], i) ∧ vbl(E [k], i))} \ {j}

Γ +(j) ≜ Γ (j) ⊎ {j}

Indep(J) iff ∀j ∈ J. j ∈ [1, M ] ∧ (∀k ∈ J. k /∈ Γ (j))

Γ ′(j) ≜ {k ∈ [1, M ] : ∃r1, . . . , rN , r′
1, . . . , r′

N .
∧ (∀i ∈ [1, N ]. (vbl(E [j], i) ∧ vbl(E [k], i)) ∨ ri = r′

i)
∧ hold(j, r1, . . . , rN ) = true ∧ hold(k, r′

1, . . . , r′
N ) = true

∧ (hold(j, r′
1, . . . , r′

N ) = false ∨ hold(k, r1, . . . , rN ) = false)} \ {j}

Γ ′+(j) ≜ Γ ′(j) ⊎ {j}

Fig. 12. Definitions related to D and E .

(skip, σ) 1−→ (skip, σ)

JeKσ = v

(x := e, σ) 1−→ (skip, σ{x⇝ v})

JeKσ = i ∈ [1, N ] D[i](r) = p

(x := Sample(e), σ) p−→ (skip, σ{x⇝ r})
Je1Kσ = n Je2Kσ = v

(a[e1] := e2, σ) 1−→ (skip, σ{an ⇝ v})

(skip; C, σ) 1−→ (C, σ)

(C1, σ) p−→ (C′
1, σ′) C1 ̸= skip

(C1; C2, σ) p−→ (C′
1; C2, σ′)

JbKσ = true

(if (b) then C1 else C2, σ) 1−→ (C1, σ)

JbKσ = false

(if (b) then C1 else C2, σ) 1−→ (C2, σ)

(while (b) do C, σ) 1−→ (if (b) then (C; while (b) do C) else skip, σ)

(C, σ) 1−→0(C, σ)

p =
∑

C′,σ′ {p1 · p2 | (C, σ) p1−→ (C′, σ′) ∧ (C′, σ′) p2−→n(C′′, σ′′)}

(C, σ) p−→n+1(C′′, σ′′)

Fig. 13. Distribution-based operational semantics.

Proof of Lem. 2. By definition, we only need to show that⋃
n

{RT | RT ⊢ (C, σ, ι) −→n(skip, σ′, _)} ∈ F .

Since F is closed under countable union, this follows from Lem. 4. ⊓⊔

Lemma 4. For all C, σ, σ′, ι and n,

{RT | RT ⊢ (C, σ, ι) −→n(skip, σ′, _)} ∈ F .
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JvKσ ≜ v

JxKσ ≜ σ(x)
Je1 + e2Kσ ≜ Je1Kσ + Je2Kσ

Je1 − e2Kσ ≜ Je1Kσ − Je2Kσ

Ja[e]Kσ ≜ σ(an)
where JeKσ = n

Je1⟨e2⟩Kσ ≜ Λ⟨n⟩
where Je1K = Λ, Je2Kσ = n ∈ [1, |Λ|]

Jlen(e)Kσ ≜ |Λ|
where JeKσ = Λ

Japp(e1, e2)Kσ ≜ n :: Λ
where Je1Kσ = Λ, Je2Kσ = n

Jconcat(e1, e2)Kσ ≜ Λ1 ∥ Λ2
where Je1Kσ = Λ1, Je2Kσ = Λ2

Jpf(e1, e2)Kσ ≜ Λ⟨1 . . . n⟩
where Je1Kσ = Λ, Je2Kσ = n

|Λ| ≜
{

0 if Λ = []
1 + |Λ′| if Λ = n :: Λ′

Λ⟨i⟩ ≜
{

n if i = |Λ| ∧ Λ = n :: Λ′

Λ′⟨i⟩ if i < |Λ| ∧ Λ = n :: Λ′

Λ1 ∥ Λ2 ≜

{
Λ1 if Λ2 = []
n :: (Λ1 ∥ Λ′

2) if Λ2 = n :: Λ′
2

Λ⟨1 . . . n⟩ ≜
{

ϵ if n = 0
Λ⟨n⟩ :: Λ⟨1 . . . n − 1⟩ if 1 ≤ n ≤ len(Λ)

Λ1 ≺ Λ2 iff ∃n. n < |Λ2| ∧ Λ1 = Λ2⟨1 . . . n⟩

Fig. 14. Auxiliary definitions of the programming language (part I).

Proof. Denoting

SC,σ,ι,n = {RT | RT ⊢ (C, σ, ι) −→n(skip, σ′, _)},

it suffices to show that SC,σ,ι,n ∈ F . We prove by induction on n.

– n = 0. Note that SC,σ,ι,0 = ((C = skip ∧ σ = σ′) ? RTable : ∅) ∈ F .
– n = k + 1. We have the following two cases.

• C does not perform a sampling. That is, there exist unique C ′′ and σ′′

such that, for all RT , RT ⊢ (C, σ, ι) −→ (C ′′, σ′′, ι). Thus SC,σ,ι,n =
SC′′,σ′′,ι,k, and from the induction hypothesis we have SC,σ,ι,n ∈ F .

• C performs a sampling. That is, there exist unique x, C ′′, ι′′ ̸= ι and i ∈
[1, N ] such that, for all RT , RT ⊢ (C, σ, ι) −→ (C ′′, σ{x⇝ RT [i][ιi]}, ι′′).
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JtrueKσ ≜ true
JfalseKσ ≜ false

Je1 = e2Kσ ≜

{
true if Je1Kσ = Je2Kσ

false otherwise

Je1 < e2Kσ ≜

{
true if Je1Kσ < Je2Kσ

false otherwise

J¬bKσ ≜

{
true if JbKσ = false
false otherwise

Jb1 ∧ b2Kσ ≜

{
true if Jb1Kσ = true and Jb1Kσ = true
false otherwise

Jb1 ∨ b2Kσ ≜

{
true if Jb1Kσ = true or Jb1Kσ = true
false otherwise

Jhold(e, e1, . . . , eN )Kσ ≜ E [k](r1, . . . , rN )
where JeKσ = k ∈ [1, M ],

JeiKσ = ri for each i ∈ [1, N ]

Jvbl(e1, e2)Kσ ≜

{
true if vbl(E [k], j)
false otherwise

where Je1Kσ = k ∈ [1, M ],
Je2Kσ = j ∈ [1, N ]

Fig. 15. Auxiliary definitions of the programming language (part II).

Thus

SC,σ,ι,n =
⋃

r∈supp(D[i])

(
SC′′,σ{x⇝r},ι′′,k

∩ {RT | RT [i][ιi] = r}

)
.

Note that {RT | RT [i][ιi] = r} ∈ F for all r ∈ supp(D[i]). Since
F is closed under countable union and intersection, from the induction
hypothesis we have SC,σ,ι,n ∈ F .

⊓⊔

A.2 Semantics Equivalence

To prove the equivalence between the distribution-based semantics and the RT-
based semantics (Thm. 1), we define an auxiliary semantics, called partial-table-
based semantics, as presented in Fig. 17. Informally, a partial table PT is a
“prefix” of some resampling table. We first prove that the distribution-based
semantics is equivalent to the PT-based semantics (Lem. 10), and then prove
that the PT-based semantics is equivalent to the RT-based semantics (Lem. 11).

We first give some important properties related to the PT-based semantics.
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RT ⊢ (skip, σ, ι) −→ (skip, σ, ι)

JeKσ = v

RT ⊢ (x := e, σ, ι) −→ (skip, σ{x⇝ v}, ι)

Je1Kσ = n Je2Kσ = v

⊢ (a[e1] := e2, σ, ι) −→ (skip, σ{an ⇝ v}, ι)

JeKσ = i ∈ [1, N ] ι′ = (ι[1], . . . , ι[i − 1], ι[i] + 1, ι[i + 1], . . . , ι[N ])
RT ⊢ (x := Sample(e), σ, ι) −→ (skip, σ{x⇝ RT [i][ι[i]]}, ι′)

RT ⊢ (C1, σ, ι) −→ (C′
1, σ′, ι′) C1 ̸= skip

RT ⊢ (C1; C2, σ, ι) −→ (C′
1; C2, σ′, ι′) RT ⊢ (skip; C, σ, ι) −→ (C, σ, ι)

JbKσ = true
RT ⊢ (if (b) then C1 else C2, σ, ι) −→ (C1, σ, ι)

JbKσ = false
RT ⊢ (if (b) then C1 else C2, σ, ι) −→ (C2, σ, ι)

RT ⊢ (while (b) do C, σ, ι) −→ (if (b) then (C; while (b) do C) else skip, σ, ι)

Fig. 16. Resampling-table-based operational semantics.

Lemma 5. For all n, RT, C, C ′, σ, σ′, ι and ι′, if

RT ⊢ (C, σ, ι) −→n(C ′, σ′, ι′),

then max(ι) ≤ max(ι′) ≤ max(ι) + n.

Proof. By induction on n. ⊓⊔

Lemma 6. For all k, n, RT, RT ′, C, C ′, σ, σ′, ι and ι′, if
– RT ⊢ (C, σ, ι) −→k(C ′, σ′, ι′);
– For all i ∈ [1, N ] and j ∈ [0, n), RT [i][j] = RT ′[i][j];
– max(ι′) ≤ n;

then RT ′ ⊢ (C, σ, ι) −→k(C ′, σ′, ι′).

Proof. By induction on k. ⊓⊔

Lemma 7. For all k, n, RT, C, C ′, σ, σ′, ι′ and PT ∈ PT n, if k ≤ n and PT ⊑
RT , then

PT ⊢ (C, σ, ιinit) −→k(C ′, σ′, ι′) ⇐⇒ RT ⊢ (C, σ, ιinit) −→k(C ′, σ′, ι′).

Proof. If PT ⊢ (C, σ, ιinit) −→k(C ′, σ′, ι′), then there exists RT ′ such that RT ′ ⊢
(C, σ, ιinit) −→ k(C ′, σ′, ι′), PT ⊑ RT ′, and max(ι′) ≤ n. Since PT ⊑ RT , we
know that RT [i][j] = RT ′[i][j] for all i ∈ [1, N ] and j ∈ [0, n), and thus from
Lem. 6 we have RT ⊢ (C, σ, ιinit) −→k(C ′, σ′, ι′).

If RT ⊢ (C, σ, ιinit) −→k(C ′, σ′, ι′), then from Lem. 5 we have max(ι′) ≤ k ≤ n.
Thus by definition PT ⊢ (C, σ, ιinit) −→k(C ′, σ′, ι′). ⊓⊔
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(PTable) P T ∈
⊎

n≥0([1, N ] × [0, n) → Real)
where ∀i, j. P T [i][j] ∈ supp(D[i])

ncol(P T ) ≜ n where dom(P T ) = [1, N ] × [0, n)

PT n ≜ {P T | ncol(P T ) = n}

ω(P T ) ≜
∏

i∈[1,N ],j∈[0,ncol(P T )) D[i](P T [i][j])

max(ι) ≜ max(ι1, . . . , ιN )

P T ⊑ RT iff ∀i ∈ [1, N ], j ∈ [0, ncol(P T )). P T [i][j] = RT [i][j]

P T1 ⊑ P T2 iff ∀i ∈ [1, N ], j ∈ [0, ncol(P T1)). P T1[i][j] = P T2[i][j]

P T ⊑ RT RT ⊢ (C, σ, ι) −→n(C′, σ′, ι′) max(ι′) ≤ ncol(P T )
P T ⊢ (C, σ, ι) −→n(C′, σ′, ι′)

JCKPT(σ) ≜ λσ′. lim
n→∞

∑
P T ∈PT n

ω(P T ) ·
[
P T ⊢ (C, σ, ιinit) −→n (skip, σ′, _)

]
JCKPT(µ) ≜ Eσ∼µ{JC KPT(σ)}

Fig. 17. Partial-table-based semantics and auxiliary definitions.

Lemma 8. For all k, n1, n2, C, C ′, σ, σ′, ι′, PT1 ∈ PT n1 and PT2 ∈ PT n2 , if
k ≤ n1 ≤ n2 and PT1 ⊑ PT2, then

PT1 ⊢ (C, σ, ιinit) −→k(C ′, σ′, ι′) ⇐⇒ PT2 ⊢ (C, σ, ιinit) −→k(C ′, σ′, ι′).

Proof. If PT1 ⊢ (C, σ, ιinit) −→k(C ′, σ′, ι′), then there exists RT such that RT ⊢
(C, σ, ιinit) −→k(C ′, σ′, ι′), PT1 ⊑ RT and max(ι′) ≤ n1 ≤ n2. Now we define a
new resampling table RT ′ by replacing the first n2 columns of RT with PT2,
then PT1 ⊑ PT2 ⊑ RT ′, and thus RT [i][j] = RT ′[i][j] for all i ∈ [1, N ] and
j ∈ [0, n1). From Lem. 6, we have RT ′ ⊢ (C, σ, ιinit) −→k(C ′, σ′, ι′), and thus by
definition PT2 ⊢ (C, σ, ιinit) −→k(C ′, σ′, ι′).

If PT2 ⊢ (C, σ, ιinit) −→ k(C ′, σ′, ι′), then there exists RT such that RT ⊢
(C, σ, ιinit) −→k(C ′, σ′, ι′) and PT1 ⊑ PT2 ⊑ RT . From Lem. 5, we have max(ι′) ≤
k ≤ n1, and thus by definition PT1 ⊢ (C, σ, ιinit) −→k(C ′, σ′, ι′). ⊓⊔

Lemma 9. For all n ≥ 1, PT1, PT2 ∈ PT n, k, C, C ′, σ, σ′, ι and ι′, if

– There exists i′ ∈ [1, N ] such that:
• For all i ∈ [1, N ] \ {i′} and j ∈ [0, n), PT1[i][j] = PT2[i][j];
• PT2[i′][0] = PT1[i′][n − 1];
• For all j ∈ [0, n − 1), PT2[i′][j + 1] = PT1[i′][j];

– max(ι′) < n;

then

PT1 ⊢ (C, σ, ι) −→k(C ′, σ′, ι′) ⇐⇒
PT2 ⊢ (C, σ, ι{i′ ⇝ ι[i′] + 1}) −→k(C ′, σ′, ι′{i′ ⇝ ι′[i′] + 1}).
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Proof. Let PT1 ⊢ (C, σ, ι) −→ k(C ′, σ′, ι′), then there exists RT such that
PT1 ⊑ RT , max(ι′) < n and RT ⊢ (C, σ, ι) −→ k(C ′, σ′, ι′). Now we define a
new resampling table RT ′ by replacing the first n columns of RT with PT2,
then PT2 ⊑ RT ′. By definition, to prove PT2 ⊢ (C, σ, ι{i′ ⇝ ι[i′] + 1}) −→

k(C ′, σ′, ι′{i′ ⇝ ι′[i′] + 1}), since max(ι′{i′ ⇝ ι′[i′] + 1}) ≤ max(ι′) + 1 ≤ n, it
remains to show that RT ′ ⊢ (C, σ, ι{i′ ⇝ ι[i′]+1}) −→k(C ′, σ′, ι′{i′ ⇝ ι′[i′]+1}).
This can be proved by induction on k.

Let PT2 ⊢ (C, σ, ι{i′ ⇝ ι[i′] + 1}) −→ k(C ′, σ′, ι′{i′ ⇝ ι′[i′] + 1}), then
there exists RT such that PT2 ⊑ RT and RT ⊢ (C, σ, ι{i′ ⇝ ι[i′] + 1}) −→

k(C ′, σ′, ι′{i′ ⇝ ι′[i′] + 1}). Now we define a new resampling table RT ′ by replac-
ing the first n columns of RT with PT1, then PT1 ⊑ RT ′. By definition, since
max(ι′) < n, to prove PT1 ⊢ (C, σ, ι) −→k(C ′, σ′, ι′), we only need to show that
RT ′ ⊢ (C, σ, ι) −→k(C ′, σ′, ι′). This can again be proved by induction on k. ⊓⊔

The following lemma states the equivalence between the distribution-based
semantics and the PT-based semantics.

Lemma 10. For all C and µ,

JCK(µ) = JCKPT(µ).

Proof. Below we prove that, for all σ, σ′,

JCK(σ)(σ′) = JCKPT(σ)(σ′).

By definition, we only need to prove that

p⃗[n] =
∑

P T ∈PT n

ω(PT ) · [PT ⊢ (C, σ, ιinit) −→n(skip, σ′, _)]

holds for all n, where (C, σ) p⃗[n]−−→n(skip, σ′). We prove by induction on n. For
n = 0, we have LHS = [C = skip ∧ σ = σ′] = RHS. Below we assume that
n = k + 1. We have the following two cases.

– C does not perform a sampling. That is, there exist unique C ′′, σ′′ such that
(C, σ) 1−→ (C ′′, σ′′). From the induction hypothesis and Lem. 8, we have

p⃗[n] = p (where (C ′′, σ′′) p−→k(skip, σ′))

=
∑

P T ∈PT k

ω(PT ) ·
[
PT ⊢ (C ′′, σ′′, ιinit) −→k(skip, σ′, _)

]
=

∑
P T ∈PT n

ω(PT ) ·
[
PT ⊢ (C ′′, σ′′, ιinit) −→k(skip, σ′, _)

]
=

∑
P T ∈PT n

ω(PT ) · [PT ⊢ (C, σ, ιinit) −→n(skip, σ′, _)] .
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– C performs a sampling. That is, there exist unique C ′′, x and i ∈ [1, N ]
such that: for all r ∈ supp(D[i]), (C, σ) D[i](r)−−−−→ (C ′′, σ{x⇝ r}) holds. From
Lem. 5, Lem. 8, Lem. 9 and the induction hypothesis, we have

p⃗[n] =
∑

r∈supp(D[i])

{D[i](r) · p2 | (C ′′, σ{x⇝ r}) p2−→k(skip, σ′)}

=
∑

r∈supp(D[i])

D[i](r)
∑

P T ∈PT k

ω(PT )

·
[
PT ⊢ (C ′′, σ{x⇝ r}, ιinit) −→k(skip, σ′, _)

]
=

∑
r∈supp(D[i])

∑
P T ∈PT n:P T [i][k]=r

ω(PT )

·
[
PT ⊢ (C ′′, σ{x⇝ r}, ιinit) −→k(skip, σ′, _)

]
=

∑
r∈supp(D[i])

∑
P T ∈PT n:P T [i][0]=r

ω(PT )

·
[
PT ⊢ (C ′′, σ{x⇝ r}, ιinit{i⇝ 1}) −→k(skip, σ′, _)

]
=

∑
r∈supp(D[i])

∑
P T ∈PT n:P T [i][0]=r

ω(PT )

· [PT ⊢ (C, σ, ιinit) −→n(skip, σ′, _)]

=
∑

P T ∈PT n

ω(PT ) · [PT ⊢ (C, σ, ιinit) −→n(skip, σ′, _)] .

⊓⊔

The following lemma states the equivalence between the PT-based semantics
and the RT-based semantics.

Lemma 11. For all C and µ,

JCKRT(µ) = JCKPT(µ).

Proof. We prove that, for all σ, σ′,

JCKRT(σ)(σ′) = JCKPT(σ)(σ′).

By definition, we only need to prove the following:

M({RT | RT ⊢ (C, σ, ιinit) −→∗ (skip, σ′, _)})

= lim
n→∞

∑
P T ∈PT n

ω(PT ) · [PT ⊢ (C, σ, ιinit) −→n(skip, σ′, _)] .

Since {RT : PT ⊑ RT} ∈ F for all PT , from Lem. 7 we have

LHS = M
(

lim
n→∞

{RT | RT ⊢ (C, σ, ιinit) −→n(skip, σ′, _)}
)

= lim
n→∞

M({RT | RT ⊢ (C, σ, ιinit) −→n(skip, σ′, _)})
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= lim
n→∞

M

( ⊎
P T ∈PT n

{
RT | PT ⊑ RT ∧

RT ⊢ (C, σ, ιinit) −→n(skip, σ′, _)

})

= lim
n→∞

∑
P T ∈PT n

M
({

RT | PT ⊑ RT ∧
RT ⊢ (C, σ, ιinit) −→n(skip, σ′, _)

})
= lim

n→∞

∑
P T ∈PT n

M
({

RT | PT ⊑ RT ∧
PT ⊢ (C, σ, ιinit) −→n(skip, σ′, _)

})
= lim

n→∞

∑
P T ∈PT n

M({RT | PT ⊑ RT})

· [PT ⊢ (C, σ, ιinit) −→n(skip, σ′, _)]

= lim
n→∞

∑
P T ∈PT n

ω(PT ) · [PT ⊢ (C, σ, ιinit) −→n (skip, σ′, _)] .

⊓⊔

Proof of Thm. 1. Directly from Lem. 10 and Lem. 11. ⊓⊔

B Assertion Languages

This section gives detailed definitions of our assertion languages.

B.1 Assertions over States and State Distributions

We give the definition of assertions over states and state distributions in Fig. 18.
We use #{e1, . . . , en} [5] as a shorthand of the assertion

∀X1, . . . , Xn. Pr
[∧

i∈[1,n] . ei = Xi

]
=
∏

i∈[1,n] Pr[ei = Xi].

Below we define the partial correctness in the distribution-based semantics.

Definition 6 (Partial Correctness). For all P, C, Q, ⊨ {P}C{Q} holds iff

∀µ. µ ⊨ P ∧ |JCK(µ)| = 1 =⇒ JCK(µ) ⊨ Q.

B.2 Assertions over RT-Extended States

We give the definition of assertions over RT-extended states in Fig. 19, Fig. 20
and Fig. 21.

C Soundness of Loop Truncation

Below we prove the soundness of loop truncation (Thm. 2).
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(Assn) p, q, r ::= b | ¬q | q1 ∧ q2 | q1 ∨ q2 | ∀X. q | ∃X. q | . . .

(PExp) ξ ::= r | E[e] | Pr[q] | ξ1 + ξ2 | ξ1 − ξ2 | · · ·
(PAssn) P, Q, R ::= ⌈q⌉ | e1 ∼ e2 | ξ1 = ξ2 | ξ1 < ξ2

| ¬Q | Q1 ∧ Q2 | Q1 ∨ Q2 | Q1 ⊕p Q2 | ∀X. Q | ∃X. Q | . . .

µ1 ⊕p µ2 ≜ λσ. p · µ1(σ)
+ (1 − p) · µ2(σ)

µ{X ⇝ v} ≜ Eσ∼µ{δ(σ{X ⇝ v})}

JrKµ ≜ r

JE[e]Kµ ≜ Eσ∼µ[JeKσ]
JPr[q]Kµ ≜ Prσ∼µ[σ ⊨ q]
Jξ1 + ξ2Kµ ≜ Jξ1Kµ + Jξ2Kµ

Jξ1 − ξ2Kµ ≜ Jξ1Kµ − Jξ2Kµ

σ ⊨ b iff JbKσ = true
σ ⊨ ¬q iff ¬(σ ⊨ q)
σ ⊨ q1 ∧ q2 iff (σ ⊨ q1) ∧ (σ ⊨ q2)
σ ⊨ q1 ∨ q2 iff (σ ⊨ q1) ∨ (σ ⊨ q2)
σ ⊨ ∀X. q iff ∀v. σ{X ⇝ v} ⊨ q
σ ⊨ ∃X. q iff ∃v. σ{X ⇝ v} ⊨ q

µ ⊨ ⌈q⌉ iff ∀σ. σ ∈ supp(µ) =⇒ σ ⊨ q
µ ⊨ e1 ∼ e2 iff ∃n. (µ ⊨ ⌈e2 = n⌉) ∧

(∀r. JPr[e1 = r]Kµ = D[n](r))
µ ⊨ ξ1 = ξ2 iff Jξ1Kµ = Jξ2Kµ

µ ⊨ ξ1 < ξ2 iff Jξ1Kµ < Jξ2Kµ

µ ⊨ Q1 ⊕p Q2 iff (p = 1 ∧ µ ⊨ Q1) ∨
(p = 0 ∧ µ ⊨ Q2) ∨
(∃µ1, µ2. µ = µ1 ⊕p µ2 ∧

µ1 ⊨ Q1 ∧ µ2 ⊨ Q2)
µ ⊨ ¬Q iff ¬(µ ⊨ Q)

µ ⊨ Q1 ∧ Q2 iff (µ ⊨ Q1) ∧ (µ ⊨ Q2)
µ ⊨ Q1 ∨ Q2 iff (µ ⊨ Q1) ∨ (µ ⊨ Q2)

µ ⊨ ∀X. Q iff ∀v. µ{X ⇝ v} ⊨ Q

µ ⊨ ∃X. Q iff ∃v. µ{X ⇝ v} ⊨ Q

⊨ Q iff ∀µ. µ ⊨ Q

Fig. 18. Assertions over states and state distributions.

(RTState) Σ ::= (σ, RT, ι)
(RTExpr) E ::= e | RT[E1][E2] | hd1 | . . . | hdN | E1 + E2 | [B] | . . .

(RTBexp) B ::= b | E1 = E2 | E1 < E2 | ¬B | B1 ∧ B2 | B1 ∨ B2 | . . .

(RTAssn) P, Q, R ::= q | B | ¬Q | Q1 ∧ Q2 | Q1 ∨ Q2 | ∀X. Q | ∃X. Q | . . .

Fig. 19. Assertions over RT-extended states.

Lemma 12. For all E, µ⃗ and µ, if lim µ⃗ = µ, then

Pr
a∼µ

[E(a)] = lim
n→∞

Pr
a∼µ⃗[n]

[E(a)].

Proof. For all n,

0 ≤
∣∣∣∣ Pr
a∼µ

[E(a)] − Pr
a∼µ⃗[n]

[E(a)]
∣∣∣∣

=

∣∣∣∣∣∣
∑

a∈A:E(a)

(µ(a) − µ⃗[n](a))

∣∣∣∣∣∣
≤
∑
a∈A

|µ(a) − µ⃗[n](a)|.
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JeK(σ,RT,ι) ≜ JeKσ

JRT[E1][E2]KΣ ≜ RT [i][j]
where JE1KΣ = i, JE2KΣ = j

JhdnK(σ,RT,ι) ≜ ι[n]
JE1 + E2KΣ ≜ JE1KΣ + JE2KΣ

J[B]KΣ ≜ JBKΣ = true ? 1 : 0

(σ, RT, ι) ⊨ q iff σ ⊨ q
Σ ⊨ B iff JBKΣ = true
Σ ⊨ ¬Q iff ¬(Σ ⊨ Q)
Σ ⊨ Q1 ∧ Q2 iff (Σ ⊨ Q1) ∧ (Σ ⊨ Q2)
Σ ⊨ Q1 ∨ Q2 iff (Σ ⊨ Q1) ∨ (Σ ⊨ Q2)
(σ, RT, ι) ⊨ ∀X. Q iff ∀v. (σ{X ⇝ v}, RT, ι) ⊨ Q
(σ, RT, ι) ⊨ ∃X. Q iff ∃v. (σ{X ⇝ v}, RT, ι) ⊨ Q
RT ⊨ Q iff ∀σ, ι. (σ, RT, ι) ⊨ Q
⊨RT Q iff ∀Σ. Σ ⊨ Q

Fig. 20. Auxiliary definitions of assertions over RT-extended states (part I).

JbK(σ,RT,ι) ≜ JbKσ

JE1 = E2KΣ ≜

{
true if JE1KΣ = JE2KΣ

false otherwise

JE1 < E2KΣ ≜

{
true if JE1KΣ < JE2KΣ

false otherwise

J¬BKΣ ≜

{
true if JBKσ = false
false otherwise

JB1 ∧ B2KΣ ≜

{
true if JB1Kσ = true and JB2Kσ = true
false otherwise

JB1 ∨ B2KΣ ≜

{
true if JB1Kσ = true or JB2Kσ = true
false otherwise

Fig. 21. Auxiliary definitions of assertions over RT-extended states (part II).

Then by the squeeze theorem we have

lim
n→∞

∣∣∣∣ Pr
a∼µ

[E(a)] − Pr
a∼µ⃗[n]

[E(a)]
∣∣∣∣ = 0,

and the lemma follows. ⊓⊔

We define E and modbf in Fig. 22. The set fv(e) contains all the program
variables in e. The set wv(C) contains all the variables in e modified by C, and
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(Ctx) E ::= [ ] | C; E | E; C | while (b) do E
| if (b) then C else E | if (b) then E else C

modbf([ ], e) always holds
modbf(C; E, e) iff modbf(E, e)
modbf(E; C, e) iff modbf(E, e) ∧ fv(e) ∩ wv(C) = ∅
modbf(if (b) then C else E, e) iff modbf(E, e)
modbf(if (b) then E else C, e) iff modbf(E, e)
modbf(while (b) do E, e) iff fv(e) ∩ wv(E) = ∅

Fig. 22. Definitions of E and modbf

fv(v) ≜ ∅
fv(x) ≜ {x}
fv(e1 + e2) ≜ fv(e1) ∪ fv(e2)
fv(e1 − e2) ≜ fv(e1) ∪ fv(e2)
fv(a[e]) ≜ {an : n ∈ Nat}
fv(e1⟨e2⟩) ≜ fv(e1) ∪ fv(e2)
fv(len(e)) ≜ fv(e)
fv(app(e1, e2)) ≜ fv(e1) ∪ fv(e2)
fv(concat(e1, e2)) ≜ fv(e1) ∪ fv(e2)
fv(pf(e1, e2)) ≜ fv(e1) ∪ fv(e2)

wv(skip) ≜ ∅
wv(x := e) ≜ {x}
wv(x := Sample(e)) ≜ {x}
wv(a[e1] := e2) ≜ {an : n ∈ Nat}
wv(C1; C2) ≜ wv(C1) ∪ wv(C2)
wv(if (b) then C1 else C2) ≜ wv(C1) ∪ wv(C2)
wv(while (b) do C) ≜ wv(C)

wv([ ]) ≜ ∅
wv(C; E) ≜ wv(C) ∪ wv(E)
wv(E; C) ≜ wv(E) ∪ wv(C)
wv(if (b) then C else E) ≜ wv(C) ∪ wv(E)
wv(if (b) then E else C) ≜ wv(E) ∪ wv(C)
wv(while (b) do E) ≜ wv(E)

Fig. 23. Definitions of fv and wv.

wv(E) contains all the variables modified by E. We give the definitions of fv and
wv in Fig. 23. One can prove that fv(e) ∩ wv(E) = ∅ =⇒ modbf(E, e).
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Proof of Thm. 2. We use the following notations:

CW ≜ while (b) do C

C ′
W(K) ≜ while (b ∧ e < K) do C

Let µ ⊨ P . From the first premise, we know that

∀K ∈ N. |JE[C ′
W(K)]K(µ)| = 1 ∧

(JE[C ′
W(K)]K(µ) ⊨ Q) ∧

(JE[C ′
W(K)]K(µ) ⊨ ⌈e ≥ 0⌉ ∧ E[e] ≤ r).

Then from Lem. 15 and modbf(E, e) we have |JE[CW]K(µ)| = 1. Moreover, from
Lem. 19 and modbf(E, e) we have

JE[CW]K(µ) = lim
K→∞

JE[C ′
W(K)]K(µ).

Since t-closed(Q), we then have JE[CW]K(µ) ⊨ Q. ⊓⊔

Following [5], we define restricted state sub-distributions. For µ ∈ SDState,
the restricted sub-distribution on set S ⊆ PVar is defined as µ|S ∈ SDState|S

,
where

∀σ ∈ State|S . µ|S(σ) = Pr
σ′∼µ

[σ = σ′
|S ].

Here State|S and σ′
|S both restrict their domains to S.

Lemma 13. For all C, σ, σ′, n, p and S ⊆ PVar, if S ∩ wv(C) = ∅, p > 0 and
(C, σ) p−→n(skip, σ′), then σ|S = σ′

|S.

Proof. By induction on n. ⊓⊔

Lemma 14. For all σ, σ′, e and S ⊆ PVar, if σ|S = σ′
|S and fv(e) ⊆ S, then

JeKσ = JeKσ′ .

Proof. By induction on the structure of e. ⊓⊔

Lemma 15. For all µ, b, C, E, e and r, if

∀K ∈ N. |JE[C ′
W(K)]K(µ)| = 1 ∧

(JE[C ′
W(K)]K(µ) ⊨ ⌈e ≥ 0⌉ ∧ E[e] ≤ r)

and modbf(E, e), then |JE[CW]K(µ)| = 1, where

CW = while (b) do C,
C ′

W(K) = while (b ∧ e < K) do C.

Proof. We prove |JE[CW]K(µ)| = 1 by contradiction. Assume that there exists
some p0 such that

|JE[CW]K(µ)| = p0 < 1.
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Take
K0 =

⌈
1 + max(r, 0)

1 − p0

⌉
,

then from Lem. 18 and |JE[C ′
W(K0)]K(µ)| = 1 we have

p0 = |JE[CW]K(µ)|

=
∑

σ

µ(σ)
∑
σ′

JE[CW]K(σ)(σ′)

≥
∑

σ

µ(σ)
∑

σ′:JeKσ′ <K0

JE[CW]K(σ)(σ′)

≥
∑

σ

µ(σ)
∑

σ′:JeKσ′ <K0

JE[C ′
W(K0)]K(σ)(σ′)

= 1 −
∑

σ′:JeKσ′ ≥K0

JE[C ′
W(K0)]K(µ)(σ′),

and then from JE[C ′
W(K0)]K(µ) ⊨ ⌈e ≥ 0⌉ we have

JE[e]KJE[C′
W(K0)]K(µ) = Eσ′∼JE[C′

W(K0)]K(µ)[JeKσ′ ]

=
∑
σ′

JE[C ′
W(K0)]K(µ)(σ′) · JeKσ′

=
∑

σ′:JeKσ′ ≥K0

JE[C ′
W(K0)]K(µ)(σ′) · JeKσ′

+
∑

σ′:JeKσ′ <K0

JE[C ′
W(K0)]K(µ)(σ′) · JeKσ′

≥
∑

σ′:JeKσ′ ≥K0

JE[C ′
W(K0)]K(µ)(σ′) · JeKσ′

≥

 ∑
σ′:JeKσ′ ≥K0

JE[C ′
W(K0)]K(µ)(σ′)

 · K0

≥ (1 − p0) · K0 > r.

This implies that
JE[C ′

W(K0)]K(µ) ⊨ E[e] > r,

which contradicts JE[C ′
W(K0)]K(µ) ⊨ E[e] ≤ r. Thus we have |JE[CW]K(µ)| = 1.

⊓⊔

Lemma 16. For all b, C, E, K, e, σ, σ′, n and p > 0, if fv(e)∩wv(E) = ∅, JeKσ′ <

K and (E[C ′
W(K)], σ) p−→n(skip, σ′), then JeKσ < K, where

CW = while (b) do C,
C ′

W(K) = while (b ∧ e < K) do C.
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Proof. We prove by induction on n and case analysis on E.
E = [ ]. If JeKσ ∈ Λ, then (E[C ′

W(K)], σ) p−→ n(skip, σ′) does not hold. If
JeKσ ≥ K, then JeKσ′ = JeKσ ≥ K, a contradiction. Thus JeKσ < K.

E = C ′; E′. Know that there exist σ′′, p1, n1, p2 and n2 < n such that
p1, p2 > 0, (C ′, σ) p1−→n1(skip, σ′′) and (E′[C ′

W(K)], σ′′) p2−→n2(skip, σ′). From
the induction hypothesis, we have JeKσ′′ < K. Then, since fv(e) ∩ wv(C ′) = ∅,
by Lem. 13 and Lem. 14 we have JeKσ = JeKσ′′ < K.

E = E′; C ′. Know that there exist σ′′, p1, p2, n2 and n1 < n such that p1, p2 >

0, (E′[C ′
W(K)], σ) p1−→ n1(skip, σ′′) and (C ′, σ′′) p2−→ n2(skip, σ′). Since fv(e) ∩

wv(C ′) = ∅, by Lem. 13 and Lem. 14 we have JeKσ′′ = JeKσ′ < K. Then from
the induction hypothesis, we have JeKσ < K.

E = if (b′) then C ′ else E′. From (E[C ′
W(K)], σ) p−→n(skip, σ′), we know

that either (C ′, σ) p−→n−1(skip, σ′) or (E′[C ′
W(K)], σ) p−→n−1(skip, σ′). For the

former case, since fv(e) ∩ wv(C ′) = ∅, by Lem. 13 and Lem. 14 we have JeKσ =
JeKσ′ < K. For the latter case, from the induction hypothesis we know that
JeKσ < K.

E = if (b′) then E′ else C ′. This is similar to the previous case.
E = while (b′) do E′. If Jb′Kσ = false, then JeKσ = JeKσ′ < K. If Jb′Kσ = true,

then there exist σ′′, p1, p2 > 0 and n1, n2 < n such that (E′[C ′
W(K)], σ) p1−→

n1(skip, σ′′) and (E[C ′
W(K)], σ′′) p2−→n2(skip, σ′). From the induction hypothesis,

we know that JeKσ′′ < K, and then JeKσ < K.
⊓⊔

Lemma 17. For all b, C, K, e, σ and σ′, if JeKσ′ < K, then

JCWK(σ)(σ′) ≥ JC ′
W(K)K(σ)(σ′),

where
CW = while (b) do C,

C ′
W(K) = while (b ∧ e < K) do C.

Proof. Let JeKσ′ < K. From Lem. 40 (take µ = δ(σ)) and Lem. 12, for all σ, we
have

JCWK(σ)(σ′) = lim
n→∞

JCn
C ; CCWK(σ)(σ′),

JC ′
W(K)K(σ)(σ′) = lim

n→∞
JCn

CL; CCW(K)K(σ)(σ′),

where
CC = if (b) then C,
C0

C = skip,
Cn+1

C = Cn
C ; CC,

CCL = if (b ∧ e < K) then C,
C0

CL = skip,
Cn+1

CL = Cn
CL; CCL,

CCW = if (b) then (while (true) do skip),
CCW(K) = if (b ∧ e < K) then (while (true) do skip).
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From Lem. 29, we know that, for all σ,

JCn
C ; CCWK(σ)(σ′) =

∑
σ′′

JCn
C K(σ)(σ′′) · JCCWK(σ′′)(σ′)

= JCn
C K(σ)(σ′) · [JbKσ′ = false],

JCn
CL; CCW(K)K(σ)(σ′) =

∑
σ′′

JCn
CLK(σ)(σ′′) · JCCW(K)K(σ′′)(σ′)

= JCn
CLK(σ)(σ′) · [JbKσ′ = false],

thus we only need to prove that, for all n and σ,

JCn
C K(σ)(σ′) ≥ JCn

CLK(σ)(σ′).

We prove by induction on n. The case of n = 0 is trivial. For n = k + 1, from
Lem. 29 and the induction hypothesis we know that

JCk+1
C K(σ)(σ′) =

∑
σ′′

JCk
CK(σ)(σ′′) · JCCK(σ′′)(σ′)

≥
∑

σ′′:JeKσ′′ <K

JCk
CK(σ)(σ′′) · JCCK(σ′′)(σ′)

≥
∑

σ′′:JeKσ′′ <K

JCk
CLK(σ)(σ′′) · JCCLK(σ′′)(σ′)

=
∑

σ′′:JeKσ′′ <K

JCk
CLK(σ)(σ′′) · JCCLK(σ′′)(σ′)

+
∑

σ′′:JeKσ′′ ≥K

JCk
CLK(σ)(σ′′) · JCCLK(σ′′)(σ′)

= JCk+1
CL K(σ)(σ′).

⊓⊔

Lemma 18. For all b, C, E, K, e, σ and σ′, if modbf(E, e) and JeKσ′ < K, then

JE[CW]K(σ)(σ′) ≥ JE[C ′
W(K)]K(σ)(σ′),

where
CW = while (b) do C,

C ′
W(K) = while (b ∧ e < K) do C.

Proof. Let JeKσ′ < K. We prove by induction on the structure of E.
E = [ ]. This follows from Lem. 17.
E = C ′; E′. From Lem. 29 and the induction hypothesis,

JE[CW]K(σ)(σ′) =
∑
σ′′

JC ′K(σ)(σ′′) · JE′[CW]K(σ′′)(σ′)

≥
∑
σ′′

JC ′K(σ)(σ′′) · JE′[C ′
W(K)]K(σ′′)(σ′)
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= JE[C ′
W(K)]K(σ)(σ′).

E = E′; C ′. We have fv(e) ∩ wv(C ′) = ∅. From Lem. 13 and Lem. 14, for all
σ′′ such that JC ′K(σ′′)(σ′) > 0, we have JeKσ′′ = JeKσ′ < K. Then, from Lem. 29
and the induction hypothesis,

JE[CW]K(σ)(σ′)

=
∑
σ′′

JE′[CW]K(σ)(σ′′) · JC ′K(σ′′)(σ′)

=
∑

σ′′:JeKσ′′ <K

JE′[CW]K(σ)(σ′′) · JC ′K(σ′′)(σ′)

≥
∑

σ′′:JeKσ′′ <K

JE′[C ′
W(K)]K(σ)(σ′′) · JC ′K(σ′′)(σ′)

=
∑
σ′′

JE′[C ′
W(K)]K(σ)(σ′′) · JC ′K(σ′′)(σ′)

= JE[C ′
W(K)]K(σ)(σ′).

E = if (b′) then C ′ else E′. If Jb′Kσ = true, then from Lem. 26 we have

JE[CW]K(σ)(σ′) = JC ′K(σ)(σ′) = JE[C ′
W(K)]K(σ)(σ′).

If Jb′Kσ = false, then from Lem. 26 and the induction hypothesis we have

JE[CW]K(σ)(σ′) = JE′[CW]K(σ)(σ′)
≥ JE′[C ′

W(K)]K(σ)(σ′)
= JE[C ′

W(K)]K(σ)(σ′).

E = if (b′) then E′ else C ′. This is similar to the previous case.
E = while (b′) do E′. We use the following notations:

CC ≜ if (b′) then E′[CW]
C0

C ≜ skip
Cn+1

C ≜ Cn
C ; CC

CCL ≜ if (b′) then E′[C ′
W(K)]

C0
CL ≜ skip

Cn+1
CL ≜ Cn

CL; CCL
CCW ≜ if (b′) then (while (true) do skip)

From Lem. 40 (take µ = δ(σ)) and Lem. 12, for all σ, we have the following:

JE[CW]K(σ)(σ′) = lim
n→∞

JCn
C ; CCWK(σ)(σ′)

JE[C ′
W(K)]K(σ)(σ′) = lim

n→∞
JCn

CL; CCWK(σ)(σ′)

Thus we only need to prove that, for all n and σ,

JCn
C ; CCWK(σ)(σ′) ≥ JCn

CL; CCWK(σ)(σ′).
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From modbf(E, e), we have fv(e) ∩ wv(E′) = ∅, which implies that
modbf(if (b′) then E′, e). Note that for all σ1 and σ2 such that JeKσ2 < K,
similar to the previous case, from the induction hypothesis we can prove
that JCCLK(σ1)(σ2) ≤ JCCK(σ1)(σ2). Moreover, if JCCLK(σ1)(σ2) > 0, from
fv(e) ∩ wv(if (b′) then E′) = ∅ and Lem. 16 we have JeKσ1 < K. Hence, by
repeatedly using the above two properties, we have

JCn
CL; CCWK(σ)(σ′)

=
∑

σ1,...,σn

JCCLK(σ)(σ1) · · · JCCLK(σn−1)(σn) · JCCWK(σn)(σ′)

=
∑

σ1,...,σn
JeKσn <K

JCCLK(σ)(σ1) · · · JCCLK(σn−1)(σn) · JCCWK(σn)(σ′)

≤
∑

σ1,...,σn
JeKσn−1 <K

JCCLK(σ)(σ1) · · · JCCK(σn−1)(σn) · JCCWK(σn)(σ′)

≤ · · ·

≤
∑

σ1,...,σn
JeKσ1 <K

JCCLK(σ)(σ1) · · · JCCK(σn−1)(σn) · JCCWK(σn)(σ′)

≤
∑

σ1,...,σn

JCCK(σ)(σ1) · · · JCCK(σn−1)(σn) · JCCWK(σn)(σ′)

= JCn
C ; CCWK(σ)(σ′).

⊓⊔

Lemma 19. For all µ, b, C, E, e and r, if

∀K ∈ N. |JE[C ′
W(K)]K(µ)| = 1 ∧

(JE[C ′
W(K)]K(µ) ⊨ ⌈e ≥ 0⌉ ∧ E[e] ≤ r)

and modbf(E, e), then

JE[CW]K(µ) = lim
K→∞

JE[C ′
W(K)]K(µ), (13)

where
CW = while (b) do C,

C ′
W(K) = while (b ∧ e < K) do C.

Proof. By applying Lem. 15, we have

|JE[CW]K(µ)| = 1. (14)

For all σ, σ′ and K such that JeKσ′ < K, from Lem. 18 we have

JE[C ′
W(K)]K(σ)(σ′) ≤ JE[CW]K(σ)(σ′). (15)
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For all K, from |JE[C ′
W(K)]K(µ)| = 1, (14) and (15) we have∑

σ′

|JE[CW]K(µ)(σ′) − JE[C ′
W(K)]K(µ)(σ′)|

=
∑
σ′

∣∣∣∣∣∑
σ

µ(σ) (JE[CW]K(σ)(σ′) − JE[C ′
W(K)]K(σ)(σ′))

∣∣∣∣∣
≤
∑
σ′

∑
σ

µ(σ) |JE[CW]K(σ)(σ′) − JE[C ′
W(K)]K(σ)(σ′)|

=
∑

σ

µ(σ)

 ∑
σ′:JeKσ′ ̸<K

|JE[CW]K(σ)(σ′) − JE[C ′
W(K)]K(σ)(σ′)| +

∑
σ′:JeKσ′ <K

(JE[CW]K(σ)(σ′) − JE[C ′
W(K)]K(σ)(σ′))


≤
∑

σ

µ(σ)

 ∑
σ′:JeKσ′ ̸<K

(JE[CW]K(σ)(σ′) + JE[C ′
W(K)]K(σ)(σ′)) +

1 −
∑

σ′:JeKσ′ <K

JE[C ′
W(K)]K(σ)(σ′)


=
∑

σ

µ(σ)

1 −
∑

σ′:JeKσ′ <K

JE[CW]K(σ)(σ′)


+ 2

1 −
∑

σ′:JeKσ′ <K

JE[C ′
W(K)]K(µ)(σ′)


≤ 3

1 −
∑

σ′:JeKσ′ <K

JE[C ′
W(K)]K(µ)(σ′)

 .

Let
fK = 1 −

∑
σ′:JeKσ′ <K

JE[C ′
W(K)]K(µ)(σ′).

Then we only need to prove that

lim
K→∞

fK = 0. (16)

We prove (16) by contradiction. Assume that (16) does not hold, then there
exists some r1 > 0 such that, for all K, there exists K ′ > K such that fK′ ≥ r1.
Take

K1 =
⌈

1 + max(r, 0)
r1

⌉
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and K ′
1 > K1 such that fK′

1
≥ r1. Then, from |JE[C ′

W(K ′
1)]K(µ)| = 1 and

JE[C ′
W(K ′

1)]K(µ) ⊨ ⌈e ≥ 0⌉, we have

JE[e]KJE[C′
W(K′

1)]K(µ) =
∑
σ′

JE[C ′
W(K ′

1)]K(µ)(σ′) · JeKσ′

=
∑

σ′:JeKσ′ ≥K′
1

JE[C ′
W(K ′

1)]K(µ)(σ′) · JeKσ′

+
∑

σ′:JeKσ′ <K′
1

JE[C ′
W(K ′

1)]K(µ)(σ′) · JeKσ′

≥
∑

σ′:JeKσ′ ≥K′
1

JE[C ′
W(K ′

1)]K(µ)(σ′) · JeKσ′

≥

 ∑
σ′:JeKσ′ ≥K′

1

JE[C ′
W(K ′

1)]K(µ)(σ′)

 · K ′
1

= fK′
1

· K ′
1

> fK′
1

· K1

≥ r1 · K1 > r,

which implies
JE[C ′

W(K1)]K(µ) ⊨ E[e] > r,

but this contradicts the premise that JE[C ′
W(K1)]K ⊨ E[e] ≤ r. Thus (16) holds.

⊓⊔

D Soundness of RT-Based Coupling

Below we prove the soundness of our relational proof recipe, the resampling-
table-based coupling (Thm. 3). We also give an extension of Thm. 3 at the end
of this section.

Proof of Lem. 3. Directly from the definitions and Thm. 1. ⊓⊔

Lemma 20. For all p, C1, C2, q1, R, q2, if

– RTonly(R);
– ⊨RT {p ∧ hdinit}C1{q1 ⇒ R};
– ⊨RT [p ∧ R ∧ hdinit]C2[q2];

then ⊨RT {⌈p⌉}C1 ≤ C2{q1, q2}.

Proof. Let µ ⊨ ⌈p⌉. Below we prove that∑
σ′:σ′⊨q1

∑
σ

µ(σ)JC1KRT(σ)(σ′) ≤
∑

σ′:σ′⊨q2

∑
σ

µ(σ)JC2KRT(σ)(σ′).
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Let σ be a state with µ(σ) > 0 below. From µ ⊨ ⌈p⌉, we know that σ ⊨ p. Then
we only need to prove that∑

σ′:σ′⊨q1

JC1KRT(σ)(σ′) ≤
∑

σ′:σ′⊨q2

JC2KRT(σ)(σ′).

For σ′, RT and ι′ satisfying σ′ ⊨ q1 and

RT ⊢ (C1, σ, ιinit) −→∗ (skip, σ′, ι′),

since (σ, RT, ιinit) ⊨ p ∧ hdinit, we know that (σ′, RT, ι′) ⊨ q1 ⇒ R from the
premise, and thus (σ′, RT, ι′) ⊨ R. From RTonly(R), we have RT ⊨ R, thus
(σ, RT, ιinit) ⊨ R and (σ, RT, ιinit) ⊨ p∧R∧hdinit. Then, from the premise, there
exists σ′′ such that σ′′ ⊨ q2 and

RT ⊢ (C2, σ, ιinit) −→∗ (skip, σ′′, _).

Now, since {σ′ | JCKRT(σ)(σ′) > 0} is countable for C = C1, C2, we have∑
σ′:σ′⊨q1

JC1KRT(σ)(σ′)

=
∑

σ′:σ′⊨q1

M({RT | RT ⊢ (C1, σ, ιinit) −→∗ (skip, σ′, _)})

= M

 ⊎
σ′:σ′⊨q1

{RT | RT ⊢ (C1, σ, ιinit) −→∗ (skip, σ′, _)}


= M({RT | ∃σ′. σ′ ⊨ q1 ∧ RT ⊢ (C1, σ, ιinit) −→∗ (skip, σ′, _)})
≤ M({RT | ∃σ′. σ′ ⊨ q2 ∧ RT ⊢ (C2, σ, ιinit) −→∗ (skip, σ′, _)})

=
∑

σ′:σ′⊨q2

M({RT | RT ⊢ (C2, σ, ιinit) −→∗ (skip, σ′, _)})

=
∑

σ′:σ′⊨q2

JC2KRT(σ)(σ′).

⊓⊔

Proof of Thm. 3. Directly from Lem. 3 and Lem. 20. ⊓⊔

We further give Thm. 5, an extension of Thm. 3, though it is not used in
our verification of ALLLs. The probability space of all resampling tables used in
Thm. 5, (Ω, F , M), is defined in Sec. 4.2.

To apply Thm. 5, it is required to find two intermediate assertions R1 and
R2, and to prove a inequality between measures of two sets of resampling tables
that satisfy R1 and R2 respectively. This theorem can roughly be regarded as
an extension of Thm. 3, since it degenerates to Thm. 3 when R1 = R2 = R and
{RT | RT ⊨ R} ∈ F is provided.

Theorem 5. For all p, C1, C2, q1, R1, R2 and q2, if
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– RTonly(R1);
– {RT | RT ⊨ R1}, {RT | RT ⊨ R2} ∈ F ;
– M({RT | RT ⊨ R1}) ≤ M({RT | RT ⊨ R2});
– ⊨RT {p ∧ hdinit}C1{q1 ⇒ R1};
– ⊨RT [p ∧ R2 ∧ hdinit]C2[q2];

then
⊨ {⌈p⌉}C1 ≤ C2{q1, q2}.

Proof. From Lem. 3, we only need to prove that

⊨RT {⌈p⌉}C1 ≤ C2{q1, q2}.

Let µ ⊨ ⌈p⌉. Below we prove that∑
σ′:σ′⊨q1

∑
σ

µ(σ)JC1KRT(σ)(σ′) ≤
∑

σ′:σ′⊨q2

∑
σ

µ(σ)JC2KRT(σ)(σ′).

Let σ be a state with µ(σ) > 0 below. From µ ⊨ ⌈p⌉, we know that σ ⊨ p. Then
we only need to prove that∑

σ′:σ′⊨q1

JC1KRT(σ)(σ′) ≤
∑

σ′:σ′⊨q2

JC2KRT(σ)(σ′).

For σ′, RT and ι′ such that σ′ ⊨ q1 and

RT ⊢ (C1, σ, ιinit) −→∗ (skip, σ′, ι′),

since (σ, RT, ιinit) ⊨ p ∧ hdinit, we know that (σ′, RT, ι′) ⊨ q1 ⇒ R1 from the
premise, and thus (σ′, RT, ι′) ⊨ R1. From RTonly(R1), we have RT ⊨ R1. From
another perspective, suppose that RT ⊨ R2, we know that (σ, RT, ιinit) ⊨ R2 and
(σ, RT, ιinit) ⊨ p ∧ R2 ∧ hdinit, and thus from the premise there exists σ′′ such
that σ′′ ⊨ q2 and

RT ⊢ (C2, σ, ιinit) −→∗ (skip, σ′′, _).

Now, since {σ′ | JCKRT(σ)(σ′) > 0} is countable for C = C1, C2, we have∑
σ′:σ′⊨q1

JC1KRT(σ)(σ′)

=
∑

σ′:σ′⊨q1

M({RT | RT ⊢ (C1, σ, ιinit) −→∗ (skip, σ′, _)})

= M

 ⊎
σ′:σ′⊨q1

{RT | RT ⊢ (C1, σ, ιinit) −→∗ (skip, σ′, _)}


= M({RT | ∃σ′. σ′ ⊨ q1 ∧ RT ⊢ (C1, σ, ιinit) −→∗ (skip, σ′, _)})
≤ M({RT | RT ⊨ R1})
≤ M({RT | RT ⊨ R2})
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⊢ [Q[e/x]]x := e[Q]
(var-t)

x /∈ fv(S) ∪ fv(e) ∪ fv(Q) X /∈ fv(e) ⊨ Q ⇒ (∃X. ⌈e = X⌉)
⊢ [Q ∧ #S]x := Sample(e)[Q ∧ #(S ∪ {x}) ∧ x ∼ e]

(smp-t)

⊨ P1 ⇒ P2 ⊢ [P2]C[Q2] ⊨ Q2 ⇒ Q1

⊢ [P1]C[Q1]
(csq-t)

⊢ [P ]C1[Q] ⊢ [Q]C2[R]
⊢ [P ]C1; C2[R]

(seq-t)
⊢ [Q]skip[Q]

(skip-t)

⊢ [P1 ∧ ⌈b⌉]C1[Q1] ⊢ [P2 ∧ ⌈¬b⌉]C2[Q2]
⊢ [(P1 ∧ ⌈b⌉) ⊕p (P2 ∧ ⌈¬b⌉)]if (b) then C1 else C2[Q1 ⊕p Q2]

(cond-t)

⊢ [P ∧ ⌈b ∧ e = X⌉]C[(P ∧ ⌈b ∧ e + 1 ≤ X⌉) ∨ (Q ∧ ⌈¬b⌉)]
⊨ P ∧ ⌈b⌉ ⇒ (∃X ′. ⌈0 ≤ e ≤ X ′⌉) X ′ /∈ fv(e)

X /∈ fv(P ) ∪ fv(Q) ∪ fv(b) ∪ fv(e) ∪ fv(C)
⊢ [(P ∧ ⌈b⌉) ∨ (Q ∧ ⌈¬b⌉)]while (b) do C[Q ∧ ⌈¬b⌉]

(while-t)

∀i ∈ [0, n). ⊢ [Qi] if (b) then C[Qi+1] ⊨ Qn ⇒ ⌈¬b⌉
⊢ [Q0] while (b) do C[Qn]

(while-tb)

⊢ [P1]C[Q1] ⊢ [P2]C[Q2]
⊢ [P1 ∧ P2]C[Q1 ∧ Q2]

(conj-t)
⊢ [P1]C[Q1] ⊢ [P2]C[Q2]

⊢ [P1 ∨ P2]C[Q1 ∨ Q2]
(disj-t)

⊢ [P ]C[Q] X /∈ fv(C)
⊢ [∃X. P ]C[∃X. Q]

(exists-t)
⊢ [P ]C[Q] X /∈ fv(C)

⊢ [∀X. P ]C[∀X. Q]
(forall-t)

Fig. 24. Selected rules of the probabilistic program logic.

≤ M({RT | ∃σ′. σ′ ⊨ q2 ∧ RT ⊢ (C2, σ, ιinit) −→∗ (skip, σ′, _)})

=
∑

σ′:σ′⊨q2

M({RT | RT ⊢ (C2, σ, ιinit) −→∗ (skip, σ′, _)})

=
∑

σ′:σ′⊨q2

JC2KRT(σ)(σ′).

⊓⊔

E A Probabilistic Program Logic

We adapt the assertion-based program logic from [5] to prove some intermedi-
ate proof goals occurring in the verification of ALLLs and other examples. We
prove the soundness of this program logic. Logic rules of this program logic are
presented in Fig. 24.

For set A and a ∈ A, the Dirac distribution δ(a) ∈ DA is defined as follows:

δ(a) ≜ λb.

{
1 if a = b

0 otherwise
.
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Theorem 6. For all P, C and Q,

⊢ [P ]C[Q] =⇒ ⊨ [P ]C[Q].

Proof. By Lem. 30, Lem. 31, Lem. 32, Lem. 33, Lem. 34, Lem. 37, Lem. 42,
Lem. 43, Lem. 44, Lem. 45, Lem. 46 and Lem. 47. ⊓⊔

Lemma 21. For all µ, Q, e and x, if µ ⊨ Q[e/x], then µ′ ⊨ Q, where µ′ =
Eσ∼µ{δ(σ{x⇝ JeKσ})}.

Proof. By induction on the structure of Q. ⊓⊔

Lemma 22. For all σ, q and x, if x /∈ fv(q), then for all v we have

σ ⊨ q ⇐⇒ σ{x⇝ v} ⊨ q.

Proof. By induction on the structure of q. ⊓⊔

Lemma 23. For all µ, Q and x, if x /∈ fv(Q), then for all v we have

µ ⊨ Q ⇐⇒ µ{x⇝ v} ⊨ Q.

Proof. By induction on the structure of Q. ⊓⊔

Lemma 24. For all C, σ, σ′, n, n′ and p, if

– n′ ≥ n;
– (C, σ) p−→n(skip, σ′);

then there exists a unique p′ such that

– p′ ≥ p;
– (C, σ) p′

−→n′(skip, σ′).

Proof. Prove by induction on n. ⊓⊔

Lemma 25. For all σ,
JskipK(σ) = δ(σ).

Proof. Directly from the definition. ⊓⊔

Lemma 26. For all C, σ and σ′,

JCK(σ)(σ′) =
∑

C′′,σ′′

{p · JC ′′K(σ′′)(σ′) | (C, σ) p−→ (C ′′, σ′′)}.

Proof. Define pn,C,σ such that (C, σ) pn,C,σ−−−−→n(skip, σ′). By definition, for all n
we have

pn+1,C,σ =
∑

C′′,σ′′

{p · pn,C′′,σ′′ | (C, σ) p−→ (C ′′, σ′′)},
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and thus by Lem. 24 and the monotone convergence theorem we have

JCK(σ)(σ′) = lim
n→∞

pn+1,C,σ

= lim
n→∞

∑
C′′,σ′′

{p · pn,C′′,σ′′ | (C, σ) p−→ (C ′′, σ′′)}

=
∑

C′′,σ′′

{p · lim
n→∞

pn,C′′,σ′′ | (C, σ) p−→ (C ′′, σ′′)}

=
∑

C′′,σ′′

{p · JC ′′K(σ′′)(σ′) | (C, σ) p−→ (C ′′, σ′′)}.

⊓⊔

Lemma 27. For all x, e, σ and σ′,

Jx := Sample(e)K(σ)(σ′) =
{

D[i](r) if JeKσ = i ∈ [1, N ] and σ′ = σ{x⇝ r}
0 otherwise

.

Proof. Directly from Lem. 25 and Lem. 26. ⊓⊔

Lemma 28. For all n, C1, C2, σ and σ′,

pn,C1;C2,σ,σ′ ≤
∑
σ′′

pn,C1,σ,σ′′ · pn,C2,σ′′,σ′ .

where pn,C,σ,σ′ satisfies (C, σ)
pn,C,σ,σ′
−−−−−−→n(skip, σ′).

Proof. We prove by induction on n. The case of n = 0 is trivial. For n = k + 1,
if C1 = skip, then by Lem. 24 we have

pn+1,skip;C2,σ,σ′ = pn,C2,σ,σ′

≤ pn+1,C2,σ,σ′

= pn+1,skip,σ,σ · pn+1,C2,σ,σ′

=
∑
σ′′

pn+1,skip,σ,σ′′ · pn+1,C2,σ′′,σ′ .

If C1 ̸= skip, then from the induction hypothesis and Lem. 24, we have

pn+1,C1;C2,σ,σ′

=
∑

C′′,σ′′

{p · pn,C′′,σ′′,σ′ | (C1; C2, σ) p−→ (C ′′, σ′′)}

=
∑

C′′
1 ,σ′′

{p · pn,C′′
1 ;C2,σ′′,σ′ | (C1, σ) p−→ (C ′′

1 , σ′′)}

≤
∑

C′′
1 ,σ′′,σ′′′

{p · pn,C′′
1 ,σ′′,σ′′′ · pn,C2,σ′′′,σ′ | (C1, σ) p−→ (C ′′

1 , σ′′)}
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=
∑
σ′′′

pn+1,C1,σ,σ′′′ · pn,C2,σ′′′,σ′

≤
∑
σ′′′

pn+1,C1,σ,σ′′′ · pn+1,C2,σ′′′,σ′ .

⊓⊔

Lemma 29. For all C1, C2, σ and σ′,

JC1; C2K(σ)(σ′) =
∑
σ′′

JC1K(σ)(σ′′) · JC2K(σ′′)(σ′).

Proof. The case of C1 = skip is straightforward from Lem. 25 and Lem. 26.
Define pn,C,σ,σ′ such that (C, σ)

pn,C,σ,σ′
−−−−−−→n(skip, σ′).

First, we prove the following: for all C1 ̸= skip, σ and σ′,

JC1; C2K(σ)(σ′) ≤
∑
σ′′

JC1K(σ)(σ′′) · JC2K(σ′′)(σ′). (17)

From Lem. 28, for all n, we have

pn,C1;C2,σ,σ′ ≤
∑
σ′′

pn,C1,σ,σ′′ · pn,C2,σ′′,σ′ , (18)

and thus from Lem. 24 we know that

lim
n→∞

∑
σ′′

pn,C1,σ,σ′′ · pn,C2,σ′′,σ′

=
∑
σ′′

lim
n→∞

pn,C1,σ,σ′′ · pn,C2,σ′′,σ′

=
∑
σ′′

(
lim

n→∞
pn,C1,σ,σ′′

)
·
(

lim
n→∞

pn,C2,σ′′,σ′

)
=
∑
σ′′

JC1K(σ)(σ′′) · JC2K(σ′′)(σ′).

Then we get (17) by taking n → ∞ in (18).
We then prove the following: for all n, C1 ̸= skip, σ and σ′,∑

σ′′

pn,C1,σ,σ′′ · JC2K(σ′′)(σ′) ≤ JC1; C2K(σ)(σ′). (19)

We prove by induction on n. The case of n = 0 is trivial. For n = k + 1, from
Lem. 26 and the induction hypothesis, we have∑

σ′′

pn,C1,σ,σ′′ · JC2K(σ′′)(σ′)

=
∑
σ′′

 ∑
C′′′

1 ,σ′′′

{
p · pk,C′′′

1 ,σ′′′,σ′′
∣∣ (C1, σ) p−→ (C ′′′

1 , σ′′′)
} · JC2K(σ′′)(σ′)
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=
∑

C′′′
1 ,σ′′′

{
p ·

(∑
σ′′

pk,C′′′
1 ,σ′′′,σ′′ · JC2K(σ′′)(σ′)

)∣∣∣∣∣ (C1, σ) p−→ (C ′′′
1 , σ′′′)

}

≤
∑

C′′′
1 ,σ′′′

{
p · JC ′′′

1 ; C2K(σ′′′)(σ′)

∣∣∣∣∣ (C1, σ) p−→ (C ′′′
1 , σ′′′)

}

=
∑

C′′′,σ′′′

{
p · JC ′′′K(σ′′′)(σ′)

∣∣∣∣∣ (C1; C2, σ) p−→ (C ′′′, σ′′′)
}

= JC1; C2K(σ)(σ′).

Thus (19) holds. Taking n → ∞ in (19), by Lem. 24 we have

JC1; C2K(σ)(σ′) ≥
∑
σ′′

JC1K(σ)(σ′′) · JC2K(σ′′)(σ′).

With (17) we complete the proof. ⊓⊔

Lemma 30 (Var-T-Sound). For all Q, e and x,

⊨ [Q[e/x]]x := e[Q].

Proof. Let µ ⊨ Q[e/x] and µ′ = Eσ∼µ{δ(σ{x ⇝ JeKσ})}. By Lem. 21 we know
that µ′ ⊨ Q. For all σ′, by Lem. 25 and Lem. 26 we know that

Jx := eK(µ)(σ′) =
∑

σ

µ(σ) · Jx := eK(σ)(σ′)

=
∑

σ

µ(σ) · [σ{x⇝ JeKσ} = σ′] = µ′(σ′),

and thus Jx := eK(µ) = µ′. Therefore we have |Jx := eK(µ)| = 1 and Jx := eK(µ) ⊨
Q. ⊓⊔

Lemma 31 (Smp-T-Sound). For all Q, S, x, e and X, if

– x /∈ fv(S) ∪ fv(e) ∪ fv(Q);
– X /∈ fv(e);
– ⊨ Q ⇒ (∃X. ⌈e = X⌉);

then
⊨ [Q ∧ #S]x := Sample(e)[Q ∧ #(S ∪ {x}) ∧ x ∼ e].

Proof. Let µ ⊨ Q ∧ #S. From the premise we know that µ ⊨ ∃X. ⌈e = X⌉, and
thus by X /∈ fv(e) we know that there exists some i such that JeKσ = i ∈ [1, N ]
for all σ ∈ supp(µ). Let

µ′ = Eσ∼µ,r∼D[i]{δ(σ{x⇝ r})}.

For all σ′, by Lem. 25 and Lem. 26 we have

Jx := Sample(e)K(µ)(σ′)
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=
∑

σ

µ(σ) · Jx := Sample(e)K(σ)(σ′)

=
∑

σ

µ(σ)
∑

r∈supp(D[i])

D[i](r) · [σ{x⇝ r} = σ′] = µ′(σ′),

and thus Jx := Sample(e)K(µ) = µ′. Moreover,

|µ′| =
∑
σ′

Jx := Sample(e)K(µ)(σ′)

=
∑
σ′

∑
σ

µ(σ)
∑

r∈supp(D[i])

D[i](r) · [σ{x⇝ r} = σ′]

=
∑

σ

µ(σ)
∑

r∈supp(D[i])

D[i](r)

=
∑

σ

µ(σ) = 1.

Below we only need to prove the following: µ′ ⊨ Q, µ′ ⊨ #(S ∪ {x}) and µ′ ⊨
x ∼ e.

First, we prove that µ′ ⊨ Q. Since µ ⊨ Q and x /∈ fv(Q), by Lem. 23 we know
that µ{x ⇝ 0} ⊨ Q. By µ{x ⇝ 0} = µ′{x ⇝ 0}, we have µ′{x ⇝ 0} ⊨ Q, and
again by Lem. 23 we have µ′ ⊨ Q.

Next, we prove that µ′ ⊨ #(S ∪ {x}). Assuming S = {e1, . . . , el}, µ ⊨ #S
implies that, for all v1, . . . , vl,

Pr
σ∼µ

 ∧
j∈[1,l]

σ ⊨ ej = vj

 =
∏

j∈[1,l]

Pr
σ∼µ

[σ ⊨ ej = vj ] .

Let el+1 = x, then by x /∈ fv(S) and Lem. 22, for all vl+1, (let D[i](Λ) = 0)

Pr
σ′∼µ′

 ∧
j∈[1,l+1]

σ′ ⊨ ej = vj


= Pr

σ∼µ,r∼D[i]

 ∧
j∈[1,l+1]

σ{x⇝ r} ⊨ ej = vj


=

∑
r∈supp(D[i])

D[i](r) · Pr
σ∼µ

 ∧
j∈[1,l]

σ{x⇝ r} ⊨ ej = vj


∧ (σ{x⇝ r} ⊨ x = vl+1)


= D[i](vl+1) · Pr

σ∼µ

 ∧
j∈[1,l]

σ ⊨ ej = vj


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= D[i](vl+1)
∏

j∈[1,l]

Pr
σ∼µ

[σ ⊨ ej = vj ]

=

 ∑
r∈supp(D[i])

D[i](r) · Pr
σ∼µ

[σ{x⇝ r} ⊨ x = vl+1]


∏

j∈[1,l]

∑
r∈supp(D[i])

D[i](r) · Pr
σ∼µ

[σ{x⇝ r} ⊨ ej = vj ]

=
∏

j∈[1,l+1]

Pr
σ∼µ,r∼D[i]

[σ{x⇝ r} ⊨ ej = vj ]

=
∏

j∈[1,l+1]

Pr
σ′∼µ′

[σ′ ⊨ ej = vj ] ,

and thus µ′ ⊨ #(S ∪ {x}).
It remains to prove µ′ ⊨ x ∼ e. By x /∈ fv(e) and µ ⊨ ⌈e = i⌉, we know that

µ′ ⊨ ⌈e = i⌉ again by applying Lem. 23 twice. Now, since for all r we have

JPr[x = r]Kµ′ = Pr
σ′∼µ′

[σ′ ⊨ x = r]

= Pr
σ∼µ,r′∼D[i]

[σ{x⇝ r′} ⊨ x = r] = D[i](r),

µ′ ⊨ x ∼ e holds by definition. ⊓⊔

Lemma 32 (Csq-T-Sound). For all P1, P2, C, Q2 and Q1, if

– ⊨ [P2]C[Q2];
– ⊨ P1 ⇒ P2, ⊨ Q2 ⇒ Q1;

then
⊨ [P1]C[Q1].

Proof. Let µ ⊨ P1. By ⊨ P1 ⇒ P2 we know that µ ⊨ P2, then from the premise we
have |JCK(µ)| = 1 and JCK(µ) ⊨ Q2. Thus by ⊨ Q2 ⇒ Q1 we have JCK(µ) ⊨ Q1.

⊓⊔

Lemma 33 (Seq-T-Sound). For all P, C1, Q, C2 and R, if

– ⊨ [P ]C1[Q];
– ⊨ [Q]C2[R];

then
⊨ [P ]C1; C2[R].

Proof. Let µ ⊨ P . From the premise, |JC1K(µ)| = 1 and JC1K(µ) ⊨ Q holds. Thus,
from the premise we know that |JC2K(JC1K(µ))| = 1 and JC2K(JC1K(µ)) ⊨ R. By
Lem. 29 we know that JC1; C2K(µ) = JC2K(JC1K(µ)), and thus |JC1; C2K(µ)| = 1
and JC1; C2K(µ) ⊨ R. ⊓⊔
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Lemma 34 (Skip-T-Sound). For all Q,

⊨ [Q]skip[Q].

Proof. Prove by applying Lem. 25. ⊓⊔

Lemma 35. For all p, µ1, µ2 and C, if |JCK(µ1)| = |JCK(µ2)| = 1, then

JCK(µ1 ⊕p µ2) = JCK(µ1) ⊕p JCK(µ2).

Proof. For all σ′,∑
σ

(µ1 ⊕p µ2)(σ) · JCK(σ)(σ′)

= p
∑

σ

µ1(σ) · JCK(σ)(σ′) + (1 − p)
∑

σ

µ2(σ) · JCK(σ)(σ′)

= p · JCK(µ1)(σ′) + (1 − p) · JCK(µ2)(σ′).

Thus
JCK(µ1 ⊕p µ2) = JCK(µ1) ⊕p JCK(µ2).

⊓⊔

Lemma 36. For all P1, p, P2, C, Q1 and Q2, if

– ⊨ [P1]C[Q1];
– ⊨ [P2]C[Q2];

then
⊨ [P1 ⊕p P2]C[Q1 ⊕p Q2].

Proof. Let µ ⊨ P1 ⊕p P2. The cases of p = 0 and p = 1 are trivial. For p ∈ (0, 1),
we know that there exist µ1 and µ2 such that µ = µ1⊕pµ2, µ1 ⊨ P1, and µ2 ⊨ P2.
From the premise, |JCK(µ1)| = |JCK(µ2)| = 1, JCK(µ1) ⊨ Q1 and JCK(µ2) ⊨ Q2
hold. By Lem. 35,

|JCK(µ)| =
∑
σ′

JCK(µ)(σ′)

= p
∑
σ′

JCK(µ1)(σ′) + (1 − p)
∑
σ′

JCK(µ2)(σ′)

= p · |JCK(µ1)| + (1 − p) · |JCK(µ2)| = 1,

and JCK(µ) ⊨ Q1 ⊕p Q2. ⊓⊔

Lemma 37 (Cond-T-Sound). For all P1, p, P2, b, C1, C2, Q1 and Q2, if

– ⊨ [P1 ∧ ⌈b⌉]C1[Q1];
– ⊨ [P2 ∧ ⌈¬b⌉]C2[Q2];
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then

⊨ [(P1 ∧ ⌈b⌉) ⊕p (P2 ∧ ⌈¬b⌉)]if (b) then C1 else C2[Q1 ⊕p Q2].

Proof. Let C = if (b) then C1 else C2. By Lem. 36, we only need to show that

⊨ [P1 ∧ ⌈b⌉]C[Q1], (20)
⊨ [P2 ∧ ⌈¬b⌉]C[Q2]. (21)

Below we only prove (20), while the proof of (21) is similar. Let µ ⊨ P1 ∧ ⌈b⌉,
then µ ⊨ P1 and µ ⊨ ⌈b⌉, and thus JbKσ = true for all σ ∈ supp(µ). Furthermore,
from the premise we know that |JC1K(µ)| = 1 and JC1K(µ) ⊨ Q1. Thus, from
Lem. 26, for all σ′ we have

JCK(µ)(σ′) =
∑

σ

µ(σ) · JCK(σ)(σ′)

=
∑

σ

µ(σ) · JC1K(σ)(σ′) = JC1K(µ)(σ′),

and then JCK(µ) = JC1K(µ). Thus |JCK(µ)| = |JC1K(µ)| = 1 and JCK(µ) ⊨ Q1,
which directly implies (20). ⊓⊔

Lemma 38. For all µ, x and C, if x /∈ fv(C), then for all v we have

(JCK(µ)){x⇝ v} = JCK(µ{x⇝ v})

Proof. Note that for all σ′ we have

((JCK(µ)){x⇝ v})(σ′) =
∑

σ

µ(σ)
∑

σ′′ : σ′=σ′′{x⇝v}

JCK(σ)(σ′′),

JCK(µ{x⇝ v})(σ′) =
∑

σ

µ(σ) · JCK(σ{x⇝ v})(σ′),

and thus we only need to prove that, for all σ and σ′,∑
σ′′ : σ′=σ′′{x⇝v}

JCK(σ)(σ′′) = JCK(σ{x⇝ v})(σ′).

If σ′(x) ̸= v, by x /∈ fv(C) we know that both sides of the above equation are
0. Below we assume that σ′(x) = v. Define pn,C,σ,σ′ such that (C, σ)

pn,C,σ,σ′
−−−−−−→

n(skip, σ′), then by induction we can prove that, for all σ and σ′, if σ(x) ̸= σ′(x),
then pn,C,σ,σ′ = 0. Thus, with σ′′ = σ′{x⇝ σ(x)}, it remains to prove that, for
all n,

pn,C,σ,σ′′ = pn,C,σ{x⇝v},σ′′{x⇝v}.

This can be proved by induction on n. ⊓⊔
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Lemma 39. For all b, C, σ, σ′ and n,

JCn
C ; CCWK(σ)(σ′) ≤ JCn+1

C ; CCWK(σ)(σ′),

where
CC = if (b) then C,
C0

C = skip,
Cn+1

C = Cn
C ; CC,

CCW = if (b) then (while (true) do skip).

Proof. Note that for all n, σ and σ′, from Lem. 29 we have

JCn
C ; CCWK(σ)(σ′) =

∑
σ′′

JCn
C K(σ)(σ′′) · JCCWK(σ′′)(σ′)

= JCn
C K(σ)(σ′) · [JbKσ′ = false],

and thus for all n, σ and σ′ we have

JCn+1
C ; CCWK(σ)(σ′)

= JCn+1
C K(σ)(σ′) · [JbKσ′ = false]

=
∑
σ′′

JCn
C K(σ)(σ′′) · JCCK(σ′′)(σ′) · [JbKσ′ = false]

=
∑

σ′′:JbKσ′′ =true

JCn
C K(σ)(σ′′) · JCCK(σ′′)(σ′) · [JbKσ′ = false]

+
∑

σ′′:JbKσ′′ =false

JCn
C K(σ)(σ′′) · JCCK(σ′′)(σ′) · [JbKσ′ = false]

=
∑

σ′′:JbKσ′′ =true

JCn
C K(σ)(σ′′) · JCCK(σ′′)(σ′) · [JbKσ′ = false]

+ JCn
C K(σ)(σ′) · [JbKσ′ = false]

≥ JCn
C ; CCWK(σ)(σ′).

⊓⊔

Lemma 40. For all b, C and µ,

JCWK(µ) = lim
n→∞

JCn
C ; CCWK(µ),

where
CW = while (b) do C,
CC = if (b) then C,
C0

C = skip,
Cn+1

C = Cn
C ; CC,

CCW = if (b) then (while (true) do skip).
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Proof. Know that JCn
C ; CCWK(σ)(σ′) ≤ 1 holds for all n, σ and σ′, and thus from

Lem. 39 we know that limn→∞JCn
C ; CCWK(µ) exists. Therefore, for all σ′, by

Lem. 12, Lem. 39 and the monotone convergence theorem we have(
lim

n→∞
JCn

C ; CCWK(µ)
)

(σ′) = lim
n→∞

JCn
C ; CCWK(µ)(σ′)

= lim
n→∞

∑
σ

µ(σ) · JCn
C ; CCWK(σ)(σ′)

=
∑

σ

µ(σ) lim
n→∞

JCn
C ; CCWK(σ)(σ′),

and now we only need to prove the following: for all σ and σ′,

JCWK(σ)(σ′) = lim
n→∞

JCn
C ; CCWK(σ)(σ′).

For σ′ such that JbKσ′ = true, both sides of the above equation are 0. Below we
suppose JbKσ′ = false. Since (by Lem. 29)

JCn
C ; CCWK(σ)(σ′) =

∑
σ′′

JCn
C K(σ)(σ′′) · JCCWK(σ′′)(σ′)

= JCn
C K(σ)(σ′)

holds for all σ, we only need to prove that, for all σ,

JCWK(σ)(σ′) = lim
n→∞

JCn
C K(σ)(σ′).

We first show that, for all σ,

lim
n→∞

JCn
C K(σ)(σ′) ≤ JCWK(σ)(σ′). (22)

To prove the above, we only need to show that, for all n and σ,

JCn
C K(σ)(σ′) ≤ JCWK(σ)(σ′).

We prove by induction on n.
– n = 0. If σ = σ′, then by Lem. 25 we know that JbKσ = false and

JskipK(σ)(σ′) = 1, and thus JCWK(σ)(σ′) = 1. If σ ̸= σ′, then by Lem. 25 we
know that JskipK(σ)(σ′) = 0.

– n = k + 1. If JbKσ = false, then JCn
C K(σ)(σ′) = [σ = σ′] = JCWK(σ)(σ′). If

JbKσ = true, then by Lem. 26, Lem. 29 and the induction hypothesis,

JCn
C K(σ)(σ′) =

∑
σ′′

JCCK(σ)(σ′′) · JCk
CK(σ′′)(σ′)

≤
∑
σ′′

JCCK(σ)(σ′′) · JCWK(σ′′)(σ′)

=
∑
σ′′

JCK(σ)(σ′′) · JCWK(σ′′)(σ′)

= JC; CWK(σ)(σ′)
= JCWK(σ)(σ′).
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Thus (22) holds.
Then we show that, for all σ,

JCWK(σ)(σ′) ≤ lim
n→∞

JCn
C K(σ)(σ′). (23)

Define pm,C,σ to satisfy (C, σ) pm,C,σ−−−−→n(skip, σ′), we only need to prove that,
for all m, σ,

pm,CW,σ ≤ lim
n→∞

JCn
C K(σ)(σ′).

Since JbKσ′ = false, from Lem. 39 we know that

JCn
C K(σ)(σ′) ≤ JCn+1

C K(σ)(σ′) (24)

holds for all n and σ, and thus we only need to show that, for all n and σ,

pn,CW,σ ≤ JCn
C K(σ)(σ′).

We prove by induction on n.

– n = 0, 1. Note that pn,CW,σ = 0.
– n ≥ 2. Define pn,C,σ,σ′ to satisfy (C, σ)

pn,C,σ,σ′
−−−−−−→n(skip, σ′). If JbKσ = false,

then pn,CW,σ = [σ = σ′] = JCn
C K(σ)(σ′). If JbKσ = true, then by (24), Lem. 24,

Lem. 26, Lem. 28, Lem. 29 and the induction hypothesis, we have

pn,CW,σ = pn−2,C;CW,σ

≤
∑
σ′′

pn−2,C,σ,σ′′ · pn−2,CW,σ′′,σ′

≤
∑
σ′′

pn−2,C,σ,σ′′ · JCn−2
C K(σ′′)(σ′)

≤
∑
σ′′

JCK(σ)(σ′′) · JCn−1
C K(σ′′)(σ′)

= JC; Cn−1
C K(σ)(σ′)

= JCn
C K(σ)(σ′).

Thus (23) holds. ⊓⊔

Lemma 41. For all b, C and µ, if |JCWK(µ)| = 1, then

JCWK(µ) = lim
n→∞

JCn
C K(µ),

where
CW = while (b) do C,
CC = if (b) then C,
C0

C = skip,
Cn+1

C = Cn
C ; CC.
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Proof. Define CCW as follows.

CCW = if (b) then (while (true) do skip).

By Lem. 40,
JCWK(µ) = lim

n→∞
JCn

C ; CCWK(µ). (25)

From Lem. 25, Lem. 26 and Lem. 29, for all n and σ′,

JCn
C ; CCWK(µ)(σ′) =

∑
σ′′

JCn
C K(µ)(σ′′) · JCCWK(σ′′)(σ′)

≤ JCn
C K(µ)(σ′). (26)

Thus, by Lem. 12 and Lem. 39 we have

|JCWK(µ)| = lim
n→∞

|JCn
C ; CCWK(µ)| ≤ lim

n→∞
|JCn

C K(µ)|.

Then, limn→∞ |JCn
C K(µ)| = |JCWK(µ)| = 1, which implies

0 = lim
n→∞

∑
σ′

JCn
C K(µ)(σ′) − lim

n→∞

∑
σ′

JCWK(µ)(σ′)

= lim
n→∞

|JCn
C K(µ) − JCWK(µ)| ,

and thus
JCWK(µ) = lim

n→∞
JCn

C K(µ).

⊓⊔

Lemma 42 (While-T-Sound). For all P, Q, b, e, C, X and X ′, if

– ⊨ [P ∧ ⌈b ∧ e = X⌉]C[(P ∧ ⌈b ∧ e + 1 ≤ X⌉) ∨ (Q ∧ ⌈¬b⌉)];
– ⊨ P ∧ ⌈b⌉ ⇒ (∃X ′. ⌈0 ≤ e ≤ X ′⌉);
– X /∈ fv(P ) ∪ fv(Q) ∪ fv(b) ∪ fv(e) ∪ fv(C);
– X ′ /∈ fv(e);

then
⊨ [(P ∧ ⌈b⌉) ∨ (Q ∧ ⌈¬b⌉)]while (b) do C[Q ∧ ⌈¬b⌉].

Proof. We use the following notations:

CW = while (b) do C,
CC = if (b) then C,
C0

C = skip,
Cn+1

C = Cn
C ; CC,

CCW = if (b) then (while (true) do skip).

from the premises and Lem. 40, we only need to prove that: for all µ and r ≥ 0,
if µ ⊨ (P ∧ ⌈b ∧ e ≤ r⌉) ∨ (Q ∧ ⌈¬b⌉), then∣∣∣ lim

n→∞
JCn

C ; CCWK(µ)
∣∣∣ = 1, (27)
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lim

n→∞
JCn

C ; CCWK(µ)
)
⊨ Q ∧ ⌈¬b⌉ . (28)

We first prove that: for all µ, r ≥ 0 and n, if µ ⊨ (P ∧⌈b ∧ e ≤ r⌉)∨(Q∧⌈¬b⌉),
then

|JCn
C K(µ)| = 1, (29)

JCn
C K(µ) ⊨ (P ∧ ⌈b ∧ e + n ≤ r⌉) ∨ (Q ∧ ⌈¬b⌉). (30)

We prove by induction on n. The case of n = 0 is trivial. Let n = k + 1.
From the induction hypothesis, we know that |JCk

CK(µ)| = 1 and JCk
CK(µ) ⊨

(P ∧ ⌈b ∧ e + k ≤ r⌉) ∨ (Q ∧ ⌈¬b⌉). Let µ′ = JCk
CK(µ). If µ′ ⊨ Q ∧ ⌈¬b⌉, then

µ′ ⊨ ⌈¬b⌉, and thus from Lem. 25, Lem. 26 and Lem. 29 we have

JCn
C K(µ) = JCCK(µ′) = µ′,

which implies (29) and (30). Otherwise µ′ ⊨ (P ∧⌈b ∧ e + k ≤ r⌉), and thus from
Lem. 26 and Lem. 29 we have

JCn
C K(µ) = JCCK(µ′) = JCK(µ′). (31)

Let µ′′ = Eσ∼µ′{δ(σ{X ⇝ JeKσ})}, then we know that µ′′ ⊨ ⌈e = X⌉ from the
third premise, and for all σ ∈ supp(µ′′) we have JXKσ + k ≤ r. Besides, by
applying Lem. 23 and the third premise twice on µ′ ⊨ P ∧ ⌈b⌉, we have µ′′ ⊨
P ∧ ⌈b⌉. Thus µ′′ ⊨ P ∧ ⌈b ∧ e = X⌉, then from the first premise we have

|JCK(µ′′)| = 1,

JCK(µ′′) ⊨ (P ∧ ⌈b ∧ e + 1 ≤ X⌉) ∨ (Q ∧ ⌈¬b⌉). (32)

Then, from Lem. 38, (31) and the third premise we know that (29) holds, that
is

|JCn
C K(µ)| = |(JCK(µ′)){X ⇝ 0}|

= |JCK(µ′{X ⇝ 0})|
= |JCK(µ′′{X ⇝ 0})|
= |(JCK(µ′′)){X ⇝ 0}|
= |JCK(µ′′)| = 1.

Furthermore, since JXKσ + k ≤ r for all σ ∈ supp(µ′′), from X /∈ fv(C) we know
JXKσ + k ≤ r holds for all σ ∈ supp(JCK(µ′′)), and thus

JCK(µ′′) ⊨ (P ∧ ⌈b ∧ e + n ≤ r⌉) ∨ (Q ∧ ⌈¬b⌉)

holds from (32) and then we obtain

JCK(µ′) ⊨ (P ∧ ⌈b ∧ e + n ≤ r⌉) ∨ (Q ∧ ⌈¬b⌉),

by applying Lem. 38 and Lem. 23 both twice. Then we get (30) from (31).
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Now, by taking n = ⌊r⌋ + 1 in (30), from the second premise we have

JC⌊r⌋+1
C K(µ) ⊨ Q ∧ ⌈¬b⌉ . (33)

Thus by induction on n, for all n ≥ ⌊r⌋ + 1, JCn
C K(µ) = JC⌊r⌋+1

C K(µ) holds from
Lem. 26 and Lem. 29. Therefore, for all n ≥ ⌊r⌋ + 1, we have

JCn
C ; CCWK(µ) = JCCWK(JCn

C K(µ)) = JCn
C K(µ) = JC⌊r⌋+1

C K(µ)

from Lem. 25, Lem. 26 and Lem. 29. Now (27) and (28) follow from (29) (by
taking n = ⌊r⌋ + 1) and (33). ⊓⊔
Lemma 43 (While-TB-Sound). For all n, Q0, . . . , Qn, b and C, if

– For all i ∈ [0, n), ⊨ [Qi]if (b) then C[Qi+1];
– ⊨ Qn ⇒ ⌈¬b⌉;

then
⊨ [Q0]while (b) do C[Qn].

Proof. We use the following notations:

CW = while (b) do C,
CC = if (b) then C,
C0

C = skip,
Cm+1

C = Cm
C ; CC,

CCW = if (b) then (while (true) do skip).

Let µ ⊨ Q0. By Lem. 40, we only need to prove the following:∣∣∣ lim
m→∞

JCm
C ; CCWK(µ)

∣∣∣ = 1, (34)(
lim

m→∞
JCm

C ; CCWK(µ)
)
⊨ Qn. (35)

We first prove that: for all m ∈ [0, n],

|JCm
C K(µ)| = 1, (36)

JCm
C K(µ) ⊨ Qm. (37)

We prove by induction on m. The case of m = 0 is trivial. Let m = k + 1. From
the induction hypothesis, we know that |JCk

CK(µ)| = 1 and JCk
CK(µ) ⊨ Qk. Let

µ′ = JCk
CK(µ). From the first premise, we have |JCCK(µ′)| = 1 and JCCK(µ′) ⊨ Qm,

and by Lem. 26 and Lem. 29 we know that

JCm
C K(µ) = JCCK(µ′).

Thus (36) and (37) hold.
Now by taking m = n in (37), we know that JCn

C K(µ) ⊨ ⌈¬b⌉ from the second
premise. By Lem. 25, Lem. 26, Lem. 29 and induction, this implies the following:
for all m ≥ n,

JCm
C ; CCWK(µ) = JCn

C K(µ).
Thus (34) and (35) follow from (36) and (37) by taking m = n.

⊓⊔
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Lemma 44 (Conj-T-Sound). For all P1, P2, C, Q1 and Q2, if

– ⊨ [P1]C[Q1];
– ⊨ [P2]C[Q2];

then
⊨ [P1 ∧ P2]C[Q1 ∧ Q2].

Proof. Let µ ⊨ P1 ∧ P2, then µ ⊨ P1 and µ ⊨ P2 holds. From the premise we
know |JCK(µ)| = 1, JCK(µ) ⊨ Q1, and JCK(µ) ⊨ Q2. Thus JCK(µ) ⊨ Q1 ∧ Q2. ⊓⊔

Lemma 45 (Disj-T-Sound). For all P1, P2, C, Q1 and Q2, if

– ⊨ [P1]C[Q1];
– ⊨ [P2]C[Q2];

then
⊨ [P1 ∨ P2]C[Q1 ∨ Q2].

Proof. Let µ ⊨ P1 ∨ P2, then either µ ⊨ P1 or µ ⊨ P2 holds. If µ ⊨ P1, then from
the premise we have |JCK(µ)| = 1 and JCK(µ) ⊨ Q1. Thus JCK(µ) ⊨ Q1 ∨ Q2.
The case of µ ⊨ P2 is simliar. ⊓⊔

Lemma 46 (Exists-T-Sound). For all P, C, Q and X, if

– ⊨ [P ]C[Q];
– X /∈ fv(C);

then
⊨ [∃X. P ]C[∃X. Q].

Proof. Let µ ⊨ ∃X. P , then there exists v such that µ{X ⇝ v} ⊨ P . From the
premise, we know that |JCK(µ{X ⇝ v})| = 1 and JCK(µ{X ⇝ v}) ⊨ Q hold.
From X /∈ fv(C) and Lem. 38 we have JCK(µ{X ⇝ v}) = (JCK(µ)){X ⇝ v},
and thus

|JCK(µ)| = |(JCK(µ)){X ⇝ v}| = |JCK(µ{X ⇝ v})| = 1

and (JCK(µ)){X ⇝ v} ⊨ Q, then JCK(µ) ⊨ ∃X. Q. ⊓⊔

Lemma 47 (Forall-T-Sound). For all P, C, Q and X, if

– ⊨ [P ]C[Q];
– X /∈ fv(C);

then
⊨ [∀X. P ]C[∀X. Q].
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Proof. Let µ ⊨ ∀X. P , then for all v we have µ{X ⇝ v} ⊨ P . It remains to show
that |JCK(µ)| = 1 and JCK(µ) ⊨ ∀X. Q. For all v, from the premise we know that
|JCK(µ{X ⇝ v})| = 1 and JCK(µ{X ⇝ v}) ⊨ Q. By X /∈ fv(C) and Lem. 38,
JCK(µ{X ⇝ v}) = (JCK(µ)){X ⇝ v}, and thus

|JCK(µ)| = |(JCK(µ)){X ⇝ v}| = |JCK(µ{X ⇝ v})| = 1

and (JCK(µ)){X ⇝ v} ⊨ Q. Therefore JCK(µ) ⊨ ∀X. Q. ⊓⊔

Lemma 48. For all P, C1, C2, Q and R, if

– ⊨ [P ]C1; C2[Q];
– {µ′ | µ′ ⊨ R} = {µ′ | ∃µ. µ ⊨ P ∧ JC1K(µ) = µ′};

then

– ⊨ [P ]C1[R];
– ⊨ [R]C2[Q].

Proof. The proof of ⊨ [P ]C1[R] is trivial. We show ⊨ [R]C2[Q] below. Let µ′ ⊨ R.
From the second premise, there exists µ such that µ ⊨ P and JC1K(µ) = µ′.
Thus, from the first premise, there exists µ′′ such that JC1; C2K(µ) = µ′′ (where
|µ′′| = 1) and µ′′ ⊨ Q. From Lem. 29, we know that JC2K(µ′) = JC2K(JC1K(µ)) =
JC1; C2K(µ). Thus |JC2K(µ′)| = 1 and JC2K(µ′) ⊨ Q. ⊓⊔

F An RT-Based Program Logic

When proving an inequality between probabilities involving two probabilistic
programs, after applying the RT-based coupling, we are required to prove two
Hoare triples in the RT-based semantics. In this section, we give a simple Hoare-
style unary program logic for proving these Hoare triples, and prove its sound-
ness. Logic rules are presented in Fig. 25 and Fig. 26.

Theorem 7. For all P, C and Q,

⊢RT {P}C{Q} =⇒ ⊨RT {P}C{Q}

and
⊢RT [P ]C[Q] =⇒ ⊨RT [P ]C[Q].

Proof. From Lem. 52, Lem. 53, Lem. 54, Lem. 55, Lem. 56, Lem. 57, Lem. 59,
Lem. 60, Lem. 61, Lem. 62, Lem. 63, Lem. 64, Lem. 68, Lem. 65, Lem. 69,
Lem. 70, Lem. 71, Lem. 72, Lem. 73, Lem. 74, Lem. 75 and Lem. 76. ⊓⊔

Lemma 49. For all σ, RT, ι, Q, E and x, if (σ, RT, ι) ⊨ Q[E/x], then
(σ′, RT, ι) ⊨ Q, where σ′ = σ{x⇝ JEK(σ,RT,ι)}.

Proof. By induction on the structure of Q. ⊓⊔
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⊢RT {Q[e/x]}x := e{Q}
(rt-var)

⊨RT P ⇒ Q[(hdn + 1)/hdn][RT[n][hdn]/x]
⊢RT {e = n ∧ P}x := Sample(e){Q}

(rt-smp)

⊨RT P1 ⇒ P2 ⊢RT {P2}C{Q2} ⊨RT Q2 ⇒ Q1

⊢RT {P1}C{Q1}
(rt-csq)

⊢RT {P}C1{Q} ⊢RT {Q}C2{R}
⊢RT {P}C1; C2{R}

(rt-seq)
⊢RT {Q}skip{Q}

(rt-skip)

⊢RT {P ∧ b}C1{Q} ⊢RT {P ∧ ¬b}C2{Q}
⊢RT {P}if (b) then C1 else C2{Q}

(rt-cond)

⊢RT {Q ∧ b}C{Q}
⊢RT {Q}while (b) do C{Q ∧ ¬b}

(rt-while)

⊢RT {P1}C{Q1} ⊢RT {P2}C{Q2}
⊢RT {P1 ∧ P2}C{Q1 ∧ Q2}

(rt-conj)

⊢RT {P1}C{Q1} ⊢RT {P2}C{Q2}
⊢RT {P1 ∨ P2}C{Q1 ∨ Q2}

(rt-disj)

⊢RT {P}C{Q} X /∈ fv(C)
⊢RT {∃X. P}C{∃X. Q}

(rt-exists)

⊢RT {P}C{Q} X /∈ fv(C)
⊢RT {∀X. P}C{∀X. Q}

(rt-forall)

Fig. 25. Selected rules of the resampling-table-based program logic (part I).

Lemma 50. For all σ, RT, ι, Q, E and i, if (σ, RT, ι) ⊨ Q[E/hdi], then
(σ, RT, ι′) ⊨ Q, where

ι′ = (ι[1], . . . , ι[i − 1], JEK(σ,RT,ι), ι[i + 1], . . . , ι[N ]).

Proof. By induction on the structure of Q. ⊓⊔

Lemma 51. For all σ, RT, ι, Q and x, if x /∈ fv(Q), then for all v we have

(σ, RT, ι) ⊨ Q ⇐⇒ (σ{x⇝ v}, RT, ι) ⊨ Q.

Proof. By induction on the structure of Q. ⊓⊔

Lemma 52 (RT-Var-T-Sound). For all Q, e and x,

⊨RT [Q[e/x]]x := e[Q].

Proof. Let (σ, RT, ι) ⊨ Q[e/x], then there exists σ′ such that RT ⊢ (x :=
e, σ, ι) −→ (skip, σ′, ι), where σ′ = σ{x ⇝ JeKσ}. From Lem. 49 we have
(σ′, RT, ι) ⊨ Q. ⊓⊔
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⊢RT [Q[e/x]]x := e[Q]
(rt-var-t)

⊨RT P ⇒ Q[(hdn + 1)/hdn][RT[n][hdn]/x]
⊢RT [e = n ∧ P]x := Sample(e)[Q]

(rt-smp-t)

⊨RT P1 ⇒ P2 ⊢RT [P2]C[Q2] ⊨RT Q2 ⇒ Q1

⊢RT [P1]C[Q1]
(rt-csq-t)

⊢RT [P]C1[Q] ⊢RT [Q]C2[R]
⊢RT [P]C1; C2[R]

(rt-seq-t)
⊢RT [Q]skip[Q]

(rt-skip-t)

⊢RT [P ∧ b]C1[Q] ⊢RT [P ∧ ¬b]C2[Q]
⊢RT [P]if (b) then C1 else C2[Q]

(rt-cond-t)

⊢RT [Q ∧ b ∧ e = X]C[Q ∧ e + 1 ≤ X]
X /∈ fv(Q) ∪ fv(b) ∪ fv(e) ∪ fv(C) ⊨RT Q ⇒ e ≥ 0

⊢RT [Q]while (b) do C[Q ∧ ¬b]
(rt-while-t)

⊢RT [P1]C[Q1] ⊢RT [P2]C[Q2]
⊢RT [P1 ∧ P2]C[Q1 ∧ Q2]

(rt-conj-t)

⊢RT [P1]C[Q1] ⊢RT [P2]C[Q2]
⊢RT [P1 ∨ P2]C[Q1 ∨ Q2]

(rt-disj-t)

⊢RT [P]C[Q] X /∈ fv(C)
⊢RT [∃X. P]C[∃X. Q]

(rt-exists-t)

⊢RT [P]C[Q] X /∈ fv(C)
⊢RT [∀X. P]C[∀X. Q]

(rt-forall-t)

Fig. 26. Selected rules of the resampling-table-based program logic (part II).

Lemma 53 (RT-Var-Sound). For all Q, e and x,

⊨RT {Q[e/x]}x := e{Q}.

Proof. Let (σ, RT, ι) ⊨ Q[e/x] and RT ⊢ (x := e, σ, ι) −→∗ (skip, σ′, ι′), then
σ′ = σ{x⇝ JeKσ} and ι′ = ι. From Lem. 49 we have (σ′, RT, ι′) ⊨ Q. ⊓⊔

Lemma 54 (RT-Smp-T-Sound). For all P, Q, x, e and i, if

⊨RT P ⇒ Q[(hdi + 1)/hdi][RT[i][hdi]/x],

then
⊨RT [e = i ∧ P]x := Sample(e)[Q].

Proof. Let (σ, RT, ι) ⊨ e = i ∧ P, then JeKσ = i and

(σ, RT, ι) ⊨ Q[(hdi + 1)/hdi][RT[i][hdi]/x]
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holds from the premise, and there exist σ′ and ι′ such that

RT ⊢ (x := Sample(e), σ, ι) −→ (skip, σ′, ι′),

where σ′ = σ{x⇝ RT [i][ι[i]]} and ι′ = (ι[1], . . . , ι[i−1], ι[i]+1, ι[i+1], . . . , ι[N ]).
Since JRT[i][hdi]K(σ,RT,ι) = RT [i][ι[i]], by Lem. 49 we know that

(σ′, RT, ι) ⊨ Q[(hdi + 1)/hdi].

Since Jhdi + 1K(σ′,RT,ι) = ι[i]+1, we then have (σ′, RT, ι′) ⊨ Q from Lem. 50. ⊓⊔

Lemma 55 (RT-Smp-Sound). For all P, Q, x, e and i, if

⊨RT P ⇒ Q[(hdi + 1)/hdi][RT[i][hdi]/x],

then
⊨RT {e = i ∧ P}x := Sample(e){Q}.

Proof. Let (σ, RT, ι) ⊨ e = i ∧ P and

RT ⊢ (x := Sample(e), σ, ι) −→ (skip, σ′, ι′),

then we know that JeKσ = i, σ′ = σ{x⇝ RT [i][ι[i]]}, ι′ = (ι[1], . . . , ι[i − 1], ι[i] +
1, ι[i + 1], . . . , ι[N ]), and from the premise

(σ, RT, ι) ⊨ Q[(hdi + 1)/hdi][RT[i][hdi]/x].

Since JRT[i][hdi]K(σ,RT,ι) = RT [i][ι[i]], by Lem. 49 we know that

(σ′, RT, ι) ⊨ Q[(hdi + 1)/hdi].

Since Jhdi + 1K(σ′,RT,ι) = ι[i]+1, we then have (σ′, RT, ι′) ⊨ Q from Lem. 50. ⊓⊔

Lemma 56 (RT-Csq-T-Sound). For all P1, P2, C, Q2 and Q1, if

– ⊨RT [P2]C[Q2];
– ⊨RT P1 ⇒ P2, ⊨RT Q2 ⇒ Q1;

then
⊨RT {P1}C{Q1}.

Proof. Let Σ = (σ, RT, ι) such that Σ ⊨ P1. By ⊨RT P1 ⇒ P2 we know that
Σ ⊨ P2 and thus there exist σ′ and ι′ such that RT ⊢ (C, σ, ι) −→∗ (skip, σ′, ι′)
and (σ′, RT, ι′) ⊨ Q2, then by ⊨RT Q2 ⇒ Q1 we have (σ′, RT, ι′) ⊨ Q1. ⊓⊔

Lemma 57 (RT-Csq-Sound). For all P1, P2, C, Q2 and Q1, if

– ⊨RT {P2}C{Q2};
– ⊨RT P1 ⇒ P2, ⊨RT Q2 ⇒ Q1;

then
⊨RT {P1}C{Q1}.
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Proof. Let Σ ⊨ P1 and RT ⊢ (C, σ, ι) −→∗ (skip, σ′, ι′). By ⊨RT P1 ⇒ P2 we
know that Σ ⊨ P2, and thus from the premise (σ′, RT, ι′) ⊨ Q2. Then we have
(σ′, RT, ι′) ⊨ Q1 from ⊨RT Q2 ⇒ Q1. ⊓⊔

Lemma 58. For all σ, σ′, ι, ι′, RT, C1 and C2,

RT ⊢ (C1; C2, σ, ι) −→n(skip, σ′, ι′)

holds iff there exist σ′′, ι′′, n1 and n2 such that

– n1 + n2 + 1 = n;
– RT ⊢ (C1, σ, ι) −→n1(skip, σ′′, ι′′);
– RT ⊢ (C2, σ′′, ι′′) −→n2(skip, σ′, ι′).

Proof. By induction on n. ⊓⊔

Lemma 59 (RT-Seq-T-Sound). For all P, C1, Q, C2 and R, if

– ⊨RT [P]C1[Q];
– ⊨RT [Q]C2[R];

then
⊨RT [P]C1; C2[R].

Proof. Let (σ, RT, ι) ⊨ P. From the premise, there exist σ′′ and ι′′ such that
(σ′′, RT, ι′′) ⊨ Q and

RT ⊢ (C1, σ, ι) −→∗ (skip, σ′′, ι′′),

holds, and then from the premise we know that there exist σ′ and ι′ such that
(σ′, RT, ι′) ⊨ R and

RT ⊢ (C2, σ′′, ι′′) −→∗ (skip, σ′, ι′)

holds. Now, by Lem. 58, we have

RT ⊢ (C1; C2, σ, ι) −→∗ (skip, σ′, ι′).

⊓⊔

Lemma 60 (RT-Seq-Sound). For all P, C1, Q, C2 and R, if

– ⊨RT {P}C1{Q};
– ⊨RT {Q}C2{R};

then
⊨RT {P}C1; C2{R}.
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Proof. Let (σ, RT, ι) ⊨ P, and RT ⊢ (C1; C2, σ, ι) −→∗ (skip, σ′, ι′). By Lem. 58,
there exist σ′′ and ι′′ such that

RT ⊢ (C1, σ, ι) −→∗ (skip, σ′′, ι′′),
RT ⊢ (C2, σ′′, ι′′) −→∗ (skip, σ′, ι′),

and thus from the premises we have (σ′′, RT, ι′′) ⊨ Q, and (σ′, RT, ι′) ⊨ R
follows. ⊓⊔

Lemma 61 (RT-Skip-T-Sound). For all Q,

⊨RT [Q]skip[Q].

Proof. Let (σ, RT, ι) ⊨ Q, then RT ⊢ (skip, σ, ι) −→0(skip, σ, ι). ⊓⊔

Lemma 62 (RT-Skip-Sound). For all Q,

⊨RT {Q}skip{Q}.

Proof. Let (σ, RT, ι) ⊨ Q and RT ⊢ (skip, σ, ι) −→∗ (skip, σ′, ι′). Note that
σ′ = σ and ι′ = ι, and thus (σ′, RT, ι′) ⊨ Q. ⊓⊔

Lemma 63 (RT-Cond-T-Sound). For all P, b, C1, C2 and Q, if

– ⊨RT [P ∧ b]C1[Q];
– ⊨RT [P ∧ ¬b]C2[Q];

then
⊨RT [P]if (b) then C1 else C2[Q].

Proof. Let (σ, RT, ι) ⊨ P. If JbKσ = true, then (σ, RT, ι) ⊨ P ∧ b, and then from
the premise we know that there exist σ′ and ι′ such that RT ⊢ (C1, σ, ι) −→∗

(skip, σ′, ι′) and (σ′, RT, ι′) ⊨ Q. Thus RT ⊢ (if (b) then C1 else C2, σ, ι) −→∗

(skip, σ′, ι′). The case of JbKσ = false is similar. ⊓⊔

Lemma 64 (RT-Cond-Sound). For all P, b, C1, C2 and Q, if

– ⊨RT {P ∧ b}C1{Q};
– ⊨RT {P ∧ ¬b}C2{Q};

then
⊨RT {P}if (b) then C1 else C2{Q}.

Proof. Let (σ, RT, ι) ⊨ P and

RT ⊢ (if (b) then C1 else C2, σ, ι) −→∗ (skip, σ′, ι′).

If JbKσ = true, then RT ⊢ (C1, σ, ι) −→∗ (skip, σ′, ι′) and (σ, RT, ι) ⊨ P ∧ b. From
the premise, this implies (σ′, RT, ι′) ⊨ Q. The case of JbKσ = false is similar. ⊓⊔
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Lemma 65 (RT-While-Sound). For all Q, b and C, if

⊨RT {Q ∧ b}C{Q},

then
⊨RT {Q}while (b) do C {Q ∧ ¬b}.

Proof. Let (σ, RT, ι) ⊨ Q and

RT ⊢ (while (b) do C, σ, ι) −→∗ (skip, σ′, ι′),

that is, there exists some n such that

RT ⊢ (while (b) do C, σ, ι) −→n(skip, σ′, ι′).

Below we prove that (σ′, RT, ι′) ⊨ Q ∧ ¬b by induction on n. If JbKσ = false,
then (σ, RT, ι) ⊨ Q ∧ ¬b, σ′ = σ and ι′ = ι, and thus (σ′, RT, ι′) ⊨ Q ∧ ¬b. If
JbKσ = true, then n ≥ 2, (σ, RT, ι) ⊨ Q ∧ b and

RT ⊢ (C; while (b) do C, σ, ι) −→n−2(skip, σ′, ι′),

and thus by Lem. 58 we know that there exist σ′′, ι′′ and n′ < n such that

RT ⊢ (C, σ, ι) −→∗ (skip, σ′′, ι′′),

RT ⊢ (while (b) do C, σ′′, ι′′) −→n′
(skip, σ′, ι′).

The former implies (σ′′, RT, ι′′) ⊨ Q from the premise, and thus from the induc-
tion hypothesis we have (σ′, RT, σ′) ⊨ Q ∧ ¬b. ⊓⊔

Lemma 66. For all σ, σ′, ι, ι′, RT, x, C and n, if x /∈ fv(C) and RT ⊢ (C, σ, ι) −→
n(skip, σ′, ι′), then for all v we have

RT ⊢ (C, σ{x⇝ v}, ι) −→n(skip, σ′{x⇝ v}, ι′).

Proof. By induction on n. ⊓⊔

Lemma 67. For all C, σ, RT, ι, σ′, ι′, σ′′ and ι′′, if

– RT ⊢ (C, σ, ι) −→∗ (skip, σ′, ι′);
– RT ⊢ (C, σ, ι) −→∗ (skip, σ′′, ι′′);

then σ′ = σ′′ and ι′ = ι′′.

Proof. Let the premises hold, then RT ⊢ (C, σ, ι) −→n(skip, σ′, ι′) for some n.
Then we prove by induction on n. ⊓⊔

Lemma 68 (RT-While-T-Sound). For all Q, b, e, C and X, if

– ⊨RT [Q ∧ b ∧ e = X]C[Q ∧ e + 1 ≤ X];
– X /∈ fv(Q) ∪ fv(b) ∪ fv(e) ∪ fv(C);
– ⊨RT Q ⇒ e ≥ 0;
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then
⊨RT [Q]while (b) do C [Q ∧ ¬b].

Proof. Let (σ, RT, ι) ⊨ Q. If JbKσ = false, then (σ, RT, ι) ⊨ Q ∧ ¬b and RT ⊢
(while (b) do C, σ, ι) −→2(skip, σ, ι). If JbKσ = true and JeKσ /∈ Real, we take
σ′ = σ{X ⇝ JeKσ} and thus have

(σ′, RT, ι) ⊨ Q ∧ b ∧ e = X

from the second premise. From the first premise, there exist σ′′ and ι′′ such that
RT ⊢ (C, σ′, ι) −→∗ (skip, σ′′, ι′′) and (σ′′, RT, ι′′) ⊨ Q ∧ e + 1 ≤ X, then by
Lem. 66 and Lem. 67 we know that JXKσ′′ = JXKσ′ /∈ Real, which contradicts
Je + 1 ≤ XKσ′′ = true. Thus it remains to prove the following: For all σ, ι, RT
and r such that r ≥ 0 and (σ, RT, ι) ⊨ Q ∧ b ∧ e = r, there exist σ′ and ι′ such
that

RT ⊢ (while (b) do C, σ, ι) −→∗ (skip, σ′, ι′)

and (σ′, RT, ι′) ⊨ Q ∧ ¬b. We prove by induction on ⌊r⌋.

– ⌊r⌋ = 0. Assuming σ′′′ = σ{X ⇝ r}, we have (σ′′′, RT, ι) ⊨ Q ∧ b ∧ e = X,
and then from the premises we know that there exist σ′′ and ι′′ such that
RT ⊢ (C, σ′′′, ι) −→∗ (skip, σ′′, ι′′) and (σ′′, RT, ι′′) ⊨ Q ∧ 1 ≤ e + 1 ≤ X.
Since X /∈ fv(C), by Lem. 66 and Lem. 67 we have JXKσ′′ = JXKσ′′′ = r,
and thus (σ′′, RT, ι′′) ⊨ 1 ≤ r, which contradicts with ⌊r⌋ = 0.

– ⌊r⌋ > 0. Assuming σ′′′ = σ{X ⇝ r}, we have (σ′′′, RT, ι) ⊨ Q ∧ b ∧ e = X,
and then from the premise we know that there exist σ′′ and ι′′ such that
RT ⊢ (C, σ′′′, ι) −→∗ (skip, σ′′, ι′′) and (σ′′, RT, ι′′) ⊨ Q ∧ e + 1 ≤ X. Since
X /∈ fv(C), by Lem. 66 and Lem. 67 we have JXKσ′′ = JXKσ′′′ = r, and thus
there exists r′ ≤ r − 1 such that (σ′′, RT, ι′′) ⊨ Q ∧ e = r′. Besides, from
Lem. 66 we know that

RT ⊢ (C, σ, ι) −→∗ (skip, σ′′{X ⇝ σ(X)}, ι′′). (38)

Since X /∈ fv(Q) ∪ fv(e) ∪ fv(b), by Lem. 51 we have (σ′′{X ⇝
σ(X)}, RT, ι′′) ⊨ Q ∧ e = r′. If JbKσ′′{X⇝σ(X)} = false, then (σ′′{X ⇝
σ(X)}, RT, ι′′) ⊨ Q ∧ ¬b and by JbKσ = true and (38) we have

RT ⊢ (while (b) do C, σ, ι) −→∗ (skip, σ′′{X ⇝ σ(X)}, ι′′).

If JbKσ′′{X⇝σ(X)} = true, then (σ′′{X ⇝ σ(X)}, RT, ι′′) ⊨ Q ∧ b ∧ e = r′,
and then by the induction hypothesis there exist σ′ and ι′ such that

RT ⊢ (while (b) do C, σ′′{X ⇝ σ(X)}, ι′′) −→∗ (skip, σ′, ι′),

and (σ′, RT, ι′) ⊨ Q ∧ ¬b. Thus, by JbKσ = true and (38) we obtain that

RT ⊢ (while (b) do C, σ, ι) −→∗ (skip, σ′, ι′).
⊓⊔
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Lemma 69 (RT-Conj-T-Sound). For all P1, P2, C, Q1 and Q2, if

– ⊨RT [P1]C[Q1];
– ⊨RT [P2]C[Q2];

then
⊨RT [P1 ∧ P2]C[Q1 ∧ Q2].

Proof. Define Σ = (σ, RT, ι) such that Σ ⊨ P1 ∧ P2, then Σ ⊨ P1 and Σ ⊨
P2. From the premises, we know that there exist σ′ and ι′ such that RT ⊢
(C, σ, ι) −→∗ (skip, σ′, ι′) and (σ′, RT, ι′) ⊨ Q1, and there exist σ′′ and ι′′ such
that RT ⊢ (C, σ, ι) −→∗ (skip, σ′′, ι′′) and (σ′′, RT, ι′′) ⊨ Q2. From Lem. 67 we
have σ′ = σ′′ and ι′ = ι′′, and thus (σ′, RT, ι′) ⊨ Q1 ∧ Q2. ⊓⊔

Lemma 70 (RT-Conj-Sound). For all P1, P2, C, Q1 and Q2, if

– ⊨RT {P1}C{Q1};
– ⊨RT {P2}C{Q2};

then
⊨RT {P1 ∧ P2}C{Q1 ∧ Q2}.

Proof. Let Σ = (σ, RT, ι), σ′ and ι′ satisfy Σ ⊨ P1 ∧ P2 and RT ⊢ (C, σ, ι) −→∗

(skip, σ′, ι′), then Σ ⊨ P1 and Σ ⊨ P2. From the premises we know that
(σ′, RT, ι′) ⊨ Q1 and (σ′, RT, ι′) ⊨ Q2, and thus (σ′, RT, ι′) ⊨ Q1 ∧ Q2. ⊓⊔

Lemma 71 (RT-Disj-T-Sound). For all P1, P2, C, Q1 and Q2, if

– ⊨RT [P1]C[Q1];
– ⊨RT [P2]C[Q2];

then3
⊨RT [P1 ∨ P2]C[Q1 ∨ Q2].

Proof. Define Σ = (σ, RT, ι) such that Σ ⊨ P1 ∨ P2, now either Σ ⊨ P1 or
Σ ⊨ P2 holds. If Σ ⊨ P1, then from the premise we know that there exist σ′

and ι′ such that RT ⊢ (C, σ, ι) −→∗ (skip, σ′, ι′) and (σ′, RT, ι′) ⊨ Q1, and thus
(σ′, RT, ι′) ⊨ Q1 ∨ Q2. The case of Σ ⊨ P2 is similar. ⊓⊔

Lemma 72 (RT-Disj-Sound). For all P1, P2, C, Q1 and Q2, if

– ⊨RT {P1}C{Q1};
– ⊨RT {P2}C{Q2};

then
⊨RT {P1 ∨ P2}C{Q1 ∨ Q2}.

Proof. Let Σ = (σ, RT, ι), σ′ and ι′ satisfy Σ ⊨ P1 ∨ P2 and RT ⊢ (C, σ, ι) −→∗

(skip, σ′, ι′), then either Σ ⊨ P1 or Σ ⊨ P2 holds. If Σ ⊨ P1, then from the
premise we have (σ′, RT, ι′) ⊨ Q1 and thus (σ′, RT, ι′) ⊨ Q1 ∨ Q2. The case of
Σ ⊨ P2 is simliar. ⊓⊔
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Lemma 73 (RT-Exists-T-Sound). For all P, C, Q and X, if
– ⊨RT [P]C[Q];
– X /∈ fv(C);

then
⊨RT [∃X. P]C[∃X. Q].

Proof. Define Σ = (σ, RT, ι) such that Σ ⊨ ∃X. P, then there exists v such
that (σ{X ⇝ v}, RT, ι) ⊨ P. From the premise, there exist σ′ and ι′ such that
(σ′, RT, ι′) ⊨ Q and

RT ⊢ (C, σ{X ⇝ v}, ι) −→∗ (skip, σ′, ι′).

From X /∈ fv(C) and Lem. 66 we know that RT ⊢ (C, σ, ι) −→∗ (skip, σ′{X ⇝
JXKσ}, ι′). Since σ′ = (σ′{X ⇝ JXKσ}){X ⇝ JXKσ′}, we have (σ′{X ⇝
JXKσ}, RT, ι′) ⊨ ∃X. Q. ⊓⊔

Lemma 74 (RT-Exists-Sound). For all P, C, Q and X, if
– ⊨RT {P}C{Q};
– X /∈ fv(C);

then
⊨RT {∃X. P}C{∃X. Q}.

Proof. Let Σ = (σ, RT, ι), σ′ and ι′ satisfy Σ ⊨ ∃X. P and RT ⊢ (C, σ, ι) −→∗

(skip, σ′, ι′), then there exists v such that (σ{X ⇝ v}, RT, ι) ⊨ P. From X /∈
fv(C) and Lem. 66 we have

RT ⊢ (C, σ{X ⇝ v}, ι) −→∗ (skip, σ′{X ⇝ v}, ι′),

and then from the premise (σ′{X ⇝ v}, RT, ι′) ⊨ Q, which implies (σ′, RT, ι′) ⊨
∃X. Q. ⊓⊔

Lemma 75 (RT-Forall-T-Sound). For all P, C, Q and X, if
– ⊨RT [P]C[Q];
– X /∈ fv(C);

then
⊨RT [∀X. P]C[∀X. Q].

Proof. Define Σ = (σ, RT, ι) such that Σ ⊨ ∀X. P, then for all v we have (σ{X ⇝
v}, RT, ι) ⊨ P. For some v0, from the premise, there exist σ′ and ι′ such that

RT ⊢ (C, σ{X ⇝ v0}, ι) −→∗ (skip, σ′, ι′).

For all v, from the premise, we know that there exist σ′′ and ι′′ such that
(σ′′, RT, ι′′) ⊨ Q and

RT ⊢ (C, σ{X ⇝ v}, ι) −→∗ (skip, σ′′, ι′′),

then from X /∈ fv(C), Lem. 66 and Lem. 67 we have σ′′ = σ′{X ⇝ v} and
ι′′ = ι′. Thus (σ′, RT, ι′) ⊨ ∀X. Q. ⊓⊔
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Lemma 76 (RT-Forall-Sound). For all P, C, Q and X, if

– ⊨ {P}C{Q};
– X /∈ fv(C);

then
⊨ {∀X. P}C{∀X. Q}.

Proof. Let Σ = (σ, RT, ι), σ′ and ι′ satisfy Σ ⊨ ∀X. P and RT ⊢ (C, σ, ι) −→∗

(skip, σ′, ι′), then for all v we have (σ{X ⇝ v}, RT, ι) ⊨ P. By X /∈ fv(C) and
Lem. 66 we know that

RT ⊢ (C, σ{X ⇝ v}, ι) −→∗ (skip, σ′{X ⇝ v}, ι′),

then (σ′{X ⇝ v}, RT, ι′) ⊨ Q from the premise. Thus (σ′, RT, ι′) ⊨ ∀X. Q. ⊓⊔

G Auxiliary Lemmas

In this section, we give several auxiliary lemmas for the verification of ALLLs
and other results.

Lemma 77. For all P1, P2, C, Q2 and Q1, if

– ⊨ [P2]C[Q2];
– ⊨ P1 ⇒ P2, ⊨ Q2 ⇒ Q1;

then
⊨ [P1]C[Q1].

Proof. By Lem. 32. ⊓⊔

Lemma 78. For all P1, P2, C, Q1 and Q2, if

– ⊨ [P1]C[Q1];
– ⊨ {P2}C{Q2};

then
⊨ [P1 ∧ P2]C[Q1 ∧ Q2].

Proof. Similar to the proof of Lem. 44. ⊓⊔

Lemma 79. For all P, C1, C2, q1, q2 and r, if

– ⊨ {P}C1 ≤ C2{q1, q2};
– ⊨ [P ]C2[Pr[q2] ≤ r];

then
⊨ {P}C1{Pr[q1] ≤ r}.
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Proof. Let µ ⊨ P and |JC1K(µ)| = 1. From the second premise, we know that
JC2K(µ) = 1 and JC2K(µ) ⊨ Pr[q2] ≤ r, and thus

Prσ∼JC2K(µ)[σ ⊨ q2] ≤ r.

Then, from the first premise and µ ⊨ P , we have

Prσ∼JC1K(µ)[σ ⊨ q1] ≤ Prσ∼JC2K(µ)[σ ⊨ q2] ≤ r,

which implies JC1K(µ) ⊨ Pr[q1] ≤ r. ⊓⊔

Lemma 80. For all p, C and q, if

⊨RT [p ∧ hdinit]C[q],

then
⊨ [⌈p⌉]C[⌈q⌉].

Proof. Let µ satisfy µ ⊨ ⌈p⌉. We first show that |JCK(µ)| = 1. From Thm. 1,
we only need to prove that |JCKRT(µ)| = 1, that is, |JCKRT(σ)| = 1 holds for all
σ ∈ supp(µ). From the premise, we know that RT ⊢ (C, σ, ιinit) −→∗ (skip, _, _)
holds for all RT , thus

|JCKRT(σ)| =
∑
σ′

M({RT | RT ⊢ (C, σ, ιinit) −→∗ (skip, σ′, _)})

= M

(⊎
σ′

{RT | RT ⊢ (C, σ, ιinit) −→∗ (skip, σ′, _)}
)

= M({RT | RT ⊢ (C, σ, ιinit) −→∗ (skip, _, _)})
= M(RTable) = 1.

Then we show that JCK(µ) ⊨ ⌈q⌉. Again, by applying Thm. 1, we only need
to prove that JCKRT(µ) ⊨ ⌈q⌉, that is, σ′ ⊨ q holds for all σ ∈ supp(µ) and σ′

such that JCKRT(σ)(σ′) > 0. Assuming that σ ∈ supp(µ) and JCKRT(σ)(σ′) > 0,
we know that σ ⊨ p, and by definition there must exist an RT such that

RT ⊢ (C, σ, ιinit) −→∗ (skip, σ′, _),

then from the premise we have σ′ ⊨ q. ⊓⊔

Lemma 81. For all e and r, t-closed(E[e] ≤ r ∧ ⌈e ≥ 0⌉).

Proof. Let lim µ⃗ = µ, and µ⃗[i] ⊨ E[e] ≤ r ∧ ⌈e ≥ 0⌉ for all i ≥ 0. We first prove
that µ ⊨ ⌈e ≥ 0⌉. For all σ ∈ supp(µ), since lim µ⃗ = µ, there must exist some
i ≥ 0 such that σ ∈ supp(µ⃗[i]). Then from µ⃗[i] ⊨ ⌈e ≥ 0⌉ we have σ ⊨ e ≥ 0.
Thus µ ⊨ ⌈e ≥ 0⌉.

Then we show that µ ⊨ E[e] ≤ r. From µ ⊨ ⌈e ≥ 0⌉, we know that JeKσ ≥ 0
for all σ ∈ supp(µ). For σ ∈ supp(µ), by Lem. 12 we have

µ(σ) · JeKσ =
(

lim
n→∞

µ⃗[n](σ)
)

· JeKσ = lim
n→∞

(µ⃗[n](σ) · JeKσ) .
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Then by definition and Fatou’s lemma, we have

JE[e]Kµ = Eσ∼µ[JeKσ] =
∑

σ

µ(σ) · JeKσ

=
∑

σ

lim
n→∞

(µ⃗[n](σ) · JeKσ)

≤ lim inf
n→∞

∑
σ

µ⃗[n](σ) · JeKσ

= lim inf
n→∞

JE[e]Kµ⃗[n] ≤ r.

Thus µ ⊨ E[e] ≤ r. ⊓⊔

Lemma 82. For all q and r, t-closed(Pr[q] ≤ r).

Proof. Let lim µ⃗ = µ, and µ⃗[i] ⊨ Pr[q] ≤ r for all i ≥ 0. We show that µ ⊨
Pr[q] ≤ r. By definition and Lem. 12, we have

JPr[q]Kµ = Pr
σ∼µ

[σ ⊨ q] = lim
n→∞

Pr
σ∼µ⃗[n]

[σ ⊨ q] ≤ r.

Thus µ ⊨ Pr[q] ≤ r. ⊓⊔

Lemma 83. For all P and Q, if t-closed(P ) and t-closed(Q), then
t-closed(P ∧ Q).

Proof. Let lim µ⃗ = µ, and µ⃗[i] ⊨ P ∧ Q for all i ≥ 0. Thus µ⃗[i] ⊨ P and µ⃗[i] ⊨ Q
for all i ≥ 0. From the premises, we have µ ⊨ P and µ ⊨ Q, and thus µ ⊨ P ∧ Q.

⊓⊔

H Proofs of Ex. 1 and Ex. 2

In this section, we give the proofs of Ex. 1 and Ex. 2.

H.1 Proof of Ex. 1

By applying Lem. 77, Thm. 2 and Lem. 81, we only need to prove

⊨ [⌈cnt = 0 ∧ y = 1⌉] C ′
flip(K) [E[cnt] ≤ 2 ∧ ⌈cnt ≥ 0⌉]

for each K. By applying Thm. 6, it remains to prove

⊢ [⌈cnt = 0 ∧ y = 1⌉] C ′
flip(K) [E[cnt] ≤ 2 ∧ ⌈cnt ≥ 0⌉] .

The proof sketch of the above judgment is presented below. Here we apply the
(while-tb) rule, where n = K and

Qi =
(

(⌈y = 1 ∧ cnt = i⌉) ⊕ 1
2i

(
⌈y = 0 ∧ cnt ≥ 0⌉ ∧ E[cnt] = 2 − i

2i − 1

))
.
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[⌈cnt = 0 ∧ y = 1⌉]
[Q0]
while (y = 1 ∧ cnt < K) do

y := Sample(1);
cnt := cnt + 1;

[QK ]
[E[cnt] ≤ 2 ∧ ⌈cnt ≥ 0⌉]

[Qi]
if (y = 1 ∧ cnt < K) then

[⌈cnt = i⌉]
y := Sample(1);
[⌈cnt = i⌉ ∧ y ∼ 1]
cnt := cnt + 1;
[⌈cnt = i + 1⌉ ∧ y ∼ 1][

(⌈cnt = i + 1⌉ ∧ y ∼ 1) ⊕ 1
2i

(
⌈y = 0 ∧ cnt ≥ 0⌉ ∧ E[cnt] = 2 − i

2i−1

)]
[(

(⌈y = 1 ∧ cnt = i + 1⌉) ⊕ 1
2

(⌈y = 0 ∧ cnt = i + 1⌉)
)

⊕ 1
2i

(
⌈y = 0 ∧ cnt ≥ 0⌉ ∧ E[cnt] = 2 − i

2i−1

)]
[Qi+1]
Informally, Qi captures the quantitative properties of cnt after the i-th iteration.
With probability 1

2i , the program samples 1 from y := Sample(1) for i times in
a row, and thus y = 1 and cnt = i. Otherwise y = 0, and the weighted sum of
cnt is

i∑
j=1

j

2j
= 2 − 2 + i

2i
.

Conditioning on y = 0, the expectation of cnt is 2 − i
2i−1 . Furthermore, for

i = K, by QK we know that the expectation of cnt is

i · 1
2i

+
(

2 − i

2i − 1

)(
1 − 1

2i

)
= 2 − 1

2i−1 ≤ 2.

H.2 Proof of Ex. 2

We give relevant definitions in Fig. 27. Take R = coll(k), where

coll(k) ≜
∨

0≤i<j<m(k) . RT[1][i] = RT[1][j],
m(i) ≜ |{nj : j ∈ [1, i]}|.

By applying Thm. 3, we only need to prove

⊨RT {inp ∧ hdinit} Cbad
PRF {bad = 1 ⇒ R} (39)
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(Seq) Λ ::= [] | n :: Λ | (n, r) :: Λ

(Val) v ::= . . . | (n, r)

(Expr) e ::= . . . | (e1, e2)

(Bexp) b ::= . . . | find(e1, e2) | findkey(e1, e2) | findval(e1, e2)

Jfind(e1, (e2, e3))Kσ ≜

{
true if Je1Kσ = Λ ∧ Λ⟨_⟩ = (Je2Kσ, Je3Kσ)
false otherwise

Jfindkey(e1, e2)Kσ ≜

{
true if Je1Kσ = Λ ∧ Λ⟨_⟩ = (Je2Kσ, _)
false otherwise

Jfindval(e1, e2)Kσ ≜

{
true if Je1Kσ = Λ ∧ Λ⟨_⟩ = (_, Je2Kσ)
false otherwise

Fig. 27. Definitions in Ex. 2.

and

⊨RT [inp ∧ R ∧ hdinit] CPRF
[∃X1, X2, Y. X1 ̸= X2 ∧ find(L, (X1, Y )) ∧ find(L, (X2, Y ))]. (40)

Then, by applying Thm. 7, it remains to prove

⊢RT {inp ∧ hdinit} Cbad
PRF {bad = 1 ⇒ R} (41)

and

⊢RT [inp ∧ R ∧ hdinit] CPRF
[∃X1, X2, Y. X1 ̸= X2 ∧ find(L, (X1, Y )) ∧ find(L, (X2, Y ))]. (42)

We use the following definitions:

l(i) ≜ min{m(j) : nj = ni}
flx(n) ≜

∧
i∈[1,n] . find(L, (x[i], RT[1][l(i) − 1]))

bad(n) ≜ bad = 1 ∧ coll(n)
good(n) ≜ bad = 0 ∧ flx(n) ∧ len(L) = m(n)

The proofs of (41) and (42) are sketched in Fig. 28 and Fig. 29 respectively.

I Witness-Tree-Like Structures

In this section, we give definitions and lemmas related to the following four
witness-tree-like structures: witness trees [51], lopsided witness trees [51], strong
witness trees [54], and independent set sequences [44].
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{inp ∧ hdinit}
L := []; d := 1; bad := 0;
{inp ∧ hdinit ∧ L = [] ∧ d = 1 ∧ bad = 0}
{inp ∧ 1 ≤ d ≤ k + 1 ∧ (good(d − 1) ∧ hd1 = m(d − 1) ∨ bad(d − 1))}
while (d ≤ k) do

{inp ∧ 1 ≤ d ≤ k ∧ (good(d − 1) ∧ hd1 = m(d − 1) ∨ bad(d − 1))}
if (¬findkey(L, x[d])) then

{inp ∧ 1 ≤ d ≤ k ∧ (good(d − 1) ∧ hd1 = m(d − 1)
∧ ¬findkey(L, x[d]) ∨ bad(d − 1))}

{inp ∧ 1 ≤ d ≤ k ∧ (good(d − 1) ∧ hd1 = m(d) − 1 ∧ l(d) = m(d)
∧ m(d) = m(d − 1) + 1 ∨ bad(d − 1))}

y := Sample(1);
{inp ∧ 1 ≤ d ≤ k ∧ (good(d − 1) ∧ hd1 = m(d) ∧ l(d) = m(d)

∧ m(d) = m(d − 1) + 1 ∧ y = RT[1][l(d) − 1]
∨ bad(d − 1))}

if (findval(L, y)) then
{inp ∧ 1 ≤ d ≤ k ∧ (good(d − 1) ∧ hd1 = m(d) ∧ l(d) = m(d)

∧ y = RT[1][l(d) − 1] ∧ findval(L, y)
∨ bad(d − 1))}

{inp ∧ 1 ≤ d ≤ k ∧ (good(d − 1) ∧ hd1 = m(d) ∧ y = RT[1][l(d) − 1]
∧ coll(d) ∨ bad(d − 1))}

bad := 1;
{inp ∧ 1 ≤ d ≤ k ∧ bad(d)}

{inp ∧ 1 ≤ d ≤ k ∧ (good(d − 1) ∧ hd1 = m(d) ∧ m(d) = m(d − 1) + 1
∧ y = RT[1][l(d) − 1] ∨ bad(d))}

L := app(L, (x[d], y));
{inp ∧ 1 ≤ d ≤ k ∧ (good(d) ∧ hd1 = m(d) ∨ bad(d))}

{inp ∧ 1 ≤ d ≤ k ∧ (good(d) ∧ hd1 = m(d) ∨ bad(d))}
d := d + 1;
{inp ∧ 1 ≤ d ≤ k + 1 ∧ (good(d − 1) ∧ hd1 = m(d − 1) ∨ bad(d − 1))}

{inp ∧ d = k + 1 ∧ (good(d − 1) ∧ hd1 = m(d − 1) ∨ bad(d − 1))}
{bad = 1 ⇒ coll(k)}

Fig. 28. Proof of (41).

I.1 Witness Trees

Below we define witness trees and prove some of their important properties.
We define WT, WTMap, fWT, gWT in Fig. 30. The set of all witness trees,

denoted as WT , is defined as follows, where {· · ·} represents a multiset.

(WT) wt ::= (m, {wt1, . . . , wtn})

Define WTMap(K) as the set of all (proper) witness trees with size no more
than K. Informally, a tree wt is “proper” iff

– For each node in wt, all of its child nodes have distinct labels from [1, M ].
– For each node in wt, if the node has label m, then all of its child nodes have

labels from Γ +(m).
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[inp ∧ coll(k) ∧ hdinit]
L := []; d := 1;
[inp ∧ coll(k) ∧ hdinit ∧ L = [] ∧ d = 1]
[inp ∧ coll(k) ∧ 1 ≤ d ≤ k + 1 ∧ flx(d − 1) ∧ hd1 = m(d − 1)]
while (d ≤ k) do

[inp ∧ coll(k) ∧ 1 ≤ d ≤ k ∧ flx(d − 1) ∧ hd1 = m(d − 1) ∧ k + 1 − d = X]
if (¬findkey(L, x[d])) then

[inp ∧ coll(k) ∧ 1 ≤ d ≤ k ∧ flx(d − 1) ∧ hd1 = m(d − 1)
∧ ¬findkey(L, x[d]) ∧ k + 1 − d = X]

[inp ∧ coll(k) ∧ 1 ≤ d ≤ k ∧ flx(d − 1) ∧ hd1 = m(d) − 1
∧ l(d) = m(d) ∧ k + 1 − d = X]

y := Sample(1);
[inp ∧ coll(k) ∧ 1 ≤ d ≤ k ∧ flx(d − 1) ∧ hd1 = m(d)

∧ y = RT[1][l(d) − 1] ∧ k + 1 − d = X]
L := app(L, (x[d], y));
[inp ∧ coll(k) ∧ 1 ≤ d ≤ k ∧ flx(d) ∧ hd1 = m(d) ∧ k + 1 − d = X]

[inp ∧ coll(k) ∧ 1 ≤ d ≤ k ∧ flx(d) ∧ hd1 = m(d) ∧ k + 1 − d = X]
d := d + 1;
[inp ∧ coll(k) ∧ 1 ≤ d ≤ k + 1 ∧ flx(d − 1) ∧ hd1 = m(d − 1) ∧ k + 1 − d + 1 ≤ X]

[inp ∧ coll(k) ∧ d = k + 1 ∧ flx(d − 1) ∧ hd1 = m(d − 1)]
[∃X1, X2, Y. X1 ̸= X2 ∧ find(L, (X1, Y )) ∧ find(L, (X2, Y ))]

Fig. 29. Proof of (42).

For execution log Λ ∈ ExLog, we define fWT(Λ) as the witness tree con-
structed from Λ. Informally, GPar(Λ, i, j) holds iff the parent node of Λ⟨i⟩ on the
witness tree is Λ⟨j⟩. To define GPar(Λ, i, j), we treat the witness tree as a longest
path spanning tree of the “witness DAG”. GPath(Λ, i, l) holds iff there exists a
path of length l from Λ⟨i⟩ to Λ⟨|Λ|⟩ on the “witness DAG”, and GDep(Λ, i, l)
holds iff the longest such path is of length l.

For a witness tree wt ∈ WT , we define gWT(wt) as a reversed BFS ordering
of wt.

Other auxiliary definitions related to witness trees, for example the definition
of the index version of GWT (Λ, i) (GWTI (Λ, i)), are also given in Fig. 30.

The following lemmas capture the properties of witness trees.

Lemma 84. For all Λ ∈ ExLog, i, l and l′, if GDep(Λ, i, l) and GDep(Λ, i, l′),
then l = l′.

Proof. Let GDep(Λ, i, l) and GDep(Λ, i, l′) hold. We prove by contradiction. As-
sume that l ̸= l′. Without loss of generality, let l < l′, then by GDep(Λ, i, l′) we
have GPath(Λ, i, l′), and by GDep(Λ, i, l) we know that ¬GPath(Λ, i, l′′) for all
l′′ > l, which leads to a contradiction. Thus l = l′. ⊓⊔

Lemma 85. For all Λ ∈ ExLog, i, j and k, if GPar(Λ, i, j) and GPar(Λ, i, k),
then j = k.
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(WT) wt ::= (m, {wt1, . . . , wtn})

WTMap(K) ≜ {wt ∈ W T | Proper(wt) ∧ |wt| ≤ K}
|(m, {wt1, . . . , wtn})| ≜ 1 +

∑
i∈[1,n] |wti|

root((m, {wt1, . . . , wtn})) ≜ m

Proper((m, {wt1, . . . , wtn})) iff
(∧

i∈[1,n] . Proper(wti)
)

∧ |{root(wt1), . . . , root(wtn)}| = n
∧ m ∈ [1, M ] ∧ {root(wt1), . . . , root(wtn)} ⊆ Γ +(m)

fWT(Λ) ≜ GWT(Λ, |Λ|)
GWT(Λ, i) ≜ (Λ⟨i⟩, {GWT(Λ, j) | GPar(Λ, j, i)})

gWT(wt) ≜ LYWT(id)(wt)
LYWT(h)(wt) ≜ Lay(h)(wt, Hgh(wt) − 1) ∥ · · · ∥ Lay(h)(wt, 0)

Hgh((m, {wt1, . . . , wtn})) ≜ 1 + max{Hgh(wti) | i ∈ [1, n]}

n ∈ Λ iff ∃i ∈ [1, |Λ|]. Λ⟨i⟩ = n

#m(Λ) ≜
∑

i∈[1,|Λ|][Λ⟨i⟩ = m]
#m,Λ′ (Λ) ≜

∑
i∈[1,|Λ|][Λ

′⟨Λ⟨i⟩⟩ = m]
#m′ ((m, {wt1, . . . , wtn})) ≜ [m′ = m] +

∑
i∈[1,n] #m′ (wti)

GWTS(Λ, i) ≜ i :: (GWTS(Λ, j1) ∥ · · · ∥ GWTS(Λ, jn))
where {j1, . . . , jn} = {j | GPar(Λ, j, i)}

GWTI (Λ, i) ≜ (i, {GWTI (Λ, j) | GPar(Λ, j, i)})
Lay(h)(wt, l) ≜ seq(h)(LayS(wt, l))

seq(h)(I) ≜ in :: · · · :: i1 :: []
where I = {i1, . . . , in} ∧ (h(i1), i1) ≤ · · · ≤ (h(in), in)

LayS((m, {wt1, . . . , wtn}), l) ≜
{

{m} (multiset) if l = 0
LayS(wt1, l − 1) ∪ · · · ∪ LayS(wtn, l − 1) if l ≥ 1

GPath(Λ, |Λ|, 0)
i < j ≤ |Λ| Λ⟨j⟩ ∈ Γ +(Λ⟨i⟩) GPath(Λ, j, l)

GPath(Λ, i, l + 1)

GPath(Λ, i, l) ∀l′ > l. ¬GPath(Λ, i, l′)
GDep(Λ, i, l)

GDep(Λ, i, l + 1)
i < j ≤ |Λ| Λ⟨j⟩ ∈ Γ +(Λ⟨i⟩) GPath(Λ, j, l)

∀k. i < k < j ∧ Λ⟨k⟩ ∈ Γ +(Λ⟨i⟩) =⇒ ¬GPath(Λ, k, l)
GPar(Λ, i, j)

Fig. 30. Definitions related to witness trees.

Proof. Let GPar(Λ, i, j) and GPar(Λ, i, k) hold, then i < j and i < k. Without
loss of generality, assume that k ≤ j. By definition, there exist l and l′ such that:

Λ⟨k⟩ ∈ Γ +(Λ⟨i⟩), GPath(Λ, j, l), GDep(Λ, i, l + 1),
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GPath(Λ, k, l′), GDep(Λ, i, l′ + 1),

and ¬GPath(Λ, j′, l) for all j′ such that Λ⟨j′⟩ ∈ Γ +(Λ⟨i⟩) and i < j′ < j. By
Lem. 84 we know that l = l′, and thus j = k. ⊓⊔

Lemma 86. For all Λ ∈ ExLog and i ∈ [1, |Λ|], root(GWT (Λ, i)) = Λ⟨i⟩.

Proof. By definition. ⊓⊔

Lemma 87. For all Λ ∈ ExLog, i, taking Λ′ = GWTS(Λ, i), if GPath(Λ, i, l)
holds for some l, then

– For all j ∈ [1, |Λ′|], Λ′⟨j⟩ ∈ [1, i];
– For all j ̸= k ∈ [1, |Λ′|], Λ′⟨j⟩ ≠ Λ′⟨k⟩;
– For all j ∈ [1, |Λ′|], either Λ′⟨j⟩ = i or there exists k ∈ [j + 1, |Λ′|] such that

GPar(Λ, Λ′⟨j⟩, Λ′⟨k⟩)).

Proof. We prove by induction on i. The first and the third properties are triv-
ial. Below we prove the second property by contradiction. Assume that there
exist j ̸= k ∈ [1, |Λ′|] such that Λ′⟨j⟩ = Λ′⟨k⟩, and (j, k) has the largest lexi-
cographical order among such pairs. From the induction hypothesis, there exist
j′ ̸= k′ < i such that Λ′⟨j⟩ ∈ GWTS(Λ, j′), Λ′⟨k⟩ ∈ GWTS(Λ, k′), GPar(Λ, j′, i)
and GPar(Λ, k′, i). If Λ′⟨j⟩ = j′ and Λ′⟨k⟩ = k′, then it leads to a contra-
diction. If Λ′⟨j⟩ = j′ and Λ′⟨k⟩ ̸= k′, then from the induction hypothesis
there exists i′ ∈ [1, k′] such that GPar(Λ, Λ′⟨k⟩, i′), but from GPar(Λ, j′, i) we
know that GPar(Λ, Λ′⟨k⟩, i), which contradicts Lem. 85. The case of Λ′⟨k⟩ = k′

is similar. If Λ′⟨j⟩ ≠ j′, Λ′⟨k⟩ ≠ k′, then from the induction hypothesis we
know that there exist j′′ > j and k′′ > k such that GPar(Λ, Λ′⟨j⟩, Λ′⟨j′′⟩) and
GPar(Λ, Λ′⟨k⟩, Λ′⟨k′′⟩), and then by Lem. 85 this implies Λ′⟨j′′⟩ = Λ′⟨k′′⟩, which
contradicts that (j, k) has the largest lexicographical order. ⊓⊔

Lemma 88. For all Λ ∈ ExLog, |fWT(Λ)| ≤ |Λ|.

Proof. From Lem. 87 and GPath(Λ, |Λ|, 0), |GWTS(Λ, |Λ|)| ≤ |Λ|. Then by in-
duction, for all i we have |GWT (Λ, i)| = |GWTS(Λ, i)|, and thus |fWT(Λ)| =
|GWT (Λ, |Λ|)| = |GWTS(Λ, |Λ|)| ≤ |Λ|. ⊓⊔

Lemma 89. For all Λ ∈ ExLog, i, j and l, if GPar(Λ, i, j), then

GDep(Λ, j, l) ⇐⇒ GDep(Λ, i, l + 1).

Proof. Assuming GPar(Λ, i, j), we know that there exists l′ such that
GPath(Λ, j, l′), GDep(Λ, i, l′ + 1), i < j ≤ |Λ|, and Λ⟨j⟩ ∈ Γ +(Λ⟨i⟩).

If GDep(Λ, j, l), then by GPath(Λ, j, l′) we know that l′ ≤ l. Since
GPath(Λ, i, l + 1), from GDep(Λ, i, l′ + 1) we know that l ≤ l′, thus l = l′ and
GDep(Λ, i, l + 1).

If GDep(Λ, i, l+1), then from Lem. 84 we have l = l′, and thus GPath(Λ, j, l).
If GPath(Λ, j, l′′) for some l′′ > l, then from Λ⟨j⟩ ∈ Γ +(Λ⟨i⟩) we know that
GPath(Λ, i, l′′ + 1), which contradicts GDep(Λ, i, l′ + 1). Thus GDep(Λ, j, l). ⊓⊔
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Lemma 90. For all Λ ∈ ExLog, i, j and k, if j ̸= k, GPar(Λ, j, i) and
GPar(Λ, k, i), then Λ⟨k⟩ /∈ Γ +(Λ⟨j⟩).

Proof. We prove by contradiction. Let Λ⟨k⟩ ∈ Γ +(Λ⟨j⟩). Without loss of general-
ity, let j < k. Assume that GPar(Λ, j, i) and GPar(Λ, k, i) hold, then by definition
we know that there must exist l and l′ such that GPath(Λ, i, l), GDep(Λ, j, l + 1),
GPath(Λ, i, l′) and GDep(Λ, k, l′+1). From Lem. 89, this implies GDep(Λ, i, l) and
GDep(Λ, i, l′), then from Lem. 84 we have l = l′. Thus, since GDep(Λ, j, l′ + 1),
for all l′′ > l′ + 1 we have ¬GPath(Λ, j, l′′). However, by GDep(Λ, k, l′ + 1) and
Λ⟨k⟩ ∈ Γ +(Λ⟨j⟩) we have GPath(Λ, j, l′ + 2), which leads to a contradiction.
Thus Λ⟨k⟩ /∈ Γ +(Λ⟨j⟩). ⊓⊔

Lemma 91. For all Λ ∈ ExLog, i and l > |Λ|, ¬GPath(Λ, i, l).

Proof. By definition. ⊓⊔

Lemma 92. For all Λ ∈ ExLog, i and l, if GPath(Λ, i, l), then i ∈
GWTS(Λ, |Λ|).

Proof. Assume that GPath(Λ, i, l), then from Lem. 91 there exists l′ ≥ l such
that GDep(Λ, i, l′). By Lem. 89 and induction, there exist |Λ| = i0, i1, . . . , il′ = i
such that: GDep(Λ, il′′ , l′′) holds for all l′′ ∈ [0, l′], and GPar(Λ, il′′+1, il′′) holds
for all l′′ ∈ [0, l′). By induction we know that i ∈ GWTS(Λ, il′′) holds for all
l′′ ∈ [0, l′], and thus i ∈ GWTS(Λ, |Λ|). ⊓⊔

Lemma 93. For all Λ ∈ ExLog,

#Λ⟨|Λ|⟩(GWT (Λ, |Λ|)) = #Λ⟨|Λ|⟩(Λ).

Proof. By induction, we can prove that: for all m and i ∈ [1, |Λ|],
#m(GWT (Λ, i)) = #m,Λ(GWTS(Λ, i)). Below we only need to prove that
#Λ⟨|Λ|⟩,Λ(GWTS(Λ, |Λ|)) = #Λ⟨|Λ|⟩(Λ). From Lem. 87, it remains to prove that,
for all i such that Λ⟨i⟩ = Λ⟨|Λ|⟩ we have i ∈ GWTS(Λ, |Λ|). Assuming that
{i | Λ⟨i⟩ = Λ⟨|Λ|⟩} = {i0, . . . , il} where |Λ| = i0 > · · · > il, by induction
we know that, GPath(Λ, il′ , l′) for all l′ ∈ [0, l], and thus for all i satisfying
Λ⟨i⟩ = Λ⟨|Λ|⟩ there exists l′ such that GPath(Λ, i, l′), and then from Lem. 92 we
obtain that i ∈ GWTS(Λ, |Λ|). ⊓⊔

Lemma 94. For all Λ ∈ ExLog and i,

#i(LYWT (λi. Λ⟨i⟩)(GWTI (Λ, |Λ|))) ≤ 1.

Proof. By induction,

#i(LYWT (λi. Λ⟨i⟩)(GWTI (Λ, |Λ|))) = #i(GWTS(Λ, |Λ|)),

and then from Lem. 87 we have #i(GWTS(Λ, |Λ|)) ≤ 1. Thus
#i(LYWT (λi. Λ⟨i⟩)(GWTI (Λ, |Λ|))) ≤ 1. ⊓⊔
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Lemma 95. For all Λ ∈ ExLog, i and l, if GPath(Λ, i, l), then i ∈
Lay(λi. Λ⟨i⟩)(GWTI (Λ, |Λ|), l′) for some l′.

Proof. Assuming that GPath(Λ, i, l), from Lem. 91 we know that there ex-
ists l′ ≥ l such that GDep(Λ, i, l′). By Lem. 89 and induction, there exist
|Λ| = i0, i1, . . . , il′ = i such that: GDep(Λ, il′′ , l′′) for all l′′ ∈ [0, l′], and
GPar(Λ, il′′+1, il′′) for all l′′ ∈ [0, l′). By induction, we can prove that

il′ ∈ Lay(λi. Λ⟨i⟩)(GWTI (Λ, il′′), l′ − l′′)

for all l′′ ≤ l′. Thus i ∈ Lay(λi. Λ⟨i⟩)(GWTI (Λ, |Λ|), l′). ⊓⊔

Lemma 96. For all Λ ∈ ExLog, l and i, if

i ∈ Lay(λi. Λ⟨i⟩)(GWTI (Λ, |Λ|), l),

then GDep(Λ, i, l).

Proof. For all j ∈ |Λ|, l and i ∈ Lay(λi. Λ⟨i⟩)(GWTI (Λ, j), l), by induction on
l we can prove that, there exist j = i0, i1, . . . , il = i such that GPar(Λ, il′ , il′+1)
holds for all l′ ∈ [0, l). Thus for i ∈ Lay(λi. Λ⟨i⟩)(GWTI (Λ, |Λ|), l), by Lem. 89
and induction we have GDep(Λ, i, l). ⊓⊔

Lemma 97. For all wt and h, |LYWT (h)(wt)| = |wt|.

Proof. By induction on the structure of wt. ⊓⊔

Lemma 98. For all Λ ∈ ExLog and K such that |Λ| ≤ K,

fWT(Λ) ∈ WTMap(K).

Proof. Let Λ ∈ ExLog satisfy |Λ| ≤ K, then by Lem. 88 we know that |fWT(Λ)| ≤
|Λ| ≤ K. From Lem. 86 and Lem. 90, by induction we have Proper(fWT(Λ)). Thus
by definition we obtain that fWT(Λ) ∈ WTMap(K). ⊓⊔

Lemma 99. For all Λ ≺ Λ′ ∈ ExLog,

fWT(Λ) ̸= fWT(Λ′).

Proof. We show that GWT (Λ, |Λ|) ̸= GWT (Λ′, |Λ′|). If Λ⟨|Λ|⟩ ≠ Λ′⟨|Λ′|⟩, then
GWT (Λ, |Λ|) ̸= GWT (Λ′, |Λ′|), otherwise it contradicts Lem. 86. If Λ⟨|Λ|⟩ =
Λ′⟨|Λ′|⟩, then by Λ ≺ Λ′ we have #Λ⟨|Λ|⟩(Λ) =

∑
i∈[1,|Λ|][Λ⟨i⟩ = Λ′⟨|Λ′|⟩] <

#Λ′⟨|Λ′|⟩(Λ′). Thus, from Lem. 93 we get GWT (Λ, |Λ|) ̸= GWT (Λ′, |Λ′|). ⊓⊔

Lemma 100. For all Λ, Λ′ ∈ ExLog, if

(gWT ◦ fWT)(Λ) = Λ′,

then for each l ∈ [1, |Λ′|] there exists k such that Λ⟨k⟩ = Λ′⟨l⟩ and∑
k′<k

[vbl(Λ⟨k′⟩, i)] =
∑
l′<l

[vbl(Λ′⟨l′⟩, i)]

for all i ∈ [1, N ] such that vbl(Λ′⟨l⟩, i).
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Proof. Suppose that fWT(Λ) = wt, gWT(wt) = Λ′ and l ∈ [1, |Λ′|]. Taking Λ′′ =
LYWT (λi. Λ⟨i⟩)(GWTI (Λ, |Λ|)), by induction we have |Λ′| = |Λ′′|, and for all
l′ ∈ [1, |Λ′|] we have Λ′⟨l′⟩ = Λ⟨Λ′′⟨l′⟩⟩. Take j = Λ′′⟨l⟩, then by Lem. 96 there
exists l′′ such that GPath(Λ, j, l′′). For i ∈ [1, N ] such that vbl(E [Λ′⟨l⟩], i), we
only need to prove that∑

j′<j

[vbl(E [Λ⟨j′⟩], i)] =
∑
l′<l

[vbl(E [Λ′⟨l′⟩], i)].

From Lem. 94, we know that all elements in Λ′′ are distinct, and from Lem. 95
we have j′ ∈ Λ′′ for all j′ < j such that vbl(E [Λ⟨j′⟩], i) (which implies
GPath(Λ, j′, l′′ + 1)). Thus∑

j′<j

[vbl(E [Λ⟨j′⟩], i)] =
∑

l′:Λ′′⟨l′⟩<Λ′′⟨l⟩

[vbl(E [Λ⟨Λ′′⟨l′⟩⟩], i)],

and it remains to prove the following: for all l′, if vbl(E [Λ′⟨l′⟩], i), then

l′ < l ⇐⇒ Λ′′⟨l′⟩ < Λ′′⟨l⟩.

For l′ < l such that vbl(E [Λ′⟨l′⟩], i), we prove Λ′′⟨l′⟩ < Λ′′⟨l⟩ by con-
tradiction. Assume that Λ′′⟨l′⟩ > Λ′′⟨l⟩. Since l′ < l, there must exist
d′ ≥ d such that Λ′′⟨l′⟩ ∈ Lay(λi. Λ⟨i⟩)(GWTI (Λ, |Λ|), d′) and Λ′′⟨l⟩ ∈
Lay(λi. Λ⟨i⟩)(GWTI (Λ, |Λ|), d). By Lem. 96, this implies GDep(Λ, Λ′′⟨l′⟩, d′) and
GDep(Λ, Λ′′⟨l⟩, d), and thus from Λ′′⟨l′⟩ > Λ′′⟨l⟩ and Λ⟨Λ′′⟨l′⟩⟩ ∈ Γ +(Λ⟨Λ′′⟨l⟩⟩)
we know that GPath(Λ, Λ′′⟨l⟩, d′ + 1), a contradiction. Therefore l′ < l =⇒
Λ′′⟨l′⟩ < Λ′′⟨l⟩. Similarly, if Λ′′⟨l′⟩ < Λ′′⟨l⟩, one can show that l′ < l. ⊓⊔

Lemma 101. For all reals α1, . . . , αM ∈ (0, 1), if the Erdös-Lovász condition

∀i ∈ [1, M ]. P(E [i]) ≤ αi

∏
j∈Γ (i)

(1 − αj)

holds, then for all K we have

∑
wt∈WTMap(K)

|gWT(wt)|∏
i=1

P(E [gWT(wt)⟨i⟩]) ≤ rEL,

where
rEL =

∑
i∈[1,M ]

αi(1 − αi)−1.

Proof. From the Erdös-Lovász condition, we only need to prove that, for all K,

∑
wt∈WTMap(K)

|gWT(wt)|∏
i=1

αgWT(wt)⟨i⟩ ·
∏

j∈Γ (gWT(wt)⟨i⟩)

(1 − αj) ≤
∑

k∈[1,M ]

αk · (1 − αk)−1.
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Define hj(K) = {wt ∈ WTMap(K) | root(wt) = j}, then we only need to prove
that, for all k ∈ [1, M ] and K,

∑
wt∈hk(K)

|gWT(wt)|∏
i=1

αgWT(wt)⟨i⟩
∏

j∈Γ (gWT(wt)⟨i⟩)

(1 − αj) ≤ αk · (1 − αk)−1.

We prove by induction on K. The case of K = 0 if trivial. For the induction
step,

∑
wt∈hk(K+1)

|gWT(wt)|∏
i=1

αgWT(wt)⟨i⟩
∏

j∈Γ (gWT(wt)⟨i⟩)

(1 − αj)

=
∑

(k,{wt1,...,wtn})∈hk(K+1)

((
αk

∏
j∈Γ (k)

(1 − αj)
)

·
∏

l∈[1,n]

|gWT(wtl)|∏
i=1

αgWT(wtl)[i]
∏

j∈Γ (gWT(wtl)[i])

(1 − αj)
)

≤ αk · (1 − αk)−1
∏

j∈Γ +(k)

(1 − αj)

·

1 +
∑

wt∈hj(K)

|gWT(wt)|∏
i=1

αgWT(wt)⟨i⟩
∏

l∈Γ (gWT(wt)⟨i⟩)

(1 − αl)


≤ αk · (1 − αk)−1

∏
j∈Γ +(k)

(1 − αj)
(
1 + αj · (1 − αj)−1)

= αk · (1 − αk)−1.

⊓⊔

Lemma 102. For all reals α1, . . . , αM , ϵ ∈ (0, 1), if the Erdös-Lovász condition
(with ϵ slack)

∀i ∈ [1, M ]. P(E [i]) ≤ (1 − ϵ)αi

∏
j∈Γ (i)

(1 − αj)

holds, then for all K and m we have

∑
wt∈WTMap(K)

|wt|≥m

|gWT(wt)|∏
i=1

P(E [gWT(wt)⟨i⟩]) ≤ (1 − ϵ)mrEL,

where
rEL =

∑
i∈[1,M ]

αi(1 − αi)−1.
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Proof. From the Erdös-Lovász condition (with ϵ slack), Lem. 97 and Lem. 101,
for all K and m,

∑
wt∈WTMap(K)

|wt|≥m

|gWT(wt)|∏
i=1

P(E [gWT(wt)⟨i⟩])

≤
∑

wt∈WTMap(K)
|wt|≥m

|gWT(wt)|∏
i=1

(1 − ϵ)αgWT(wt)⟨i⟩
∏

j∈Γ (gWT(wt)⟨i⟩)

(1 − αj)

=
∑

wt∈WTMap(K)
|wt|≥m

(1 − ϵ)|gWT(wt)|
|gWT(wt)|∏

i=1
αgWT(wt)⟨i⟩

∏
j∈Γ (gWT(wt)⟨i⟩)

(1 − αj)

≤ (1 − ϵ)m
∑

wt∈WTMap(K)
|wt|≥m

|gWT(wt)|∏
i=1

αgWT(wt)⟨i⟩
∏

j∈Γ (gWT(wt)⟨i⟩)

(1 − αj)

≤ (1 − ϵ)m
∑

wt∈WTMap(K)

|gWT(wt)|∏
i=1

αgWT(wt)⟨i⟩
∏

j∈Γ (gWT(wt)⟨i⟩)

(1 − αj)

≤ (1 − ϵ)m
∑

i∈[1,M ]

αi(1 − αi)−1.

⊓⊔

Lemma 103. For all reals α1, . . . , αM−1 ∈ (0, 1), if

∀i ∈ [1, M). P(E [i]) ≤ αi

∏
j∈Γ (i)\{M}

(1 − αj),

then for all K we have

∑
wt∈WTMap(K)

#M (wt)=0

|gWT(wt)|∏
i=1

P(E [gWT(wt)⟨i⟩]) ≤ rHSS,

where
rHSS =

∑
i∈[1,M)

αi(1 − αi)−1,

Proof. Similar to Lem. 101. ⊓⊔

Lemma 104. For all reals α1, . . . , αM−1 ∈ (0, 1), if

∀i ∈ [1, M). P(E [i]) ≤ αi

∏
j∈Γ (i)\{M}

(1 − αj),
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then for all K we have

∑
wt∈WTMap(K)

root(wt)=M ∧ #M (wt)=1

|gWT(wt)|∏
i=1

P(E [gWT(wt)⟨i⟩]) ≤ γHSS,

where
γHSS = P(E [M ])

∏
i∈Γ (M)

(1 − αi)−1.

Proof. The case of K = 0 is trivial. For K ≥ 1,

∑
wt∈WTMap(K)

root(wt)=M ∧ #M (wt)=1

|gWT(wt)|∏
i=1

P(E [gWT(wt)⟨i⟩])

=
∑

(M,wt1,...,wtn)∈WTMap(K)
#M (wt1)=···=#M (wtn)=0

P(E [M ]) ·
∏

l∈[1,n]

|gWT(wtl)|∏
i=1

P(E [gWT(wtl)⟨i⟩])

≤ P(E [M ])
∏

j∈Γ (M)

1 +
∏

wt∈WTMap(K−1)
root(wt)=j ∧ #M (wt)=0

|gWT(wt)|∏
i=1

P(E [gWT(wt)⟨i⟩])


≤ P(E [M ])

∏
j∈Γ (M)

(
1 + αj(1 − αj)−1) = γHSS.

The last inequality can be derived in a similar way as in Lem. 103. ⊓⊔

I.2 Lopsided Witness Trees

In this subsection, we define lopsided witness trees, and prove some of their
important properties. The lopsided witness tree is similar to the witness tree in
App. I.1, with the only difference being that, for each node with label m, all of
its child nodes have labels from Γ ′+(m), not Γ +(m).

We define LWTMap, fLWT in Fig. 31. LWTMap(K) is the set of all (proper)
lopsided witness trees with size no more than K. Informally, a lopsided witness
tree wt is “proper” iff

– For each node in wt, all of its child nodes have distinct labels from [1, M ].
– For each node in wt, if the node has label m, then all of its child nodes have

labels from Γ ′+(m).

For execution log Λ ∈ ExLog, we define fLWT(Λ) as the lopsided witness tree
constructed from Λ, which is similar to fWT in App. I.1.

The following lemmas capture the properties of lopsided witness trees.

Lemma 105. For all Λ ∈ ExLog, i, l and l′, if GDep′(Λ, i, l) and GDep′(Λ, i, l′),
then l = l′.
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LWTMap(K) ≜ {wt ∈ W T | Proper′(wt) ∧ |wt| ≤ K}

Proper′((m, {wt1, . . . , wtn})) iff
(∧

i∈[1,n] . Proper′(wti)
)

∧ |{root(wt1), . . . , root(wtn)}| = n
∧ m ∈ [1, M ] ∧ {root(wt1), . . . , root(wtn)} ⊆ Γ ′+(m)

fLWT(Λ) ≜ GWT ′(Λ, |Λ|)
GWT ′(Λ, i) ≜ (Λ⟨i⟩, {GWT ′(Λ, j) | GPar′(Λ, j, i)})

GWTS ′(Λ, i) ≜ i :: (GWTS ′(Λ, j1) ∥ · · · ∥ GWTS ′(Λ, jn))
where {j1, . . . , jn} = {j | GPar′(Λ, j, i)}

GWTI ′(Λ, i) ≜ (i, {GWTI ′(Λ, j) | GPar′(Λ, j, i)})

GPath′(Λ, |Λ|, 0)
i < j ≤ |Λ| Λ⟨j⟩ ∈ Γ ′+(Λ⟨i⟩) GPath′(Λ, j, l)

GPath′(Λ, i, l + 1)

GPath′(Λ, i, l) ∀l′ > l. ¬GPath′(Λ, i, l′)
GDep′(Λ, i, l)

GDep′(Λ, i, l + 1)
i < j ≤ |Λ| Λ⟨j⟩ ∈ Γ ′+(Λ⟨i⟩) GPath′(Λ, j, l)

∀k. i < k ∧ Λ⟨k⟩ < Λ⟨j⟩ ∧ Λ⟨k⟩ ∈ Γ ′+(Λ⟨i⟩) =⇒ ¬GPath′(Λ, k, l)
GPar′(Λ, i, j)

Fig. 31. Definitions related to lopsided witness trees.

Proof. Similar to Lem. 84. ⊓⊔

Lemma 106. For all Λ ∈ ExLog, i, j and k, if GPar′(Λ, i, j) and GPar′(Λ, i, k),
then j = k.

Proof. Similar to Lem. 85. ⊓⊔

Lemma 107. For all Λ ∈ ExLog and i ∈ [1, |Λ|],

root(GWT ′(Λ, i)) = Λ⟨i⟩.

Proof. By definition. ⊓⊔

Lemma 108. For all Λ ∈ ExLog and i, taking Λ′ = GWTS ′(Λ, i), if
GPath′(Λ, i, l) holds for some l, then

– For all j ∈ [1, |Λ′|], Λ′⟨j⟩ ∈ [1, i];
– For all j ̸= k ∈ [1, |Λ′|], Λ′⟨j⟩ ≠ Λ′⟨k⟩;
– For all j ∈ [1, |Λ′|], either Λ′⟨j⟩ = i or there exists k ∈ [j + 1, |Λ′|] such that

GPar′(Λ, Λ′⟨j⟩, Λ′⟨k⟩)).

Proof. Similar to Lem. 87. ⊓⊔

Lemma 109. For all Λ ∈ ExLog, |fLWT(Λ)| ≤ |Λ|.
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Proof. Similar to Lem. 88. ⊓⊔

Lemma 110. For all Λ ∈ ExLog, i, j and l, if GPar′(Λ, i, j), then
GDep′(Λ, j, l) ⇐⇒ GDep′(Λ, i, l + 1).

Proof. Similar to Lem. 89. ⊓⊔

Lemma 111. For all Λ ∈ ExLog, i, j, k, if j ̸= k, GPar′(Λ, j, i) and
GPar′(Λ, k, i), then Λ⟨k⟩ /∈ Γ ′+(Λ⟨j⟩).

Proof. Similar to Lem. 90. ⊓⊔

Lemma 112. For all Λ ∈ ExLog, i and l > |Λ|, ¬GPath′(Λ, i, l).

Proof. By definition. ⊓⊔

Lemma 113. For all Λ ∈ ExLog, i and l, if GPath′(Λ, i, l), then i ∈
GWTS ′(Λ, |Λ|).

Proof. Similar to Lem. 92. ⊓⊔

Lemma 114. For all Λ ∈ ExLog,

#Λ⟨|Λ|⟩(GWT ′(Λ, |Λ|)) = #Λ⟨|Λ|⟩(Λ).

Proof. Similar to Lem. 93. ⊓⊔

Lemma 115. For all Λ ∈ ExLog and i,

#i(LYWT (λi. Λ⟨i⟩)(GWTI ′(Λ, |Λ|))) ≤ 1.

Proof. Similar to Lem. 94. ⊓⊔

Lemma 116. For all Λ ∈ ExLog, i and l, if GPath′(Λ, i, l), then i ∈
Lay(λi. Λ⟨i⟩)(GWTI ′(Λ, |Λ|), l′) for some l′.

Proof. Similar to Lem. 95. ⊓⊔

Lemma 117. For all Λ ∈ ExLog, l and i, if

i ∈ Lay(λi. Λ⟨i⟩)(GWTI ′(Λ, |Λ|), l),

then GDep′(Λ, i, l).

Proof. Similar to Lem. 96. ⊓⊔

Lemma 118. For all Λ, Λ′, j, i and l such that j ∈ [1, |Λ| − 1), i ∈ [1, |Λ|] and
|Λ| = |Λ′|, if

– For all k ∈ [1, |Λ|] \ {j, j + 1}, Λ⟨k⟩ = Λ′⟨k⟩;
– Λ⟨j⟩ = Λ′⟨j + 1⟩, Λ⟨j + 1⟩ = Λ′⟨j⟩;
– Λ⟨j⟩ /∈ Γ ′+(Λ⟨j + 1⟩);
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then

– If i /∈ {j, j + 1}, then GPath′(Λ, i, l) ⇐⇒ GPath′(Λ′, i, l);
– GPath′(Λ, j, l) ⇐⇒ GPath′(Λ′, j + 1, l);
– GPath′(Λ, j + 1, l) ⇐⇒ GPath′(Λ′, j, l).

Proof. The case of i = |Λ| is trivial. We then prove by induction and case analysis
on i.

– i /∈ {j, j + 1}. From the premise we know that Λ⟨i⟩ = Λ′⟨i⟩. We prove

GPath′(Λ, i, l) =⇒ GPath′(Λ′, i, l),

and the other direction is similar. Let GPath′(Λ, i, l), then l ≥ 1, and there
exists k ∈ (i, |Λ|] such that Λ⟨k⟩ ∈ Γ ′+(Λ⟨i⟩) and GPath′(Λ, k, l − 1).

• If k /∈ {j, j + 1}, then Λ⟨k⟩ = Λ′⟨k⟩, and from the induction hypoth-
esis we have GPath′(Λ′, k, l − 1). Then Λ′⟨k⟩ ∈ Γ ′+(Λ′⟨i⟩), and thus
GPath′(Λ′, i, l).

• If k = j, then Λ⟨k⟩ = Λ′⟨k + 1⟩, and from the induction hypothesis
we have GPath′(Λ′, k + 1, l − 1). Then Λ′⟨k + 1⟩ ∈ Γ ′+(Λ⟨i⟩), and thus
GPath′(Λ′, i, l).

• If k = j + 1, then Λ⟨k⟩ = Λ′⟨k − 1⟩, and from the induction hypothesis
we have GPath′(Λ′, k − 1, l − 1). Then Λ′⟨k − 1⟩ ∈ Γ ′+(Λ⟨i⟩). Note that
k − 1 > i since i ̸= j, and thus GPath′(Λ′, i, l).

– We first prove

GPath′(Λ, j, l) =⇒ GPath′(Λ′, j + 1, l).

From the premise we have Λ⟨j⟩ = Λ′⟨j + 1⟩. Assume that GPath′(Λ, j, l),
then l ≥ 1, and there exists k ∈ (j, |Λ|] such that Λ⟨k⟩ ∈ Γ ′+(Λ⟨j⟩) and
GPath′(Λ, k, l − 1). From Λ⟨j⟩ /∈ Γ ′+(Λ⟨j + 1⟩), this implies k > j + 1. Thus
Λ⟨k⟩ = Λ′⟨k⟩, and from the induction hypothesis we have GPath′(Λ′, k, l−1).
Then Λ′⟨k⟩ ∈ Γ ′+(Λ′⟨j + 1⟩), and thus GPath′(Λ′, j + 1, l). We then prove

GPath′(Λ′, j + 1, l) =⇒ GPath′(Λ, j, l).

Assume that GPath′(Λ′, j + 1, l), then l ≥ 1, and there exists k ∈ (j + 1, |Λ|]
such that Λ′⟨k⟩ ∈ Γ ′+(Λ′⟨j + 1⟩) and GPath′(Λ′, k, l−1). Thus Λ⟨k⟩ = Λ′⟨k⟩,
and from the induction hypothesis we have GPath′(Λ, k, l − 1). Then Λ⟨k⟩ ∈
Γ ′+(Λ⟨j⟩), and thus GPath′(Λ, j, l).

– GPath′(Λ, j + 1, l) ⇐⇒ GPath′(Λ′, j, l). The proof is similar to the previous
case.

⊓⊔

Lemma 119. For all Λ, Λ′, j, i and l such that j ∈ [1, |Λ| − 1), i ∈ [1, |Λ|] and
|Λ| = |Λ′|, if

– For all k ∈ [1, |Λ|] \ {j, j + 1}, Λ⟨k⟩ = Λ′⟨k⟩;
– Λ⟨j⟩ = Λ′⟨j + 1⟩, Λ⟨j + 1⟩ = Λ′⟨j⟩;
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– Λ⟨j⟩ /∈ Γ ′+(Λ⟨j + 1⟩);

then

– If i /∈ {j, j + 1}, then GDep′(Λ, i, l) ⇐⇒ GPath′(Λ′, i, l);
– GDep′(Λ, j, l) ⇐⇒ GDep′(Λ′, j + 1, l);
– GDep′(Λ, j + 1, l) ⇐⇒ GDep′(Λ′, j, l).

Proof. Directly from Lem. 118. ⊓⊔

Lemma 120. For all Λ, Λ′, j, i and i′ such that j ∈ [1, |Λ| − 1), i ∈ [1, |Λ|] and
|Λ| = |Λ′|, if

– For all k ∈ [1, |Λ|] \ {j, j + 1}, Λ⟨k⟩ = Λ′⟨k⟩;
– Λ⟨j⟩ = Λ′⟨j + 1⟩, Λ⟨j + 1⟩ = Λ′⟨j⟩;
– Λ⟨j⟩ /∈ Γ ′+(Λ⟨j + 1⟩);

then

– If i, i′ /∈ {j, j + 1}, then GPar′(Λ, i, i′) ⇐⇒ GPar′(Λ′, i, i′);
– GPar′(Λ, j, i′) ⇐⇒ GPar′(Λ′, j + 1, i′);
– GPar′(Λ, j + 1, i′) ⇐⇒ GPar′(Λ′, j, i′);
– GPar′(Λ, i, j) ⇐⇒ GPar′(Λ′, i, j + 1);
– GPar′(Λ, i, j + 1) ⇐⇒ GPar′(Λ′, i, j).

Proof. Assume that GPar′(Λ, i, i′). From GPar′(Λ, i, i′) we know that i < i′, and
there exists l such that GDep′(Λ, i, l + 1), Λ⟨i′⟩ ∈ Γ ′+(Λ⟨i⟩), GPath′(Λ, i′, l),
and for all k > i such that Λ⟨k⟩ < Λ⟨i′⟩ and Λ⟨k⟩ ∈ Γ ′+(Λ⟨i⟩) we have
¬GPath′(Λ, k, l). We then prove the above five cases by instantiating i and i′.

The case of i, i′ /∈ {j, j + 1} is trivial.
Let i = j. Since Λ⟨j⟩ /∈ Γ ′+(Λ⟨j + 1⟩), we have i′ > j + 1. We prove

that GPar′(Λ′, j + 1, i′). From Lem. 118, Lem. 119 and premises, we have
GDep′(Λ′, j + 1, l + 1), Λ′⟨i′⟩ ∈ Γ ′+(Λ′⟨j + 1⟩) and GPath′(Λ′, i′, l). For all
k > j + 1 such that Λ′⟨k⟩ < Λ′⟨i′⟩ and Λ′⟨k⟩ ∈ Γ ′+(Λ′⟨j + 1⟩), we have
Λ⟨k⟩ < Λ⟨i′⟩ and Λ⟨k⟩ ∈ Γ ′+(Λ⟨j⟩), and thus ¬GPath′(Λ, k, l). From Lem. 118,
this implies ¬GPath′(Λ′, k, l). Thus GPar′(Λ′, j + 1, i′). The other direction is
similar to the third case below.

Let i = j + 1. We prove that GPar′(Λ′, j, i′). From Lem. 118, Lem. 119 and
premises, GDep′(Λ′, j, l + 1), Λ′⟨i′⟩ ∈ Γ ′+(Λ′⟨j⟩) and GPath′(Λ′, i′, l). For all
k > j such that Λ′⟨k⟩ < Λ′⟨i′⟩ and Λ′⟨k⟩ ∈ Γ ′+(Λ′⟨j⟩), we have k > j + 1
from Λ⟨j⟩ /∈ Γ ′+(Λ⟨j + 1⟩), then Λ⟨k⟩ < Λ⟨i′⟩ and Λ⟨k⟩ ∈ Γ ′+(Λ⟨j + 1⟩).
Thus ¬GPath′(Λ, k, l), which implies ¬GPath′(Λ′, k, l) by Lem. 118. Thus
GPar′(Λ′, j, i′). The other direction is similar to the second case above.

Let i′ = j. We prove that GPar′(Λ′, i, j + 1). From Lem. 118, Lem. 119 and
premises, we have GDep′(Λ′, i, l + 1), Λ′⟨j + 1⟩ ∈ Γ ′+(Λ′⟨i⟩) and GPath′(Λ′, j +
1, l). For all k > i such that Λ′⟨k⟩ < Λ′⟨j + 1⟩ and Λ′⟨k⟩ ∈ Γ ′+(Λ′⟨i⟩), we have
k ̸= j + 1.

– If k = j, then Λ⟨j + 1⟩ < Λ⟨j⟩ and Λ⟨j + 1⟩ ∈ Γ ′+(Λ⟨i⟩), and thus
¬GPath′(Λ, j + 1, l). From Lem. 118, this implies ¬GPath′(Λ′, j, l).
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– If k ̸= j, then Λ⟨k⟩ < Λ⟨j⟩ and Λ⟨k⟩ ∈ Γ ′+(Λ⟨i⟩), and thus ¬GPath′(Λ, k, l).
Then ¬GPath′(Λ′, k, l) from Lem. 118.

Thus ¬GPath′(Λ′, k, l) and then GPar′(Λ′, i, j + 1). The other direction is similar
to the fifth case below.

Let i′ = j + 1. Since Λ⟨j⟩ /∈ Γ ′+(Λ⟨j + 1⟩), we have i < j. We prove that
GPar′(Λ′, i, j). From Lem. 118, Lem. 119 and premises, we have GDep′(Λ′, i, l+1),
Λ′⟨j⟩ ∈ Γ ′+(Λ′⟨i⟩) and GPath′(Λ′, j, l). For all k > i such that Λ′⟨k⟩ < Λ′⟨j⟩ and
Λ′⟨k⟩ ∈ Γ ′+(Λ′⟨i⟩), we have k ̸= j.

– If k = j + 1, then Λ⟨j⟩ < Λ⟨j + 1⟩ and Λ⟨j⟩ ∈ Γ ′+(Λ⟨i⟩), and thus
¬GPath′(Λ, j, l). Then ¬GPath′(Λ′, j + 1, l) from Lem. 118.

– If k ̸= j + 1, then Λ⟨k⟩ < Λ⟨j + 1⟩ and Λ⟨k⟩ ∈ Γ ′+(Λ⟨i⟩), and thus
¬GPath′(Λ, k, l). Then ¬GPath′(Λ′, k, l) from Lem. 118.

Thus ¬GPath′(Λ′, k, l) and then GPar′(Λ′, i, j). The other direction is similar to
the forth case above.

⊓⊔

Lemma 121. For all Λ, Λ′, j and i such that j ∈ [1, |Λ| − 1), i ∈ [1, |Λ|] and
|Λ| = |Λ′|, if

– For all k ∈ [1, |Λ|] \ {j, j + 1}, Λ⟨k⟩ = Λ′⟨k⟩;
– Λ⟨j⟩ = Λ′⟨j + 1⟩, Λ⟨j + 1⟩ = Λ′⟨j⟩;
– Λ⟨j⟩ /∈ Γ ′+(Λ⟨j + 1⟩);

then

– If i /∈ {j, j + 1}, then GWT ′(Λ, i) = GWT ′(Λ′, i);
– GWT ′(Λ, j) = GWT ′(Λ′, j + 1);
– GWT ′(Λ, j + 1) = GWT ′(Λ′, j).

Proof. We prove by induction and case analysis on i.

– If i /∈ {j, j + 1}, then Λ⟨i⟩ = Λ′⟨i⟩. Assuming that S = {k | GPar′(Λ, k, i)}
and S′ = {k | GPar′(Λ′, k, i)}, from Lem. 120 we know that

• For all k /∈ {j, j + 1}, k ∈ S ⇐⇒ k ∈ S′;
• j ∈ S ⇐⇒ j + 1 ∈ S′;
• j + 1 ∈ S ⇐⇒ j ∈ S′.

Then, since Λ⟨i⟩ = Λ′⟨i⟩, from Lem. 111 and the induction hypothesis we
have GWT ′(Λ, i) = GWT ′(Λ′, i) by definition.

– We prove GWT ′(Λ, j) = GWT ′(Λ′, j+1). Assuming S = {k | GPar′(Λ, k, j)}
and S′ = {k | GPar′(Λ′, k, j + 1)}, from Lem. 120 and Λ⟨j⟩ /∈ Γ ′+(Λ⟨j + 1⟩)
we know that

• For all k /∈ {j, j + 1}, k ∈ S ⇐⇒ k ∈ S′;
• j, j + 1 /∈ S ∪ S′;

Then, since Λ⟨j⟩ = Λ′⟨j + 1⟩, from Lem. 111 and the induction hypothesis
we have GWT ′(Λ, i) = GWT ′(Λ′, i) by definition.

– GWT ′(Λ, j + 1) = GWT ′(Λ′, j). The proof is similar to the previous case.
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⊓⊔

Lemma 122. For all Λ, Λ′ and j such that j ∈ [1, |Λ| − 1) and |Λ| = |Λ′|, if

– For all k ∈ [1, |Λ|] \ {j, j + 1}, Λ⟨k⟩ = Λ′⟨k⟩;
– Λ⟨j⟩ = Λ′⟨j + 1⟩, Λ⟨j + 1⟩ = Λ′⟨j⟩;
– Λ⟨j⟩ /∈ Γ ′+(Λ⟨j + 1⟩);

then fLWT(Λ) = fLWT(Λ′).

Proof. Directly from Lem. 121. ⊓⊔

Lemma 123. For all Λ1, Λ2, Λ′
1, Λ′

2 and j such that j ∈ [1, |Λ1| − 1) and |Λ1| =
|Λ2|, if

– For all k ∈ [1, |Λ1|] \ {j, j + 1}, Λ1⟨k⟩ = Λ2⟨k⟩;
– Λ1⟨j⟩ = Λ2⟨j + 1⟩, Λ1⟨j + 1⟩ = Λ2⟨j⟩;
– Λ1⟨j⟩ /∈ Γ ′+(Λ1⟨j + 1⟩);
– Λ′

1 = LYWT (λi. Λ1⟨i⟩)(GWTI ′(Λ1, |Λ1|)),
Λ′

2 = LYWT (λi. Λ2⟨i⟩)(GWTI ′(Λ2, |Λ2|));

then |Λ′
1| = |Λ′

2|, and for all i ∈ [1, |Λ′
1|],

– If Λ′
1⟨i⟩ /∈ {j, j + 1}, then Λ′

1⟨i⟩ = Λ′
2⟨i⟩;

– If Λ′
1⟨i⟩ = j, then Λ′

2⟨i⟩ = j + 1;
– If Λ′

1⟨i⟩ = j + 1, then Λ′
2⟨i⟩ = j.

Proof. Let h1 = λi. Λ1⟨i⟩ and h2 = λi. Λ2⟨i⟩. By Lem. 122, Lem. 97 and induc-
tion, we have

|Λ′
1| = |GWTI ′(Λ1, |Λ1|)| = |fLWT(Λ1)|

= |fLWT(Λ2)| = |GWTI ′(Λ2, |Λ2|)| = |Λ′
2|.

Now we only need to prove that, for all l:

– If Λ′′
1⟨k⟩ /∈ {j, j + 1}, then Λ′′

1⟨k⟩ = Λ′′
2⟨i⟩;

– If Λ′′
1⟨k⟩ = j, then Λ′′

2⟨k⟩ = j + 1;
– If Λ′′

1⟨k⟩ = j + 1, then Λ′′
2⟨k⟩ = j;

– |Λ′′
1 | = |Λ′′

2 |

for i ∈ [1, |Λ|] \ {j, j + 1}, Λ′′
1 = Lay(h1)(GWTI ′(Λ1, i), l), Λ′′

2 =
Lay(h2)(GWTI ′(Λ2, i), l) and k ∈ [1, |Λ′′

1 |];

Lay(h1)(GWTI ′(Λ1, j), l) = Lay(h2)(GWTI ′(Λ2, j + 1), l);

and
Lay(h1)(GWTI ′(Λ1, j + 1), l) = Lay(h2)(GWTI ′(Λ2, j), l).

We prove by induction on l. The case of l = 0 is trivial. Below we suppose l > 0.
If i /∈ {j, j + 1}, assuming that S1 = {k | GPar′(Λ1, k, i)} and S2 = {k |

GPar′(Λ2, k, i)}, from Lem. 120 we have
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– For all k /∈ {j, j + 1}, k ∈ S1 ⇐⇒ k ∈ S2;
– j ∈ S1 ⇐⇒ j + 1 ∈ S2;
– j + 1 ∈ S1 ⇐⇒ j ∈ S2.

Since h1(j) = h2(j + 1) and h1(j + 1) = h2(j), the proof then follows from the
induction hypothesis and Lem. 111.

Then we prove

Lay(h1)(GWTI ′(Λ1, j), l) = Lay(h2)(GWTI ′(Λ2, j + 1), l).

Let S1 = {k | GPar′(Λ1, k, j)} and S2 = {k | GPar′(Λ2, k, j + 1)}, then from
Lem. 120 and Λ1⟨j⟩ /∈ Γ ′+(Λ1⟨j + 1⟩) we know that

– For all k /∈ {j, j + 1}, k ∈ S1 ⇐⇒ k ∈ S2;
– j, j + 1 /∈ S1 ∪ S2;

Then the proof follows from the induction hypothesis and Lem. 111.
The proof of

Lay(h1)(GWTI ′(Λ1, j + 1), l) = Lay(h2)(GWTI ′(Λ2, j), l)

is similar to the previous case. ⊓⊔

Lemma 124. For all Λ ∈ ExLog and K such that |Λ| ≤ K,

fLWT(Λ) ∈ LWTMap(K).

Proof. Let Λ ∈ ExLog and |Λ| ≤ K. By Lem. 109, we know that |fLWT(Λ)| ≤
|Λ| ≤ K. From Lem. 107 and Lem. 111, by induction we have Proper′(fLWT(Λ)).
Thus by definition we obtain that fLWT(Λ) ∈ LWTMap(K). ⊓⊔

Lemma 125. For all Λ ≺ Λ′ ∈ ExLog,

fLWT(Λ) ̸= fLWT(Λ′).

Proof. We show that GWT ′(Λ, |Λ|) ̸= GWT ′(Λ′, |Λ′|). If Λ⟨|Λ|⟩ ≠ Λ′⟨|Λ′|⟩, then
GWT ′(Λ, |Λ|) ̸= GWT ′(Λ′, |Λ′|), otherwise it contradicts Lem. 107. If Λ⟨|Λ|⟩ =
Λ′⟨|Λ′|⟩, then by Λ ≺ Λ′ we have #Λ⟨|Λ|⟩(Λ) =

∑
i∈[1,|Λ|][Λ⟨i⟩ = Λ′⟨|Λ′|⟩] <

#Λ′⟨|Λ′|⟩(Λ′). Thus, from Lem. 114 we get GWT ′(Λ, |Λ|) ̸= GWT ′(Λ′, |Λ′|). ⊓⊔

Lemma 126. For all reals α1, . . . , αM ∈ (0, 1), if

∀i ∈ [1, M ]. P(E [i]) ≤ αi

∏
j∈Γ ′(i)

(1 − αj)

holds, then for all K we have

∑
wt∈LWTMap(K)

|gWT(wt)|∏
i=1

P(E [gWT(wt)⟨i⟩]) ≤ rEL,

where
rEL =

∑
i∈[1,M ]

αi(1 − αi)−1.
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Proof. From the premise, we only need to prove that, for all K,

∑
wt∈LWTMap(K)

|gWT(wt)|∏
i=1

αgWT(wt)⟨i⟩
∏

j∈Γ ′(gWT(wt)⟨i⟩)

(1 − αj) ≤
∑

k∈[1,M ]

αk · (1 − αk)−1.

Define hj(K) = {wt ∈ LWTMap(K) | root(wt) = j}, then we only need to prove
that, for all k ∈ [1, M ] and K,

∑
wt∈hk(K)

|gWT(wt)|∏
i=1

αgWT(wt)⟨i⟩
∏

j∈Γ ′(gWT(wt)⟨i⟩)

(1 − αj) ≤ αk · (1 − αk)−1.

We prove by induction on K. The case of K = 0 if trivial. For the induction
step,

∑
wt∈hk(K+1)

|gWT(wt)|∏
i=1

αgWT(wt)⟨i⟩
∏

j∈Γ ′(gWT(wt)⟨i⟩)

(1 − αj)

=
∑

(k,{wt1,...,wtn})∈hk(K+1)

((
αk

∏
j∈Γ ′(k)

(1 − αj)
)

·
∏

l∈[1,n]

|gWT(wtl)|∏
i=1

αgWT(wtl)[i]
∏

j∈Γ ′(gWT(wtl)[i])

(1 − αj)
)

≤ αk · (1 − αk)−1
∏

j∈Γ ′+(k)

(1 − αj)

·

1 +
∑

wt∈hj(K)

|gWT(wt)|∏
i=1

αgWT(wt)⟨i⟩
∏

l∈Γ ′(gWT(wt)⟨i⟩)

(1 − αl)


≤ αk · (1 − αk)−1

∏
j∈Γ ′+(k)

(1 − αj)
(
1 + αj · (1 − αj)−1)

= αk · (1 − αk)−1.

⊓⊔

I.3 Strong Witness Trees

A witness tree wt is called a strong witness tree, if the following condition holds:
for each node in wt, all of its child nodes form an independent set on the depen-
dency graph. We define the map SWTMap in Fig. 32.

Lemma 127. For all Λ ∈ ExLog and K such that |Λ| ≤ K,

fWT(Λ) ∈ SWTMap(K).
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SWTMap(K) ≜ {wt ∈ W T | Proper(wt) ∧ Strong(wt) ∧ |wt| ≤ K}

Strong((m, {wt1, . . . , wtn})) iff
(∧

i∈[1,n] . Strong(wti)
)

∧
(
∀i < j ∈ [1, n]. root(wti) /∈ Γ +(root(wtj))

)
Fig. 32. Definitions related to strong witness trees.

Proof. Let Λ ∈ ExLog satisfy |Λ| ≤ K, then by Lem. 88 we know that |fWT(Λ)| ≤
|Λ| ≤ K. Similar to Lem. 98, we have Proper(fWT(Λ)) and Strong(fWT(Λ)) by
Lem. 86, Lem. 90 and induction. Thus by definition we obtain that fWT(Λ) ∈
SWTMap(K). ⊓⊔

Lemma 128. For all reals β1, . . . , βM ∈ (0, ∞), if the cluster expansion condi-
tion

∀i ∈ [1, M ]. P(E [i]) ≤ βi

 ∑
I⊆Γ +(i)
Indep(I)

∏
j∈I

βj


−1

holds, then for all K we have

∑
wt∈SWTMap(K)

|gWT(wt)|∏
i=1

P(E [gWT(wt)⟨i⟩]) ≤
∑

i∈[1,M ]

βi.

Proof. From the cluster expansion condition, we only need to prove that, for all
K,

∑
wt∈SWTMap(K)

|gWT(wt)|∏
i=1

βgWT(wt)⟨i⟩

 ∑
I⊆Γ +(i)
Indep(I)

∏
j∈I

βj


−1

≤
∑

k∈[1,M ]

βk.

Define hj(K) = {wt ∈ SWTMap(K) | root(wt) = j}, then we only need to prove
that, for all k ∈ [1, M ] and K,

∑
wt∈hk(K)

|gWT(wt)|∏
i=1

βgWT(wt)⟨i⟩

 ∑
I⊆Γ +(i)
Indep(I)

∏
j∈I

βj


−1

≤ βk.

We prove by induction on K. The case of K = 0 if trivial. For the induction
step,

∑
wt∈hk(K+1)

|gWT(wt)|∏
i=1

βgWT(wt)⟨i⟩

 ∑
I⊆Γ +(gWT(wt)⟨i⟩)

Indep(I)

∏
j∈I

βj


−1
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=
∑

(k,{wt1,...,wtn})∈hk(K+1)

βk

 ∑
I⊆Γ +(k)
Indep(I)

∏
j∈I

βj


−1

·
∏

l∈[1,n]

|gWT(wtl)|∏
i=1

βgWT(wtl)⟨i⟩

 ∑
I⊆Γ +(gWT(wtl)⟨i⟩)

Indep(I)

∏
j∈I

βj


−1

≤ βk

 ∑
I⊆Γ +(k)
Indep(I)

∏
j∈I

βj


−1 ∑

I⊆Γ +(k)
Indep(I)

∏
j∈I

∑
wt∈hj(K)

|gWT(wt)|∏
i=1

βgWT(wt)⟨i⟩

 ∑
I⊆Γ +(gWT(wt)⟨i⟩)

Indep(I)

∏
j∈I

βj


−1

≤ βk

 ∑
I⊆Γ +(k)
Indep(I)

∏
j∈I

βj


−1 ∑

I⊆Γ +(k)
Indep(I)

∏
j∈I

βj

= βk.

⊓⊔

I.4 Stable Set Sequences

Below we define the stable set sequences.
We define SSS , SSSMap, fSSS, gSSS in Fig. 33. SSS represents the set of all

stable set sequences. A stable set sequence I = (I0, . . . , In) is a sequence con-
sisting of a series of independent sets on the dependency graph, where each set
in I is “covered” by the preceding set, that is: if m ∈ Ii+1, then there exists
some element in Ii from Γ +(m). We define SSSMap as the set of all stable set
sequences with total size no more than K and the first set a singleton.

For execution log Λ ∈ ExLog, we define fSSS(Λ) as the stable set sequence
constructed from Λ, where the auxiliary definitions can be found in Fig. 30.

For a stable set sequence I ∈ SSS , we define gSSS(I) as the sequence obtaining
by repeatedly concatenating the sets (each in the form of a sequence) in I in a
reversed order.

Other auxiliary definitions related to stable set sequences are also given in
Fig. 33.

The following lemmas capture the properties of stable set sequences.

Lemma 129. For all Λ ∈ ExLog, i, j and l, if i ̸= j, GDep(Λ, i, l) and
GDep(Λ, j, l), then Λ⟨j⟩ /∈ Γ +(Λ⟨i⟩).
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(SSS) I ::= (I0, . . . , In) where (∀i ∈ I0. i ∈ [1, M ]) ∧ (∀j ∈ [0, n]. Indep(Ij)) ∧(
∀j ∈ [0, n). Ij+1 ⊆ Γ +(Ij)

)
SSSMap(K) ≜ {(I0, . . . , In) ∈ SSS | |I0| = 1 ∧ |(I0, . . . , In)| ≤ K}
|(I0, . . . , In)| ≜ |I0| + · · · + |In|

fSSS(Λ) ≜ GS(Λ)
GS(Λ) ≜ (I0, . . . , In) where ∀j ∈ [0, n]. Ij = {Λ⟨i⟩ | GDep(Λ, i, j)},

n = max{l | GDep(Λ, _, l)}

gSSS((I0, . . . , In)) ≜ SS(id)((I0, . . . , In))
SS(h)((I0, . . . , In)) ≜ seq(h)(In) ∥ · · · ∥ seq(h)(I0)

m ∈ (I0, . . . , In) iff ∃j ∈ [0, n]. m ∈ Ij

#m((I0, . . . , In)) ≜
∑

i∈[0,n][m ∈ Ii]
#m,Λ((I0, . . . , In)) ≜

∑
i∈[0,n]

∑
m′∈Ii

[Λ⟨m′⟩ = m]
GSI (Λ) ≜ (I0, . . . , In) where ∀j ∈ [0, n]. Ij = {i | GDep(Λ, i, j)},

n = max{l | GDep(Λ, _, l)}

Fig. 33. Definitions related to stable set sequences.

Proof. We prove by contradiction. Let Λ⟨j⟩ ∈ Γ +(Λ⟨i⟩). Without loss of gen-
erality, we assume that i < j. Let GDep(Λ, i, l) and GDep(Λ, j, l) hold, then
¬GPath(Λ, i, l′) for all l′ > l. However, by GDep(Λ, j, l) and Λ⟨j⟩ ∈ Γ +(Λ⟨i⟩) we
know that GPath(Λ, i, l + 1), a contradiction. Thus Λ⟨j⟩ /∈ Γ +(Λ⟨i⟩). ⊓⊔

Lemma 130. For all Λ ∈ ExLog, #Λ⟨|Λ|⟩(GS(Λ)) = #Λ⟨|Λ|⟩(Λ).

Proof. By Lem. 129, we know that

#m(GS(Λ)) = #m,Λ(GSI (Λ))

holds for all m. Let GSI (Λ) = (I0, . . . , In). Below we only need to prove that
#Λ⟨|Λ|⟩,Λ(GSI (Λ)) = #Λ⟨|Λ|⟩(Λ), that is, we prove that for all i such that
Λ⟨i⟩ = Λ⟨|Λ|⟩ there exists j such that i ∈ Ij . Assume that {i | Λ⟨i⟩ = Λ⟨|Λ|⟩} =
{i0, . . . , il}, where |Λ| = i0 > · · · > il. Then, by induction, we know that
GPath(Λ, il′ , l′) holds for all l′ ∈ [0, l], and thus for all i such that Λ⟨i⟩ = Λ⟨|Λ|⟩
there exists l′ such that GPath(Λ, i, l′), and then From Lem. 91 there exists j
such that GDep(Λ, i, j), which implies i ∈ Ij . ⊓⊔

Lemma 131. For all Λ ∈ ExLog and K such that |Λ| ≤ K,

fSSS(Λ) ∈ SSSMap(K).

Proof. Let Λ ∈ ExLog satisfy |Λ| ≤ K, then by Lem. 89 and Lem. 129 we know
that fSSS(Λ) ∈ SSS , and by definition we have |fSSS(Λ)| ≤ |Λ| ≤ K. Thus
fSSS(Λ) ∈ SSSMap(K). ⊓⊔
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Lemma 132. For all Λ ≺ Λ′ ∈ ExLog,

fSSS(Λ) ̸= fSSS(Λ′).

Proof. Let Λ ≺ Λ′ ∈ ExLog. Assuming that fSSS(Λ) = (I0, . . . , In) and
fSSS(Λ′) = (J0, . . . , Jm), below we prove that (I0, . . . , In) ̸= (J0, . . . , Jm). If
Λ⟨|Λ|⟩ ̸= Λ′⟨|Λ′|⟩, then I0 = {Λ⟨|Λ|⟩} ̸= {Λ′⟨|Λ′|⟩} = J0. If Λ⟨|Λ|⟩ = Λ′⟨|Λ′|⟩,
then from Λ ≺ Λ′ we know that

#Λ⟨|Λ|⟩(Λ) =
∑

i∈[1,|Λ|]

[Λ⟨i⟩ = Λ′⟨|Λ′|⟩] < #Λ′⟨|Λ′|⟩(Λ′),

thus from Lem. 130 we have GS(Λ) ̸= GS(Λ′). ⊓⊔

Lemma 133. For all Λ, Λ′ ∈ ExLog, if

(gSSS ◦ fSSS)(Λ) = Λ′,

then for each l ∈ [1, |Λ′|] there exists k such that Λ⟨k⟩ = Λ′⟨l⟩ and∑
k′<k

[vbl(Λ⟨k′⟩, i)] =
∑
l′<l

[vbl(Λ′⟨l′⟩, i)]

for all i ∈ [1, N ] such that vbl(Λ′⟨l⟩, i).

Proof. Let Λ, I = (I0, . . . , In), Λ′ and l satisfy fSSS(Λ) = I, gSSS(I) = Λ′,
l ∈ [1, |Λ′|]. Let J = GSI (Λ) = (J0, . . . , Jn′), Λ′′ = SS(λi. Λ⟨i⟩)(J ), then by
induction we have |Λ′| = |Λ′′|, and for all l′ ∈ [1, |Λ′|] we have Λ′⟨l′⟩ = Λ⟨Λ′′⟨l′⟩⟩.
Take j = Λ′′⟨l⟩, then by definition we know that there exists l′′ such that
GPath(Λ, j, l′′). For i such that vbl(E [Λ′⟨l⟩], i), we only need to prove that∑

j′<j

[vbl(E [Λ⟨j′⟩], i)] =
∑
l′<l

[vbl(E [Λ′⟨l′⟩], i)].

By definition, all elements in Λ′′ are distinct, and j′ ∈ Λ′′ for all j′ < j such that
vbl(E [Λ⟨j′⟩], i) (this implies GPath(Λ, j′, l′′ + 1)), and thus∑

j′<j

[vbl(E [Λ⟨j′⟩], i)] =
∑

l′:Λ′′⟨l′⟩<Λ′′⟨l⟩

[vbl(E [Λ⟨Λ′′⟨l′⟩⟩], i)].

Then it remains to prove that, for all l′ such that vbl(E [Λ′⟨l′⟩], i),

l′ < l ⇐⇒ Λ′′⟨l′⟩ < Λ′′⟨l⟩.

Let l′ < l satisfy vbl(E [Λ′⟨l′⟩], i), then there exists d′ ≥ d such that Λ′′⟨l′⟩ ∈ Jd′

and Λ′′⟨l⟩ ∈ Jd, which implies that GDep(Λ, Λ′′⟨l′⟩, d′) and GDep(Λ, Λ′′⟨l⟩, d).
Suppose that Λ′′⟨l′⟩ > Λ′′⟨l⟩, then from Λ⟨Λ′′⟨l′⟩⟩ ∈ Γ +(Λ⟨Λ′′⟨l⟩⟩) we have
GPath(Λ, Λ′′⟨l⟩, d′ + 1), a contradiction. Thus l′ < l =⇒ Λ′′⟨l′⟩ < Λ′′⟨l⟩.
Similarly, if Λ′′⟨l′⟩ < Λ′′⟨l⟩, one can show that l′ < l. ⊓⊔
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Lemma 134. If the Shearer’s condition

∀I ⊆ [1, M ]. Indep(I) =⇒ qI > 0

holds, where

qI =
∑

I⊆J⊆[1,M]
Indep(J)

(−1)|J|−|I|
∏
j∈J

P(E [j]),

then for all K we have

∑
I∈SSSMap(K)

|gSSS(I)|∏
i=1

P(E [gSSS(I)⟨i⟩]) ≤
∑

i∈[1,M ]

q{i}

q∅
.

Proof. Define

hI(K) = {(I0, . . . , In) | I0 = I ∧ |(I0, . . . , In)| ≤ K} ∪ (I = ∅ ? {()} : ∅),

then we only need to prove that, for all K and I such that Indep(I),

∑
I∈hI (K)

|gSSS(I)|∏
i=1

P(E [gSSS(I)⟨i⟩]) ≤ qI

q∅
.

We prove by induction on K. The case of K = 0 is trivial. For the induction
step,

∑
I∈hI (K+1)

|gSSS(I)|∏
i=1

P(E [gSSS(I)⟨i⟩])

≤

(∏
i∈I

P(E [i])
) ∑

J⊆Γ +(I)
Indep(J)

∑
J ∈hJ (K)

|gSSS(J )|∏
j=1

P(E [gSSS(J )[j]])

≤

(∏
i∈I

P(E [i])
) ∑

J⊆Γ +(I)
Indep(J)

qJ

q∅

=
(∏

i∈I

P(E [i])
)

· 1
q∅

·
∑

J⊆[1,M]
J∩([1,M]\Γ +(I))=∅

Indep(J)

qJ

=
(∏

i∈I

P(E [i])
)

· 1
q∅

·
∑

J⊆[1,M]\Γ +(I)
Indep(J)

(−1)|J|
∏
j∈J

P(E [j])

([60], Eq. 5.5)

= qI

q∅
.

⊓⊔
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CHSS ≜

d := 1;
while (d ≤ N) do

a := Sample(d);
x[d] := a;
d := d + 1;

flag := 0;
cnt := 0;
lst := [];
while (flag = 0) do

z := 0;
h := 1;
while (h < M) do

if (hold(h, x[1], . . . , x[N ])) then
z := h;

h := h + 1;
if (z = 0) then flag := 1;
else

cnt := cnt + 1;
lst := app(lst, z);
d := 1;
while (d ≤ N) do

if (vbl(z, d)) then
a := Sample(d);
x[d] := a;

d := d + 1;

CMTpar ≜

d := 1;
while (d ≤ N) do

a := Sample(d);
x[d] := a;
d := d + 1;

flag := 0;
cnt := 0;
lst := [];
while (flag = 0) do

mis := MIS(x[1], . . . , x[N ]);
if (mis = []) then flag := 1;
else

cnt := cnt + 1;
lst := concat(lst, mis);
L[cnt] := mis;
Cpar(1);
· · · ;
Cpar(M);

Cpar(i) ≜
if (len(mis) ≥ i) then

d := 1;
while (d ≤ N) do

if (vbl(mis[i], d)) then
a := Sample(d);
x[d] := a;

d := d + 1;

Fig. 34. Codes of variants of the MT algorithm.

J Verified ALLL-related results

This section gives the statements and formal proofs of all ALLL-results we verify.
In our proofs, we use witness-tree-like structures. Definitions and lemmas

related to these structures are presented in App. I.
We give the following notation, which will be used through this section. The

set of possible execution logs (and their prefixes), denoted as ExLog, is defined
as follows:

ExLog ≜ {Λ ∈ Seq | Λ ̸= [] ∧ (∀i ∈ [1, |Λ|]. Λ⟨i⟩ ∈ [1, M ])}.

Informally, an execution log is a non-empty list Λ where all elements in Λ belong
to [1, M ].

J.1 Theorem 1.2 of [51] (Thm. 4)
Proof of Thm. 4. Let the Erdős-Lovász condition hold. By applying Lem. 77,
Thm. 2 and Lem. 81, with the auxiliary code C ′

MT(cnt, K) defined in Fig. 35, we
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C′
MT(cnt, K) ≜

d := 1;
while (d ≤ N) do

a := Sample(d);
x[d] := a;
d := d + 1;

flag := 0;
cnt := 0;
lst := [];
while (flag = 0 ∧ cnt < K) do

z := 0;
h := 1;
while (h ≤ M) do

if (hold(h, x[1], . . . , x[N ])) then
z := h;

h := h + 1;
if (z = 0) then flag := 1;
else

cnt := cnt + 1;
lst := app(lst, z);
d := 1;
while (d ≤ N) do

if (vbl(z, d)) then
a := Sample(d);
x[d] := a;

d := d + 1;

Ccheck(Λ) ≜

succ := 1;
h := 1;
while (h ≤ |Λ|) do

z := Λ⟨h⟩;
d := 1;
while (d ≤ N) do

if (vbl(z, d)) then
a := Sample(d);
x[d] := a;

d := d + 1;
if (¬hold(z, x[1], . . . , x[N ])) then

succ := 0;
h := h + 1;

Fig. 35. Auxiliary codes for Thm. 4.

only need to prove that, for all K,

⊨ [true] C ′
MT(cnt, K) [E[cnt] ≤ rEL ∧ ⌈cnt ≥ 0⌉] . (43)

Since the Erdős-Lovász condition holds, by Lem. 101 we know that

⊨
∑

wt∈WTMap(K)

|gWT(wt)|∏
i=1

P(E [gWT(wt)⟨i⟩]) ≤ rEL. (44)

The above inequation corresponds to (4), the inequation in the third stage of
the proof sketch in Sec. 2.1. Informally, WTMap(K) is the set of all witness
trees with size no more than K. Note that WTMap(K) is a finite set, thus (44)
only contains a finite series. gWT(wt) represents a reversed BFS ordering of wt,
and thus the product in (44) enumerates all events in wt by traversing wt with
respect to its reversed BFS ordering gWT(wt). We define WTMap in App. I.1.
With (44), to prove (43), by Lem. 77, we only need to prove that

⊨ [true] C ′
MT(cnt, K)

 ⌈cnt ≥ 0⌉ ∧
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E[cnt] ≤
∑

wt∈WTMap(K)

|gWT(wt)|∏
i=1

P(E [gWT(wt)⟨i⟩])

. (45)

Then we define FWT(e, wt, i) as follows:

FWT(e, wt, i) ≜
∨

Λ∈f−1
WT (wt) : |Λ|=i . e = Λ.

For Λ ∈ ExLog, fWT(Λ) is the witness tree constructed from Λ, as defined in
App. I.1. Informally, FWT(e, wt, i) holds iff the witness tree wt can be con-
structed from the list e, where the length of e is i (this makes the disjunction
in FWT(e, wt, i) finite). Thus, FWT(pf(lst, i), wt, i) holds iff the witness tree wt
can be constructed from the execution log’s prefix with length i. Now, to prove
(45), by repeatedly applying Lem. 77 and Lem. 78, we only need to prove the
following two subgoals:

⊨ [true] C ′
MT(cnt, K)

 ⌈cnt ≥ 0⌉ ∧ E[cnt] =
∑

wt∈WTMap(K)

Pr

 ∨
i∈[1,K]

i ≤ cnt ∧ FWT(pf(lst, i), wt, i)

, (46)

and for all wt ∈ WTMap(K)

⊨ {true} C ′
MT(cnt, K)

Pr

 ∨
i∈[1,K]

i ≤ cnt ∧ FWT(pf(lst, i), wt, i)


≤

|gWT(wt)|∏
i=1

P(E [gWT(wt)⟨i⟩])

. (47)

(46) and (47) correspond to (2) and (3), which are the goals in the first and the
second stages of the proof sketch in Sec. 2.1, respectively.

For (46), from Lem. 77 and the linearity of expectation, we only need to
prove that

⊨ [true] C ′
MT(cnt, K)

cnt =
∑

wt∈WTMap(K) ∨
i∈[1,K]

i ≤ cnt ∧ FWT(pf(lst, i), wt, i)


; (48)

then by Lem. 80, to prove (48), we only need to prove the following:

⊨RT [true ∧ hdinit] C ′
MT(cnt, K)

cnt =
∑

wt∈WTMap(K)
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i∈[1,K]

i ≤ cnt ∧ FWT(pf(lst, i), wt, i)

. (49)

For (47), from Lem. 79 and Lem. 77, with the auxiliary code Ccheck(Λ) (the
code of check(wt) in Sec. 2.1, where Λ = gWT(wt)) defined in Fig. 35, following
the informal proof in the second stage in Sec. 2.1, we only need to prove the
following two subgoals that respectively correspond to (b) and (a):

⊨ {true} C ′
MT(cnt, K), Ccheck(gWT(wt))

 ∨
i∈[1,K]

i ≤ cnt ∧ FWT(pf(lst, i), wt, i)

 , succ = 1

 , (50)

and

⊨ [true] Ccheck(gWT(wt))Pr[succ = 1] =
|gWT(wt)|∏

i=1
P(E [gWT(wt)⟨i⟩])

 . (51)

For (50), by RT-based coupling (Thm. 3), we only need to prove

⊨RT {true ∧ hdinit} C ′
MT(cnt, K)

 ∨
i∈[1,K]

i ≤ cnt ∧ FWT(pf(lst, i), wt, i)

 ⇒ R

 (52)

and
⊨RT [true ∧ R ∧ hdinit] Ccheck(gWT(wt)) [succ = 1] , (53)

where R is defined below.

R ≜
∧

l∈[1,|gWT(wt)|] . ∀V1, . . . VN .

(
∧

i∈[1,N ] . vbl(gWT(wt)⟨l⟩, i)
⇒ Vi = RT[i][ve(i, gWT(wt), l − 1)])

⇒ hold(gWT(wt)⟨l⟩, V1, . . . , VN )

ve(i, Λ, l) ≜
∑

l′∈[1,l][vbl(Λ⟨l′⟩, i)]

Informally, R says that, for all events in wt, at the time the event is chosen
at the beginning of the outer loop in C ′

MT(K), it must hold under the current
assignment formed by some of the resampling table’s entries. The exact column
numbers of these entries are computed purely based on wt, with the help of
Lem. 100. Moreover, for all resampling tables RT , if RT satisfies R, then we have
the following: for witness tree wt, when we test all the events in wt according to
the reversed BFS ordering of wt (gWT(wt)) with respect to the resampling table
RT , all tests pass. ve(i, Λ, l) represents the position of the i-th head after events
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Λ⟨1⟩, . . . , Λ⟨l⟩ all being sampled, and in R we take Λ = gWT(wt) as the reversed
BFS ordering of wt.

Given that R is defined, (52) and (53) says that, for all resampling tables
RT :

– If wt can be constructed from some prefix of the execution log generated by
the MT algorithm (C ′

MT(cnt, K)) using RT , then R holds on RT .
– If R holds on RT , then all tests in the check(wt) program (Ccheck(gWT(wt)))

pass when the program is executed using RT .

Now it remains to prove (49), (52), (53) and (51). For (49), (52) and (53),
we apply Thm. 7, and use inference rules of the resampling-table-based program
logic (listed in Fig. 25 and Fig. 26) to complete the proof. For (51), we apply
Thm. 6, and use inference rules listed in Fig. 24 to complete the proof. Proofs of
these four judgments are presented in Fig. 37, Fig. 38, Fig. 39, Fig. 40, Fig. 41
and Fig. 42, while the auxiliary assertions used by these proofs are presented in
Fig. 36. In Fig. 40, Fig. 41 and Fig. 42, we write Λ for gWT(wt).

In Fig. 37, Fig. 38, Fig. 39, Fig. 40, Fig. 41 and Fig. 42, we omit the proofs
of side conditions when applying (csq-t), (rt-csq) and (rt-csq-t). Below we
show the proofs of three non-trivial side conditions.

1. The side condition in the last line of Fig. 37:

⊨RT CL(K + 1) ⇒ cnt =
∑

wt∈WTMap(K)

 ∨
i∈[1,K]

i ≤ cnt ∧ FWT(pf(lst, i), wt, i)

 .

In the above side condition, the assertion CL(K + 1) only says that lst is
indeed an execution log with length no more than K.
Proof: Let Σ ⊨ CL(K + 1), then there exists m ∈ [0, K] such that:

– JcntKΣ = |JlstKΣ | = m;
– For all k ∈ [1, m], Jpf(lst, k)KΣ ∈ ExLog;
– For all k ∈ [1, m], |Jpf(lst, k)KΣ | = k ≤ K.

Thus, by Lem. 98, we have fWT(Jpf(lst, k)KΣ) ∈ WTMap(K) for all k ∈
[1, m]. Now, let

wtk = fWT(Jpf(lst, k)KΣ),

then we know that wt1 ̸= · · · ̸= wtm from Lem. 99, and for all k ∈ [1, m] we
have the following:

– Σ ⊨ FWT(pf(lst, k), wtk, k);
– For all wt ̸= wtk, Σ ⊨ ¬FWT(pf(lst, k), wt, k).

Thus, one can verify that

Σ ⊨ cnt =
∑

wt∈WTMap(K)

 ∨
i∈[1,K]

i ≤ cnt ∧ FWT(pf(lst, i), wt, i)

 .
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2. The side condition in the last line of Fig. 38:

⊨RT

 ∨
k∈[0,K]

cnt = k ∧ len(lst) = k ∧ L(lst, k)

 ⇒

 ∨
i∈[1,K]

i ≤ cnt ∧ FWT(pf(lst, i), wt, i)

 ⇒ R

 .

Proof: Define Σ = (σ, RT, ι) such that

Σ ⊨
∨

k∈[0,K]

cnt = k ∧ len(lst) = k ∧ L(lst, k),

then there exists m ∈ [0, K] such that JcntKΣ = |JlstKΣ | = m, and
(a) For all k ∈ [1, m], r1, . . . , rN and Λ, if Λ = JlstKΣ and ri =

RT [i][Jve(i, Λ, k − 1)KΣ ] for all i ∈ [1, N ], then E [Λ⟨k⟩](r1, . . . , rN ) =
true.

Then suppose

Σ ⊨
∨

i∈[1,K]

i ≤ cnt ∧ FWT(pf(lst, i), wt, i).

Know that fWT(Jpf(lst, j)KΣ) = wt for some j ∈ [1, m], and we only need to
prove that Σ ⊨ R:
(b) For all l ∈ [1, |gWT(wt)|] and r1, . . . , rN , if for all i ∈ [1, N ] such that

vbl(gWT(wt)⟨l⟩, i) we have ri = RT [i][Jve(i, gWT(wt), l − 1)KΣ ], then

E [gWT(wt)⟨l⟩](r1, . . . , rN ) = true.

Let l and r1, . . . , rN satisfy the premise of (2b), then from Lem. 100, we
have the following: if Λ = Jpf(lst, j)KΣ , then there exists k such that Λ⟨k⟩ =
gWT(wt)⟨l⟩, and for all i ∈ [1, N ] such that vbl(gWT(wt)⟨l⟩, i) we have

Jve(i, Λ, k − 1)KΣ = Jve(i, gWT(wt), l − 1)KΣ .

Let r′
1, . . . , r′

N satisfy r′
i = RT [i][Jve(i, Λ, k − 1)KΣ ] for all i ∈ [1, N ], then

from (2a) we know that

E [Λ⟨k⟩](r′
1, . . . , r′

N ) = true,

which implies
E [gWT(wt)⟨l⟩](r′

1, . . . , r′
N ) = true

by Λ⟨k⟩ = gWT(wt)⟨l⟩. Since (r′
1, . . . , r′

N ) and (r1, . . . , rN ) agree on all posi-
tions i such that vbl(gWT(wt)⟨l⟩, i), by definition we can prove that

E [gWT(wt)⟨l⟩](r′
1, . . . , r′

N ) = E [gWT(wt)⟨l⟩](r1, . . . , rN ),

and thus E [gWT(wt)⟨l⟩](r1, . . . , rN ) = true.



114

LM(m) ≜
∧

l∈[1,m] . 1 ≤ lst⟨l⟩ ≤ M

CL(n) ≜ 0 ≤ cnt < n ∧ len(lst) = cnt ∧ LM(cnt)

ve(i, Λ, l) ≜
∑

l′∈[1,l][vbl(Λ⟨l′⟩, i)]

L(Λ, m) ≜
∧

l∈[0,m) . ∀V1, . . . , VN .
(∧

i∈[1,N ] . Vi = RT[i][ve(i, Λ, l)]
)

⇒ hold(Λ⟨l + 1⟩, V1, . . . , VN )

U(Λ, l) ≜
∧

i∈[1,N ] . x[i] = RT[i][ve(i, Λ, l)] ∧ hdi = ve(i, Λ, l) + 1

U′(Λ, l, l′, j, j′) ≜
(∧

i∈[1,j) . x[i] = RT[i][ve(i, Λ, l′)] ∧ hdi = ve(i, Λ, l′) + 1
)

∧
(∧

i∈[j′,N ] . x[i] = RT[i][ve(i, Λ, l)] ∧ hdi = ve(i, Λ, l) + 1
)

CLU(n) ≜ 0 ≤ cnt < n ∧ len(lst) = cnt ∧ L(lst, cnt) ∧ U(lst, cnt)

UG(Λ, l) ≜
∧

i∈[1,N ] . hdi = ve(i, Λ, l) ∧ (hdi = 0 ∨ x[i] = RT[i][ve(i, Λ, l) − 1])

UG′(Λ, l, l′, j, j′) ≜(∧
i∈[1,j) . hdi = ve(i, Λ, l′) ∧ (hdi = 0 ∨ x[i] = RT[i][ve(i, Λ, l′) − 1])

)
∧
(∧

i∈[j′,N ] . hdi = ve(i, Λ, l) ∧ (hdi = 0 ∨ x[i] = RT[i][ve(i, Λ, l) − 1])
)

S(k, j) ≜
⊎

i:1≤i≤j∧vbl(k,i){x[i]}

S+(k, j) ≜ {succ} ⊎ Sk,j

D(S) ≜
∧

x[i]∈S
. x[i] ∼ i

P(n) ≜ Pr[succ = 1] =
∏

i∈[1,n] P(E [Λ⟨i⟩])

Fig. 36. Auxiliary assertions for Thm. 4.

3. The side condition that precedes the last if in Fig. 40: for Λ = gWT(wt) and
j,

⊨RT R ∧ UG(Λ, j) ∧ z = Λ⟨j⟩ ⇒ hold(z, x[1], . . . , x[N ]).

Proof: Define Σ = (σ, RT, ι) such that Σ ⊨ R ∧ UG(Λ, j) ∧ z = Λ⟨j⟩. We
only need to prove that Σ ⊨ hold(z, x[1], . . . , x[N ]). For each i ∈ [1, N ] such
that vbl(E [Λ⟨j⟩], i), we have Jve(i, Λ, j)KΣ ≥ 1. By Σ ⊨ UG(Λ, j), this implies
that JhdiKΣ ̸= 0, and thus

Jx[i]KΣ = RT [i][Jve(i, Λ, j)KΣ − 1]
= RT [i][Jve(i, Λ, j − 1)KΣ ].

Now, from Σ ⊨ R we know that Σ ⊨ hold(z, x[1], . . . , x[N ]) must hold.
⊓⊔



Verifying Algorithmic Versions of the Lovász Local Lemma 115

[true ∧ hdinit]
d := 1;
while (d ≤ N) do

a := Sample(d);
x[d] := a;
d := d + 1;

[true]
flag := 0; cnt := 0; lst := [];
[cnt = 0 ∧ lst = []]
[CL(K + 1)]
while (flag = 0 ∧ cnt < K) do

[CL(K) ∧ flag = 0 ∧ K − cnt − flag = X]
z := 0; h := 1;
[CL(K) ∧ 0 ≤ z ≤ M ∧ 1 ≤ h ≤ M + 1 ∧ flag = 0 ∧ K − cnt − flag = X]
while (h ≤ M) do

[CL(K) ∧ 0 ≤ z ≤ M ∧ 1 ≤ h ≤ M ∧ flag = 0
∧ K − cnt − flag = X ∧ M + 1 − h = X ′]

if (hold(h, x[1], . . . , x[N ])) then z := h;
h := h + 1;
[CL(K) ∧ 0 ≤ z ≤ M ∧ 1 ≤ h ≤ M + 1 ∧ flag = 0

∧ K − cnt − flag = X ∧ M + 1 − h + 1 ≤ X ′]
[CL(K) ∧ 0 ≤ z ≤ M ∧ flag = 0 ∧ K − cnt − flag = X]
if (z = 0) then

[CL(K) ∧ flag = 0 ∧ K − cnt − flag = X]
flag := 1;
[CL(K + 1) ∧ K − cnt − flag + 1 ≤ X]

else
[CL(K) ∧ 1 ≤ z ≤ M ∧ flag = 0 ∧ K − cnt − flag = X]
[0 ≤ cnt < K ∧ LM(cnt) ∧ len(lst) = cnt ∧ 1 ≤ z ≤ M

∧ flag = 0 ∧ K − cnt − flag = X]
cnt := cnt + 1; lst := app(lst, z);
[1 ≤ cnt ≤ K ∧ LM(cnt) ∧ len(lst) = cnt ∧ K − cnt − flag + 1 ≤ X]
[CL(K + 1) ∧ K − cnt − flag + 1 ≤ X]
d := 1;
while (d ≤ N) do ;

if (vbl(z, d)) then
a := Sample(d);
x[d] := a;

d := d + 1;
[CL(K + 1) ∧ K − cnt − flag + 1 ≤ X]

[CL(K + 1) ∧ K − cnt − flag + 1 ≤ X]
[CL(K + 1)]cnt =

∑
wt∈WTMap(K)

 ∨
i∈[1,K]

i ≤ cnt ∧ FWT(pf(lst, i), wt, i)


Fig. 37. Proof of (49).
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{true ∧ hdinit}
d := 1;{

1 ≤ d ≤ N + 1 ∧
(∧

i∈[1,N ] . (i ≥ d ⇒ hdi = 0)

∧ (i < d ⇒ x[i] = RT[i][0] ∧ hdi = 1)
)}

while (d ≤ N) do{
1 ≤ d ≤ N ∧

(∧
i∈[1,N ] . (i ≥ d ⇒ hdi = 0)

∧ (i < d ⇒ x[i] = RT[i][0] ∧ hdi = 1)
)}

a := Sample(d);{
1 ≤ d ≤ N ∧

(∧
i∈[1,N ] . (i > d ⇒ hdi = 0) ∧ (i = d ⇒ a = RT[i][0] ∧ hdi = 1)

∧ (i < d ⇒ x[i] = RT[i][0] ∧ hdi = 1)
)}

x[d] := a;{
1 ≤ d ≤ N ∧

(∧
i∈[1,N ] . (i > d ⇒ hdi = 0)

∧ (i ≤ d ⇒ x[i] = RT[i][0] ∧ hdi = 1)
)}

d := d + 1;{
1 ≤ d ≤ N + 1 ∧

(∧
i∈[1,N ] . (i ≥ d ⇒ hdi = 0)

∧ (i < d ⇒ x[i] = RT[i][0] ∧ hdi = 1)
)}{∧

i∈[1,N ] . x[i] = RT[i][0] ∧ hdi = 1
}

flag := 0; cnt := 0; lst := [];
{cnt = 0 ∧ lst = [] ∧ U([], 0)}
{CLU(K + 1)}
while (flag = 0 ∧ cnt < K) do

{CLU(K)}
z := 0; h := 1;
{CLU(K) ∧ (z = 0 ∨ hold(z, x[1], . . . , x[N ]))}
while (h ≤ M) do

if (hold(h, x[1], . . . , x[N ])) then z := h;
h := h + 1;

{CLU(K) ∧ (z = 0 ∨ hold(z, x[1], . . . , x[N ]))}
if (z = 0) then

{CLU(K)} flag := 1; {CLU(K + 1)}
else

{CLU(K) ∧ hold(z, x[1], . . . , x[N ])}
· · ·
{CLU(K + 1)}

{CLU(K + 1)}{∨
k∈[0,K] . cnt = k ∧ len(lst) = k ∧ L(lst, k)

}{(∨
i∈[1,K] . i ≤ cnt ∧ FWT(pf(lst, i), ds, i)

)
⇒ R

}
Fig. 38. Proof of (52) (part I).
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{CLU(K) ∧ hold(z, x[1], . . . , x[N ])}
{0 ≤ cnt < K ∧ len(lst) = cnt ∧ L(lst, cnt) ∧ U(lst, cnt) ∧ hold(z, x[1], . . . , x[N ])}
cnt := cnt + 1; lst := app(lst, z);
{1 ≤ cnt ≤ K ∧ len(lst) = cnt ∧ lst⟨cnt⟩ = z ∧ L(lst, cnt − 1)

∧ U(lst, cnt − 1) ∧ hold(z, x[1], . . . , x[N ])}
{1 ≤ cnt ≤ K ∧ len(lst) = cnt ∧ lst⟨cnt⟩ = z ∧ L(lst, cnt) ∧ U(lst, cnt − 1)}
d := 1;
{1 ≤ cnt ≤ K ∧ len(lst) = cnt ∧ lst⟨cnt⟩ = z ∧ L(lst, cnt) ∧ U(lst, cnt − 1) ∧ d = 1}
{1 ≤ d ≤ N + 1 ∧ len(lst) = cnt ≥ 1 ∧ lst⟨cnt⟩ = z ∧ U′(lst, cnt − 1, cnt, d, d) ∧ · · · }
while (d ≤ N) do

{1 ≤ d ≤ N ∧ len(lst) = cnt ≥ 1 ∧ lst⟨cnt⟩ = z ∧ U′(lst, cnt − 1, cnt, d, d)}
if (vbl(z, d)) then

{1 ≤ d ≤ N ∧ len(lst) = cnt ≥ 1 ∧ lst⟨cnt⟩ = z ∧ U′(lst, cnt − 1, cnt, d, d + 1)
∧ hdd = ve(d, lst, cnt − 1) + 1 ∧ vbl(z, d)}

{1 ≤ d ≤ N ∧ len(lst) = cnt ≥ 1 ∧ lst⟨cnt⟩ = z ∧ U′(lst, cnt − 1, cnt, d, d + 1)
∧ hdd = ve(d, lst, cnt)}

a := Sample(d);
{1 ≤ d ≤ N ∧ len(lst) = cnt ≥ 1 ∧ lst⟨cnt⟩ = z ∧ U′(lst, cnt − 1, cnt, d, d + 1)

∧ hdd = ve(d, lst, cnt) + 1 ∧ a = RT[d][hdd − 1]}
x[d] := a;
{1 ≤ d ≤ N ∧ len(lst) = cnt ≥ 1 ∧ lst⟨cnt⟩ = z ∧ U′(lst, cnt − 1, cnt, d, d + 1)

∧ hdd = ve(d, lst, cnt) + 1 ∧ x[d] = RT[d][hdd − 1]}
{1 ≤ d ≤ N ∧ len(lst) = cnt ≥ 1 ∧ lst⟨cnt⟩ = z ∧ U′(lst, cnt − 1, cnt, d + 1, d + 1)}
d := d + 1;
{1 ≤ d ≤ N + 1 ∧ len(lst) = cnt ≥ 1 ∧ lst⟨cnt⟩ = z ∧ U′(lst, cnt − 1, cnt, d, d)}

{len(lst) = cnt ∧ lst⟨cnt⟩ = z ∧ U′(lst, cnt − 1, cnt, N + 1, N + 1) ∧ · · · }
{1 ≤ cnt ≤ K ∧ len(lst) = cnt ∧ L(lst, cnt) ∧ U(lst, cnt)}
{CLU(K + 1)}

Fig. 39. Proof of (52) (part II).
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[true ∧ R ∧ hdinit]
succ := 1; h := 1;
[1 ≤ h ≤ |Λ| + 1 ∧ R ∧ succ = 1 ∧ UG(Λ, h − 1)]
while (h ≤ |Λ|) do

[1 ≤ h ≤ |Λ| ∧ R ∧ succ = 1 ∧ UG(Λ, h − 1) ∧ |Λ| + 1 − h = X]
z := Λ⟨h⟩;
[1 ≤ h ≤ |Λ| ∧ R ∧ succ = 1 ∧ UG(Λ, h − 1) ∧ |Λ| + 1 − h = X ∧ z = Λ⟨h⟩]
[R ∧ succ = 1 ∧ UG(Λ, h − 1) ∧ z = Λ⟨h⟩ ∧ · · · ]
d := 1;
[R ∧ succ = 1 ∧ UG(Λ, h − 1) ∧ z = Λ⟨h⟩ ∧ d = 1]
[1 ≤ d ≤ N + 1 ∧ R ∧ succ = 1 ∧ UG′(Λ, h − 1, h, d, d) ∧ z = Λ⟨h⟩]
while (d ≤ N) do

[1 ≤ d ≤ N ∧ R ∧ succ = 1 ∧ UG′(Λ, h − 1, h, d, d)
∧ z = Λ⟨h⟩ ∧ N + 1 − d = X ′]

if (vbl(z, d)) then
[1 ≤ d ≤ N ∧ R ∧ succ = 1 ∧ z = Λ⟨h⟩ ∧ N + 1 − d = X ′ ∧ vbl(z, d)

∧ UG′(Λ, h − 1, h, d, d + 1) ∧ hdd = ve(d, Λ, h − 1)]
a := Sample(d);
[1 ≤ d ≤ N ∧ R ∧ succ = 1 ∧ z = Λ⟨h⟩ ∧ N + 1 − d = X ′ ∧ vbl(z, d)

∧ UG′(Λ, h − 1, h, d, d + 1)
∧ hdd = ve(d, Λ, h − 1) + 1 ∧ a = RT[d][hdd − 1]]

[1 ≤ d ≤ N ∧ R ∧ succ = 1 ∧ z = Λ⟨h⟩ ∧ N + 1 − d = X ′

∧ UG′(Λ, h − 1, h, d, d + 1)
∧ hdd = ve(d, Λ, h) ∧ a = RT[d][hdd − 1]]

x[d] := a;
[1 ≤ d ≤ N ∧ R ∧ succ = 1 ∧ z = Λ⟨h⟩ ∧ N + 1 − d = X ′

∧ UG′(Λ, h − 1, h, d, d + 1)
∧ hdd = ve(d, Λ, h) ∧ x[d] = RT[d][hdd − 1]]

[1 ≤ d ≤ N ∧ R ∧ succ = 1 ∧ z = Λ⟨h⟩ ∧ N + 1 − d = X ′

∧ UG′(Λ, h − 1, h, d + 1, d + 1)]
[1 ≤ d ≤ N ∧ R ∧ succ = 1 ∧ z = Λ⟨h⟩ ∧ N + 1 − d = X ′

∧ UG′(Λ, h − 1, h, d + 1, d + 1)]
d := d + 1;
[1 ≤ d ≤ N + 1 ∧ R ∧ succ = 1 ∧ z = Λ⟨h⟩ ∧ N + 1 − d + 1 ≤ X ′

∧ UG′(Λ, h − 1, h, d, d)]
[R ∧ succ = 1 ∧ UG′(Λ, h − 1, h, N + 1, N + 1) ∧ z = Λ⟨h⟩]
[R ∧ succ = 1 ∧ UG(Λ, h) ∧ z = Λ⟨h⟩]
[R ∧ succ = 1 ∧ UG(Λ, h) ∧ z = Λ⟨h⟩ ∧ hold(z, x[1], . . . , x[N ])]
if (¬hold(z, x[1], . . . , x[N ])) then

[false]
succ := 0;
[R ∧ succ = 1 ∧ UG(Λ, h)]

[R ∧ succ = 1 ∧ UG(Λ, h) ∧ · · · ]
[1 ≤ h ≤ |Λ| ∧ R ∧ succ = 1 ∧ UG(Λ, h) ∧ |Λ| + 1 − h = X]
h := h + 1;
[1 ≤ h ≤ |Λ| + 1 ∧ R ∧ succ = 1 ∧ UG(Λ, h − 1) ∧ |Λ| + 1 − h + 1 ≤ X]

[succ = 1]

Fig. 40. Proof of (53).
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[true]
succ := 1; h := 1; [⌈succ = 1 ∧ h = 1⌉][((∨

j∈[1,|Λ|] . ⌈h = j⌉ ∧ P(j − 1)
)

∧ ⌈h ≤ |Λ|⌉
)

∨ (P(|Λ|) ∧ ⌈¬(h ≤ |Λ|)⌉)
]

while (h ≤ |Λ|) do[(∨
j∈[1,|Λ|] . ⌈h = j⌉ ∧ P(j − 1)

)
∧ ⌈h ≤ |Λ| ∧ |Λ| + 1 − h = X⌉

]
z := Λ⟨h⟩;[(∨

j∈[1,|Λ|] . ⌈h = j ∧ z = Λ⟨h⟩⌉ ∧ P(j − 1)
)

∧ ⌈h ≤ |Λ| ∧ |Λ| + 1 − h = X⌉
]

[· · · ⌈h = j ∧ z = Λ⟨h⟩⌉ ∧ P(j − 1) ∧ · · · ]
d := 1;
[⌈z = Λ⟨j⟩ ∧ d = 1⌉ ∧ · · · ][((∨

i∈[1,N ] . ⌈z = Λ⟨j⟩ ∧ d = i⌉ ∧ #(S+
Λ⟨j⟩,i−1) ∧ D(SΛ⟨j⟩,i−1)

)
∧ ⌈d ≤ N⌉

)
∨
(

⌈z = Λ⟨j⟩⌉ ∧ #(S+
Λ⟨j⟩,N

) ∧ D(SΛ⟨j⟩,N ) ∧ ⌈¬(d ≤ N)⌉
)]

while (d ≤ N) do[(∨
i∈[1,N ] . ⌈z = Λ⟨j⟩ ∧ d = i⌉ ∧ #(S+

Λ⟨j⟩,i−1) ∧ D(SΛ⟨j⟩,i−1)
)

∧ ⌈d ≤ N ∧ N + 1 − d = X⌉
]

· · ·[((∨
i∈[1,N ] . ⌈z = Λ⟨j⟩ ∧ d = i⌉ ∧ #(S+

Λ⟨j⟩,i−1) ∧ D(SΛ⟨j⟩,i−1)
)

∧ ⌈d ≤ N ∧ N + 1 − d + 1 ≤ X⌉
)

∨
(

⌈z = Λ⟨j⟩⌉ ∧ #(S+
Λ⟨j⟩,N ) ∧ D(SΛ⟨j⟩,N ) ∧ ⌈¬(d ≤ N)⌉

)][
⌈z = Λ⟨j⟩⌉ ∧ #(S+

Λ⟨j⟩,N
) ∧ D(SΛ⟨j⟩,N ) ∧ · · ·

]
[
P(j − 1) ∧ ⌈h = j ∧ z = Λ⟨h⟩⌉ ∧ #(S+

Λ⟨j⟩,N ) ∧ D(SΛ⟨j⟩,N )
]

[
(P(j − 1) ∧ ⌈h = j⌉ ∧ ⌈¬hold(z, x[1], . . . , x[N ])⌉)
⊕1−P(E[Λ⟨j⟩]) (P(j − 1) ∧ ⌈h = j⌉ ∧ ⌈¬¬hold(z, x[1], . . . , x[N ])⌉)

]
if (¬hold(z, x[1], . . . , x[N ])) then

[P(j − 1) ∧ ⌈h = j⌉ ∧ ⌈¬hold(z, x[1], . . . , x[N ])⌉]
succ := 0;
[Pr[succ = 1] = 0 ∧ ⌈h = j⌉][

(Pr[succ = 1] = 0 ∧ ⌈h = j⌉) ⊕1−P(E[Λ⟨j⟩]) (P(j − 1) ∧ ⌈h = j⌉)
]

[· · · P(j) ∧ ⌈h = j⌉ ∧ · · · ][(∨
j∈[1,|Λ|] . ⌈h = j⌉ ∧ P(j)

)
∧ ⌈h ≤ |Λ| ∧ |Λ| + 1 − h = X⌉

]
h := h + 1;[(∨

j∈[1,|Λ|] . ⌈h = j + 1⌉ ∧ P(j)
)

∧ ⌈h ≤ |Λ| + 1 ∧ |Λ| + 2 − h = X⌉
]

[((∨
j∈[1,|Λ|] . ⌈h = j⌉ ∧ P(j − 1)

)
∧ ⌈h ≤ |Λ| ∧ |Λ| + 1 − h + 1 ≤ X⌉

)
∨ (P(|Λ|) ∧ ⌈¬(h ≤ |Λ|)⌉)

]
[P(|Λ|)]

Fig. 41. Proof of (51) (part I).
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[(∨
i∈[1,N ] . ⌈z = Λ⟨j⟩ ∧ d = i⌉ ∧ #(S+

Λ⟨j⟩,i−1) ∧ D(SΛ⟨j⟩,i−1)
)

∧ ⌈d ≤ N ∧ N + 1 − d = X⌉
][

· · · ⌈z = Λ⟨j⟩ ∧ d = i⌉ ∧ #(S+
Λ⟨j⟩,i−1) ∧ D(SΛ⟨j⟩,i−1) ∧ · · ·

]
[(

⌈z = Λ⟨j⟩ ∧ d = i⌉ ∧ #(S+
Λ⟨j⟩,i−1) ∧ D(SΛ⟨j⟩,i−1) ∧ ⌈vbl(z, d)⌉

)
⊕1 · · ·

]
if (vbl(z, d)) then[

⌈z = Λ⟨j⟩ ∧ d = i⌉ ∧ (∃X. ⌈d = X⌉) ∧ #(S+
Λ⟨j⟩,i−1) ∧ D(SΛ⟨j⟩,i−1) ∧ ⌈vbl(z, d)⌉

]
a := Sample(d);[
⌈z = Λ⟨j⟩ ∧ d = i⌉ ∧ #(S+

Λ⟨j⟩,i−1 ∪ {a}) ∧ D(SΛ⟨j⟩,i−1) ∧ ⌈vbl(z, d)⌉ ∧ a ∼ d
]

x[d] := a;[
⌈z = Λ⟨j⟩ ∧ d = i⌉ ∧ #(S+

Λ⟨j⟩,i) ∧ D(SΛ⟨j⟩,i)
][

· · · ⌈z = Λ⟨j⟩ ∧ d = i⌉ ∧ #(S+
Λ⟨j⟩,i) ∧ D(SΛ⟨j⟩,i) ∧ · · ·

]
[(∨

i∈[1,N ] . ⌈z = Λ⟨j⟩ ∧ d = i⌉ ∧ #(S+
Λ⟨j⟩,i) ∧ D(SΛ⟨j⟩,i)

)
∧ ⌈d ≤ N ∧ N + 1 − d = X⌉

]
d := d + 1;[(∨

i∈[1,N ] . ⌈z = Λ⟨j⟩ ∧ d = i + 1⌉ ∧ #(S+
Λ⟨j⟩,i

) ∧ D(SΛ⟨j⟩,i)
)

∧ ⌈d ≤ N + 1 ∧ N + 2 − d = X⌉
]

[((∨
i∈[1,N ] . ⌈z = Λ⟨j⟩ ∧ d = i⌉ ∧ #(S+

Λ⟨j⟩,i−1) ∧ D(SΛ⟨j⟩,i−1)
)

∧ ⌈d ≤ N ∧ N + 1 − d + 1 ≤ X⌉
)

∨
(

⌈z = Λ⟨j⟩⌉ ∧ #(S+
Λ⟨j⟩,N

) ∧ D(SΛ⟨j⟩,N ) ∧ ⌈¬(d ≤ N)⌉
)]

Fig. 42. Proof of (51) (part II).
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J.2 Our New Result

Definition 7. For all reals r, MTpre(r) holds iff there exist

– Set DS;
– Function DSMap ∈ Nat → Pfin(DS);
– Function f ∈ ExLog → DS;
– Function g ∈ DS → ExLog;

such that

1. For all K and Λ, if Λ ∈ ExLog and |Λ| ≤ K, then

f(Λ) ∈ DSMap(K);

2. Exclusive(f) and Iterable(f, g) hold;
3. The following inequality holds;

∑
ds∈DSMap(K)

|g(ds)|∏
i=1

P(E [g(ds)⟨i⟩]) ≤ r

where Exclusive(f) iff

∀Λ ≺ Λ′ ∈ ExLog. f(Λ) ̸= f(Λ′),

and Iterable(f, g) iff the following holds: for all Λ, Λ′ ∈ ExLog, if (g ◦f)(Λ) = Λ′,
then for each l ∈ [1, |Λ′|] there exists k such that Λ⟨k⟩ = Λ′⟨l⟩, and

∀i ∈ [1, N ]. vbl(E [Λ′⟨l⟩], i) =⇒∑
k′<k

[vbl(E [Λ⟨k′⟩], i)] =
∑
l′<l

[vbl(E [Λ′⟨l′⟩], i)].

Theorem 8. For all reals r, if MTpre(r) holds, then

⊨ [true] CMT(cnt) [E[cnt] ≤ r] .

We explain the idea of Def. 7. DS is the set of all instances of some witness-
tree-like structures. We can rewrite |Λ|, the length of the execution log in the
MT algorithm, as some intermediate expression related to the structures in DS,
which is simpler to analyze. More precisely, we rewrite |Λ| as the number of
ds ∈ DS such that, ds can be constructed from some prefix of the execution log.
This construction is described by f , which is similar to fWT. Also, if the length of
the execution log is no more K, then in the above intermediate expression we can
restrict ds to a structure with “size” no more than K (that is, ds ∈ DSMap(K)),
with the help of the first premise. This makes the expression well-defined, as the
number of possible ds from DSMap(K) must be finite.

Then, to bound the probability of ds being constructed from some prefix
of the execution log, similar to Sec. 2.1, we introduce a program check(ds) to
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enumerate the events in ds in a specific order. This order is described by g, which
is similar to gWT. With check(ds), we can reduce the proof of the bound to a
coupling proof with the MT algorithm and check(ds) involved.

Exclusive(f) requires that the structures constructed from all prefixes of the
execution log are pairwise distinct. Iterable(f, g) captures an important property
of the witness-tree-like structures that, for all events η in the structure ds, and
for all variables Xi that η depends on, Xi has been resampled in check(ds) before
η being picked as many times as Xi has been resampled in the MT algorithm
before η being picked. The third premise is similar to (4).

Below we prove Thm. 8. The proof is analogy to Thm. 4, except that we
extend the witness tree to general witness-tree-like structures.

Proof. Assume that MTpre(r) holds. By applying Lem. 77, Thm. 2 and Lem. 81,
with the auxiliary code C ′

MT(cnt, K) defined in Fig. 35, we only need to prove
that, for all K,

⊨ [true] C ′
MT(cnt, K) [E[cnt] ≤ r ∧ ⌈cnt ≥ 0⌉] . (54)

From MTpre(r), we know that

⊨
∑

ds∈DSMap(K)

|g(ds)|∏
i=1

P(E [g(ds)]⟨i⟩) ≤ r;

thus, to prove (54), by Lem. 77, we only need to prove that

⊨ [true] C ′
MT(cnt, K)⌈cnt ≥ 0⌉ ∧ E[cnt] ≤

∑
ds∈DSMap(K)

|g(ds)|∏
i=1

P(E [g(ds)]⟨i⟩)

 . (55)

Informally, DSMap(K) is the set of all data structures with size no more than
K, and g(ds) is a reversed BFS ordering of data structure ds.

Then we define FDS(e, ds, i) as follows:

FDS(e, ds, i) ≜
∨

Λ∈f−1(ds) : |Λ|=i . e = Λ.

Informally, FDS(e, ds, i) holds iff ds can be constructed from the execution log
e, where e is of length i. For execution log Λ ∈ ExLog, f(Λ) is the data structure
constructed from Λ. Now, to prove (55), by repeatedly applying Lem. 78, we
only need to prove the following two subgoals:

⊨ [true] C ′
MT(cnt, K)

 ⌈cnt ≥ 0⌉ ∧ E[cnt] =
∑

ds∈DSMap(K)

Pr

 ∨
i∈[1,K]

i ≤ cnt ∧ FDS(pf(lst, i), ds, i)

, (56)
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and for all ds ∈ DSMap(K)

⊨ {true} C ′
MT(cnt, K)

Pr

 ∨
i∈[1,K]

i ≤ cnt ∧ FDS(pf(lst, i), ds, i)


≤

|g(ds)|∏
i=1

P(E [g(ds)]⟨i⟩)

. (57)

For (56), from Lem. 77 and the linearity of expectation, we only need to
prove that

⊨ [true] C ′
MT(cnt, K)

cnt =
∑

ds∈DSMap(K) ∨
i∈[1,K]

i ≤ cnt ∧ FDS(pf(lst, i), ds, i)


; (58)

then by Lem. 80, to prove (58), we only need to prove the following:

⊨RT [true ∧ hdinit] C ′
MT(cnt, K)

cnt =
∑

ds∈DSMap(K) ∨
i∈[1,K]

i ≤ cnt ∧ FDS(pf(lst, i), ds, i)

. (59)

For (57), by Lem. 79, with the auxiliary code Ccheck(Λ) defined in Fig. 35,
we only need to prove the following two subgoals:

⊨ {true} C ′
MT(cnt, K), Ccheck(g(ds))

 ∨
i∈[1,K]

i ≤ cnt ∧ FDS(pf(lst, i), ds, i)

 , succ = 1

 , (60)

and

⊨ [true] Ccheck(g(ds))

Pr[succ = 1] =
|g(ds)|∏

i=1
P(E [g(ds)]⟨i⟩)

 . (61)

For (60), by RT-based coupling (Thm. 3), we only need to prove the following
two subgoals:

⊨RT {true ∧ hdinit} C ′
MT(cnt, K)

 ∨
i∈[1,K]

i ≤ cnt ∧ FDS(pf(lst, i), ds, i)

 ⇒ R

 , (62)
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and
⊨RT [true ∧ R ∧ hdinit] Ccheck(g(ds)) [succ = 1] , (63)

where R is defined below.

R ≜
∧

l∈[1,|g(ds)|] . ∀V1, . . . VN .

(
∧

i∈[1,N ] . vbl(g(ds)⟨l⟩, i)
⇒ Vi = RT[i][ve(i, g(ds), l − 1)])

⇒ hold(g(ds)⟨l⟩, V1, . . . , VN )

ve(i, Λ, l) ≜
∑

l′∈[1,l][vbl(Λ⟨l′⟩, i)]

This R is analogy to the one defined in the proof of Thm. 4, except that the wt
there is now replaced with ds, and gWT is replaced with g.

Now it remains to prove (59), (62), (63) and (61). The proof of (63) and (61)
are sketched in Fig. 40, Fig. 41 and Fig. 42, where we take Λ = g(ds). For (59)
and (62), we apply Thm. 7, and use inference rules of the resampling-table-based
program logic (listed in Fig. 25 and Fig. 26) to complete the proof. Proofs of
these two judgments are presented in Fig. 43 and Fig. 44, while the auxiliary
assertions used by these proofs are again the ones defined in Fig. 36, and we
omit the common parts with Fig. 37, Fig. 38 and Fig. 39.

We then show the proofs of the side conditions in Fig. 43 and Fig. 44.

1. The side condition in Fig. 43:

⊨RT CL(K + 1) ⇒ cnt =
∑

ds∈DSMap(K)

 ∨
i∈[1,K]

i ≤ cnt ∧ FDS(pf(lst, i), ds, i)

 .

Proof: Let Σ ⊨ CL(K + 1), then there exists m ∈ [0, K] such that
– JcntKΣ = |JlstKΣ | = m;
– For all k ∈ [1, m], Jpf(lst, k)KΣ ∈ ExLog;
– For all k ∈ [1, m], |Jpf(lst, k)KΣ | = k ≤ K.

Thus, by MTpre(r), for all k ∈ [1, m] we have

f(Jpf(lst, k)KΣ) ∈ DSMap(K).

Now, let
dsk = f(Jpf(lst, k)KΣ),

then from Exclusive(f) we know that ds1 ̸= · · · ̸= dsm, and for all k ∈ [1, m]
we have the following:

– Σ ⊨ FDS(pf(lst, k), dsk, k);
– For all ds ̸= dsk, Σ ⊨ ¬FDS(pf(lst, k), ds, k).

Thus, one can verify that

Σ ⊨ cnt =
∑

ds∈DSMap(K)

 ∨
i∈[1,K]

i ≤ cnt ∧ FDS(pf(lst, i), ds, i)

 .
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2. The side condition in Fig. 44:

⊨RT

 ∨
k∈[0,K]

cnt = k ∧ len(lst) = k ∧ L(lst, k)

 ⇒

 ∨
i∈[1,K]

i ≤ cnt ∧ FDS(pf(lst, i), ds, i)

 ⇒ R

 .

Proof: Define Σ = (σ, RT, ι) such that

Σ ⊨
∨

k∈[0,K]

cnt = k ∧ len(lst) = k ∧ L(lst, k),

then there exists m ∈ [0, K] such that JcntKΣ = |JlstKΣ | = m, and
(a) For all k ∈ [1, m], r1, . . . , rN and Λ, if Λ = JlstKΣ and ri =

RT [i][Jve(i, Λ, k − 1)KΣ ] for all i ∈ [1, N ], then E [Λ⟨k⟩](r1, . . . , rN ) =
true.

Then suppose

Σ ⊨
∨

i∈[1,K]

i ≤ cnt ∧ FDS(pf(lst, i), ds, i).

Know that f(Jpf(lst, j)KΣ) = ds for some j ∈ [1, m], and we only need to
prove that Σ ⊨ R:
(b) For all l ∈ [1, |g(ds)|] and r1, . . . , rN , if

ri = RT [i][Jve(i, g(ds), l − 1)KΣ ]

for all i ∈ [1, N ] such that vbl(g(ds)⟨l⟩, i), then

E [g(ds)⟨l⟩](r1, . . . , rN ) = true.

Let l and r1, . . . , rN satisfy the premise of (2b), then from Iterable(f, g) we
have: with Λ = Jpf(lst, j)KΣ , there exists k such that Λ⟨k⟩ = g(ds)⟨l⟩, and
for all i ∈ [1, N ] such that vbl(g(ds)⟨l⟩, i) we have

Jve(i, Λ, k − 1)KΣ = Jve(i, g(ds), l − 1)KΣ .

Define r′
1, . . . , r′

N such that r′
i = RT [i][Jve(i, Λ, k − 1)KΣ ] for all i ∈ [1, N ],

then from (2a) we know that

E [Λ⟨k⟩](r′
1, . . . , r′

N ) = true,

which implies
E [g(ds)⟨l⟩](r′

1, . . . , r′
N ) = true

by Λ⟨k⟩ = g(ds)⟨l⟩. Since (r′
1, . . . , r′

N ) and (r1, . . . , rN ) agree on all positions
i such that vbl(g(ds)⟨l⟩, i), by definition we can prove that

E [g(ds)⟨l⟩](r′
1, . . . , r′

N ) = E [g(ds)⟨l⟩](r1, . . . , rN ),

and thus E [g(ds)⟨l⟩](r1, . . . , rN ) = true.
⊓⊔
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[true ∧ hdinit]
C′

MT(cnt, K)
[CL(K + 1)]cnt =

∑
ds∈DSMap(K)

 ∨
i∈[1,K]

i ≤ cnt ∧ FDS(pf(lst, i), ds, i)


Fig. 43. Proof of (59).

{true ∧ hdinit}
C′

MT(cnt, K) ∨
k∈[0,K]

cnt = k ∧ len(lst) = k ∧ L(lst, k)


 ∨

i∈[1,K]

i ≤ cnt ∧ FDS(pf(lst, i), ds, i)

⇒ R


Fig. 44. Proof of (62).

J.3 Theorem 1.4 of [54] and Theorem 4 of [44]

We prove Thm. 4, Thm. 9 and Thm. 10 by directly applying Thm. 8.

An Alternative Proof of Thm. 4. Fixing α1, . . . , αM below, we prove that
MTpre(rEL) holds. Take DS = WT , DSMap = WTMap, f = fWT, g = gWT,
then the proof follows from Lem. 98, Lem. 99, Lem. 100 and Lem. 101. ⊓⊔

Theorem 9. For all reals β1, . . . , βM ∈ (0, ∞), if the cluster expansion condi-
tion [10]

∀i ∈ [1, M ]. P(E [i]) ≤ βi

 ∑
I⊆Γ +(i)
Indep(I)

∏
j∈I

βj


−1

holds, then
⊨ [true] CMT(cnt) [E[cnt] ≤ rCE] ,

where
rCE =

∑
i∈[1,M ]

βi.

Proof. Fix β1, . . . , βM below. We prove that MTpre(rCE) holds. Take DS = WT ,
DSMap = SWTMap, f = fWT, g = gWT, where SWTMap is defined in App. I.3.
Then the proof follows from Lem. 127, Lem. 99, Lem. 100 and Lem. 128. ⊓⊔

Theorem 10. If the Shearer’s condition [57]

∀I ⊆ [1, M ]. Indep(I) =⇒ qI > 0
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holds, then
⊨ [true] CMT(cnt) [E[cnt] ≤ rS] ,

where

rS =
∑

i∈[1,M ]

q{i}

q∅
,

qI =
∑

I⊆J⊆[1,M]
Indep(J)

(−1)|J|−|I|
∏
j∈J

P(E [j]).

Proof. We prove that MTpre(rS) holds. Take DS = SSS , DSMap =
SSSMap, f = fSSS, g = gSSS; see App. I.4 for detailed definitions of
SSS , SSSMap, fSSS, gSSS. Then the proof follows from Lem. 131, Lem. 132,
Lem. 133 and Lem. 134. ⊓⊔

J.4 Theorem 6.1 of [51]

Theorem 11. For all reals α1, . . . , αM ∈ (0, 1), if

∀i ∈ [1, M ]. P(E [i]) ≤ αi

∏
j∈Γ ′(i)

(1 − αj),

then
⊨ [true] CMT(cnt) [E[cnt] ≤ rEL] ,

where
rEL =

∑
i∈[1,M ]

αi(1 − αi)−1.

Below we use the following notation:

ve(i, Λ, l) ≜
∑
l′<l

[vbl(E [Λ⟨l′⟩], i)]

Lemma 135. For all Λ, Λ′, j, RT such that j ∈ [1, |Λ|) and |Λ| = |Λ′|, if

– For all k ∈ [1, |Λ|] \ {j, j + 1}, Λ⟨k⟩ = Λ′⟨k⟩;
– Λ⟨j⟩ = Λ′⟨j + 1⟩, Λ⟨j + 1⟩ = Λ′⟨j⟩;
– Λ⟨j⟩ /∈ Γ ′+(Λ⟨j + 1⟩);
– RT ⊨ L(Λ, |Λ|);

then RT ⊨ L(Λ′, |Λ′|).

Proof. From the premise, we know that

– For all k ∈ [1, |Λ|] and q1, . . . , qN , if

qi = RT [i][ve(i, Λ, k − 1)]

for all i ∈ [1, N ], then E [Λ⟨k⟩](q1, . . . , qN ) = true.
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We only need to prove that

– For all k ∈ [1, |Λ′|] and r1, . . . , rN , if

ri = RT [i][ve(i, Λ′, k − 1)]

for all i ∈ [1, N ], then E [Λ′⟨k⟩](r1, . . . , rN ) = true.

The case of k /∈ {j, j + 1} is trivial. Below we prove the case of k = j, and the
case of k = j + 1 is similar. Let

– ri = RT [i][ve(i, Λ′, j − 1)];
– r′

i = RT [i][ve(i, Λ′, j)];
– qi = RT [i][ve(i, Λ, j − 1)];
– q′

i = RT [i][ve(i, Λ, j)]

for all i ∈ [1, N ], then

E [Λ⟨j⟩](q1, . . . , qN ) = E [Λ⟨j + 1⟩](q′
1, . . . , q′

N ) = true,

Note that ri = q′
i for all i ∈ [1, N ] such that ¬vbl(E [Λ⟨j⟩], i). Assume that

q′′
1 , . . . , q′′

N satisfy that q′′
i = q′

i for all i ∈ [1, N ] such that vbl(E [Λ⟨j + 1⟩], i),
and q′′

i = qi for all i ∈ [1, N ] such that ¬vbl(E [Λ⟨j + 1⟩], i), then ri = q′′
i for all

i ∈ [1, N ] such that ¬vbl(E [Λ⟨j⟩], i) ∨ ¬vbl(E [Λ⟨j + 1⟩], i), and

E [Λ⟨j + 1⟩](q′′
1 , . . . , q′′

N ) = E [Λ⟨j + 1⟩](q′
1, . . . , q′

N ) = true.

Moreover, since ri = qi for all i ∈ [1, N ], we have

E [Λ⟨j⟩](r1, . . . , rN ) = E [Λ⟨j⟩](q1, . . . , qN ) = true.

Thus, from the definition of Λ⟨j⟩ /∈ Γ ′+(Λ⟨j + 1⟩), we have

E [Λ⟨j + 1⟩](r1, . . . , rN ) = true;

then from Λ′⟨j⟩ = Λ⟨j + 1⟩ we have

E [Λ′⟨j⟩](r1, . . . , rN ) = true.

⊓⊔

Proof of Thm. 11. By applying Lem. 77, Thm. 2 and Lem. 81, with the auxiliary
code C ′

MT(cnt, K) defined in Fig. 35, we only need to prove that, for all K,

⊨ [true] C ′
MT(cnt, K) [⌈cnt ≥ 0⌉ ∧ E[cnt] ≤ rEL] . (64)

From the premise and Lem. 126, we know that

⊨
∑

wt∈LWTMap(K)

|gWT(wt)|∏
i=1

P(E [gWT(wt)⟨i⟩]) ≤ rEL. (65)
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Informally, LWTMap(K) is the set of all lopsided witness trees with size no more
than K, which is defined in App. I.2. With (65), to prove (64), by Lem. 77, we
only need to prove that

⊨ [true] C ′
MT(cnt, K)

 ⌈cnt ≥ 0⌉ ∧

E[cnt] ≤
∑

wt∈LWTMap(K)

|gWT(wt)|∏
i=1

P(E [gWT(wt)⟨i⟩])

. (66)

Then we define FLWT(e, wt, i) as follows:

FLWT(e, wt, i) ≜
∨

Λ∈(fLWT)−1(wt) : |Λ|=i . e = Λ.

For Λ ∈ ExLog, fLWT(Λ) is the lopsided witness tree constructed from Λ, as
defined in App. I.2. FLWT(pf(lst, i), wt, i) holds iff the lopsided witness tree wt
can be constructed from the execution log’s prefix with length i. Now, to prove
(66), by repeatedly applying Lem. 77 and Lem. 78, we only need to prove the
following two subgoals:

⊨ [true] C ′
MT(cnt, K)

 ⌈cnt ≥ 0⌉ ∧ E[cnt] =
∑

wt∈LWTMap(K)

Pr

 ∨
i∈[1,K]

i ≤ cnt ∧ FLWT(pf(lst, i), wt, i)

, (67)

and for all wt ∈ LWTMap(K)

⊨ {true} C ′
MT(cnt, K)

Pr

 ∨
i∈[1,K]

i ≤ cnt ∧ FLWT(pf(lst, i), wt, i)


≤

|gWT(wt)|∏
i=1

P(E [gWT(wt)⟨i⟩])

. (68)

For (67), from Lem. 77 and the linearity of expectation, we only need to
prove that

⊨ [true] C ′
MT(cnt, K)

cnt =
∑

wt∈LWTMap(K) ∨
i∈[1,K]

i ≤ cnt ∧ FLWT(pf(lst, i), wt, i)


; (69)



130

then by Lem. 80, to prove (69), we only need to prove the following:

⊨RT [true ∧ hdinit] C ′
MT(cnt, K)

cnt =
∑

wt∈LWTMap(K) ∨
i∈[1,K]

i ≤ cnt ∧ FLWT(pf(lst, i), wt, i)

. (70)

For (68), from Lem. 79 and Lem. 77, with the auxiliary code Ccheck(Λ) defined
in Fig. 35, we only need to prove the following two subgoals:

⊨ {true} C ′
MT(cnt, K), Ccheck(gWT(wt))

 ∨
i∈[1,K]

i ≤ cnt ∧ FLWT(pf(lst, i), wt, i)

 , succ = 1

 , (71)

and

⊨ [true] Ccheck(gWT(wt))

Pr[succ = 1] =
|gWT(wt)|∏

i=1
P(E [gWT(wt)⟨i⟩])

 . (72)

For (71), by RT-based coupling (Thm. 3), we only need to prove

⊨RT {true ∧ hdinit} C ′
MT(cnt, K)

 ∨
i∈[1,K]

i ≤ cnt ∧ FLWT(pf(lst, i), wt, i)

 ⇒ R

 (73)

and
⊨RT [true ∧ R ∧ hdinit] Ccheck(gWT(wt)) [succ = 1] , (74)

where R is defined below.

R ≜
∧

l∈[1,|gWT(wt)|] . ∀V1, . . . VN .

(
∧

i∈[1,N ] . vbl(gWT(wt)⟨l⟩, i)
⇒ Vi = RT[i][ve(i, gWT(wt), l − 1)])

⇒ hold(gWT(wt)⟨l⟩, V1, . . . , VN )

ve(i, Λ, l) ≜
∑

l′∈[1,l][vbl(Λ⟨l′⟩, i)]

Now it remains to prove (70), (73), (74) and (72). The proof of (74) and (72)
are sketched in Fig. 40, Fig. 41 and Fig. 42, where we take Λ = gWT(wt). For
(70) and (73), we apply Thm. 7, and use inference rules of the resampling-table-
based program logic (listed in Fig. 25 and Fig. 26) to complete the proof. Proofs
of these two judgments are presented in Fig. 45 and Fig. 46, while the auxiliary
assertions used by these proofs are again the ones defined in Fig. 36, and we
omit the common parts with Fig. 37, Fig. 38 and Fig. 39.

We then show the proofs of side conditions in Fig. 45 and Fig. 46.



Verifying Algorithmic Versions of the Lovász Local Lemma 131

1. The side condition in the last line of Fig. 45:

⊨RT CL(K + 1) ⇒

cnt =
∑

wt∈LWTMap(K)

 ∨
i∈[1,K]

i ≤ cnt ∧ FLWT(pf(lst, i), wt, i)

 .

Proof: Let Σ ⊨ CL(K + 1), then there exists m ∈ [0, K] such that:
– JcntKΣ = |JlstKΣ | = m;
– For all k ∈ [1, m], Jpf(lst, k)KΣ ∈ ExLog;
– For all k ∈ [1, m], |Jpf(lst, k)KΣ | = k ≤ K.

Thus, by Lem. 124, fLWT(Jpf(lst, k)KΣ) ∈ LWTMap(K) for all k ∈ [1, m].
Now, let

wtk = fLWT(Jpf(lst, k)KΣ),

then we know that wt1 ̸= · · · ≠ wtm from Lem. 125, and for all k ∈ [1, m]
we have the following:

– Σ ⊨ FLWT(pf(lst, k), wtk, k);
– For all wt ̸= wtk, Σ ⊨ ¬FLWT(pf(lst, k), wt, k).

Thus, one can verify that

Σ ⊨ cnt =
∑

wt∈LWTMap(K)

 ∨
i∈[1,K]

i ≤ cnt ∧ FLWT(pf(lst, i), wt, i)

 .

2. The side condition in the last line of Fig. 46:

⊨RT

 ∨
k∈[0,K]

cnt = k ∧ len(lst) = k ∧ L(lst, k)

 ⇒

 ∨
i∈[1,K]

i ≤ cnt ∧ FLWT(pf(lst, i), wt, i)

 ⇒ R

 .

Proof: Define Σ = (σ, RT, ι) such that

Σ ⊨
∨

k∈[0,K]

cnt = k ∧ len(lst) = k ∧ L(lst, k),

then there exists Λ0 such that JcntKΣ = |Λ0| ≤ K, JlstKΣ = Λ0 and RT ⊨
L(Λ0, |Λ0|), where RT ⊨ L(Λ, |Λ|) holds iff

– For all k ∈ [1, |Λ|] and r1, . . . , rN , if

ri = RT [i][ve(i, Λ, k − 1)]

for all i ∈ [1, N ], then E [Λ⟨k⟩](r1, . . . , rN ) = true.
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Then suppose

Σ ⊨
∨

i∈[1,K]

i ≤ cnt ∧ FLWT(pf(lst, i), wt, i).

Know that fLWT(Jpf(lst, j)KΣ) = wt for some j ∈ [1, |Λ0|], and thus there ex-
ists some prefix of Λ0, say Λ1, such that fLWT(Λ1) = wt and RT ⊨ L(Λ1, |Λ1|).
Now we only need to prove that Σ ⊨ R:
(b) For all l ∈ [1, |gWT(wt)|] and r1, . . . , rN , if for all i ∈ [1, N ] such that

vbl(gWT(wt)⟨l⟩, i) we have ri = RT [i][ve(i, gWT(wt), l − 1)], then

E [gWT(wt)⟨l⟩](r1, . . . , rN ) = true.

Let
S = {Λ : fLWT(Λ) = wt ∧ RT ⊨ L(Λ, |Λ|)},

then from Λ1 ∈ S we have S ̸= ∅. Now, define w(Λ) as

|gWT(wt)|∑
i=1

(|gWT(wt)| + 1 − i) · LYWT (λi. Λ⟨i⟩)(GWTI ′(Λ, |Λ|))⟨i⟩,

then we take Λ2 = argminΛ∈S w(Λ). Let

Λ′
2 = LYWT (λi. Λ2⟨i⟩)(GWTI ′(Λ2, |Λ2|));

by Lem. 97 and induction,

|gWT(wt)| = |wt| = |GWT ′(Λ2, |Λ2|)|
= |GWTI ′(Λ2, |Λ2|)| = |Λ′

2|,

and for all l′ ∈ |gWT(wt)|

Λ2⟨Λ′
2⟨l′⟩⟩ = gWT(wt)⟨l′⟩. (75)

From Lem. 109, Lem. 97 and fLWT(Λ2) = wt, we have |gWT(wt)| ≤ |Λ2|.
Below we prove that

Λ′
2⟨l⟩ = l (76)

holds for all l ∈ [1, |gWT(wt)|], from which we have

gWT(wt)⟨l⟩ = Λ2⟨l⟩

from (75) for all l and then from RT ⊨ L(Λ2, |Λ2|) we have (2b). We prove
(76) by contradiction. Assume that there exist l and j such that Λ′

2⟨l⟩ = j+1,
and Λ′

2⟨l′⟩ ≠ j for all l′ < l. From Lem. 115, we have the following three
cases:

– #j(Λ′
2) = 0, l = |Λ′

2|;
– #j(Λ′

2) = 0, l < |Λ′
2|;

– #j(Λ′
2) = 1, and there exists l′ > l such that Λ′

2⟨l′⟩ = j.



Verifying Algorithmic Versions of the Lovász Local Lemma 133

Since Λ′
2⟨l⟩ = j+1, from Lem. 117 there exists d such that GDep′(Λ2, j+1, d).

We then prove
Λ2⟨j⟩ /∈ Γ ′+(Λ2⟨j + 1⟩) (77)

by contradiction. Assuming Λ2⟨j⟩ ∈ Γ ′+(Λ2⟨j + 1⟩), we have
GPath′(Λ2, j, d + 1) from GDep′(Λ2, j + 1, d). If #j(Λ′

2) = 0, then
¬GPath′(Λ2, j, d + 1) follows from Lem. 116, a contradiction. If there exists
l′ > l such that Λ′

2⟨l′⟩ = j, then from Lem. 117 there must exist some d′ ≤ d
such that GDep′(Λ2, j, d′), which again contradicts GPath′(Λ2, j, d+1). Thus
(77) holds. Now it remains to show that

Λ2 ̸= argmin
Λ∈S

w(Λ), (78)

which leads to a direct contradiction and thus (76) follows. To see this, we
then construct Λ3 ∈ S such that w(Λ3) < w(Λ2). Below we let

Λ′
3 = LYWT (λi. Λ3⟨i⟩)(GWTI ′(Λ3, |Λ3|)).

– #j(Λ′
2) = 0, l = |Λ′

2|. Now |Λ2| = Λ′
2⟨l⟩ = j + 1. Let Λ and Λ3 satisfy

Λ2 = Λ2⟨j + 1⟩ :: Λ2⟨j⟩ :: Λ and Λ3 = Λ2⟨j + 1⟩ :: Λ. From Lem. 135
and RT ⊨ L(Λ2, |Λ2|) we have RT ⊨ L(Λ2⟨j⟩ :: Λ3, |Λ3| + 1), and thus
RT ⊨ L(Λ3, |Λ3|). Since Λ2⟨j⟩ /∈ Γ ′+(Λ2⟨j + 1⟩), by induction, for all
i ∈ [1, |Λ3|) and l, GPath′(Λ2, i, l) holds iff GPath′(Λ3, i, l). Thus we can
prove that

• fLWT(Λ2) = fLWT(Λ3);
• |Λ′

2| = |Λ′
3|, Λ′

2⟨|Λ′
2|⟩ = j + 1, and Λ′

3⟨|Λ′
3|⟩ = j;

• Λ′
2⟨i⟩ = Λ′

3⟨i⟩ for all i ∈ [1, |Λ′
3|);

then Λ3 ∈ S, and w(Λ3) = w(Λ2) − (j + 1) + j < w(Λ2).
– #j(Λ′

2) = 0, l < |Λ′
2|. Since Λ′

2⟨l⟩ = j + 1, Λ′
2⟨|Λ′

2|⟩ = |Λ2| and l < |Λ′
2|,

from Lem. 115 we have j +1 < |Λ2|. We construct Λ3 by swapping Λ2⟨j⟩
and Λ2⟨j + 1⟩ in Λ2. From RT ⊨ L(Λ2, |Λ2|) and Lem. 135 we know that
RT ⊨ L(Λ3, |Λ3|). Moreover, from Lem. 122 and j + 1 < |Λ2| we have
fLWT(Λ3) = fLWT(Λ2) = wt. Thus Λ3 ∈ S. Now from Lem. 123 and
Lem. 115,

w(Λ3) = w(Λ2) − (|gWT(wt)| + 1 − l) · (j + 1)
+ (|gWT(wt)| + 1 − l) · j

< w(Λ2).

– #j(Λ′
2) = 1, and there exists l′ > l such that Λ′

2⟨l′⟩ = j. Since Λ′
2⟨l⟩ = j+

1, Λ′
2⟨|Λ′

2|⟩ = |Λ2| and l < l′ ≤ |Λ′
2|, from Lem. 115 we have j +1 < |Λ2|.

We construct Λ3 by swapping Λ2⟨j⟩ and Λ2⟨j + 1⟩ in Λ2. From RT ⊨
L(Λ2, |Λ2|) and Lem. 135 we know that RT ⊨ L(Λ3, |Λ3|). Moreover, from
Lem. 122 and j + 1 < |Λ2| we have fLWT(Λ3) = fLWT(Λ2) = wt. Thus
Λ3 ∈ S. Now from Lem. 123 and Lem. 115,

w(Λ3) = w(Λ2) − (|gWT(wt)| + 1 − l) · (j + 1)
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[true ∧ hdinit]
C′

MT(cnt, K)
[CL(K + 1)]cnt =

∑
wt∈LWTMap(K)

 ∨
i∈[1,K]

i ≤ cnt ∧ FLWT(pf(lst, i), wt, i)


Fig. 45. Proof of (70).

{true ∧ hdinit}
C′

MT(cnt, K) ∨
k∈[0,K]

cnt = k ∧ len(lst) = k ∧ L(lst, k)


 ∨

i∈[1,K]

i ≤ cnt ∧ FLWT(pf(lst, i), wt, i)

⇒ R


Fig. 46. Proof of (73).

− (|gWT(wt)| + 1 − l′) · j

+ (|gWT(wt)| + 1 − l) · j

+ (|gWT(wt)| + 1 − l′) · (j + 1)
= w(Λ2) + l − l′ < w(Λ2).

⊓⊔

J.5 Theorem 2.2 of [32]

In the previous subsections, we focus on the termination property and the
expected iteration numbers of the MT algorithm. Below we turn to the MT-
distribution problem: how does the output (an assignment of the N variables) of
the MT algorithm distribute? As we will see later, this problem is not only sig-
nificant in itself, but also closely related to a useful variant of the MT algorithm
which samples on only the “core events”.

The first work that considers the MT-distribution is [32]. In the second part
of Theorem 2.2 of [32], they upper bound the probability of an event other than
E [1], . . . , E [M ] occurring under the output of the MT algorithm. With this result
in hand, they derive several important results, for example the first constant-
factor approximation algorithm for the Santa Claus problem [4].

From another perspective, this result is closely related to a variant of the
MT algorithm. That is, for events E [1], . . . , E [M ], we apply the MT algorithm
only on some of these events, for example E [1], . . . , E [M ′], where M ′ < M is a
constant. Here we call E [1], . . . , E [M ′] the “core events”. Of course there might
be some event belongs to E [M ′ + 1], . . . , E [M ] that does not hold on the output



Verifying Algorithmic Versions of the Lovász Local Lemma 135

of the algorithm, but with the above-mentioned result we can prove that this
happens with only a low probability, since for each event in E [M ′ + 1], . . . , E [M ]
the probability of occurrence has an upper bound. Thus, by sacrificing some
precision, the variant on core events obtains better performance than the original
MT algorithm, since it runs on less events.

We formally verify the result we mentioned before, that is, the second part
of Theorem 2.2 of [32]. The result is formally stated as Thm. 12. The code CHSS
is defined in Fig. 34, where we take the first M − 1 events as the events to be
sampled, and leave the event E [M ] as the one that the occurrence probability
is concerned. CHSS differs from CMT(cnt) only in the bound of the inner loop
that chooses the event to be resampled. Moreover, CHSS can be also regarded as
a variant of the MT algorithm on core events, since E [M ′ + 1], . . . , E [M ] in the
previous description can be combined into a single event by disjunctions.

Theorem 12. For all reals α1, . . . , αM−1 ∈ (0, 1), if

∀i ∈ [1, M). P(E [i]) ≤ αi

∏
j∈Γ (i)\{M}

(1 − αj),

then
⊨ [true] CHSS

[
Pr[hold(M, x[1], . . . , x[N ])] ≤ γHSS
∧E[cnt] ≤ rHSS

]
,

where

rHSS =
∑

i∈[1,M)

αi(1 − αi)−1,

γHSS = P(E [M ])
∏

i∈Γ (M)

(1 − αi)−1.

The proof of Thm. 12 relies on the intuition that, if E [M ] holds after the
algorithm terminates, then E [M ] appears as if it is being chosen as an event to
be resampled, and thus it can be inserted in the witness tree as we insert the
events in the execution log.

Proof of Thm. 12. Let the premise (the Erdős-Lovász condition on M −1 events)
hold. By applying Lem. 77, Thm. 2, Lem. 81, Lem. 82 and Lem. 83, with the
auxiliary code C ′

HSS(K) defined in Fig. 47, we only need to prove that, for all K,

⊨ [true] C ′
HSS(K)

[
Pr[hold(M, x[1], . . . , x[N ])] ≤ γHSS
∧E[cnt] ≤ rHSS ∧ ⌈cnt ≥ 0⌉

]
. (79)

From Lem. 103 and Lem. 104, we have

⊨
∑

wt∈WTMap(K)
#M (wt)=0

|gWT(wt)|∏
i=1

P(E [gWT(wt)⟨i⟩]) ≤ rHSS
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and

⊨
∑

wt∈WTMap(K+1)
root(wt)=M ∧ #M (wt)=1

|gWT(wt)|∏
i=1

P(E [gWT(wt)⟨i⟩]) ≤ γHSS;

thus, to prove (79), by Lem. 77 and Lem. 78, we only need to prove that

⊨ [true] C ′
HSS(K)

⌈cnt ≥ 0⌉ ∧ E[cnt] ≤
∑

wt∈WTMap(K)
#M (wt)=0

|gWT(wt)|∏
i=1

P(E [gWT(wt)⟨i⟩])


(80)

and

⊨ [true] C ′
HSS(K)


Pr[hold(M, x[1], . . . , x[N ])]

≤
∑

wt∈WTMap(K+1)
root(wt)=M ∧ #M (wt)=1

|gWT(wt)|∏
i=1

P(E [gWT(wt)⟨i⟩])

 . (81)

The proof of (80) is almost the same as (45). Below we focus on the proof of
(81).

Similar to Thm. 4, we define FWT(e, wt, i) as follows:

FWT(e, wt, i) ≜
∨

Λ∈f−1
WT (wt) : |Λ|=i . e = Λ.

Now, to prove (81), by repeatedly applying Lem. 77 and Lem. 78, we only need
to prove the following two subgoals:

⊨ [true] C ′
HSS(K)

Pr[hold(M, x[1], . . . , x[N ])]

≤ Pr

 ∨
wt∈WTMap(K+1)

root(wt)=M ∧ #M (wt)=1

hold(M, x[1], . . . , x[N ])
∧ FWT(app(lst, M), wt, cnt + 1)


 . (82)

and for all wt ∈ WTMap(K + 1)

⊨ {true} C ′
HSS(K)

Pr
[

hold(M, x[1], . . . , x[N ])
∧ FWT(app(lst, M), wt, cnt + 1)

]

≤
|gWT(wt)|∏

i=1
P(E [gWT(wt)⟨i⟩])

. (83)

Informally, FWT(app(lst, M), wt, cnt + 1) holds if the witness tree wt can be
constructed from the whole execution log (lst) with E [M ] appended.

For (82), from Lem. 77 we only need to prove that

⊨ [true] C ′
HSS(K)
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

∨
wt∈WTMap(K+1)

root(wt)=M ∧ #M (wt)=1

FWT(app(lst, M), wt, cnt + 1)


 , (84)

then by Lem. 80, to prove (84), we only need to prove the following:

⊨RT [true ∧ hdinit] C ′
HSS(K) ∨

wt∈WTMap(K+1)
root(wt)=M ∧ #M (wt)=1

FWT(app(lst, M), wt, cnt + 1)

 . (85)

For (83), by Lem. 79, with the auxiliary code Ccheck(Λ) defined in Fig. 35,
we only need to prove the following two subgoals:

⊨ {true} C ′
HSS(K), Ccheck(gWT(wt)){

hold(M, x[1], . . . , x[N ])
∧ FWT(app(lst, M), wt, cnt + 1) , succ = 1

}
, (86)

and

⊨ [true] Ccheck(gWT(wt))Pr[succ = 1] =
|gWT(wt)|∏

i=1
P(E [gWT(wt)⟨i⟩])

 . (87)

For (86), by RT-based coupling (Thm. 3), we only need to prove the following
two subgoals:

⊨RT {true ∧ hdinit} C ′
HSS(K){

hold(M, x[1], . . . , x[N ])
∧ FWT(app(lst, M), wt, cnt + 1) ⇒ R

}
, (88)

and
⊨RT [true ∧ R ∧ hdinit] Ccheck(gWT(wt)) [succ = 1] , (89)

where R is the same as that in Thm. 4.

R ≜
∧

l∈[1,|gWT(wt)|] . ∀V1, . . . VN .

(
∧

i∈[1,N ] . vbl(gWT(wt)⟨l⟩, i)
⇒ Vi = RT[i][ve(i, gWT(wt), l − 1)])

⇒ hold(gWT(wt)⟨l⟩, V1, . . . , VN )

ve(i, Λ, l) ≜
∑

l′∈[1,l][vbl(Λ⟨l′⟩, i)]

Given that R is defined, (88) and (89) says that, for all resampling tables
RT :
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– If, using RT , wt can be constructed from the execution log generated by the
MT algorithm (C ′

HSS(K)) with E [M ] appended, and E [M ] holds immediately
after the execution log being generated, then R holds on RT . Note that
hold(M, x[1], . . . , x[N ]) is a necessary precondition for R to hold, since M is
the root of wt.

– If R holds on RT , then all tests in the check(wt) program (Ccheck(gWT(wt)))
pass when the program is executed using RT .

Now it remains to prove (85), (88), (89) and (87). The proofs of (89) and (87)
are exactly the same as those of (53) and (51). Below we prove (85) and (88) by
applying Thm. 7. We use inference rules of the resampling-table-based program
logic (listed in Fig. 25 and Fig. 26) to derive these two judgments, which are
sketched in Fig. 48 and Fig. 49. We use the following auxiliary assertions (and
those listed in Fig. 36):

LM2(m) ≜
∧

l∈[1,m] . 1 ≤ lst[l] < M

CL2(n) ≜ 0 ≤ cnt < n ∧ len(lst) = cnt ∧ LM2(cnt)

The proof of (88) is mostly similar to Fig. 38 and Fig. 39, and we thus omit the
common part in Fig. 49.

Below we show the proofs of two non-trivial side conditions in Fig. 48 and
Fig. 49.

1. The side condition in the last line of Fig. 48:

⊨RT CL2(K + 1) ⇒
∨

wt∈WTMap(K+1)
root(wt)=M ∧ #M (wt)=1

FWT(app(lst, M), wt, cnt + 1).

Proof: Let Σ ⊨ CL2(K + 1), then there exists m ∈ [0, K] such that JcntKΣ =
|JlstKΣ | = m, and for all i ∈ [1, m] we have (JlstKΣ)⟨i⟩ ∈ [1, M). Let

wt = fWT(Japp(lst, M)KΣ),

from Lem. 86 and Lem. 93 we have root(wt) = M and #M (wt) = 1. Since
|Japp(lst, M)KΣ | = m+1 ≤ K +1, from Lem. 98 we have wt ∈ WTMap(K +
1), and thus

Σ ⊨ FWT(app(lst, M), wt, cnt + 1).
2. The side condition in the last line of Fig. 49:

⊨RT

cnt ≤ K ∧ len(lst) = cnt ∧ L(lst, cnt) ∧ U(lst, cnt) ⇒(
hold(M, x[1], . . . , x[N ])
∧ FWT(app(lst, M), wt, cnt + 1) ⇒ R

)
.

Proof: Define Σ = (σ, RT, ι) such that

Σ ⊨ cnt ≤ K ∧ len(lst) = cnt ∧ L(lst, cnt) ∧ U(lst, cnt),

then there exists m ∈ [0, K] and Λ such that JcntKΣ = m, JlstKΣ = Λ,
|Λ| = m, and
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(a) For all k ∈ [1, m], E [Λ⟨k⟩](r1, . . . , rN ) = true, where ri =
RT [i][Jve(i, Λ, k − 1)KΣ ] for each i ∈ [1, N ].

(b) For all i ∈ [1, N ], Jx[i]KΣ = RT [i][Jve(i, Λ, m)KΣ ].
Then suppose

Σ ⊨ hold(M, x[1], . . . , x[N ]) ∧ FWT(app(lst, M), wt, cnt + 1).

From Σ ⊨ hold(M, x[1], . . . , x[N ]), (2a) and (2b), we have:
(c) For all k ∈ [1, m + 1], E [(M :: Λ)⟨k⟩](r1, . . . , rN ) = true, where ri =

RT [i][Jve(i, (M :: Λ), k − 1)KΣ ] for each i ∈ [1, N ].
Know that

fWT(Japp(lst, M)KΣ) = fWT(M :: Λ) = wt,

and we only need to prove that Σ ⊨ R:
(d) For all l ∈ [1, |gWT(wt)|] and r1, . . . , rN , if for all i ∈ [1, N ] such that

vbl(gWT(wt)⟨l⟩, i) we have ri = RT [i][Jve(i, gWT(wt), l − 1)KΣ ], then

E [gWT(wt)⟨l⟩](r1, . . . , rN ) = true.

Let l and r1, . . . , rN satisfy the premise of (2d), then from Lem. 100, we have
the following: there exists k such that (M :: Λ)⟨k⟩ = gWT(wt)⟨l⟩, and for all
i ∈ [1, N ] such that vbl(gWT(wt)⟨l⟩, i) we have

Jve(i, M :: Λ, k − 1)KΣ = Jve(i, gWT(wt), l − 1)KΣ .

Define r′
1, . . . , r′

N such that

r′
i = RT [i][Jve(i, M :: Λ, k − 1)KΣ ]

for all i ∈ [1, N ], then from (2c) we know that

E [(M :: Λ)⟨k⟩](r′
1, . . . , r′

N ) = true,

which implies
E [gWT(wt)⟨l⟩](r′

1, . . . , r′
N ) = true

by (M :: Λ)⟨k⟩ = gWT(wt)⟨l⟩. We can prove that

E [gWT(wt)⟨l⟩](r′
1, . . . , r′

N ) = E [gWT(wt)⟨l⟩](r1, . . . , rN ),

since (r1, . . . , rN ) and (r′
1, . . . , r′

N ) agree on all positions i such that
vbl(gWT(wt)⟨l⟩, i). Thus

E [gWT(wt)⟨l⟩](r1, . . . , rN ) = true.

⊓⊔
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C′
HSS(K) ≜

d := 1;
while (d ≤ N) do

a := Sample(d);
x[d] := a;
d := d + 1;

flag := 0;
cnt := 0;
lst := [];
while (flag = 0 ∧ cnt < K) do

z := 0;
h := 1;
while (h < M) do

if (hold(h, x[1], . . . , x[N ])) then
z := h;

h := h + 1;
if (z = 0) then flag := 1;
else

cnt := cnt + 1;
lst := app(lst, z);
d := 1;
while (d ≤ N) do

if (vbl(z, d)) then
a := Sample(d);
x[d] := a;

d := d + 1;

Fig. 47. Auxiliary code for Thm. 12.

J.6 Theorem 1.3 of [51]

Besides the MT algorithm in Theorem 1.2, Moser and Tardos also propose other
algorithmic versions of Lovász Local Lemma in [51]. The parallel version (or
rather, a “parallelizable version”) of the MT algorithm, with the code CMTpar
shown in Fig. 34, is probably the most important one of them.

The idea of the algorithm is to “compress” the MT algorithm into a compact
version, which is suited for parallelization. In each iteration, the loop in the
algorithm first generates a maximal independent set (MIS) mis, which is an event
set with the largest size such that all events in the set occur under the current
assignment and do not depend on the variables that some others depend on.
Then, all variables that the events in mis depend on are resampled in one round.
This algorithm can be parallelized: one can generate the MIS by applying those
parallel algorithms, e.g. the Luby’s algorithm [47], and resample the variables
parallelly, e.g. by replacing the sequential composition of Cpar(1), . . . , Cpar(M)
with parallel composition.

Moser and Tardos give a tail bound for the iteration numbers of the algo-
rithm’s main loop. By allowing an ϵ-slack in the Erdős-Lovász condition, they
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[true ∧ hdinit]
d := 1;
while (d ≤ N) do

a := Sample(d);
x[d] := a;
d := d + 1;

[true]
flag := 0; cnt := 0; lst := [];
[cnt = 0 ∧ lst = []]
[CL2(K + 1)]
while (flag = 0 ∧ cnt < K) do

[CL2(K) ∧ flag = 0 ∧ K − cnt − flag = X]
z := 0; h := 1;
[CL2(K) ∧ 0 ≤ z < M ∧ 1 ≤ h ≤ M ∧ flag = 0 ∧ K − cnt − flag = X]
while (h < M) do

[CL2(K) ∧ 0 ≤ z < M ∧ 1 ≤ h < M ∧ flag = 0
∧ K − cnt − flag = X ∧ M − h = X ′]

if (hold(h, x[1], . . . , x[N ])) then z := h;
h := h + 1;
[CL2(K) ∧ 0 ≤ z < M ∧ 1 ≤ h ≤ M ∧ flag = 0

∧ K − cnt − flag = X ∧ M − h + 1 ≤ X ′]
[CL2(K) ∧ 0 ≤ z < M ∧ flag = 0 ∧ K − cnt − flag = X]
if (z = 0) then

[CL2(K) ∧ flag = 0 ∧ K − cnt − flag = X]
flag := 1;
[CL2(K + 1) ∧ K − cnt − flag + 1 ≤ X]

else
[CL2(K) ∧ 1 ≤ z < M ∧ flag = 0 ∧ K − cnt − flag = X]
[0 ≤ cnt < K ∧ LM2(cnt) ∧ len(lst) = cnt ∧ 1 ≤ z < M

∧ flag = 0 ∧ K − cnt − flag = X]
cnt := cnt + 1; lst := app(lst, z);
[1 ≤ cnt ≤ K ∧ LM2(cnt) ∧ len(lst) = cnt ∧ K − cnt − flag + 1 ≤ X]
[CL2(K + 1) ∧ K − cnt − flag + 1 ≤ X]
d := 1;
while (d ≤ N) do ;

if (vbl(z, d)) then
a := Sample(d);
x[d] := a;

d := d + 1;
[CL2(K + 1) ∧ K − cnt − flag + 1 ≤ X]

[CL2(K + 1) ∧ K − cnt − flag + 1 ≤ X]
[CL2(K + 1)] ∨

wt∈WTMap(K+1)
root(wt)=M ∧ #M (wt)=1

FWT(app(lst, M), wt, cnt + 1)


Fig. 48. Proof of (85).



142

{true ∧ hdinit}
C′

HSS(K)
{CLU(K + 1)}
{cnt ≤ K ∧ len(lst) = cnt ∧ L(lst, cnt) ∧ U(lst, cnt)}
{hold(M, x[1], . . . , x[N ]) ∧ FWT(app(lst, M), wt, cnt + 1) ⇒ R}

Fig. 49. Proof of (88).

prove that the probability of the iteration numbers exceeding n decreases expo-
nentially as n grows.

We formally verify the above result. Below we first present the required def-
initions for generating MIS. We extend the definition of expressions:

(Expr) e ::= . . . | MIS(e1, . . . , eN )

JMIS(e1, . . . , eN )Kσ is defined as

max

Λ : (∀j ∈ [1, |Λ|]. Λ⟨j⟩ ∈ [1, M ]
∧ E [Λ⟨j⟩](r1, . . . , rN ) = true)

∧ (∀j < k ∈ [1, |Λ|]. Λ⟨k⟩ /∈ Γ +(Λ⟨j⟩))

 ,

where JeiKσ = ri for each i ∈ [1, N ]. In the above definition, max{Λ : · · · } is
one of the lists with the maximum length that represent independent sets of the
dependency graph and contain only occurring events. Formally, max{Λ : · · · } is
the list which is greater than all other lists in the set, and for two lists Λ, Λ′,
Λ < Λ′ iff one of the following conditions holds:

– |Λ| < |Λ′|;
– |Λ| = |Λ′|, and there exists some Λ′′ such that Λ′′ ≺ Λ, Λ′′ ≺ Λ′, and

Λ⟨|Λ′′| + 1⟩ < Λ′⟨|Λ′′| + 1⟩.

Moser and Tardos’s result is then formally stated in Thm. 13.

Theorem 13. For all reals α1, . . . , αM , ϵ ∈ (0, 1), if

∀i ∈ [1, M ]. P(E [i]) ≤ (1 − ϵ)αi

 ∏
j∈Γ (i)

(1 − αj)

 ,

then for all n we have

⊨ [true] CMTpar
[
Pr[cnt ≥ n] ≤ (1 − ϵ)nrEL ∧ E[cnt] ≤ (ϵ−1 − 1)rEL

]
.

Proof. Let the premise (the Erdős-Lovász condition with ϵ slack) hold. By ap-
plying Lem. 77, Thm. 2, Lem. 81, Lem. 82 and Lem. 83, with the auxiliary code
C ′

MTpar(K) defined in Fig. 50, we only need to prove that, for all K and n,

⊨ [true] C ′
MTpar(K)

[
Pr[cnt ≥ n] ≤ (1 − ϵ)nrEL
∧ E[cnt] ≤ (ϵ−1 − 1)rEL ∧ ⌈cnt ≥ 0⌉

]
. (90)
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From Lem. 102, we have

⊨
∑

wt∈WTMap(K·M)
|wt|≥m

|gWT(wt)|∏
i=1

P(E [gWT(wt)⟨i⟩]) ≤ (1 − ϵ)mrEL

for all m. Note that ∑
m∈[1,K]

(1 − ϵ)m ≤ ϵ−1 − 1

and
⊨ ⌈0 ≤ cnt ≤ K⌉ ⇒ E[cnt] =

∑
m∈[1,K]

Pr[cnt ≥ m];

thus, to prove (90), by applying Lem. 77 and Lem. 78, we only need to prove
the following: for all m ∈ [1, K] ∪ {n},

⊨ [true] C ′
MTpar(K)Pr[cnt ≥ m] ≤

∑
wt∈WTMap(K·M)

|wt|≥m

|gWT(wt)|∏
i=1

P(E [gWT(wt)⟨i⟩])

 , (91)

and

⊨ {true} C ′
MTpar(K) {⌈0 ≤ cnt ≤ K⌉} . (92)

Similar to Thm. 4, we define FWT(e, wt, i) as follows:

FWT(e, wt, i) ≜
∨

Λ∈f−1
WT (wt) : |Λ|=i . e = Λ.

Now, to prove (91), by repeatedly applying Lem. 77 and Lem. 78, we only need
to prove the following two subgoals:

⊨ [true] C ′
MTpar(K)Pr[cnt ≥ m] ≤ Pr

 ∨
wt∈WTMap(K·M)

|wt|≥m

FWT(lst, wt, len(lst))


 , (93)

and for all wt ∈ WTMap(K · M) such that |wt| ≥ m

⊨ {true} C ′
MTpar(K)Pr[FWT(lst, wt, len(lst))] ≤

|gWT(wt)|∏
i=1

P(E [gWT(wt)⟨i⟩])

 . (94)

Informally, FWT(lst, wt, len(lst)) holds if the witness tree wt can be constructed
from the execution log lst.
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For (93), from Lem. 77 we only need to prove that

⊨ [true] C ′
MTpar(K)

cnt ≥ m ⇒
∨

wt∈WTMap(K·M)
|wt|≥m

FWT(lst, wt, len(lst))


 . (95)

By Lem. 77, to prove (92) and (95), we only need to prove that

⊨ [true] C ′
MTpar(K) [⌈0 ≤ cnt ≤ K ∧cnt ≥ m ⇒

∨
wt∈WTMap(K·M)

|wt|≥m

FWT(lst, wt, len(lst))



.

Then, by Lem. 80, to prove the above formula, we only need to prove the fol-
lowing:

⊨RT [true ∧ hdinit] C ′
MTpar(K) [0 ≤ cnt ≤ K ∧cnt ≥ m ⇒

∨
wt∈WTMap(K·M)

|wt|≥m

FWT(lst, wt, len(lst))


. (96)

For (94), by Lem. 79, with the auxiliary code Ccheck(Λ) defined in Fig. 35,
we only need to prove the following two subgoals:

⊨ {true} C ′
MTpar(K), Ccheck(gWT(wt))

{FWT(lst, wt, len(lst)), succ = 1} , (97)

and

⊨ [true] Ccheck(gWT(wt))Pr[succ = 1] =
|gWT(wt)|∏

i=1
P(E [gWT(wt)⟨i⟩])

 . (98)

For (97), by RT-based coupling (Thm. 3), we only need to prove the following
two subgoals:

⊨RT {true ∧ hdinit} C ′
MTpar(K) {FWT(lst, wt, len(lst)) ⇒ R} , (99)

and
⊨RT [true ∧ R ∧ hdinit] Ccheck(gWT(wt)) [succ = 1] , (100)

where R is the same as that in Thm. 4.
R ≜

∧
l∈[1,|gWT(wt)|] . ∀V1, . . . VN .

(
∧

i∈[1,N ] . vbl(gWT(wt)⟨l⟩, i)
⇒ Vi = RT[i][ve(i, gWT(wt), l − 1)])

⇒ hold(gWT(wt)⟨l⟩, V1, . . . , VN )

ve(i, Λ, l) ≜
∑

l′∈[1,l][vbl(Λ⟨l′⟩, i)]
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Now it remains to prove (96), (99), (100) and (98). The proofs of (100) and
(98) are exactly the same as the proofs of (53) and (51). Below we prove (96) and
(99) by applying Thm. 7. We use inference rules of the resampling-table-based
program logic (listed in Fig. 25 and Fig. 26) to derive the two corresponding
judgments, and the proofs are sketched in Fig. 52, Fig. 53, Fig. 54 and Fig. 55.
The auxiliary assertions are shown in Fig. 51 and Fig. 36. For simplicity, in
Fig. 55, we use the following shorthands:

la ≜ concat(lst′, pf(mis, i − 1))
lb ≜ concat(lst′, pf(mis, i))
na ≜ len(lst′) + i − 1
nb ≜ len(lst′) + i

Below we show the proofs of two non-trivial side conditions in Fig. 52, Fig. 53,
Fig. 54 and Fig. 55.

1. The side condition in Fig. 52:

⊨RT CL3(K + 1) ⇒ cnt ≤ K ∧cnt ≥ m =⇒
∨

wt∈WTMap(K·M)
|wt|≥m

FWT(lst, wt, len(lst))

 .

Proof: Let Σ ⊨ CL3(K + 1), then by definition we have Σ ⊨ cnt ≤ K.
Assuming that Σ ⊨ cnt ≥ m, it remains to prove that, if m ≤ K, then there
exists wt ∈ WTMap(K · M) such that |wt| ≥ m and fWT(JlstKΣ) = wt.
From Σ ⊨ CL3(K + 1), we have Σ ⊨ lst = pfl(cnt), Σ ⊨ LM3(cnt) and
Σ ⊨ CPL(cnt); thus, with l = JcntKΣ ≥ m and Λ = JlstKΣ , we have:
(a) Λ ∈ ExLog, and |Λ| ≤ l · M ≤ K · M ;
(b) There exist 1 ≤ i1 < · · · < il ≤ |Λ| such that Λ⟨ij+1⟩ ∈ Γ +(Λ⟨ij⟩) for all

j ∈ [1, l).
From (1a) and Lem. 98, we have fWT(JlstKΣ) ∈ WTMap(K · M). From
(1b) we know that there exists i ∈ |Λ| such that GPath(Λ, i, l), and thus by
Lem. 95 and induction we have |wt| ≥ l ≥ m.

2. The side condition in Fig. 54:

⊨RT L(lst, len(lst)) ⇒ (FWT(lst, wt, len(lst)) ⇒ R).

Proof: Define Σ = (σ, RT, ι) such that Σ ⊨ L(lst, len(cnt)), then with
JlstKΣ = Λ and |Λ| = m we have
(a) For all k ∈ [1, m], E [Λ⟨k⟩](r1, . . . , rN ) = true, where ri =

RT [i][Jve(i, Λ, k − 1)KΣ ] for each i ∈ [1, N ].
Then suppose Σ ⊨ FWT(lst, wt, len(lst)), which implies fWT(JlstKΣ) =
fWT(Λ) = wt. Now we only need to prove that Σ ⊨ R:
(b) For all l ∈ [1, |gWT(wt)|] and r1, . . . , rN , if for all i ∈ [1, N ] such that

vbl(gWT(wt)⟨l⟩, i) we have ri = RT [i][Jve(i, gWT(wt), l − 1)KΣ ], then

E [gWT(wt)⟨l⟩](r1, . . . , rN ) = true.
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C′
MTpar(K) ≜

d := 1;
while (d ≤ N) do

a := Sample(d);
x[d] := a;
d := d + 1;

flag := 0;
cnt := 0;
lst := [];
while (flag = 0 ∧ cnt < K) do

mis := MIS(x[1], . . . , x[N ]);
if (mis = []) then flag := 1;
else

cnt := cnt + 1;
lst := concat(lst, mis);
L[cnt] := mis;
Cpar(1);
· · · ;
Cpar(M);

Fig. 50. Auxiliary code for Thm. 13.

Let l and r1, . . . , rN satisfy the premise of (2b), then from Lem. 100, there
exists k such that Λ⟨k⟩ = gWT(wt)⟨l⟩, and for all i ∈ [1, N ] such that
vbl(gWT(wt)⟨l⟩, i) we have

Jve(i, Λ, k − 1)KΣ = Jve(i, gWT(wt), l − 1)KΣ .

Define r′
1, . . . , r′

N such that

r′
i = RT [i][Jve(i, Λ, k − 1)KΣ ]

for all i ∈ [1, N ], then from (2a) we know that

E [Λ⟨k⟩](r′
1, . . . , r′

N ) = true,

which implies
E [gWT(wt)⟨l⟩](r′

1, . . . , r′
N ) = true

by Λ⟨k⟩ = gWT(wt)⟨l⟩. Since (r1, . . . , rN ) and (r′
1, . . . , r′

N ) agree on all posi-
tions i such that vbl(gWT(wt)⟨l⟩, i), we can prove that

E [gWT(wt)⟨l⟩](r′
1, . . . , r′

N ) = E [gWT(wt)⟨l⟩](r1, . . . , rN ),

and thus E [gWT(wt)⟨l⟩](r1, . . . , rN ) = true.
⊓⊔
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SM(Λ) ≜ len(Λ) ≤ M ∧
(∧

j∈[1,|Λ|] . 1 ≤ Λ⟨j⟩ ≤ M
)

LM3(m) ≜
∧

l∈[1,m] . SM(L[l]) ∧ len(L[l]) ≥ 1

CP(Λ, Λ′) ≜
∧

j∈[1,M ] . Λ′⟨_⟩ = j ⇒ Λ⟨_⟩ ∈ Γ +(j)

CPL(m) ≜
∧

l∈[1,m) . CP(L[l], L[l + 1])

pfl(m) ≜
{

ϵ if m = 0
concat(pfl(m − 1), L[m]) if m ≥ 1

IND(Λ) ≜
∧

j,k∈[1,M ] . 1 ≤ j < k ≤ len(Λ) ⇒ Λ⟨j⟩ /∈ Γ +(Λ⟨k⟩)

HD(Λ) ≜
∧

j∈[1,M ] . Λ⟨_⟩ = j ⇒ hold(j, x[1], . . . , x[N ])

HD′(Λ, n) ≜
∧

j∈[1,M ] . n < j ≤ len(Λ) ⇒ hold(Λ⟨j⟩, x[1], . . . , x[N ])

MI(Λ) ≜
∧

j∈[1,M ] .
(∧

k∈[1,M ] . k ∈ Γ +(j) ⇒ ¬(Λ⟨_⟩ = k)
)

⇒ ¬hold(j, x[1], . . . , x[N ])

CL3(n) ≜ 0 ≤ cnt < n ∧ lst = pfl(cnt) ∧ LM3(cnt)
∧ CPL(cnt) ∧ (cnt = 0 ∨ MI(L[cnt]))

LU(Λ) ≜ L(Λ, len(Λ)) ∧ U(Λ, len(Λ))

LUI(i) ≜ ∃lst′. lst = concat(lst′, mis) ∧ LU(lb) ∧ SM(mis)
∧ IND(mis) ∧ HD′(mis, i)

Fig. 51. Auxiliary assertions for Thm. 13.
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[true ∧ hdinit]
d := 1;
while (d ≤ N) do

a := Sample(d);
x[d] := a;
d := d + 1;

[true]
flag := 0; cnt := 0; lst := [];
[cnt = 0 ∧ lst = []]
[CL3(K + 1)]
while (flag = 0 ∧ cnt < K) do

[CL3(K) ∧ flag = 0 ∧ K − cnt − flag = X]
mis := MIS(x[1], . . . , x[N ]);
[CL3(K) ∧ SM(mis) ∧ HD(mis) ∧ MI(mis) ∧ flag = 0 ∧ K − cnt − flag = X]
if (mis = []) then

[CL3(K) ∧ flag = 0 ∧ K − cnt − flag = X]
flag := 1;
[CL3(K + 1) ∧ K − cnt − flag + 1 ≤ X]

else
[CL3(K) ∧ SM(mis) ∧ HD(mis) ∧ MI(mis) ∧ flag = 0 ∧ K − cnt − flag = X]
[0 ≤ cnt < K ∧ lst = pfl(cnt) ∧ LM3(cnt) ∧ CPL(cnt)

∧ flag = 0 ∧ K − cnt − flag = X
∧ SM(mis) ∧ MI(mis) ∧ (cnt = 0 ∨ CP(L[cnt], mis))]

cnt := cnt + 1;
[1 ≤ cnt ≤ K ∧ lst = pfl(cnt − 1) ∧ LM3(cnt − 1) ∧ CPL(cnt − 1)

∧ K − cnt − flag + 1 ≤ X
∧ SM(mis) ∧ MI(mis) ∧ (cnt = 1 ∨ CP(L[cnt − 1], mis))]

lst := concat(lst, mis); L[cnt] := mis;
[1 ≤ cnt ≤ K ∧ lst = pfl(cnt) ∧ LM3(cnt) ∧ CPL(cnt)

∧ MI(L[cnt]) ∧ L[cnt] = mis ∧ K − cnt − flag + 1 ≤ X]
[CL3(K + 1) ∧ cnt ≥ 1 ∧ L[cnt] = mis ∧ K − cnt − flag + 1 ≤ X]
Cpar(1);
[CL3(K + 1) ∧ cnt ≥ 1 ∧ L[cnt] = mis ∧ K − cnt − flag + 1 ≤ X]
· · ·
[CL3(K + 1) ∧ cnt ≥ 1 ∧ L[cnt] = mis ∧ K − cnt − flag + 1 ≤ X]
Cpar(M);
[CL3(K + 1) ∧ cnt ≥ 1 ∧ L[cnt] = mis ∧ K − cnt − flag + 1 ≤ X]
[CL3(K + 1) ∧ K − cnt − flag + 1 ≤ X]

[CL3(K + 1) ∧ K − cnt − flag + 1 ≤ X]
[CL3(K + 1)]0 ≤ cnt ≤ K ∧

cnt ≥ m =⇒
∨

wt∈WTMap(K·M)
|wt|≥m

FWT(lst, wt, len(lst))




Fig. 52. Proof of (96) (part I).
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[CL3(K + 1) ∧ cnt ≥ 1 ∧ L[cnt] = mis]
if (len(mis) ≥ i) then

[CL3(K + 1) ∧ cnt ≥ 1 ∧ L[cnt] = mis ∧ 1 ≤ i ≤ len(mis)]
d := 1;
[CL3(K + 1) ∧ cnt ≥ 1 ∧ L[cnt] = mis ∧ 1 ≤ i ≤ len(mis) ∧ 1 ≤ d ≤ N + 1]
while (d ≤ N) do

[CL3(K + 1) ∧ cnt ≥ 1 ∧ L[cnt] = mis ∧ 1 ≤ i ≤ len(mis)
∧ 1 ≤ d ≤ N ∧ N + 1 − d = X ′]

if (vbl(mis⟨i⟩, d)) then
[CL3(K + 1) ∧ cnt ≥ 1 ∧ L[cnt] = mis ∧ 1 ≤ i ≤ len(mis)

∧ 1 ≤ d ≤ N ∧ vbl(mis⟨i⟩, d) ∧ N + 1 − d = X ′]
a := Sample(d); x[d] := a;
[CL3(K + 1) ∧ cnt ≥ 1 ∧ L[cnt] = mis ∧ 1 ≤ i ≤ len(mis)

∧ 1 ≤ d ≤ N ∧ N + 1 − d = X ′]
[CL3(K + 1) ∧ cnt ≥ 1 ∧ L[cnt] = mis ∧ 1 ≤ i ≤ len(mis)

∧ 1 ≤ d ≤ N ∧ N + 1 − d = X ′]
d := d + 1;
[CL3(K + 1) ∧ cnt ≥ 1 ∧ L[cnt] = mis ∧ 1 ≤ i ≤ len(mis)

∧ 1 ≤ d ≤ N + 1 ∧ N + 1 − d + 1 ≤ X ′]
[CL3(K + 1) ∧ cnt ≥ 1 ∧ L[cnt] = mis]

[CL3(K + 1) ∧ cnt ≥ 1 ∧ L[cnt] = mis]

Fig. 53. Proof of (96) (part II).
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{true ∧ hdinit}
d := 1;
while (d ≤ N) do (a := Sample(d); x[d] := a; d := d + 1);{∧

i∈[1,N ] . x[i] = RT[i][0] ∧ hdi = 1
}

flag := 0; cnt := 0; lst := [];
{cnt = 0 ∧ lst = [] ∧ U([], 0)}
{LU(lst)}
while (flag = 0 ∧ cnt < K) do

{LU(lst)}
mis := MIS(x[1], . . . , x[N ]);
{LU(lst, len(lst)) ∧ IND(mis) ∧ HD(mis)}
if (mis = []) then

{LU(lst)}
flag := 1;
{LU(lst)}

else
{LU(lst) ∧ IND(mis) ∧ HD(mis)}
cnt := cnt + 1;
{LU(lst) ∧ IND(mis) ∧ HD(mis)}
lst := concat(lst, mis); L[cnt] := mis;
{∃lst′. lst = concat(lst′, mis) ∧ LU(lst′) ∧ IND(mis) ∧ HD(mis)}
{LUI(0)}
Cpar(1);
{LUI(1)}
· · ·
{LUI(M − 1)}
Cpar(M);
{LUI(M)}
{LU(lst)}

{LU(lst)}
{L(lst, len(lst))}
{FWT(lst, wt, len(lst)) ⇒ R}

Fig. 54. Proof of (99) (part I).
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{LUI(i − 1)}
if (len(mis) ≥ i) then

{LUI(i − 1) ∧ 1 ≤ i ≤ len(mis)}
{∃lst′. lst = concat(lst′, mis) ∧ L(la, na) ∧ U(la, na) ∧ hold(mis⟨i⟩, x[1], . . . , x[N ])

∧ IND(mis) ∧ HD′(mis, i) ∧ 1 ≤ i ≤ len(mis)}
{∃lst′. lst = concat(lst′, mis) ∧ L(lb, nb) ∧ U(lb, na)

∧ IND(mis) ∧ HD′(mis, i) ∧ 1 ≤ i ≤ len(mis)}
d := 1;
{∃lst′. lst = concat(lst′, mis) ∧ U′(lb, na, nb, d, d) ∧ 1 ≤ d ≤ N + 1

∧ IND(mis) ∧ HD′(mis, i) ∧ 1 ≤ i ≤ len(mis)}
{· · · U′(lb, na, nb, d, d) ∧ 1 ≤ d ≤ N + 1

∧ IND(mis) ∧ HD′(mis, i) ∧ 1 ≤ i ≤ len(mis) ∧ · · · }
while (d ≤ N) do

{U′(lb, na, nb, d, d) ∧ 1 ≤ d ≤ N
∧ IND(mis) ∧ HD′(mis, i) ∧ 1 ≤ i ≤ len(mis)}

{U′(lb, na, nb, d, d + 1) ∧ hdi = ve(d, lb, na) + 1 ∧ 1 ≤ d ≤ N
∧ IND(mis) ∧ HD′(mis, i) ∧ 1 ≤ i ≤ len(mis)}

if (vbl(mis⟨i⟩, d)) then
{U′(lb, na, nb, d, d + 1) ∧ hdd = ve(d, lb, na) + 1 ∧ vbl(lb[nb], d)

∧ 1 ≤ d ≤ N ∧ IND(mis) ∧ HD′(mis, i) ∧ 1 ≤ i ≤ len(mis)}
{U′(lb, na, nb, d, d + 1) ∧ hdd = ve(d, lb, nb)

∧ 1 ≤ d ≤ N ∧ IND(mis) ∧ HD′(mis, i) ∧ 1 ≤ i ≤ len(mis)}
a := Sample(d);
{U′(lb, na, nb, d, d + 1)

∧ a = RT[d][ve(d, lb, nb)] ∧ hdd = ve(d, lb, nb) + 1
∧ 1 ≤ d ≤ N ∧ IND(mis) ∧ HD′(mis, i) ∧ 1 ≤ i ≤ len(mis)}

x[d] := a;
{U′(lb, na, nb, d, d + 1)

∧ x[d] = RT[d][ve(d, lb, nb)] ∧ hdd = ve(d, lb, nb) + 1
∧ 1 ≤ d ≤ N ∧ IND(mis) ∧ HD′(mis, i) ∧ 1 ≤ i ≤ len(mis)}

{U′(lb, na, nb, d + 1, d + 1) ∧ 1 ≤ d ≤ N
∧ IND(mis) ∧ HD′(mis, i) ∧ 1 ≤ i ≤ len(mis)}

{U′(lb, na, nb, d + 1, d + 1) ∧ 1 ≤ d ≤ N
∧ IND(mis) ∧ HD′(mis, i) ∧ 1 ≤ i ≤ len(mis)}

d := d + 1;
{U′(lb, na, nb, d, d) ∧ 1 ≤ d ≤ N + 1

∧ IND(mis) ∧ HD′(mis, i) ∧ 1 ≤ i ≤ len(mis)}
{· · · U(lb, nb) ∧ IND(mis) ∧ HD′(mis, i) ∧ 1 ≤ i ≤ len(mis) ∧ · · · }
{∃lst′. lst = concat(lst′, mis) ∧ L(lb, nb) ∧ U(lb, nb) ∧ IND(mis) ∧ HD′(mis, i)}
{∃lst′. lst = concat(lst′, mis) ∧ LU(lb) ∧ IND(mis) ∧ HD′(mis, i)}
{LUI(i)}

{LUI(i)}

Fig. 55. Proof of (99) (part II).
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K More about [29]
The recent work [29] proposes a relational program logic for proving contextual
refinement of two probabilistic programs. We argue that, while this logic can be
applied to the formal proof of a subgoal that occurs in the original proofs of
ALLLs, our proof using RT-based coupling would be less complicated, thanks
to the immutability of resampling tables.

Below we first state the intermediate proof goal occurring in the original
proof of the MT algorithm, which, as shown later, can be proved by applying
the relational program logic in [29]. This goal is stated as contextual refinement
between two programs. Then we briefly introduce the relational program logic
in [29]. Finally, we outline several proof paths for the intermediate goal with
the relational program logic applied, and compare them with our proof using
RT-based coupling.

K.1 Proof Goal as Contextual Refinement
The relational program logic in [29] can be used to prove the following goal:
the probability of q1 holding after the (K-truncated) MT algorithm does not
exceed the probability of q2 holding after the wt-check program, where q1 and
q2 represent the two post-conditions in (8). This is one of the intermediate proof
goals occurring in the original proof of the MT algorithm (see (b)).

As shown later, we state this proof goal as contextual refinement between
two probabilistic programs. A program e (written in an ML-like language) con-
textually refines a program e′, denoted by

⊨ e ≾ e′,

is defined as follows: for any context C, the termination probability of C[e] is no
more than the termination probability of C[e′].

We state the proof goal as an instance of the contextual refinement defined
above. We construct a program e1 roughly in the form of

let _ = eMT in if q1 then e′
1 else Ω

and e2 in the form of

let _ = echeck in if q2 then e′
2 else Ω,

where eMT and echeck are codes of the (truncated) MT algorithm and the wt-
check program respectively, Ω = (rec f x = f x)() diverges, and e′

1 and e′
2 clear

the program state (e.g. heaps) so that, if e1 and e2 both terminate, then they
terminate at the same state and with the same return value 0.

Then, our proof goal can be stated as

⊨ e1 ≾ e2. (101)

To see this, note that e1 contextually refines e2 implies that the probability of
e1 terminating, which is also the probability of q1 holding after eMT, is no more
than the probability of e2 terminating, which is also the probability of q2 holding
after echeck.
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K.2 The Relational Program Logic in [29]

In [29], they propose a relational program logic to prove contextual refinement
like (101). That is, to prove ⊨ e ≾ e′, one only needs to derive

⊢ e ≾ e′

by applying rules provided by the logic. At the core of these rules is a set of
coupling rules. Below we give a brief introduction of these coupling rules (with
slight adaptation).

The common goal of these rules is to pair the sampling operations in the
two programs, and let the results of each pair of operations be the same. This
ensures that each execution path of the left program (e) corresponds to a path
of the right program (e′) with the same probability, and thus establishes the
contextual refinement. But the way these rules achieve this common goal varies.

As an example, the following sync rule simply couples two samplings that
are both evaluated next:

∀n ≤ D. ⊢ E[n] ≾ E′[n]
⊢ E[rand(D)] ≾ E′[rand(D)]

(sync)

Here E and E′ are evaluation contexts, and rand(D) uniformly samples from
{0, 1, . . . , D}. This rule synchronously pairs the sampling operations in the two
evaluation contexts, and let their results be the same. Similar rules are proposed
in [8, 6].

One may want to couple two samplings, where one is to be evaluated next,
but the other may be evaluated much later. In this scenario, sync cannot be
applied. To support this, the logic provide rules cp-l, cp-r, rd-l and rd-r,
relying on the presampling tapes mechanism. Tapes are ghost variables which
belong to one of the two programs. Each tape maintains a queue of sample
values, and is empty before the program is executed. Informally, when we want
to asynchronously couple two samplings, we can “cache” the sample value of the
earlier sampling in the other program’s tape, so that the later sampling can fetch
that value from its own tape as the result, ensuring that the results of the two
samplings coincide.

We introduce these rules below. If the sampling in the left program is to be
evaluated next but the one in the right program is not, then by applying cp-r
we can add the result (n) of the left sampling to the tape of the right program
(with tag ι):

ι ↪→s (D, n⃗) ∀n ≤ D. ι ↪→s (D, n⃗ · n) −∗ ⊢ E[n] ≾ e2

⊢ E[rand(D)] ≾ e2
(cp-r)

The assertion “ι ↪→s (D, n⃗)” says, the right program has a tape with tag ι, with
its content being n⃗, which are all drawn from {0, . . . , D}. Later, when the right
program executes to the sampling that should be coupled with the left one, by



154

applying rd-r we read the sample value from the right tape, which was added
by the left program before:

ι ↪→s (D, n · n⃗) ι ↪→s (D, n⃗) −∗ ⊢ e1 ≾ E[n]
⊢ e1 ≾ E[rand(D)]

(rd-r)

This way we let the results of the two coupled samplings be the same, even when
they are not evaluated at the same time. cp-l and rd-l are similar to cp-r and
rd-r, which we omit here.

The logic also provides the following cp-lr rule:

ι ↪→ (D, n⃗) ι′ ↪→s (D, n⃗′)
∀n ≤ D. ι ↪→ (D, n⃗ · n) ∗ ι′ ↪→s (D, n⃗′ · n) −∗ ⊢ e1 ≾ e2

⊢ e1 ≾ e2
(cp-lr)

The assertion “ι ↪→ (D, n⃗)” is similar to “ι′ ↪→s (D, n⃗′)”, but describes the left
tape. By applying cp-lr, we add the sample value (n) to both the left tape (with
tag ι) and the right tape (with tag ι′). Later, if this value is popped from the
two tapes by applying rd-l and rd-r respectively, then the two corresponding
samplings are coupled with the same result.

K.3 Several Proof Paths

From the soundness of the relational program logic, it remains to complete the
proof of (101) by deriving

⊢ e1 ≾ e2. (102)

This judgment can be derived in various ways, by applying different sets of
coupling rules described in the previous subsection. We outline two proof paths
of (102), compare them with our proof using RT-based coupling, and discuss
other possible paths.

For simplicity, we assume that supp(D[i]) = {0, . . . , i} for each i ∈ [1, N ], and
the two programs use rand(i) to sample from D[i]. We also assume that each
program has N initially empty tapes, where tapes of the left program are tagged
with ι1, . . . , ιN , and tapes from the right program are tagged with ι′

1, . . . , ι′
N .

Tapes ιi and ι′
i store sample values drawn from D[i]. That is, ιi ↪→ (i, ϵ) and

ι′
i ↪→s (i, ϵ) hold for all i ∈ [1, N ].

Below we sketch the first proof path, which can be divided into three stages.

Stage 1. For all i ∈ [1, N ], we repeatedly apply cp-lr for K times, where we
take ι = ιi, ι′ = ι′

i and D = i. That is, we generate NK numbers, and add them
to the tapes of both programs. Now, the contents of the left tapes are identical
of those of the right tapes. Tapes of either program are similar to our resampling
table. The judgment to be derived is still ⊢ e1 ≾ e2.
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Stage 2. This stage includes two steps. In this stage, we reason about the left
program (e1), and leave the right program (e2) unchanged.

First, by repeatedly applying one-sided rules, we reduce the judgment ⊢ e1 ≾
e2 to

⊢ if q1 then e′
1 else Ω ⪯ e2. (103)

In particular, when ⊢ e1 ≾ e2 is reduced to a judgment

⊢ E[rand(i)] ≾ e2, (104)

we apply the rule rd-l and reduce the judgment to

⊢ E[n] ≾ e2, (105)

where n is the number popped from the tape ιi.
During this process, some invariants should be established to describe prop-

erties involving the state of the left program and the values popped from the
left tapes. However, these values can only be found in the right tapes6. Thus we
should establish invariants involving the state of the left program and the right
tapes.

Also, to maintain these invariants, we need to additionally establish invariants
capturing the correspondence between left and right tapes. The reason is that,
to find the popped values, which are fetched from left tapes at samplings, on
right tapes, we must track something like “each value on the remaining left tapes
equals to some value on right tapes with certain index”.

Second, we do case analysis on q. For the case that q holds (on the state of
the left program), we reduce (103) to

⊢ 0 ⪯ e2, (106)

which will be derived in stage 3. For the case that q does not hold, we reduce
(103) to

⊢ Ω ⪯ e2, (107)

which can be directly derived.

Stage 3. We derive (106). This stage also includes two steps. In this stage, we
reason about the right program (e2), and leave the left program (0) unchanged.

First, since q holds on the state of the left program, together with other
invariants established before (e.g. “invariants involving the state of the left pro-
gram and the right tapes” in stage 2), we obtain certain property of the right
6 An alternative approach is to store these popped values in auxiliary variables, and

establish invariants involving the state of the left program and these variables. How-
ever, we still need to write invariants capturing the correspondence between these
variables and the right tapes, since we need to translate the properties of these vari-
ables to properties of the right tapes, which will be used in stage 3. Also, to maintain
these invariants, we again need to capture the correspondence between the remaining
left tapes and the right tapes, as explained below.



156

tapes. This property is similar to our “R”; however, it will be invalidated later,
since the right tapes will be shortened, and thus an invariant that is more com-
plex than our “R” is needed in the following reasoning.

By repeatedly applying one-sided rules, we reduce (106) to

⊢ 0 ≾ if q2 then e′
2 else Ω. (108)

In particular, when (106) is reduced to a judgment

⊢ 0 ≾ E[rand(i)], (109)

we apply the rule rd-r and reduce the judgment to

⊢ 0 ≾ E[n], (110)

where n is the number popped from the tape ι′
i.

During this process, we use auxiliary variables to store these popped numbers,
and establish invariants involving the state of the right program, the right tapes,
and these auxiliary variables. For example, these invariants should capture that,
by concatenating the popped values in the auxiliary variables and the remaining
contents of the right tapes, we obtain “full” tapes satisfying the aforementioned
property (which is similar to our “R”).

Second, from the invariants established before, we know that q2 holds (on
the state of the right program). Hence we reduce (108) to

⊢ 0 ≾ 0, (111)

which can be directly derived.

Compare with our proof. Compared with our proof using RT-based coupling,
the above proof path is somewhat more complicated. In this proof path:

– One needs to use about NK number of auxiliary variables to store the values
popped from the tapes (stage 3).

– One needs to write invariants, which is more complex than our “R”, to
describe the tapes (stage 3). These invariants involve the state of the right
program, the dynamically changing right tapes, and those auxiliary variables.

– One needs to write invariants to describe the correspondence between the
tapes used by the two programs (stage 2). These invariants involve the state
of the left program, the dynamically changing left tapes, and the right tapes.

In contrast, our proof using RT-based coupling avoids these drawbacks. Since
our RT ’s are immutable, it is not needed to use auxiliary variables to store
popped values, and we can use R to describe the immutable RT throughout the
entire process of reasoning about the right program. Meanwhile, there is no need
to describe the correspondence between the tables used by the two programs,
attributing to the fact that used sample values can be found in the immutable
RT , which is shared by the two programs.
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The second proof path. We then sketch the second proof path. The idea of this
proof path is similar to the previous one. However, here we do not apply cp-lr
at the beginning of the reasoning. We first reason about the left program. At
the time a sampling operation is to be evaluated, instead of applying rd-l, we
apply cp-r to add the result of that sampling to the corresponding right tape.
We also establish invariants involving the state of the left program and the right
tapes. Then we reason about the right program, following the same steps as in
the third stage of the previous path.

This proof path seems simpler than the previous one, since when reasoning
about the left program we ignore the left tapes, and there is thus no need to
track the correspondence between the left and the right tapes. However, it faces
the same drawbacks as the previous proof path when reasoning about the right
program. Indeed, auxiliary variables are still needed to store the values popped
from the right tapes, and complicated invariants should be established to describe
properties involving these auxiliary variables and the dynamically changing right
tapes.

Other proof paths. Other proof paths may also be available, but they would not
be simpler than the above two paths.

For example, instead of first reasoning about the left program and then rea-
soning about the right program, one may want to reason about these two pro-
grams by applying the rules cp-r and rd-r alternately (so that the proof can be
more “compositional”, since we can divide the whole reasoning process into sev-
eral pieces, and apply coupling rules in these pieces separately). However, in this
proof path, one should write invariants involving the right tapes, those popped
values from the right tapes, and states of both programs. These invariants can
be much more complicated than the ones occurring in the previous two proof
paths, since they should describe the interleaving executions of the (truncated)
MT algorithm and the wt-check program, which can be extremely complex due
to the disparity between these two programs.
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